JP2011023581A - Thermoelectric conversion and generation device - Google Patents

Thermoelectric conversion and generation device Download PDF

Info

Publication number
JP2011023581A
JP2011023581A JP2009167845A JP2009167845A JP2011023581A JP 2011023581 A JP2011023581 A JP 2011023581A JP 2009167845 A JP2009167845 A JP 2009167845A JP 2009167845 A JP2009167845 A JP 2009167845A JP 2011023581 A JP2011023581 A JP 2011023581A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
metal
heat source
power generator
conversion power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009167845A
Other languages
Japanese (ja)
Other versions
JP4950255B2 (en
Inventor
Michiyuki Nakamura
倫之 中村
Masahiro Minowa
昌啓 箕輪
Kimiki Kobayashi
公樹 小林
Yasuo Hikichi
康雄 引地
Junichi Nishioka
淳一 西岡
Hiroshi Kurata
博司 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
SWCC Showa Cable Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SWCC Showa Cable Systems Co Ltd filed Critical SWCC Showa Cable Systems Co Ltd
Priority to JP2009167845A priority Critical patent/JP4950255B2/en
Publication of JP2011023581A publication Critical patent/JP2011023581A/en
Application granted granted Critical
Publication of JP4950255B2 publication Critical patent/JP4950255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion and generation device, capable of generating high electric power by reducing temperature gradient of a metal heat source and increasing the contact area between the metal heat source and a ceramic substrate to increase a heat-input efficiency from the metal heat source to a thermoelectric conversion module. <P>SOLUTION: The thermoelectric conversion and generation device (1) for generating electric power by arranging the thermoelectric conversion module (4) between the metal heat source (2) and a cooling mechanism (3) and utilizing temperature difference between them, is provided with a heat receiving plate (8) between the metal heat source and the substrate (5) of the thermoelectric conversion module. In addition, the generator (1) may be provided with a layer (10) coated with a heat resistant and electrically conductive coating material on at least one of the surface of the heat receiving plate facing the metal heat source and the surface of the thermoelectric conversion module facing the substrate. Further, a metal layer (11) composed of a heat resistant and electrically conductive metal foil or plate may be provided on the coated layer. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱電変換モジュールを用いて高温側と低温側との間の温度差から発電する熱電変換発電装置に係り、特に金属熱源の歪を少なくし、金属熱源と熱電変換モジュールの接触面積の減少を防止することによって、高い発電出力を得ることができる熱電変換発電装置に関する。   The present invention relates to a thermoelectric conversion power generation apparatus that generates power from a temperature difference between a high temperature side and a low temperature side using a thermoelectric conversion module, and in particular, reduces distortion of a metal heat source and reduces the contact area between the metal heat source and the thermoelectric conversion module. The present invention relates to a thermoelectric conversion power generation device that can obtain a high power generation output by preventing a decrease.

従来からゼーベック効果あるいはペルチェ効果を利用する熱電変換モジュールが知られているが、この熱電変換モジュールは、通常アルミナなどのセラミックス基板上にP型及びN型の半導体からなる熱電変換素子を交互に直列に配列し、p型及びn型のそれぞれの熱電変換素子を電極で接続した構造を有している(例えば、特許文献1〜3参照)。   Conventionally, a thermoelectric conversion module using the Seebeck effect or the Peltier effect is known, but this thermoelectric conversion module is usually a series of alternating thermoelectric conversion elements made of P-type and N-type semiconductors on a ceramic substrate such as alumina. The p-type and n-type thermoelectric conversion elements are connected by electrodes (see, for example, Patent Documents 1 to 3).

ところで、高温側と低温側との間の温度差を利用して熱電変換モジュールにより発電を行う場合、高温側の熱源としては工業炉や焼却炉、あるいはこれらからの配管などが用いられている。このような熱源には例えばSUSやインコネルなどの耐熱金属が用いられることが多い。そして、これらの熱源に熱電変換モジュールのセラミックス基板を接触させて入熱を行っている。熱電変換モジュールのセラミックス基板は、熱電変換素子を支持する目的及び金属熱源との電気的絶縁を行うために用いられており、平面となっている。   By the way, when power is generated by a thermoelectric conversion module using a temperature difference between a high temperature side and a low temperature side, an industrial furnace, an incinerator, piping from these, or the like is used as a heat source on the high temperature side. For such a heat source, for example, a heat-resistant metal such as SUS or Inconel is often used. Then, the ceramic substrate of the thermoelectric conversion module is brought into contact with these heat sources to perform heat input. The ceramic substrate of the thermoelectric conversion module is used for the purpose of supporting the thermoelectric conversion element and for electrical insulation from the metal heat source, and is a flat surface.

図3に金属熱源からの熱を利用した従来の熱電変換発電装置の構造を示す。従来、高温側と低温側との間の温度差を利用して発電を行う場合には、図3(a)に示すように、熱電変換モジュール31を金属熱源32に接触させ、金属熱源32から熱電変換モジュール31へ入熱させ、冷却機構33との間に生じる温度差から発電を行っている。   FIG. 3 shows a structure of a conventional thermoelectric conversion power generation apparatus using heat from a metal heat source. Conventionally, when power generation is performed using the temperature difference between the high temperature side and the low temperature side, the thermoelectric conversion module 3 1 is brought into contact with the metal heat source 32 as shown in FIG. Heat is input to the thermoelectric conversion module 31 to generate power from a temperature difference generated between the cooling mechanism 33 and the thermoelectric conversion module 31.

なお、熱電変換モジュール31はセラミックス基板34、このセラミックス基板34上にp型及びn型の半導体が交互に直列に配列されている熱電変換素子35及びp型及びn型の各熱電変換素子をそれぞれ接続するための電極36とからなっている。   The thermoelectric conversion module 31 includes a ceramic substrate 34, a thermoelectric conversion element 35 in which p-type and n-type semiconductors are alternately arranged in series on the ceramic substrate 34, and p-type and n-type thermoelectric conversion elements, respectively. It consists of an electrode 36 for connection.

入熱当初は図3(a)のように金属熱源32と熱電変換モジュール31のセラミックス基板34は隙間なく接触している。しかし入熱が進んでいくと、熱電変換モジュール31は冷却機構33により強制的に冷却されてくるので、セラミックス基板34と金属熱源32との接触面の温度も低下してくる。一方で金属熱源32からは熱が供給され続けるので、金属熱源32の厚さ方向に温度勾配が生じることになる。   At the beginning of heat input, as shown in FIG. 3A, the metal heat source 32 and the ceramic substrate 34 of the thermoelectric conversion module 31 are in contact with each other without a gap. However, as heat input proceeds, the thermoelectric conversion module 31 is forcibly cooled by the cooling mechanism 33, so that the temperature of the contact surface between the ceramic substrate 34 and the metal heat source 32 also decreases. On the other hand, since heat is continuously supplied from the metal heat source 32, a temperature gradient is generated in the thickness direction of the metal heat source 32.

このように金属熱源32の内部に温度勾配が生じると、熱応力が生じ、それが一定程度を超えると塑性変形に至る。図3(b)は金属熱源32が塑性変形した結果、反りが生じセラミックス基板34に対して凹状態となった状況を模式的に示した図である。   As described above, when a temperature gradient is generated inside the metal heat source 32, a thermal stress is generated, and when it exceeds a certain level, plastic deformation is caused. FIG. 3B is a diagram schematically showing a state in which the metal heat source 32 is warped and is recessed with respect to the ceramic substrate 34 as a result of plastic deformation.

金属熱源32がセラミックス基板34に対して凹状態となると、金属熱源32とセラミックス基板34との間に隙間gが生じてくる。一方、金属熱源32がセラミックス基板34に対して凸状態となると、図示はしていないが金属熱源32がセラミックス基板34を押しつけることになる。   When the metal heat source 32 is recessed with respect to the ceramic substrate 34, a gap g is generated between the metal heat source 32 and the ceramic substrate 34. On the other hand, when the metal heat source 32 is convex with respect to the ceramic substrate 34, the metal heat source 32 presses the ceramic substrate 34 (not shown).

特開平5−29667号公報JP-A-5-29667 特開2005−302783号公報JP 2005-302783 A 特開2000−164941号公報JP 2000-164941 A

上記したように、従来の熱電変換発電装置では、金属熱源に温度勾配が生じ、金属熱源とセラミックス基板との熱膨張率の違いから金属熱源に反りが生じ、金属熱源とセラミックス基板との間に隙間が生じたり、金属熱源がセラミックス基板を押しつけたりする現象が生じる場合があった。   As described above, in the conventional thermoelectric conversion power generation device, a temperature gradient is generated in the metal heat source, the metal heat source is warped due to the difference in thermal expansion coefficient between the metal heat source and the ceramic substrate, and the metal heat source is between the metal heat source and the ceramic substrate. In some cases, a gap occurs or a metal heat source presses the ceramic substrate.

金属熱源とセラミックス基板との間に隙間が生じた場合には、金属熱源とセラミックス基板との接触面積が著しく減少し、金属熱源から熱電変換モジュールへの入熱が低下するために発電出力が大幅に減少するという問題があった。   If there is a gap between the metal heat source and the ceramic substrate, the contact area between the metal heat source and the ceramic substrate is significantly reduced, and the heat input from the metal heat source to the thermoelectric conversion module is reduced, resulting in a significant increase in power output. There was a problem of decreasing.

また、金属熱源がセラミックス基板を押しつける場合には、やはり金属熱源とセラミックス基板との接触面積が減少するとともに、セラミックス基板へ圧力がかかることから甚だしい場合はセラミックス基板に亀裂が入ったり、セラミックス基板が破損したりするという問題もあった。   In addition, when the metal heat source presses the ceramic substrate, the contact area between the metal heat source and the ceramic substrate is also reduced, and pressure is applied to the ceramic substrate. There was also a problem of damage.

本発明は上記のような課題を解決するためになされたもので、金属熱源の温度勾配を少なくし、金属熱源に加わる歪を低減し、金属熱源とセラミックス基板との接触面積を増大させて、金属熱源から熱電変換モジュールへの入熱効率を上げ、高い発電出力を得ることができる熱電変換発電装置を提供するものである。   The present invention has been made to solve the above-described problems, reduces the temperature gradient of the metal heat source, reduces the strain applied to the metal heat source, increases the contact area between the metal heat source and the ceramic substrate, It is an object of the present invention to provide a thermoelectric conversion power generator capable of increasing the heat input efficiency from a metal heat source to a thermoelectric conversion module and obtaining a high power generation output.

この目的を達成するために本発明の熱電変換発電装置の第1の態様は、金属熱源と冷却機構の間に熱電変換モジュールを配置し、金属熱源と冷却機構との間の温度差を利用して発電出力を得る熱電変換発電装置において、金属熱源と熱電変換モジュールの基板との間に受熱板が配置されていることを特徴とする。   In order to achieve this object, the first aspect of the thermoelectric conversion power generator of the present invention uses a temperature difference between the metal heat source and the cooling mechanism by disposing a thermoelectric conversion module between the metal heat source and the cooling mechanism. In the thermoelectric conversion power generation apparatus that obtains the power generation output, a heat receiving plate is disposed between the metal heat source and the substrate of the thermoelectric conversion module.

また本発明の熱電変換発電装置の第2の態様は、第1の態様において、受熱板は炭化珪素(SiC)粒子、窒化アルミニウム(AlN)粒子、窒化珪素(Si)粒子から選択された1種若しくは数種を含むセメント板であることを特徴とする。 According to a second aspect of the thermoelectric conversion power generator of the present invention, in the first aspect, the heat receiving plate is selected from silicon carbide (SiC) particles, aluminum nitride (AlN) particles, and silicon nitride (Si 3 N 4 ) particles. Further, the present invention is characterized in that it is a cement board containing one kind or several kinds.

さらに本発明の熱電変換発電装置の第3の態様は、第2の態様において、セメント板は粒子の配合割合が85wt.%以上であることを特徴とする。   Furthermore, the 3rd aspect of the thermoelectric conversion electric power generating apparatus of this invention is a 2nd aspect. WHEREIN: As for the cement board, the mixture ratio of particle | grains is 85 wt. % Or more.

また本発明の熱電変換発電装置の第4の態様は、第2または第3の態様において、粒子の粒子径は1〜3mmであることを特徴とする。   According to a fourth aspect of the thermoelectric conversion power generator of the present invention, in the second or third aspect, the particle diameter of the particles is 1 to 3 mm.

さらに本発明の熱電変換発電装置の第5の態様は、第1から第4の態様において、受熱板の金属熱源側若しくは熱電変換モジュールの基板側の少なくとも一方の面に耐熱性を有しかつ導電性を有する塗料が塗布された塗布層が設けられていることを特徴とする。   Furthermore, the fifth aspect of the thermoelectric conversion power generator of the present invention is the first to fourth aspects, wherein at least one surface of the heat receiving plate on the metal heat source side or on the substrate side of the thermoelectric conversion module has heat resistance and is conductive. The coating layer which has the coating material which has the property is provided, It is characterized by the above-mentioned.

また本発明の熱電変換発電装置の第6の態様は、第5の態様において、塗布層の上にさらに耐熱性を有しかつ導電性を有する金属箔若しくは金属板からなる金属層が設けられていることを特徴とする。   Moreover, the 6th aspect of the thermoelectric conversion electric power generating apparatus of this invention is a 5th aspect. WHEREIN: Furthermore, the metal layer which consists of a metal foil or metal plate which has heat resistance further on an application layer is provided. It is characterized by being.

さらに本発明の熱電変換発電装置の第7の態様は、第5の態様において、耐熱性を有しかつ導電性を有する塗料が塗布された塗布層は銀(Ag)ペーストからなることを特徴とする。   Furthermore, a seventh aspect of the thermoelectric conversion power generator of the present invention is characterized in that, in the fifth aspect, the coating layer to which the paint having heat resistance and conductivity is applied is made of a silver (Ag) paste. To do.

また本発明の熱電変換発電装置の第8の態様は、第7の態様において、塗布層の厚さは0.05〜1.0mmであることを特徴とする。   The eighth aspect of the thermoelectric conversion power generator of the present invention is characterized in that, in the seventh aspect, the thickness of the coating layer is 0.05 to 1.0 mm.

さらに本発明の熱電変換発電装置の第9の態様は、第6の態様において、耐熱性を有しかつ導電性を有する金属箔若しくは金属板からなる金属層は銀(Ag)からなることを特徴とする。   Furthermore, the ninth aspect of the thermoelectric conversion power generator of the present invention is characterized in that, in the sixth aspect, the metal layer made of metal foil or metal plate having heat resistance and conductivity is made of silver (Ag). And

また本発明の熱電変換発電装置の第10の態様は、第9の態様において、耐熱性を有しかつ導電性を有する金属箔若しくは金属板の厚さは0.02〜1.0mmであることを特徴とする。   The tenth aspect of the thermoelectric conversion power generator of the present invention is the ninth aspect, wherein the thickness of the metal foil or metal plate having heat resistance and conductivity is 0.02 to 1.0 mm. It is characterized by.

さらに本発明の熱電変換発電装置の第11の態様は、第1から第10の態様において、熱電変換モジュールは、p型酸化物系半導体及びn型酸化物系半導体からなる熱電変換素子により構成されていることを特徴とする。   Furthermore, according to an eleventh aspect of the thermoelectric conversion power generator of the present invention, in the first to tenth aspects, the thermoelectric conversion module is constituted by a thermoelectric conversion element including a p-type oxide semiconductor and an n-type oxide semiconductor. It is characterized by.

また本発明の熱電変換発電装置の第12の態様は、第11の態様において、酸化物系の熱電変換素子は、p型酸化物系半導体が、ナトリウムコバルト酸化物、カルシウムコバルト酸化物またはカルシウムビスマスコバルト酸化物から選択された1種であり、n型酸化物半導体が、酸化亜鉛、ランタンニッケル酸化物、カルシウムマンガン酸化物またはストロンチウムチタン酸化物から選択された1種であることを特徴とする。   Further, a twelfth aspect of the thermoelectric conversion power generator of the present invention is the eleventh aspect, wherein the oxide-based thermoelectric conversion element comprises a p-type oxide semiconductor, sodium cobalt oxide, calcium cobalt oxide or calcium bismuth. It is one selected from cobalt oxide, and the n-type oxide semiconductor is one selected from zinc oxide, lanthanum nickel oxide, calcium manganese oxide, or strontium titanium oxide.

本発明の熱電変換発電装置によれば、金属熱源と熱電変換モジュールの基板との間に熱電変換モジュールの基板と同等の熱膨張率を有する受熱板を配置したので、熱電変換モジュールの基板と受熱板の境界面での熱応力を低減でき、また受熱板が金属熱源の温度勾配を少なくするバッファー(熱抵抗層)として働くことから、金属熱源に加わる歪を低減することが可能となる。このため金属熱源に反りが生じにくくなり、金属熱源から熱電変換モジュールへの入熱に必要な接触面積を確保できるので大きな発電出力を得ることができる。   According to the thermoelectric conversion power generation device of the present invention, the heat receiving plate having the same thermal expansion coefficient as that of the thermoelectric conversion module substrate is disposed between the metal heat source and the substrate of the thermoelectric conversion module. The thermal stress at the boundary surface of the plate can be reduced, and the heat receiving plate functions as a buffer (thermal resistance layer) for reducing the temperature gradient of the metal heat source, so that the strain applied to the metal heat source can be reduced. For this reason, it becomes difficult to generate | occur | produce a curvature in a metal heat source, and since a contact area required for the heat input from a metal heat source to a thermoelectric conversion module can be ensured, a big electric power output can be obtained.

また、受熱板の少なくとも一方の面に耐熱性を有しかつ導電性を有する塗料が塗布された塗布層を設け、さらにこの塗布層の上に耐熱性を有しかつ導電性を有する金属箔若しくは金属板からなる金属層を設けるので、金属熱源から熱電変換モジュールへの入熱に必要な受熱板と熱電変換モジュールの基板及び/または受熱板と金属熱源との接触面積をさらに増大させることができる。   Further, a heat-resistant and conductive coating layer is provided on at least one surface of the heat receiving plate, and a heat-resistant and conductive metal foil or a conductive layer is further provided on the coating layer. Since the metal layer made of the metal plate is provided, the contact area between the heat receiving plate necessary for heat input from the metal heat source to the thermoelectric conversion module and the substrate of the thermoelectric conversion module and / or the heat receiving plate and the metal heat source can be further increased. .

本発明の熱電変換発電装置の構造の一実施の形態を示す側面図である。It is a side view showing one embodiment of the structure of the thermoelectric conversion power generator of the present invention. 本発明の熱電変換発電装置における接触面積の増大を図る例の説明図である。It is explanatory drawing of the example which aims at the increase in the contact area in the thermoelectric conversion electric power generating apparatus of this invention. 従来の熱電変換発電装置の構造の例を示す側面図である。It is a side view which shows the example of the structure of the conventional thermoelectric conversion electric power generating apparatus.

以下、本発明の熱電変換発電装置の好ましい実施の形態について図面を参照して説明する。なお、以後の各図の説明において、同一の箇所については同一の符号を付すこととする。   Hereinafter, preferred embodiments of the thermoelectric conversion power generator of the present invention will be described with reference to the drawings. In addition, in description of each figure after that, the same code | symbol shall be attached | subjected about the same location.

図1は本発明の熱電変換発電装置の構造の一実施の形態を示す側面図である。図1において、本発明の熱電変換発電装置1は、SUS、インコネルなどの耐熱金属からなる金属熱源2と例えば水冷板などの冷却機構3との間に熱電変換モジュール4が配置されている。金属熱源2としては、例えば高温のガスが流れている配管などが挙げられ、この熱を利用して発電を行うものである。   FIG. 1 is a side view showing an embodiment of the structure of the thermoelectric conversion power generator of the present invention. In FIG. 1, the thermoelectric conversion power generator 1 of the present invention has a thermoelectric conversion module 4 disposed between a metal heat source 2 made of a heat-resistant metal such as SUS or Inconel and a cooling mechanism 3 such as a water-cooled plate. Examples of the metal heat source 2 include piping through which high-temperature gas flows, and power is generated using this heat.

熱電変換モジュール4はアルミナなどからなるセラミックス基板5を有しており、またセラミックス基板5上に熱電変換素子6が設けられている。熱電変換素子6はp型及びn型の半導体の素子が交互に配列されており、p型及びn型の素子が対になり電極7で接続されている。   The thermoelectric conversion module 4 has a ceramic substrate 5 made of alumina or the like, and a thermoelectric conversion element 6 is provided on the ceramic substrate 5. In the thermoelectric conversion element 6, p-type and n-type semiconductor elements are alternately arranged, and the p-type and n-type elements are paired and connected by an electrode 7.

ここで本発明においては、金属熱源2と熱電変換モジュール4のセラミックス基板5との間に受熱板8が配置され、熱電変換モジュールと併せて熱電変換ユニット9が形成されている。受熱板8はセラミックス基板5に近い熱膨張率を有している材質が好ましく、例えば炭化珪素(SiC)粒子、窒化アルミニウム(AlN)粒子、あるいは窒化珪素(Si)粒子の1種若しくは数種を含むセメント板が適している。これら粒子の配合割合は高い方がよく、85wt.%以上あることが好ましい。85wt.%未満では熱伝導率が低くなって熱電変換発電装置の発電能力が低下するので本発明の目的の効果を得ることができない。 Here, in the present invention, the heat receiving plate 8 is disposed between the metal heat source 2 and the ceramic substrate 5 of the thermoelectric conversion module 4, and the thermoelectric conversion unit 9 is formed together with the thermoelectric conversion module. The heat receiving plate 8 is preferably made of a material having a coefficient of thermal expansion close to that of the ceramic substrate 5, for example, one type of silicon carbide (SiC) particles, aluminum nitride (AlN) particles, or silicon nitride (Si 3 N 4 ) particles or A cement board containing several types is suitable. The blending ratio of these particles is preferably high, and 85 wt. % Or more is preferable. 85 wt. If it is less than%, the thermal conductivity is lowered, and the power generation capacity of the thermoelectric conversion power generator is reduced, so that the intended effect of the present invention cannot be obtained.

また、受熱板8は熱電変換モジュール4への入熱効率を上げるためには熱伝導率が高い方が好ましい。そのため上記の粒子の径は大きい方が粒界が少なくなり、粒子同士の接触抵抗が小さくなるので熱伝導率が高くなる。しかし、粒子の径が大き過ぎると粒子密度が減少し、強度が低下するので粒子径は1〜3mmの範囲が好ましい。   The heat receiving plate 8 preferably has a high thermal conductivity in order to increase the heat input efficiency to the thermoelectric conversion module 4. Therefore, the larger the particle diameter, the fewer the grain boundaries, and the smaller the contact resistance between the particles, the higher the thermal conductivity. However, if the particle diameter is too large, the particle density decreases and the strength decreases, so the particle diameter is preferably in the range of 1 to 3 mm.

このように、受熱板8を配置することにより金属熱源2と熱電変換モジュール4のセラミックス基板5を直接接触させるよりも金属熱源2の温度勾配が少なくなり、金属熱源2の歪の発生が抑えられる。即ち、受熱板8の方に温度勾配が生じ、金属熱源2の温度勾配は大幅に軽減される。従って、金属熱源2に歪が加わることがなくなり、金属熱源2から熱電変換モジュール4への入熱のための接触面積を大きくでき、高い発電出力を得ることができる。   Thus, by arranging the heat receiving plate 8, the temperature gradient of the metal heat source 2 is less than that in which the metal heat source 2 and the ceramic substrate 5 of the thermoelectric conversion module 4 are in direct contact, and the occurrence of distortion of the metal heat source 2 is suppressed. . That is, a temperature gradient is generated on the heat receiving plate 8, and the temperature gradient of the metal heat source 2 is greatly reduced. Therefore, distortion is not applied to the metal heat source 2, the contact area for heat input from the metal heat source 2 to the thermoelectric conversion module 4 can be increased, and a high power generation output can be obtained.

また、受熱板8に温度勾配がついたとしても、受熱板8は熱膨張率が小さいため金属熱源に生じるような歪を引き起こすことがないので、入熱のために必要な接触面積を確保することができる。なお、熱電変換ユニット9において、熱電変換モジュール4が例えば金属筐体内に収納されている場合であっても、受熱板8を介して金属熱源2と接触するので金属筐体はもちろん、金属熱源2にも隙間が生じるような歪が加わることはない。   Even if the heat receiving plate 8 has a temperature gradient, the heat receiving plate 8 has a small coefficient of thermal expansion, so that it does not cause distortion that occurs in the metal heat source, so that a contact area necessary for heat input is ensured. be able to. In the thermoelectric conversion unit 9, even when the thermoelectric conversion module 4 is housed in, for example, a metal casing, the metal heat source 2 comes into contact with the metal heat source 2 through the heat receiving plate 8. In addition, there is no distortion that creates a gap.

表1は温度を0℃から1000℃まで上げた時の金属熱源に用いられるSUS310S、受熱板に用いられるSiC粒子を含むセメント板(商品名カーボランダム)、セラミックス基板に用いられるアルミナ基板の熱膨張率の変化(%)を表したものである。   Table 1 shows the thermal expansion of SUS310S used as a metal heat source when the temperature is raised from 0 ° C. to 1000 ° C., a cement plate (trade name Carborundum) containing SiC particles used as a heat receiving plate, and an alumina substrate used as a ceramic substrate. It represents the change in rate (%).

Figure 2011023581
Figure 2011023581

金属熱源の熱膨張率の変化に対し受熱板とセラミックス基板の熱膨張率の変化は25〜40%ほどの値であり、温度の影響を受けにくいことがわかる。   It can be seen that the change in the coefficient of thermal expansion between the heat receiving plate and the ceramic substrate is about 25 to 40% with respect to the change in the coefficient of thermal expansion of the metal heat source, and is hardly affected by the temperature.

なお、受熱板8は高温熱源から熱電変換モジュールの基板までの熱伝導体であると共に熱抵抗体でもあることから、これを挟み込むことによって受熱板が接触する金属熱源の面の温度を上げる効果があり、また受熱板の厚さを変えることにより熱抵抗を調整することができるので、金属熱源の厚さ、材質や熱源温度などの条件を考慮して適宜な受熱板の厚さを選択することもできる。   In addition, since the heat receiving plate 8 is a thermal conductor from the high temperature heat source to the substrate of the thermoelectric conversion module and is also a thermal resistor, the effect of increasing the temperature of the surface of the metal heat source that the heat receiving plate contacts by sandwiching the heat receiving plate 8 is effective. Yes, and the heat resistance can be adjusted by changing the thickness of the heat receiving plate, so select an appropriate thickness of the heat receiving plate in consideration of conditions such as the metal heat source thickness, material and heat source temperature. You can also.

ところで、受熱板8は上記したように温度の影響を受けにくい材質が用いられているため、金属熱源2からの熱を大きな接触面積で効率よく熱電変換モジュール4に入熱させることができるが、厳密には受熱板8の表面には細かな凹凸が多数存在している。従って、受熱板8と熱電変換モジュール4のセラミックス基板5とを接触させたとしてもこれらの間には細かな隙間が多数存在することになる。この隙間は熱の流れを低下させると共に、熱の流れを不安定にし、製品化の際に発電特性をばらつかせる要因となるので、この隙間を埋めればさらに受熱板8とセラミックス基板5との接触面積を大きくすることができ、金属熱源2からの入熱をより多く取り入れることができると共に製品の発電特性のばらつきを低減させることができる。   By the way, since the heat receiving plate 8 is made of a material that is not easily affected by temperature as described above, the heat from the metal heat source 2 can be efficiently input to the thermoelectric conversion module 4 with a large contact area. Strictly speaking, many fine irregularities exist on the surface of the heat receiving plate 8. Therefore, even if the heat receiving plate 8 and the ceramic substrate 5 of the thermoelectric conversion module 4 are brought into contact with each other, there are many fine gaps between them. This gap reduces the heat flow and makes the heat flow unstable, and causes a variation in power generation characteristics when commercialized. Therefore, if this gap is filled, the heat receiving plate 8 and the ceramic substrate 5 are further separated. The contact area can be increased, more heat input from the metal heat source 2 can be taken in, and variations in the power generation characteristics of the products can be reduced.

図2は受熱板8の表面の凹凸を平滑にし、セラミックス基板5との間の隙間を埋めて受熱板8とセラミックス基板5との接触面積をさらに大きくした例を示した図である。図2(a)は、受熱板8の表面の凹凸を埋めるために、耐熱性及び導電性を有する塗料を塗布した塗布層10が設けられている例である。この塗布層10の上にセラミックス基板5を接触させると受熱板8とセラミックス基板5との間が平滑となり、接触面積が増大するために金属熱源からの入熱効率が改善される。   FIG. 2 is a view showing an example in which the contact area between the heat receiving plate 8 and the ceramic substrate 5 is further increased by smoothing the unevenness of the surface of the heat receiving plate 8 and filling the gap between the heat receiving plate 8 and the ceramic substrate 5. FIG. 2A is an example in which a coating layer 10 to which a heat-resistant and conductive paint is applied is provided in order to fill the unevenness of the surface of the heat receiving plate 8. When the ceramic substrate 5 is brought into contact with the coating layer 10, the space between the heat receiving plate 8 and the ceramic substrate 5 becomes smooth and the contact area increases, so that the heat input efficiency from the metal heat source is improved.

耐熱性及び導電性を有する塗料としては銀(Ag)ペーストが好ましい。ここで用いられるAgペーストは、主要成分のAgの他にAgペーストを硬化させてセラミックス基板との接着を促進させる非晶質ガラスペーストが混合されている。   Silver (Ag) paste is preferable as the paint having heat resistance and conductivity. The Ag paste used here is mixed with an amorphous glass paste that hardens the Ag paste and promotes adhesion to the ceramic substrate in addition to the main component Ag.

この塗布層10であるAgペーストの厚さはできるだけ薄い方がよく、0.05〜1.0mmの範囲であることが好ましい。0.05mm未満では受熱板8の表面の凹凸を埋めるためには不十分であり、1.0mmを超えるとAgペーストの表面に亀裂が生じてくる虞があるからである。   The thickness of the Ag paste as the coating layer 10 should be as thin as possible, and is preferably in the range of 0.05 to 1.0 mm. This is because if the thickness is less than 0.05 mm, it is insufficient to fill the irregularities on the surface of the heat receiving plate 8, and if it exceeds 1.0 mm, the surface of the Ag paste may be cracked.

また、図2(b)は、図2(a)に示すAgペーストの上にさらに耐熱性及び導電性を有する金属箔若しくは金属板からなる金属層11が設けられている例である。このように塗布層10の上にさらに金属層11を設けると受熱板とセラミックス基板との間がさらに平滑になり、接触面積がより増大し、金属熱源2からの入熱効率がさらに高くなる。   FIG. 2B is an example in which a metal layer 11 made of a metal foil or a metal plate having heat resistance and conductivity is further provided on the Ag paste shown in FIG. When the metal layer 11 is further provided on the coating layer 10 in this manner, the space between the heat receiving plate and the ceramic substrate becomes smoother, the contact area is further increased, and the heat input efficiency from the metal heat source 2 is further increased.

金属層11は金属箔若しくは金属板からなり、材質として好ましくは銀(Ag)が選択される。このようなAg箔若しくはAg板の厚さは0.02〜1.0mmの範囲であることが好ましい。0.02mmより薄くなるとAgペーストの硬化時の収縮に耐えきれず表面に凹凸が生じることがあり、また1.0mmよりも厚くなると平滑化への寄与が少なくなり、また熱抵抗になってしまう虞もあるからである。   The metal layer 11 is made of a metal foil or a metal plate, and silver (Ag) is preferably selected as the material. The thickness of such an Ag foil or Ag plate is preferably in the range of 0.02 to 1.0 mm. If the thickness is less than 0.02 mm, the Ag paste may not be able to withstand the shrinkage at the time of curing, and the surface may be uneven. If the thickness is greater than 1.0 mm, the contribution to smoothing will be reduced, and thermal resistance will be caused. This is because there is a fear.

図2で説明した実施の形態においては、塗布層10及び金属層11を受熱板8と熱電変換モジュール4のセラミックス基板5との間に設けた例を示しているが、塗布層10あるいは塗布層10と金属層11を受熱板8と金属熱源2との間に設けてもよい。また受熱板8の両面に塗布層10あるいは塗布層10と金属層11を設けてもよい。   In the embodiment described with reference to FIG. 2, an example in which the coating layer 10 and the metal layer 11 are provided between the heat receiving plate 8 and the ceramic substrate 5 of the thermoelectric conversion module 4 is shown. 10 and the metal layer 11 may be provided between the heat receiving plate 8 and the metal heat source 2. The coating layer 10 or the coating layer 10 and the metal layer 11 may be provided on both surfaces of the heat receiving plate 8.

なお、図2で説明した実施の形態において、図2(a)における塗布層10及び図2(b)における塗布層10、金属層11はいずれもセラミックス基板5及び熱電変換素子6とともに熱電変換ユニット9を形成している。   2, the coating layer 10 in FIG. 2A, the coating layer 10 in FIG. 2B, and the metal layer 11 are both thermoelectric conversion units together with the ceramic substrate 5 and the thermoelectric conversion element 6. 9 is formed.

次に、本発明の熱電変換発電装置を用いて熱電変換モジュールの両セラミックス基板間の電圧(開放電圧)及び温度差を測定した。測定に際しての諸条件は下記の通りである。
金属熱源 高温熱源に取り付けられたSUS310S製ハッチ扉
金属熱源(ハッチ扉)のサイズ 120mm×240mm×9mm(厚さ)
熱電変換モジュール 24対アルミナ基板モジュール
アルミナ基板サイズ 110mm×220mm×1mm(厚さ)
熱電変換素子 p型 CaCo9、n型 LaNiO
熱電変換素子の高さ 5mm
冷却機構 銅製水冷板
冷却機構(銅製水冷板)のサイズ 120mm×220mm×15mm(厚さ)
受熱板 カーボランダム板(SiC粒子を含むセメント板)
受熱板のサイズ 120mm×220mm×11mm(厚さ)
上記の条件において、実施例として(1)受熱板のみ、(2)受熱板+塗布層(Agペースト)、(3)受熱板+塗布層(Agペースト)+金属層(Ag箔、厚さ20μm)、(4)受熱板+塗布層(Agペースト)+金属層(Ag板、厚さ300μm)の構造の熱電変換発電装置及び比較例として(1)受熱板を設けない従来の構造、(2)受熱板の厚さを薄くした(2mm)構造の熱電変換発電装置についてそれぞれ開放電圧及び温度差を測定した。結果を表2に示す。
Next, the voltage (open voltage) and temperature difference between both ceramic substrates of the thermoelectric conversion module were measured using the thermoelectric conversion power generator of the present invention. Various conditions for the measurement are as follows.
Metal heat source Size of SUS310S hatch door metal heat source (hatch door) attached to a high temperature heat source 120mm x 240mm x 9mm (thickness)
Thermoelectric conversion module 24 vs. alumina substrate module Alumina substrate size 110mm x 220mm x 1mm (thickness)
Thermoelectric conversion element p-type Ca 3 Co 4 O 9, n-type LaNiO 3
Thermoelectric conversion element height 5mm
Cooling mechanism Size of copper water cooling plate cooling mechanism (copper water cooling plate) 120mm x 220mm x 15mm (thickness)
Heat receiving plate Carborundum plate (cement plate containing SiC particles)
Heat receiving plate size 120mm × 220mm × 11mm (thickness)
Under the above conditions, as examples, (1) heat receiving plate only, (2) heat receiving plate + coating layer (Ag paste), (3) heat receiving plate + coating layer (Ag paste) + metal layer (Ag foil, thickness 20 μm) ), (4) Thermoelectric conversion power generation device having a structure of heat receiving plate + coating layer (Ag paste) + metal layer (Ag plate, thickness 300 μm) and a comparative example (1) a conventional structure without a heat receiving plate, (2 ) Open circuit voltage and temperature difference were measured for each thermoelectric conversion power generator having a structure (2 mm) with a thin heat receiving plate. The results are shown in Table 2.

Figure 2011023581
Figure 2011023581

表2の値から、受熱板を設けない比較例1の従来の構造の熱電変換発電装置及び受熱板の厚さを薄くした(2mm)比較例2の構造の熱電変換発電装置では開放電圧が小さく、また温度差も小さいので発電出力が十分ではないことがわかる。これらの比較例で用いた熱電変換発電装置を金属熱源から取り外し観察したところ、金属熱源に塑性変形に至る歪みが生じており、結果として熱電変換モジュールとの間に隙間が生じていた。   From the values in Table 2, the open-circuit voltage is small in the thermoelectric conversion power generation device having the conventional structure of Comparative Example 1 in which the heat receiving plate is not provided and the thermoelectric conversion power generation device having the structure of Comparative Example 2 in which the thickness of the heat receiving plate is reduced (2 mm). Moreover, since the temperature difference is small, it can be seen that the power generation output is not sufficient. When the thermoelectric conversion power generation device used in these comparative examples was removed from the metal heat source and observed, distortions that resulted in plastic deformation occurred in the metal heat source, resulting in a gap between the thermoelectric conversion module.

一方、本発明の熱電変換発電装置については、実施例1の厚さ11mmの受熱板のみの場合でも比較例1及び比較例2に比べて高い開放電圧と温度差を示しており、金属熱源に歪が生じておらず、熱電変換モジュールへの入熱が効率よく行われていることが明らかである。   On the other hand, the thermoelectric conversion power generator of the present invention shows a higher open-circuit voltage and temperature difference than those of Comparative Example 1 and Comparative Example 2 even in the case of only the heat receiving plate having a thickness of 11 mm in Example 1, and the metal heat source It is clear that no distortion occurs and heat input to the thermoelectric conversion module is performed efficiently.

また、実施例1に対してAgペーストを塗布した実施例2の方が開放電圧も温度差もさらに大きくなっており、平滑化を行うことによってより高い効果が得られていることがわかる。   In addition, Example 2 in which the Ag paste was applied to Example 1 has a larger open-circuit voltage and temperature difference, and it can be seen that a higher effect is obtained by performing smoothing.

このような実施例2に対してAgペーストの上にAg箔若しくはAg板を設けた実施例3及び実施例4の方がさらに開放電圧も温度差も大きくなっており、平滑化がより促進され、接触面積の増大化が図られていることが明らかであり、金属層を設けた方がより大きい発電出力を得られることが示された。   In contrast to Example 2, Example 3 and Example 4 in which an Ag foil or an Ag plate is provided on an Ag paste have a larger open circuit voltage and temperature difference, and smoothing is further promoted. It is clear that the contact area has been increased, and it was shown that a larger power generation output can be obtained by providing the metal layer.

なお、実施例3と実施例4とでは大きな差が見られず、金属層は金属箔でも金属板でも同様の効果を奏することができ、目的とする熱電変換発電装置に応じてどちらかを適宜選択すればよい。   In addition, a big difference is not seen by Example 3 and Example 4, and a metal layer can show | play the same effect, even if it is a metal foil or a metal plate, and either is suitably selected according to the target thermoelectric conversion electric power generating apparatus. Just choose.

以上より、従来の熱電変換発電装置に比べて本発明の熱電変換発電装置は、金属熱源と熱電変換モジュールとの間に受熱板を設けたので、金属熱源と熱電変換モジュールの接触面積を大きく取ることができ、金属熱源から熱電変換モジュールへの入熱が効率よく行われる。   As described above, since the heat receiving plate is provided between the metal heat source and the thermoelectric conversion module, the thermoelectric conversion power generation device of the present invention has a larger contact area between the metal heat source and the thermoelectric conversion module than the conventional thermoelectric conversion power generation device. Therefore, heat input from the metal heat source to the thermoelectric conversion module is efficiently performed.

さらに、耐熱性、導電性を有する塗料を塗布した塗布層を設けたり、やはり耐熱性、導電性を有する金属層を設けたりすることにより、金属熱源と熱電変換モジュールとの間の平滑化を図ることができ、金属熱源と熱電変換モジュールの接触面積をさらに大きくすることができ、より高い入熱効率を得ることができ、ひいては発電出力の大幅な向上を図ることができる。   Furthermore, by providing a coating layer coated with a heat-resistant and conductive paint, or by providing a metal layer that also has heat-resistant and conductive properties, smoothing between the metal heat source and the thermoelectric conversion module is achieved. The contact area between the metal heat source and the thermoelectric conversion module can be further increased, higher heat input efficiency can be obtained, and as a result, the power generation output can be significantly improved.

1 熱電変換発電装置
2 金属熱源
3 冷却機構
4 熱電変換モジュール
5 セラミックス基板
6 熱電変換素子
7 電極
8 受熱板
9 熱電変換ユニット
10 塗布層
11 金属層
DESCRIPTION OF SYMBOLS 1 Thermoelectric conversion power generator 2 Metal heat source 3 Cooling mechanism 4 Thermoelectric conversion module 5 Ceramic substrate 6 Thermoelectric conversion element 7 Electrode 8 Heat receiving plate 9 Thermoelectric conversion unit 10 Coating layer 11 Metal layer

Claims (12)

金属熱源と冷却機構の間に熱電変換モジュールを配置し、前記金属熱源と前記冷却機構との間の温度差を利用して発電出力を得る熱電変換発電装置において、前記金属熱源と前記熱電変換モジュールの基板との間に受熱板が配置されていることを特徴とする熱電変換発電装置。   In a thermoelectric conversion power generation device that arranges a thermoelectric conversion module between a metal heat source and a cooling mechanism and obtains a power generation output using a temperature difference between the metal heat source and the cooling mechanism, the metal heat source and the thermoelectric conversion module A thermoelectric conversion power generation device, wherein a heat receiving plate is disposed between the substrate and the substrate. 前記受熱板は炭化珪素(SiC)粒子、窒化アルミニウム(AlN)粒子、窒化珪素(Si)粒子から選択された1種若しくは数種を含むセメント板であることを特徴とする請求項1記載の熱電変換発電装置。 The heat-receiving plate is a cement plate containing one or several kinds selected from silicon carbide (SiC) particles, aluminum nitride (AlN) particles, and silicon nitride (Si 3 N 4 ) particles. The thermoelectric conversion power generator as described. 前記セメント板は前記粒子の配合割合が85wt.%以上であることを特徴とする請求項2記載の熱電変換発電装置。   The cement board has a mixing ratio of the particles of 85 wt. The thermoelectric conversion power generator according to claim 2, wherein the thermoelectric conversion power generator is at least%. 前記粒子の粒子径は1〜3mmであることを特徴とする請求項2または請求項3記載の熱電変換発電装置。   The thermoelectric conversion power generator according to claim 2 or 3, wherein a particle diameter of the particles is 1 to 3 mm. 前記受熱板の前記金属熱源側若しくは前記熱電変換モジュールの基板側の少なくとも一方の面に耐熱性を有しかつ導電性を有する塗料が塗布された塗布層が設けられていることを特徴とする請求項1から請求項4までに何れかの請求項に記載の熱電変換発電装置。   An application layer coated with a paint having heat resistance and conductivity is provided on at least one surface of the heat receiving plate on the metal heat source side or the substrate side of the thermoelectric conversion module. The thermoelectric conversion power generator according to any one of claims 1 to 4. 前記塗布層の上にさらに耐熱性を有しかつ導電性を有する金属箔若しくは金属板からなる金属層が設けられていることを特徴とする請求項5記載の熱電変換発電装置。   6. The thermoelectric conversion power generator according to claim 5, further comprising a metal layer made of a metal foil or a metal plate having heat resistance and conductivity on the coating layer. 前記耐熱性を有しかつ導電性を有する塗料が塗布された塗布層は銀(Ag)ペーストからなることを特徴とする請求項5記載の熱電変換発電装置。   6. The thermoelectric conversion power generator according to claim 5, wherein the coating layer to which the heat-resistant and conductive coating is applied is made of a silver (Ag) paste. 前記塗布層の厚さは0.05〜1.0mmであることを特徴とする請求項7記載の熱電変換発電装置。   The thermoelectric conversion power generator according to claim 7, wherein the coating layer has a thickness of 0.05 to 1.0 mm. 前記耐熱性を有しかつ導電性を有する金属箔若しくは金属板からなる金属層は銀(Ag)からなることを特徴とする請求項6記載の熱電変換発電装置。   The thermoelectric conversion power generator according to claim 6, wherein the metal layer made of metal foil or metal plate having heat resistance and conductivity is made of silver (Ag). 前記金属箔若しくは金属板の厚さは0.02〜1.0mmであることを特徴とする請求項9記載の熱電変換発電装置。   The thermoelectric conversion power generator according to claim 9, wherein the thickness of the metal foil or metal plate is 0.02 to 1.0 mm. 前記熱電変換モジュールは、p型酸化物系半導体及びn型酸化物系半導体からなる熱電変換素子により構成されていることを特徴とする請求項1から請求項10までのいずれかの請求項に記載の熱電変換発電装置。   The said thermoelectric conversion module is comprised by the thermoelectric conversion element which consists of a p-type oxide semiconductor and an n-type oxide semiconductor, The claim in any one of Claim 1-10 characterized by the above-mentioned. Thermoelectric conversion power generator. 前記酸化物系の熱電変換素子は、前記p型酸化物系半導体が、ナトリウムコバルト酸化物、カルシウムコバルト酸化物またはカルシウムビスマスコバルト酸化物から選択された1種であり、前記n型酸化物系半導体が、酸化亜鉛、ランタンニッケル酸化物、カルシウムマンガン酸化物またはストロンチウムチタン酸化物から選択された1種であることを特徴とする請求項11記載の熱電変換発電装置。 In the oxide thermoelectric conversion element, the p-type oxide semiconductor is one selected from sodium cobalt oxide, calcium cobalt oxide, or calcium bismuth cobalt oxide, and the n-type oxide semiconductor The thermoelectric conversion power generator according to claim 11, wherein is one selected from zinc oxide, lanthanum nickel oxide, calcium manganese oxide, or strontium titanium oxide.
JP2009167845A 2009-07-16 2009-07-16 Thermoelectric conversion generator Active JP4950255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009167845A JP4950255B2 (en) 2009-07-16 2009-07-16 Thermoelectric conversion generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009167845A JP4950255B2 (en) 2009-07-16 2009-07-16 Thermoelectric conversion generator

Publications (2)

Publication Number Publication Date
JP2011023581A true JP2011023581A (en) 2011-02-03
JP4950255B2 JP4950255B2 (en) 2012-06-13

Family

ID=43633384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009167845A Active JP4950255B2 (en) 2009-07-16 2009-07-16 Thermoelectric conversion generator

Country Status (1)

Country Link
JP (1) JP4950255B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5467169B1 (en) * 2013-08-14 2014-04-09 孝仁 前山 Power generator
JP2015211098A (en) * 2014-04-25 2015-11-24 京セラ株式会社 Thermoelectric module and thermoelectric device using the same
CN108649839A (en) * 2018-07-02 2018-10-12 浙江理工大学 Flue-exterior wall temperature difference energy collecting device
CN110112282A (en) * 2019-06-17 2019-08-09 中北大学 A kind of stealthy nanostructure of multilayer with graphene heat-conducting layer
CN112159233A (en) * 2020-09-11 2021-01-01 中国科学院上海硅酸盐研究所 Silicon carbide-based composite ceramic material with high electric field strength resistance and preparation method thereof
CN117145633A (en) * 2023-10-31 2023-12-01 中国航发四川燃气涡轮研究院 Thermoelectric effect-based waste heat recovery system for aero-engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368292A (en) * 2001-06-08 2002-12-20 Unitika Ltd Thermoelectric conversion module for high temperature
JP2006024608A (en) * 2004-07-06 2006-01-26 Central Res Inst Of Electric Power Ind Heat transfer cushion and thermoelectric conversion module provided therewith

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368292A (en) * 2001-06-08 2002-12-20 Unitika Ltd Thermoelectric conversion module for high temperature
JP2006024608A (en) * 2004-07-06 2006-01-26 Central Res Inst Of Electric Power Ind Heat transfer cushion and thermoelectric conversion module provided therewith

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5467169B1 (en) * 2013-08-14 2014-04-09 孝仁 前山 Power generator
JP2015037133A (en) * 2013-08-14 2015-02-23 孝仁 前山 Power generator
JP2015211098A (en) * 2014-04-25 2015-11-24 京セラ株式会社 Thermoelectric module and thermoelectric device using the same
CN108649839A (en) * 2018-07-02 2018-10-12 浙江理工大学 Flue-exterior wall temperature difference energy collecting device
CN108649839B (en) * 2018-07-02 2023-11-14 浙江理工大学 Flue-outer wall temperature difference energy collecting device
CN110112282A (en) * 2019-06-17 2019-08-09 中北大学 A kind of stealthy nanostructure of multilayer with graphene heat-conducting layer
CN110112282B (en) * 2019-06-17 2022-06-10 中北大学 Multilayer stealth nanostructure with graphene heat conduction layer
CN112159233A (en) * 2020-09-11 2021-01-01 中国科学院上海硅酸盐研究所 Silicon carbide-based composite ceramic material with high electric field strength resistance and preparation method thereof
CN112159233B (en) * 2020-09-11 2022-03-08 中国科学院上海硅酸盐研究所 Silicon carbide-based composite ceramic material with high electric field strength resistance and preparation method thereof
CN117145633A (en) * 2023-10-31 2023-12-01 中国航发四川燃气涡轮研究院 Thermoelectric effect-based waste heat recovery system for aero-engine
CN117145633B (en) * 2023-10-31 2024-01-19 中国航发四川燃气涡轮研究院 Thermoelectric effect-based waste heat recovery system for aero-engine

Also Published As

Publication number Publication date
JP4950255B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP4950255B2 (en) Thermoelectric conversion generator
JP6249382B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP5926870B1 (en) Ceramic structure, member for substrate holding device, and method for producing ceramic structure
JP2009260173A (en) Thermoelectric conversion element, and thermoelectric module equipped with the same
US20210111327A1 (en) Thermoelectric conversion module and method for producing thermoelectric conversion module
JP4668233B2 (en) Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion module
CN115004391A (en) Thermoelectric conversion module
JP2011035250A (en) Electrothermal conversion power generator
JP2010235335A (en) Ceramic sintered compact, heat dissipating substrate and electronic device
US11380832B2 (en) Thermoelectric conversion module and method for producing thermoelectric conversion module
JP5158200B2 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
Skomedal et al. Long term stability testing of oxide unicouple thermoelectric modules
EP3951857A1 (en) Silicon nitride sintered body, method for producing same, multilayer body and power module
JP6870747B2 (en) Thermoelectric conversion element and manufacturing method of thermoelectric conversion element
CN209232817U (en) High temperature thermoelectric unit
JP2001319967A (en) Method for manufacturing ceramic substrate
JP4789416B2 (en) Ceramic resistor, method for manufacturing the same, and electrostatic chuck
JP2020150139A (en) Thermoelectric conversion module
EP4290594A1 (en) Thermoelectric conversion module, and method for producing thermoelectric conversion module
JP7248091B2 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
WO2019009202A1 (en) Thermoelectric conversion module and method for producing thermoelectric conversion module
JP2007258298A (en) Ceramic circuit substrate and electronic component module using the same
JP2008277622A (en) Thermoelectric conversion module and manufacturing method therefor
KR20170095670A (en) Thermo electric thim film and thermo electric element comprising the same
JP2006352023A (en) Thermoelectric module

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4950255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350