JP2011022889A - Method for simulating electromagnetic wave propagation - Google Patents

Method for simulating electromagnetic wave propagation Download PDF

Info

Publication number
JP2011022889A
JP2011022889A JP2009168721A JP2009168721A JP2011022889A JP 2011022889 A JP2011022889 A JP 2011022889A JP 2009168721 A JP2009168721 A JP 2009168721A JP 2009168721 A JP2009168721 A JP 2009168721A JP 2011022889 A JP2011022889 A JP 2011022889A
Authority
JP
Japan
Prior art keywords
light
electromagnetic wave
particles
incident
wave propagation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009168721A
Other languages
Japanese (ja)
Inventor
Saswatee Banerjee
シャッショティー バナジー
Kiyoharu Nakatsuka
木代春 中塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2009168721A priority Critical patent/JP2011022889A/en
Priority to TW099123570A priority patent/TW201118625A/en
Priority to KR1020100068808A priority patent/KR20110007969A/en
Priority to CN2010102334066A priority patent/CN101957875A/en
Publication of JP2011022889A publication Critical patent/JP2011022889A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new method for simulating electromagnetic wave propagation which calculates behaviors of electromagnetic waves by using a computer when electromagnetic waves are incident on an aggregation including media that include a plurality of particles and by which simulation is performed even when particles are non-spherical, the particles are condensed, or distributed unevenly. <P>SOLUTION: The method for simulating electromagnetic wave propagation is for calculating behaviors of electromagnetic waves when the electromagnetic waves are incident on the aggregation including media that include a plurality of particles by using a computer, and calculates the behaviors of the electromagnetic waves when the electromagnetic waves are incident on the aggregation in which the particles are distributed at random or according to a certain rule by using an FDTD (Finite Difference Time Domain) method and radiative transfer equation. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、多数の粒子を含む媒体中に電磁波が入射した場合の挙動を、計算機を用いて算出する電磁波伝播シミュレーション方法に関する。   The present invention relates to an electromagnetic wave propagation simulation method for calculating the behavior when an electromagnetic wave is incident on a medium containing a large number of particles using a computer.

多数の粒子を含む媒体中に電磁波が入射した場合の光の挙動を計算機を用いて算出する電磁波伝播シミュレーション方法は、ディスプレイなどの拡散板やカラーフィルターの設計、またインキ、塗料、プラスチック、染色などの着色工業、さらにリモートセンシングや気象科学や医療分野での各種測定装置の設計に有用である。   The electromagnetic wave propagation simulation method that uses a computer to calculate the behavior of light when electromagnetic waves are incident on a medium containing many particles is designed for diffuser plates such as displays and color filters, as well as ink, paint, plastic, dyeing, etc. It is useful for the design of various measuring devices in the coloring industry, remote sensing, meteorological science and medical fields.

特に、液晶ディスプレイは拡散板やカラーフィルターを備えており、カラーフィルターは透明な樹脂からなる媒体中に顔料の粒子が分散してなるので、多数の顔料粒子を含む樹脂媒体中に光が照射された場合の顔料粒子による光の散乱、回折、吸収等の光の挙動を、計算機を用いて算出し、ディスプレイ用として最適な拡散板やカラーフィルターを設計するためのデータを得ることが求められている。   In particular, the liquid crystal display includes a diffusion plate and a color filter. Since the color filter is formed by dispersing pigment particles in a medium made of a transparent resin, light is irradiated on the resin medium containing many pigment particles. In this case, light behavior such as light scattering, diffraction, and absorption by pigment particles is calculated using a computer, and it is required to obtain data for designing an optimal diffuser plate and color filter for displays. Yes.

多数の粒子を含む媒体中に電磁波が入射した場合の挙動を、計算機を用いて算出する電磁波伝播シミュレーション方法としては、従来はMie散乱によるシミュレーションが行われていた。しかしながら、媒体中の粒子の濃度が大きい場合や媒体の厚みが大きいなど多重散乱が無視できない場合には計算が不可能であった。   Conventionally, simulation by Mie scattering has been performed as an electromagnetic wave propagation simulation method for calculating the behavior when an electromagnetic wave is incident on a medium containing a large number of particles using a computer. However, when the concentration of particles in the medium is large or the thickness of the medium is large and multiple scattering cannot be ignored, calculation is impossible.

そこで、予め統計的に分散させた粒子の位置と属性について、統計的な平均を求めていくMOM(Method of Moments)法によるシミュレーション方法が提案されている(例えば、非特許文献1参照。)が、金属粒子など複素誘電率の絶対値の大きな粒子へ適用した場合の精度が不十分であった。   Therefore, a simulation method based on the MOM (Method of Moments) method for obtaining a statistical average of the positions and attributes of particles dispersed statistically in advance has been proposed (see, for example, Non-Patent Document 1). When applied to particles having a large absolute value of complex dielectric constant, such as metal particles, the accuracy was insufficient.

他に、多重散乱の計算法としてラディエイティブ・トランスファー法(RT法)がある。個々の散乱粒子または空間の微小領域の散乱特性をフェイズ関数で表して、目標空間の電磁波伝播特性を計算する方法である。散乱粒子が球形の場合にはMieの式などを使ってフェイズ関数を求めることができるが、非球形粒子や凝集体または分布の不均一がある場合などには誤差が大きくなり、適用が困難になるという問題があった。   In addition, there is a radial transfer method (RT method) as a method for calculating multiple scattering. This is a method for calculating the electromagnetic wave propagation characteristics of the target space by expressing the scattering characteristics of individual scattering particles or a minute area of the space with a phase function. When the scattering particles are spherical, the phase function can be obtained using Mie's formula, etc., but when there are non-spherical particles, aggregates, or uneven distribution, the error becomes large and the application becomes difficult. There was a problem of becoming.

「Monte Carlo Simulation of Electromagnetic Wave Propagation in Dense Random Media with Dielectric Spheroids」、IEICE Trans. Electron. 、Vol.E83-C、No.12、December 2000、p1797-1801`` Monte Carlo Simulation of Electromagnetic Wave Propagation in Dense Random Media with Dielectric Spheroids '', IEICE Trans. Electron., Vol. E83-C, No. 12, December 2000, p1797-1801

そこで、本発明の目的は、複数の粒子を含む媒体からなる集合体に電磁波が入射した場合の電磁波の挙動を計算機を用いて算出する電磁波伝播シミュレーション方法であって、粒子が非球形である場合、粒子が凝集しているかまたは不均一に分布している場合でもシミュレーションが可能である新たな電磁波伝播シミュレーション方法を提供することにある。   Accordingly, an object of the present invention is an electromagnetic wave propagation simulation method for calculating, using a computer, the behavior of an electromagnetic wave when the electromagnetic wave is incident on an aggregate composed of a medium including a plurality of particles, where the particles are non-spherical. Another object of the present invention is to provide a new electromagnetic wave propagation simulation method capable of performing simulation even when particles are aggregated or unevenly distributed.

本発明者は、上記の課題を解決すべく、多数の粒子を含む媒体中に電磁波が入射した場合の挙動を計算機を用いて算出する電磁波伝播シミュレーション方法について鋭意検討を続けた結果、特定の複数の計算方法をシミュレーションに組み入れることにより、粒子が非球形である場合、粒子が凝集しているかまたは不均一に分布している場合でもシミュレーションが可能である電磁波伝播シミュレーション方法となることを見出し、本発明を完成するに至った。
すなわち本発明は、下記<1>〜<5>の発明を提供する。
In order to solve the above-mentioned problems, the present inventor has conducted intensive studies on an electromagnetic wave propagation simulation method for calculating the behavior when an electromagnetic wave is incident on a medium containing a large number of particles using a computer. By incorporating this calculation method into the simulation, it was found that when the particles are non-spherical, the simulation is possible even when the particles are aggregated or unevenly distributed. The invention has been completed.
That is, the present invention provides the following <1> to <5> inventions.

<1>
複数の粒子を含む媒体からなる集合体に電磁波が入射した場合の電磁波の挙動を、計算機を用いて算出する電磁波伝播シミュレーション方法であって、粒子がランダムまたはある規則にしたがって分布した集合体に電磁波が入射した場合の電磁波の挙動を、FDTD法とラディエイティブ・トランスファー・イクエイションとを用いて計算することを特徴とする電磁波伝播シミュレーション方法。
<2>
前記ラディエイティブ・トランスファー・イクエイションが4光束以上のラディエイティブ・トランスファー・イクエイションである<1>記載の電磁波伝播シミュレーション方法。
<3>
計算対象の空間が、一定の厚さを有し、無限の広さの平板である<1>または<2>に記載の電磁波伝播シミュレーション方法。
<4>
入射波が可干渉性の低い電磁波である<1>〜<3>のいずれかに記載の電磁波伝播シミュレーション方法。
<5>
コンピュータによって読み取り可能な記録媒体であって、複数の粒子を含む媒体からなる集合体に電磁波が入射した場合の電磁波の挙動を、計算機を用いて算出する電磁波伝播シミュレーション方法であって、粒子がランダムまたはある規則にしたがって分布した集合体の散乱特性をFDTD法で求め、この集合体が多数存在する空間の電磁波伝播特性を前記集合体の散乱特性を用いてラディエイティブ・トランスファー・イクエイションにより計算することを特徴とする電磁波伝播シミュレーションを実行するためのプログラムを格納した記録媒体。
<1>
An electromagnetic wave propagation simulation method for calculating the behavior of an electromagnetic wave when an electromagnetic wave is incident on an aggregate composed of a medium including a plurality of particles, using a computer, and the electromagnetic wave is generated in an aggregate in which particles are randomly distributed according to a certain rule. An electromagnetic wave propagation simulation method characterized in that the behavior of an electromagnetic wave when an incident light enters is calculated using an FDTD method and a radial transfer acquisition.
<2>
<1> The electromagnetic wave propagation simulation method according to <1>, wherein the radial transfer equation is a radial transfer equation with four or more light beams.
<3>
The electromagnetic wave propagation simulation method according to <1> or <2>, wherein the calculation target space is a flat plate having a constant thickness and an infinite width.
<4>
The electromagnetic wave propagation simulation method according to any one of <1> to <3>, wherein the incident wave is an electromagnetic wave having low coherence.
<5>
A computer-readable recording medium, an electromagnetic wave propagation simulation method that uses a computer to calculate the behavior of an electromagnetic wave when the electromagnetic wave is incident on an aggregate composed of a medium containing a plurality of particles. Alternatively, the scattering characteristics of the aggregates distributed according to a certain rule are obtained by the FDTD method, and the electromagnetic wave propagation characteristics in a space where a large number of aggregates exist are calculated by the radial transfer acquisition using the scattering characteristics of the aggregates. The recording medium which stored the program for performing the electromagnetic wave propagation simulation characterized by the above-mentioned.

本発明によれば、多数の粒子を含む媒体からなる集合体に電磁波が入射した場合の挙動を計算機を用いて算出する電磁波伝播シミュレーションを行うに際し、粒子が非球形である場合、粒子が凝集しているかまたは不均一に分布している場合でもシミュレーションが可能であり、また媒体中の粒子の濃度が高い場合であっても現実的な時間の範囲内でシミュレーションが可能となる。特に、粒子の大きさと形状を任意に設定した場合の電磁波の反射、透過、吸収、散乱等の挙動を、電磁波がコヒーレントであろうとコヒーレントで無かろうと、シミュレートできる。それゆえ、ディスプレイ用のカラーフィルターや拡散板などの光学部材、狭い波長範囲の吸収あるいは透過性能を有するノッチフィルターおよび特殊な光学性能を有する新規な光学部材の設計に用いることができ、さらにリモートセンシングや医療関連の測定や検査にも応用できるので、本発明は工業的に極めて有用である。   According to the present invention, when performing electromagnetic wave propagation simulation for calculating the behavior when an electromagnetic wave is incident on an aggregate composed of a medium containing a large number of particles using a computer, the particles are aggregated when the particles are non-spherical. Even if the particles are distributed or unevenly distributed, simulation is possible, and even if the concentration of particles in the medium is high, simulation can be performed within a realistic time range. In particular, the behavior of reflection, transmission, absorption, scattering, and the like of electromagnetic waves when the size and shape of particles are arbitrarily set can be simulated whether the electromagnetic waves are coherent or non-coherent. Therefore, it can be used for designing optical members such as color filters and diffusers for displays, notch filters having absorption or transmission performance in a narrow wavelength range, and new optical members having special optical performance, and remote sensing. The present invention is extremely useful industrially because it can also be applied to measurement and inspection related to medical treatment.

半径10nmの銀の球形粒子を、屈折率1.5の媒体中に、半径100nmのクラスターを形成するようにモンテ・カルロ法を用いてランダムに分布させたモデルを示す図。FIG. 6 is a diagram showing a model in which silver spherical particles having a radius of 10 nm are randomly distributed using a Monte Carlo method so as to form a cluster having a radius of 100 nm in a medium having a refractive index of 1.5. 半径10nmの銀の球形の粒子がクラスターを形成したモデルを対象として本発明の方法によりシミュレーションを行った実施例1において、吸光断面積と散乱断面積の波長による変化の結果を示す図。The figure which shows the result of the change by the wavelength of an absorption cross section and a scattering cross section in Example 1 which performed the simulation by the method of this invention targeting the model in which the silver spherical particle | grains of a radius of 10 nm formed the cluster. 半径10nmで高さ30nmの円柱状の銀の粒子がクラスターを形成したモデルを対象として本発明の方法によりシミュレーションを行った実施例2において、吸光断面積と散乱断面積の波長による変化の結果を示す図。In Example 2 in which simulation was performed by the method of the present invention for a model in which cylindrical silver particles having a radius of 10 nm and a height of 30 nm formed clusters, the results of changes in the absorption cross section and the scattering cross section depending on the wavelength are shown. FIG. 半径10nmで高さ30nmの銀の円柱状の粒子がクラスターを形成したモデルを対象として本発明の方法によりシミュレーションを行った実施例3において、吸光断面積と散乱断面積の波長による変化の結果を示す図。In Example 3 in which simulation was performed by the method of the present invention for a model in which silver cylindrical particles having a radius of 10 nm and a height of 30 nm formed clusters, the results of changes in the absorption cross section and the scattering cross section depending on the wavelength are shown. FIG. 銀の球形の粒子と銀の円柱状の粒子について、従来のMie理論を適用してシミュレーションを行った比較例1において、減衰 断面積と散乱断面積の波長による変化の結果を示す図。The figure which shows the result of the change by the wavelength of an attenuation cross section and a scattering cross section in the comparative example 1 which performed the simulation about the spherical particle of silver and silver cylindrical particle | grains using the conventional Mie theory. 100μmの厚さの平板の入射面とは反対側の面に反射率0.8の反射板が存在するとし、平板の入射面に入射光が垂直に入射する場合の散乱光量および吸収光量のシミュレーションを本発明の方法により行った実施例4において、散乱光量および吸収光量の波長による変化の結果を示す図。A simulation of the amount of scattered light and the amount of absorbed light when a reflecting plate having a reflectance of 0.8 exists on the surface opposite to the incident surface of a flat plate having a thickness of 100 μm and the incident light is perpendicularly incident on the incident surface of the flat plate. In Example 4 which performed this by the method of this invention, the figure which shows the result of the change by the wavelength of scattered light amount and absorbed light amount. 屈折率1.5の樹脂からなる厚さ3μmの平板中に、半径100nmの球形の銀の粒子が入ったモデルを対象として、可干渉性の光と非可干渉性の光が等分で混合した光が平板に垂直に入射した場合について本発明のシミュレーションを行った実施例5の結果を示す図。For a model in which spherical silver particles with a radius of 100 nm are contained in a 3 μm thick flat plate made of a resin with a refractive index of 1.5, coherent light and non-coherent light are mixed equally. The figure which shows the result of Example 5 which performed the simulation of this invention about the case where the performed light was perpendicularly incident on the flat plate. 屈折率1.5の樹脂からなる厚さ3μmの平板中に、半径10nmの球形の銀の粒子がクラスターを形成したモデルを対象として、可干渉性の光と非可干渉性の光が等分で混合した光が平板に垂直に入射した場合について本発明のシミュレーションを行った実施例6の結果を示す図。For a model in which spherical silver particles with a radius of 10 nm form clusters in a 3 μm thick flat plate made of resin with a refractive index of 1.5, coherent light and non-coherent light are equally divided. The figure which shows the result of Example 6 which performed the simulation of this invention about the case where the light mixed in (1) injects perpendicularly | vertically on the flat plate. 屈折率1.5の樹脂からなる厚さ3μmの平板中に、半径10nmで長さ30nmの円柱形の銀の粒子がクラスターを形成したモデルを対象として、可干渉性の光と非可干渉性の光が等分で混合した光が平板に垂直に入射した場合について本発明のシミュレーションを行った実施例7の結果を示す図。Coherent light and incoherence are targeted for a model in which cylindrical silver particles with a radius of 10 nm and a length of 30 nm form clusters in a 3 μm thick flat plate made of a resin with a refractive index of 1.5. The figure which shows the result of Example 7 which performed the simulation of this invention about the case where the light of which the light of 1 part was equally divided and injected into the flat plate perpendicularly | vertically. 屈折率1.5の樹脂からなる厚さ3μmの平板に、半径100nmの球形の銀の粒子を、銀の粒子の濃度が1体積%となるようにランダムに分散させたモデルを作成し、可干渉性の光と非可干渉性の光が等分で混合した光の平板の垂線に対する角度が30.556度と70.124度の二つの光束について、本発明のシミュレーションを行った実施例8の結果を示す図。A model in which spherical silver particles with a radius of 100 nm are randomly dispersed on a 3 μm thick flat plate made of a resin with a refractive index of 1.5 so that the concentration of silver particles is 1% by volume is possible. Example 8 in which the simulation of the present invention was performed on two light fluxes having angles of 30.556 degrees and 70.124 degrees with respect to the normal of the flat plate of light in which coherent light and incoherent light were equally divided FIG. 屈折率1.5の樹脂からなる厚さ3μmの平板に、半径10nmの球形の銀の粒子を半径100nmのクラスターを形成するようにモンテ・カルロ法を用いてランダムに分布させたモデルを作成し、可干渉性の光と非可干渉性の光が等分で混合した光の平板の垂線に対する角度が30.556度と70.124度の二つの光束について、本発明のシミュレーションを行った実施例9の結果を示す図。A model in which spherical silver particles with a radius of 10 nm are randomly distributed using a Monte Carlo method so as to form a cluster with a radius of 100 nm on a 3 μm thick flat plate made of a resin with a refractive index of 1.5 is created. Implementation of simulation of the present invention for two luminous fluxes having angles of 30.556 degrees and 70.124 degrees with respect to the normal of the flat plate of light in which coherent light and incoherent light are equally mixed The figure which shows the result of Example 9. 屈折率1.5の樹脂からなる厚さ3μmの平板に、半径10nm長さ30nmの円柱形の銀の粒子を半径100nmのクラスターを形成するようにモンテ・カルロ法を用いてランダムに分布させたモデルを作成し、可干渉性の光と非可干渉性の光が等分で混合した光の平板の垂線に対する角度が30.556度と70.124度の二つの光束について、本発明のシミュレーションを行った実施例10の結果を示す図。On a 3 μm thick flat plate made of a resin having a refractive index of 1.5, cylindrical silver particles having a radius of 10 nm and a length of 30 nm were randomly distributed using a Monte Carlo method so as to form a cluster having a radius of 100 nm. A model is created, and the simulation of the present invention is performed with respect to two light fluxes having angles of 30.556 degrees and 70.124 degrees with respect to the normal of the flat plate of light in which coherent light and incoherent light are mixed equally. The figure which shows the result of Example 10 which performed.

本発明の電磁波伝播シミュレーション方法は、複数の粒子を含む媒体からなる集合体に電磁波が入射した場合の電磁波の挙動を、計算機を用いて算出する電磁波伝播シミュレーション方法であって、粒子がランダムまたはある規則にしたがって分布した集合体に電磁波が入射した場合の電磁波の挙動を、FDTD法とラディエイティブ・トランスファー・イクエイション法とを用いて計算することを特徴とする。   The electromagnetic wave propagation simulation method of the present invention is an electromagnetic wave propagation simulation method for calculating the behavior of an electromagnetic wave when the electromagnetic wave is incident on an aggregate composed of a medium including a plurality of particles using a computer, and the particles are random or are present. The behavior of the electromagnetic wave when the electromagnetic wave is incident on the aggregate distributed according to the rule is calculated using the FDTD method and the radial transfer acquisition method.

以下、本発明について詳細に説明する。
本発明は計算機を用いて算出する電磁波伝播シミュレーション方法であり、計算を実行するためのプログラムを格納する記録媒体、該記録媒体からプログラムを読み取る装置、プログラムや計算結果を一時的に格納する記憶装置、CPU、出力装置を有するコンピュータにより実施する。
Hereinafter, the present invention will be described in detail.
The present invention is an electromagnetic wave propagation simulation method for calculation using a computer, a recording medium for storing a program for executing the calculation, a device for reading the program from the recording medium, and a storage device for temporarily storing the program and calculation results And a computer having a CPU and an output device.

本発明においては、まず計算対象となる集合体のモデルを作成する。粒子を媒体中にランダムに分布させるには、モンテ−カルロ(Monte Carlo)法用いるのが便利である。モンテ−カルロ法は、所定の統計的性質を持った乱数を発生させる方法であり、本発明においては、媒体中に所定の統計的性質を持って分散した粒子を計算上で発生させるために用いる。通常用いられる乱数を発生させる関数を用いて、計算対象の空間内に、粒子の座標を設定すればよい。所定の統計的性質とは、完全均一、特定の割合で特定の数の粒子の凝集体があるなどの状態に対応するものである。   In the present invention, an aggregate model to be calculated is first created. In order to distribute the particles randomly in the medium, it is convenient to use the Monte Carlo method. The Monte-Carlo method is a method for generating random numbers having a predetermined statistical property. In the present invention, the Monte-Carlo method is used to generate particles dispersed with a predetermined statistical property in a medium. . What is necessary is just to set the coordinate of particle | grains in the space of calculation object using the function which generate | occur | produces the random number used normally. Predetermined statistical properties correspond to conditions such as complete homogeneity and a certain number of aggregates of particles at a certain rate.

本発明においては、粒子は媒体中にランダムに分布させる場合だけではなく、ある規則にしたがって分布した場合についても実施することができる。   In the present invention, not only the case where the particles are randomly distributed in the medium, but also the case where the particles are distributed according to a certain rule can be carried out.

本発明で用いるFDTD(Finite Difference Time Domain)法(有限差分時間領域法)は、例えば、「FDTD法による電磁界およびアンテナ解析」,1998年,コロナ社に記載されている公知の方法であり、マックスウェル方程式を空間的および時間的に区切り、空間および時間微分を有限差分によって近似し、電磁界の時間変化を追跡して算出するシミュレーション方法である。
なお、FDTD法は、不規則な境界面を有する有限の大きさの仮定が有効な構造物でも、無限の仮定が可能な構造物のどちらにも適用可能である。
The FDTD (Finite Difference Time Domain) method (finite difference time domain method) used in the present invention is a known method described in, for example, “Electromagnetic field and antenna analysis by FDTD method”, 1998, Corona, This is a simulation method in which Maxwell's equations are divided spatially and temporally, space and time derivatives are approximated by finite differences, and time changes of electromagnetic fields are tracked and calculated.
Note that the FDTD method can be applied to both a structure having an irregular boundary surface where a finite size assumption is effective and a structure capable of infinite assumption.

通常、任意の偏光状態にある入射光(電磁波)は、2つの直交する偏光状態、すなわち、TMモードとTEモードとに分けることが可能である。
そして、本発明で用いるFDTD法においては、帰納的畳み込み法を用いると効率的に計算を進めることができる。電磁波におけるTEモードに対しては、マクスウェル方程式から導かれる波動方程式に帰納的畳み込み法を適用して得られる第1の電磁界解析用の式を、帰納的関係式を利用してコンピュータにより解き、TMモードに対しては、マクスウェル方程式に帰納的畳み込み法を適用して得られる第2の電磁界解析用の式を、帰納的関係式を利用してコンピュータにより解き、TMモード及びTEモードに対して得られた電磁界に基づいてFDTD法の空間的および時間的区切りにおける電磁界を算出する態様とすることが好適である(特願2008−68139の公開公報参照。)。
Usually, incident light (electromagnetic wave) in an arbitrary polarization state can be divided into two orthogonal polarization states, that is, a TM mode and a TE mode.
In the FDTD method used in the present invention, the calculation can be efficiently performed by using the inductive convolution method. For the TE mode in electromagnetic waves, the first electromagnetic field analysis equation obtained by applying the inductive convolution method to the wave equation derived from the Maxwell equation is solved by a computer using the inductive relational equation, For the TM mode, the second electromagnetic field analysis formula obtained by applying the recursive convolution method to the Maxwell equation is solved by a computer using the recursive relational expression, and for the TM mode and the TE mode, It is preferable to calculate the electromagnetic field in the spatial and temporal divisions of the FDTD method based on the electromagnetic field obtained in this way (see Japanese Patent Application No. 2008-68139).

FDTD法では、以下のマクスウェル方程式を利用することができる。

Figure 2011022889
(1)
Figure 2011022889
(2) In the FDTD method, the following Maxwell equations can be used.

Figure 2011022889
(1)
Figure 2011022889
(2)

ここで、μは透磁率、Eは電界の強さ、Hは磁界の強さである。

Figure 2011022889
は微分演算子であり、
Figure 2011022889
及び
Figure 2011022889
及び
Figure 2011022889
をx軸方向及びy軸方向及びz軸方向の単位ベクトルとしたとき、

Figure 2011022889
(3)
で定義される微分演算子である。 Here, μ is the magnetic permeability, E is the strength of the electric field, and H is the strength of the magnetic field.
Figure 2011022889
Is a differential operator,
Figure 2011022889
as well as
Figure 2011022889
as well as
Figure 2011022889
Is a unit vector in the x-axis direction, the y-axis direction, and the z-axis direction,

Figure 2011022889
(3)
Is a differential operator defined by.

式(2)中のDは電束密度を表しており、次式で与えられる。

Figure 2011022889
(4)

式(4)中のεは計算対象の物体(粒子)の誘電率である。 D in Formula (2) represents the electric flux density and is given by the following formula.

Figure 2011022889
(4)

In equation (4), ε is the dielectric constant of the object (particle) to be calculated.

本発明で用いたFDTD法は、特願2008−68139に記載されたTMモードに関するFDTD法を3次元に拡張したものである。
FDTD法により算出された電磁界を用いてfar-field transformation 法を使って粒子から遠い点の電磁界の値を算出する。
The FDTD method used in the present invention is a three-dimensional extension of the FDTD method relating to the TM mode described in Japanese Patent Application No. 2008-68139.
The value of the electromagnetic field at a point far from the particle is calculated using the far-field transformation method using the electromagnetic field calculated by the FDTD method.

遠い点の電磁界の値は(5)式を使って計算する。

Figure 2011022889
(5) The value of the electromagnetic field at the far point is calculated using equation (5).

Figure 2011022889
(5)

式(5)中のΨは電磁界のx、y、z成分のいずれかの強さを示している。下付の文字Fは無限遠点(ファーフィールド)を示している。積分領域は散乱体を包囲する孤立面Sである。

Figure 2011022889
はSの上でそれぞれの点での法線の外部向きの単位vectorである。 [Psi] in Equation (5) indicates the strength of any of the x, y, and z components of the electromagnetic field. The subscript F indicates the infinity point (far field). The integration region is an isolated surface S surrounding the scatterer.
Figure 2011022889
Is a unit vector pointing outwardly of the normal at each point on S.

本発明で用いるラディエイティブ・トランスファー・理論(Radiative transfer theory)は、入射光が媒体や粒子と相互作用を生じるときに、反射、散乱、吸収、透過した光の量の総和が吸光(減衰)量に一致するとする関係式を用いた計算方法である。その理論から生じるラディエイティブ・トランスファー・イクエイション(Radiative Transfer EquationまたはRTE)は、粒子が分布している媒体の中に電磁波のエネルギーの伝播の計算式であり、可干渉性(coherent)の光、部分干渉性の光及び拡散光(非可干渉性の光)の取り扱いができる計算式である。なお、RTEを用いた計算方法がRT法である。電磁波のエネルギーは光束として計算している。光束は光の強度または照度に関係している。入射光は完全拡散光であれば、出力を積分した光束として、2光束RTEを用いて計算することができる。入射光が部分干渉性の光である場合は、4光束、N光束(4≦N)のRTEを用いる。N光束RTEのNは、伝播方向に対して設定したN個のchannelに対応する。それぞれのchannelは、通常は極角θと方位角φに対して定義する。(P.S.Mufgett and L.W.Richards,「Multiple Scattering Calculations for Technology」,Applied Optics,vol. 10,No.7,1971,pp1485 参照。)   The radial transfer theory used in the present invention is the amount of light that is absorbed (attenuated) when the incident light interacts with a medium or particle, and the total amount of reflected, scattered, absorbed, and transmitted light. This is a calculation method using a relational expression that agrees with. The Radial Transfer Equation (RTE) resulting from the theory is a formula for the propagation of electromagnetic energy in a medium in which particles are distributed, and is a coherent light, It is a calculation formula that can handle partially coherent light and diffused light (incoherent light). The calculation method using RTE is the RT method. The energy of electromagnetic waves is calculated as a luminous flux. The luminous flux is related to light intensity or illuminance. If the incident light is completely diffused light, it can be calculated using a two-beam RTE as a luminous flux obtained by integrating the output. When the incident light is partially coherent light, RTE of 4 light fluxes and N light fluxes (4 ≦ N) is used. N of the N light flux RTE corresponds to N channels set in the propagation direction. Each channel is usually defined with respect to a polar angle θ and an azimuth angle φ. (See P.S.Mufgett and L.W.Richards, "Multiple Scattering Calculations for Technology", Applied Optics, vol. 10, No. 7, 1971, pp1485.)

RTEの基本式は媒体の任意の点でエネルギーの保存則を示している。
可干渉性の光束の距離勾配は式(6)で与えられる。

Figure 2011022889
(6) The basic RTE equation shows the conservation law of energy at any point in the medium.
The distance gradient of the coherent beam is given by equation (6).

Figure 2011022889
(6)

式(6)のKは吸収率である。Kは媒体及び粒子の吸収の合計に対する吸収率である。式(6)は可干渉性の光束の吸収及び散乱により、伝播チャンネルから光が失われることを示している。拡散光束の距離勾配は式(7)で示される。

Figure 2011022889
(7) K in equation (6) is the absorption rate. K is the absorption rate relative to the sum of the media and particle absorption. Equation (6) shows that light is lost from the propagation channel due to absorption and scattering of the coherent beam. The distance gradient of the diffused light beam is expressed by equation (7).

Figure 2011022889
(7)

式(7)の吸収率Kdは拡散光束の吸収損失に関係する。Sdは拡散光束の散乱損失に関係する。Sd+dは他のチャンネルに伝播している拡散光が散乱して対象の伝播チャンネルに入ってきたものを示している。Sccは可干渉性の光のチャンネルから散乱して拡散チャンネルに入ってきた部分である。つまり式(7)の後2項は拡散光束の利得を示している。式(7)に記載しているK及びSの全ての係数は粒子の吸収及び散乱断面積とフェイズ関数から計算できる。フェイズ関数は散乱波動場の振幅である。球形の粒子の場合、フェイズ関数はMie理論から計算することはできるが、球形以外の任意の形の粒子の場合にはMie理論から導くことはできない。本発明においては、任意の形の粒子(集合体粒子も含めて)の吸収断面積、散乱断面積及びフェイズ関数は、FDTD法(far-field transformation法を適用)を使って計算することができる。 The absorptance Kd in equation (7) is related to the absorption loss of the diffused light flux. S d is related to the scattering loss of the diffused light flux. S d + f d indicates that diffused light propagating to other channels is scattered and enters the target propagation channel. S c f c is a portion scattered from the coherent light channel and entering the diffusion channel. That is, the second term after Expression (7) represents the gain of the diffused light beam. All the coefficients of K and S described in equation (7) can be calculated from the absorption and scattering cross sections of the particles and the phase function. The phase function is the amplitude of the scattered wave field. For spherical particles, the phase function can be calculated from Mie theory, but for particles of any shape other than spherical, it cannot be derived from Mie theory. In the present invention, the absorption cross section, scattering cross section, and phase function of any shape of particles (including aggregate particles) can be calculated using the FDTD method (far-field transformation method is applied). .

式(6)と(7)に用いる吸収率Kと散乱率Sは一個の粒子の吸収と散乱断面積に関するものである。入射光が拡散光の場合KとSは次のようにあらわされる(P. Kubelka, "New contributions to the optics of intensely light-scattering materials. Part I ", Journal of Optical Society of America, vol. 38, no. 5, 1948, p. 448. 参照。)。

Figure 2011022889
(8)
Figure 2011022889
(9) Absorption rate K and scattering rate S used in equations (6) and (7) relate to the absorption and scattering cross section of one particle. When incident light is diffuse light, K and S are expressed as follows (P. Kubelka, "New contributions to the optics of intensely light-scattering materials. Part I", Journal of Optical Society of America, vol. 38, no. 5, 1948, p. 448.).
Figure 2011022889
(8)
Figure 2011022889
(9)

ここで、Cabsは吸収断面積(absorption cross-section)、Cscat(scattering cross-section)は散乱断面積である。この場合光束は視野角によって区分せず、計算方法は1次元の往復方向の2光束のRT法またはクベルカ・ムンク法に該当する。 Here, C abs is an absorption cross-section, and C scat (scattering cross-section) is a scattering cross-section. In this case, the light beam is not classified according to the viewing angle, and the calculation method corresponds to the RT method or the Kubelka-Munk method of two light beams in a one-dimensional reciprocating direction.

2光束法においては、反射率Rと透過率Tは、次の式(10)、(11)で与えられる。

Figure 2011022889
(10)
Figure 2011022889
(11) In the two-beam method, the reflectance R and the transmittance T are given by the following equations (10) and (11).

Figure 2011022889
(10)
Figure 2011022889
(11)

ここで、dは拡散平板の厚さ、ρgは拡散平面の背面平面の反射率、aとbは次で与えられる。

Figure 2011022889
(12)
Figure 2011022889
(13)
KとSはそれぞれ、式(8)と(9)から計算できる。 Here, d is the thickness of the diffusion plate, ρ g is the reflectance of the back plane of the diffusion plane, and a and b are given as follows.
Figure 2011022889
(12)
Figure 2011022889
(13)
K and S can be calculated from equations (8) and (9), respectively.

完全球形の粒子の場合CabsとCscatはMie理論により計算することができる。しかし任意の形の粒子の場合、または粒子の集合体の場合、CabsとCscatは解析的な計算ができない。本発明では、FDTD法を用いてCabsとCscat の数値を計算する。すなわち、CabsとCscatと減衰断面積(extinction cross-section)Cextは、次の式から得られる(C. F. Bohren, D. R. Huffman, "Absorption and scattering of light by small particles", Wiley-VCH Verlag GmbH & Co. KGaA, 2004, Weinheim, Chap.3-4.参照。)。 In the case of a perfectly spherical particle, C abs and C scat can be calculated by Mie theory. However, in the case of arbitrary shaped particles, or in the case of an aggregate of particles, C abs and C scat cannot be calculated analytically. In the present invention, numerical values of C abs and C scat are calculated using the FDTD method. That is, C abs , C scat, and extinction cross-section C ext are obtained from the following formula (CF Bohren, DR Huffman, “Absorption and scattering of light by small particles”, Wiley-VCH Verlag GmbH & Co. KGaA, 2004, Weinheim, Chap. 3-4.).

Figure 2011022889
(14)
Figure 2011022889
(15)
Figure 2011022889
(14)
Figure 2011022889
(15)

ここで、θとφはそれぞれの極角と方位角である。式(14)と(15)に用いるΨ0は次の式から生じる。

Figure 2011022889
(16) Here, θ and φ are the polar angle and the azimuth angle, respectively. Ψ 0 used in equations (14) and (15) results from
Figure 2011022889
(16)

式(16)のΨFは式(5)を用いて計算している。Ψiは入射光の電磁界の強さである。吸収断面積Cabsは式(17)により得られる。

Figure 2011022889
(17) Ψ F in Expression (16) is calculated using Expression (5). Ψ i is the electromagnetic field strength of the incident light. The absorption cross-sectional area C abs is obtained by the equation (17).
Figure 2011022889
(17)

RTEは、複数の伝播チャンネル(channel)を設定し、2光束(flux)以上について実行することができる。前記の散乱率SとSは、散乱断面積Cscatとphase関数で決める。Phase関数はある方向における散乱電磁界の振幅である。そのPhase関数はLegendre多項式を用いて展開すると、それぞれの項の係数を以下のように計算できる。

Figure 2011022889
(18) RTE can be performed for more than two fluxes by setting multiple channels. The scattering rates S and S d ± are determined by the scattering cross section C scat and the phase function. The phase function is the amplitude of the scattered electromagnetic field in a certain direction. When the Phase function is expanded using the Legendre polynomial, the coefficient of each term can be calculated as follows.
Figure 2011022889
(18)

ここで、

Figure 2011022889
は1次の係数であり、p(θ)はPhase関数で、Piは1次のLegendre多項式を示す。p(θ)はある状態に従ってMie理論またはFDTD方法を用いて計算できる。 here,
Figure 2011022889
Is a first order coefficient, p (θ) is a Phase function, and P i is a first order Legendre polynomial. p (θ) can be calculated using Mie theory or FDTD method according to a certain state.

本発明においては、FDTD法、モンテ・カルロ法およびRTE法の3つの計算方法を組合せて用いる場合が好ましい。
また、RTE法において、4以上の光束のRTE法を用いることが、可干渉性の光が含まれる場合のシミュレーションに好適なので好ましい。光束の数は、通常は4以上12以下であり、計算速度が速いので、4および6の場合が特に好ましい。
In the present invention, it is preferable to use a combination of the three calculation methods of the FDTD method, the Monte Carlo method, and the RTE method.
Further, in the RTE method, it is preferable to use the RTE method of four or more light beams because it is suitable for simulation when coherent light is included. The number of light beams is usually 4 or more and 12 or less, and the calculation speed is fast, so the cases of 4 and 6 are particularly preferable.

本発明においてシミュレーションの対象とする粒子は、その形状を任意に設定できる。粒子の形状としては、任意の形、例えば、球形、円柱形、角柱形、角柱以外の多面体、鱗片状形状、ドーナツ形状、中空円柱形状のいずれでも設定できる。また、一部の2粒子同士が会合している場合、粒子が凝集している場合も設定することができる。さらに、粒子の形状や物質が2種類以上混合している場合、大きさに分布がある場合、媒体中の粒子の分布に偏りがある場合も設定することができる。   In the present invention, the shape of particles to be simulated can be arbitrarily set. The shape of the particles can be set to any shape, for example, a spherical shape, a cylindrical shape, a prism shape, a polyhedron other than a prism shape, a scale shape, a donut shape, or a hollow cylindrical shape. In addition, when some of the two particles are associated with each other, the case where the particles are aggregated can also be set. Furthermore, when two or more kinds of particle shapes and substances are mixed, a case where there is a distribution in size, and a case where there is a bias in the distribution of particles in the medium can be set.

そして、媒体中の粒子の濃度が5体積%以上の高い濃度となる場合も設定することができる。本発明は、媒体中の粒子濃度が、5〜90体積%の場合に好適に適用することができ、5〜50体積%の場合により好ましく、6〜20体積%の場合にさらに好ましく適用することができる。   It can also be set when the concentration of particles in the medium is a high concentration of 5% by volume or more. The present invention can be suitably applied when the particle concentration in the medium is 5 to 90% by volume, more preferably 5 to 50% by volume, and even more preferably 6 to 20% by volume. Can do.

本発明においてシミュレーションの対象とする媒体は、光を通し、均一な媒体であれば、光の透過率、屈折率を定数として設定することにより、真空、空気、水、有機溶媒、溶液、ガラス、樹脂のいずれでも設定することができる。本発明は、特に、粒子の移動が生じないガラスまたは樹脂を媒体とする場合に好適に適用することができる。   In the present invention, if the medium to be simulated is a uniform medium that transmits light, by setting the light transmittance and refractive index as constants, vacuum, air, water, organic solvent, solution, glass, Any of the resins can be set. The present invention can be suitably applied particularly when glass or resin that does not cause movement of particles is used as a medium.

本発明においてシミュレーションの計算対象の集合体としては、通常は、媒体と粒子の占める空間が平板であり、一定の厚さを有し、無限の広さの平板からなる集合体である場合である。媒体と粒子の占める空間が平板であるとは、即ち一定の間隔の平行な2つの平面の間に存在する空間に媒体と粒子が存在することである。   In the present invention, the aggregate to be calculated in the simulation is usually a case where the space occupied by the medium and the particles is a flat plate, which has a certain thickness and is an infinitely wide flat plate. . The space occupied by the medium and the particles is a flat plate, that is, the medium and the particles exist in a space existing between two parallel planes with a constant interval.

本発明においてシミュレーションの対象とする光の光源は、レーザー光源(可干渉性の高い光を発する光源)、通常光光源(可干渉性の低い光を発する光源)、連続光光源、パルス光源のいずれでも設定することができ、ディスプレイの設計用には、通常光光源であって連続光光源の場合に本発明は好適に適用することができ、さらに平行光線光源である場合が計算が簡単になり好ましい。   In the present invention, the light source to be simulated is any one of a laser light source (a light source that emits light having high coherence), a normal light source (a light source that emits light having low coherence), a continuous light source, and a pulse light source. However, for display design, the present invention can be preferably applied in the case of a normal light source and a continuous light source, and the calculation is simplified in the case of a parallel light source. preferable.

次に本発明の具体的な実施態様について説明する。
[1]粒子分散媒体の設定
計算対象の媒体として、均一で光を通す物質(真空を含む)を表すために適切な光透過率(または光吸収率)と屈折率を設定する。媒体の形状として平板を設定し、平板の厚さに該当する所定の間隔の平行な2面を設定し、その間に存在する無限の大きさの空間を、平板に対する近似の形状として設定する。
分散させる粒子の形状を決定する。粒子を構成する物質を表すために適切な、光の透過率(または吸収率)と屈折率を設定する。
光源としては、ディスプレイの設計に用いるには、通常光の平行光線を設定する。
粒子をモンテ−カルロ法により媒体中に無作為に所定の濃度となるように分布させる。
Next, specific embodiments of the present invention will be described.
[1] Setting of particle dispersion medium As a medium to be calculated, an appropriate light transmittance (or light absorption rate) and refractive index are set in order to represent a uniform and light-transmitting substance (including vacuum). A flat plate is set as the shape of the medium, two parallel planes with a predetermined interval corresponding to the thickness of the flat plate are set, and an infinitely large space existing between them is set as an approximate shape for the flat plate.
Determine the shape of the particles to be dispersed. Appropriate light transmittance (or absorptance) and refractive index are set to represent the substance constituting the particle.
As a light source, a parallel beam of normal light is set for use in display design.
The particles are randomly distributed in the medium so as to have a predetermined concentration by the Monte Carlo method.

[2]シミュレーションの実行
複数の粒子がランダムまたはある規則にしたがって分布した集合体の散乱と吸収断面積とをFDTD法を用いて計算する。
[2] Execution of simulation The scattering and the absorption cross section of an aggregate in which a plurality of particles are randomly distributed or distributed according to a certain rule are calculated using the FDTD method.

[3]その集合体のランダムまたはある規則に分布した媒体の中の電磁界伝播をラディエイティブ・トランスファー・イクエイション(または ラディエイティブ・トランスファー法)を用いて計算する。   [3] The electromagnetic field propagation in the medium randomly distributed in the aggregate or in a certain rule is calculated using a radial transfer excitation (or a radial transfer method).

次に本発明を実施例によってさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
実施例においては、PG Fortran 90言語で記載したプログラムを作成およびMathsoft Engineering & Education inc.製の製品のMathcad(商品名)を用いて計算を行った。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
In the examples, a program described in the PG Fortran 90 language was created, and calculation was performed using Mathcad (trade name) manufactured by Mathsoft Engineering & Education inc.

(実施例1)
半径10nmの銀の球形粒子を、屈折率1.5の媒体中に、半径100nmのクラスターを1個形成するようにモンテ・カルロ法を用いてランダムに分布させたモデルを作成した。クラスター内の粒子の含有量は50体積%とした。このモデルを映像化したものを図1に示した。図1の3つの図は、左から順にXY面、YZ面、XZ面による断面を示す。
Example 1
A model in which silver spherical particles having a radius of 10 nm were randomly distributed using a Monte Carlo method so that one cluster having a radius of 100 nm was formed in a medium having a refractive index of 1.5. The content of particles in the cluster was 50% by volume. An image of this model is shown in FIG. The three views of FIG. 1 show cross sections along the XY plane, the YZ plane, and the XZ plane in order from the left.

この集合体のモデルについて、入射光は完全散乱光(完全に非可干渉性の光)とし、入射光の波長を400nmから700nmまで20nm間隔で変化させたときの、散乱光量および吸収光量を計算した。光の散乱と吸収は、2光束のRT法であるクベルカ−ムンク法で計算した。そのための散乱及び吸収断面積は3次元のFDTD法とfar-field transformation法の組み合わせで計算した。far-field transformation法は粒子から遠い点で電磁界を知るための計算方法である。計算結果を図2に示した。
光の波長よりはるかに小さい半径10nmの球形の銀粒子は、もしクラスターを形成していない場合は、光との相互作用は小さく、散乱や吸収の量は少ないと推測することができるが、実際に銀の粒子を媒体中に高濃度で分散させ集合体を作製すると、銀の粒子が凝集し、クラスターを形成する。本モデルは、この実際の集合体のモデルである。本発明の方法によりシミュレーションを行った結果、濃度が高くクラスターを形成した実際に近い場合は、相当量の散乱と吸収が生じ、光の波長が短いほど散乱光量と吸収光量が大きくなった。従って、本発明のシミュレーション方法は、実際の状況を正しくシミュレートできていることがわかった。
For this aggregate model, the incident light is completely scattered light (fully incoherent light), and the amount of scattered light and the amount of absorbed light are calculated when the wavelength of the incident light is changed from 400 nm to 700 nm at intervals of 20 nm. did. Light scattering and absorption were calculated by the Kubelka-Munk method, which is a two-beam RT method. The scattering and absorption cross sections for that were calculated by a combination of the three-dimensional FDTD method and the far-field transformation method. The far-field transformation method is a calculation method for knowing the electromagnetic field at a point far from the particle. The calculation results are shown in FIG.
Spherical silver particles with a radius of 10 nm, which is much smaller than the wavelength of light, can be assumed that if they do not form clusters, the interaction with light is small and the amount of scattering and absorption is small. When an aggregate is prepared by dispersing silver particles in a medium at a high concentration, the silver particles are aggregated to form clusters. This model is a model of this actual aggregate. As a result of the simulation by the method of the present invention, when the concentration is high and it is close to the actual formation of the cluster, a considerable amount of scattering and absorption occurs. Therefore, it has been found that the simulation method of the present invention can correctly simulate the actual situation.

(実施例2)
半径10nmで高さ30nmの円柱形の銀の粒子を、屈折率1.5の媒体中に、半径100nmのクラスターを1個形成するようにモンテ・カルロ法を用いてランダムに分布させたモデルを作成した。円柱形粒子の向きは円柱の軸が入射光の進行方向に垂直な面に平行であり、かつ、偏光方向に垂直な方向に揃えた。クラスター内の粒子の含有量は50体積%とした。
(Example 2)
A model in which cylindrical silver particles having a radius of 10 nm and a height of 30 nm are randomly distributed using a Monte Carlo method so that one cluster having a radius of 100 nm is formed in a medium having a refractive index of 1.5. Created. The orientation of the cylindrical particles was such that the axis of the cylinder was parallel to a plane perpendicular to the traveling direction of incident light, and was aligned in a direction perpendicular to the polarization direction. The content of particles in the cluster was 50% by volume.

この集合体のモデルを用いて、実施例1と同様にして入射光の波長を400nmから700nmまで20nm間隔で変化させたときの、散乱光量および吸収光量を計算した。結果を図3に示した。
光の波長よりはるかに小さい半径10nmで高さ30nmの円柱形の銀粒子は、もしクラスターを形成していない場合は、光との相互作用は小さく、散乱や吸収の量は少ないと推測することができるが、実際に銀の粒子を媒体中に高濃度で分散させ集合体を作製すると、銀の粒子が凝集し、クラスターを形成する。本モデルは、この実際の集合体のモデルである。本発明の方法によりシミュレーションを行った結果、濃度が高くクラスターを形成した実際に近い場合は、相当量の散乱と吸収が生じ、光の波長が短いほど散乱光量と吸収光量が大きくなった。従って、本発明のシミュレーション方法は、実際の状況を正しくシミュレートできていることがわかった。
Using this aggregate model, the amount of scattered light and the amount of absorbed light were calculated when the wavelength of incident light was changed from 400 nm to 700 nm at 20 nm intervals in the same manner as in Example 1. The results are shown in FIG.
Presumably, cylindrical silver particles with a radius of 10 nm and a height of 30 nm, which is much smaller than the wavelength of light, have little interaction with light if they are not clustered and have little scattering and absorption. However, when silver particles are actually dispersed at a high concentration in a medium to produce an aggregate, the silver particles are aggregated to form clusters. This model is a model of this actual aggregate. As a result of the simulation by the method of the present invention, when the concentration is high and it is close to the actual formation of clusters, a considerable amount of scattering and absorption occurs, and the amount of scattered light and the amount of absorbed light increase as the wavelength of light is shorter. Therefore, it has been found that the simulation method of the present invention can correctly simulate the actual situation.

(実施例3)
実施例2と同様で、ただし、円柱の軸が入射光の進行方向に垂直な面に垂直であり、かつ、偏光方向に平行な方向に揃えて集合体のモデルを作成した。このモデルを用いて、実施例1と同様にして入射光の波長を400nmから700nmまで20nm間隔で変化させたときの、散乱光量および吸収光量を計算した。結果を図3に示した。
実施例2と同様に、相当量の散乱と吸収が生じ、光の波長が短いほど散乱光量と吸収光量が大きくなった。従って、実施例2と同様に、本発明のシミュレーション方法は、実際の状況を正しくシミュレートできていることがわかった。
(Example 3)
Similar to Example 2, except that the axis of the cylinder was perpendicular to the plane perpendicular to the traveling direction of the incident light and was aligned in a direction parallel to the polarization direction, and an aggregate model was created. Using this model, the amount of scattered light and the amount of absorbed light when the wavelength of incident light was changed from 400 nm to 700 nm at intervals of 20 nm were calculated in the same manner as in Example 1. The results are shown in FIG.
As in Example 2, a considerable amount of scattering and absorption occurred, and the shorter the wavelength of light, the larger the scattered light amount and absorbed light amount. Therefore, as in Example 2, it was found that the simulation method of the present invention can simulate the actual situation correctly.

(比較例1)
実施例1と同じ集合体モデルについて、従来のMie理論を適用して、入射光は完全散乱(完全に可干渉性が無い場合)とし、入射光の波長を400nmから700nmまで20nm間隔で変化させたときの、散乱光量および吸収光量を計算した。Mie計算では、粒子の集合体からなるclusterの散乱特性の計算をできないので、半径100nmのクラスターを均質な等価粒子に置き換えて計算した。その等価粒子の半径は79nmである。結果を図5に示した。
散乱光量も吸収光量も420nm付近に大きなピークが生じており、現実の状況を正しくシミュレートできていないことがわかる。
(Comparative Example 1)
Applying the conventional Mie theory to the same aggregate model as in Example 1, the incident light is completely scattered (when there is no coherence), and the wavelength of the incident light is changed from 400 nm to 700 nm at intervals of 20 nm. The amount of scattered light and the amount of absorbed light were calculated. In the Mie calculation, since the scattering characteristics of the cluster composed of the aggregate of particles cannot be calculated, the cluster having a radius of 100 nm is replaced with a homogeneous equivalent particle. The radius of the equivalent particle is 79 nm. The results are shown in FIG.
A large peak occurs in the scattered light amount and the absorbed light amount in the vicinity of 420 nm, which indicates that the actual situation cannot be simulated correctly.

(実施例4)
1000μmの厚さの平板に、実施例1のモデルと同様に、半径10nmの銀の球形粒子を、屈折率1.5の媒体中に、半径100nmのクラスターを1個形成するようにモンテ・カルロ法を用いてランダムに分布させたモデルと、実施例2と同様に半径10nmで高さ30nmの円柱形の銀の粒子を、屈折率1.5の媒体中に、半径100nmのクラスターを1個形成するようにモンテ・カルロ法を用いてランダムに分布させたモデルと、さらに半径10nmの球形の銀の粒子を、屈折率1.5の媒体中にクラスターを形成させずにモンテ・カルロ法を用いてランダムに分布させたモデルの3つのモデルを作成した。平板の入射面とは反対側の面に反射率0.8の反射板が存在するとし、平板の入射面に入射光が垂直に入射する場合の散乱光量および吸収光量を計算した。
Example 4
Similar to the model of Example 1, a silver spherical particle having a radius of 10 nm is formed on a 1000 μm-thick flat plate so that one cluster having a radius of 100 nm is formed in a medium having a refractive index of 1.5. A model randomly distributed using the method, and cylindrical silver particles having a radius of 10 nm and a height of 30 nm as in Example 2, and one cluster having a radius of 100 nm in a medium having a refractive index of 1.5. The model was randomly distributed using the Monte Carlo method to form a spherical silver particle having a radius of 10 nm and the Monte Carlo method without forming a cluster in a medium having a refractive index of 1.5. Three models were created: a randomly distributed model. Assuming that a reflection plate having a reflectance of 0.8 exists on the surface opposite to the incident surface of the flat plate, the amount of scattered light and the amount of absorbed light were calculated when incident light was perpendicularly incident on the incident surface of the flat plate.

入射光は完全散乱(完全に可干渉性が無い場合)とし、入射光の波長を400nmから700nmまで変化させたときの、散乱光量および吸収光量を、2光束のRT法であるクベルカ−ムンク法で計算した。そのための散乱及び吸収断面積は3次元のFDTD法とfar-field transformation法の組み合わせで計算した。シミュレーション結果を図6に示した。
光の波長よりはるかに小さい半径10nmの球形の銀粒子と、半径10nmで高さ30nmの銀の円柱状の粒子は、クラスターを形成していない場合は光との相互作用は小さく、散乱や吸収の量は少ない(図6のr)が、濃度が高くクラスターを形成した現実に近い場合は、球形の粒子の場合(図6のr_sph)よりも円柱形の粒子の場合(図6のr_cyl)の方が、散乱光量と吸収光量が大きくなることがわかった。
The incident light is completely scattered (when there is no complete coherence), and the amount of scattered light and the amount of absorbed light when the wavelength of the incident light is changed from 400 nm to 700 nm is the Kubelka-Munk method, which is a two-beam RT method. Calculated with The scattering and absorption cross sections for that were calculated by a combination of the three-dimensional FDTD method and the far-field transformation method. The simulation result is shown in FIG.
Spherical silver particles having a radius of 10 nm, which is much smaller than the wavelength of light, and silver cylindrical particles having a radius of 10 nm and a height of 30 nm have a small interaction with light when there is no cluster, and scattering and absorption. Is small (r in FIG. 6), but in the case where the concentration is close to the reality of forming clusters, the case of cylindrical particles (r_cyl in FIG. 6) rather than the case of spherical particles (r_sph in FIG. 6) It was found that the amount of scattered light and the amount of absorbed light were larger.

(実施例5)
屈折率1.5の樹脂からなる厚さ3μmの平板に、半径100nmの球形の銀の粒子の断面積とphase関数をMie理論により計算して、可干渉性の光と非可干渉性の光が等分で混合した光が平板に垂直に入射した場合の、反射率と透過率を算出した。銀の粒子の濃度は1体積%と低い濃度とした。算出には、可干渉性の光および非可干渉性の光について一方向およびその逆方向に伝播する電磁波(光)を取り扱う4光束のRTEを用いた。
(Example 5)
The cross-sectional area and phase function of spherical silver particles with a radius of 100 nm are calculated by Mie theory on a 3 μm thick flat plate made of a resin with a refractive index of 1.5, and coherent light and incoherent light are calculated. The reflectance and transmittance were calculated when light mixed in equal parts was incident on the flat plate perpendicularly. The concentration of silver particles was as low as 1% by volume. For the calculation, RTE of four luminous fluxes that handle electromagnetic waves (light) propagating in one direction and in the opposite direction with respect to coherent light and non-coherent light was used.

波長400〜700nmの範囲における可干渉性の光の透過率、可干渉性の光の反射率、非可干渉性の光の透過率、非可干渉性の光の反射率の波長による変化を計算し、結果を図7に示した。図7において、可干渉性の光の透過率は「x」印で、可干渉性の光の反射率は点線「・・・」で、非可干渉性の光の透過率は一点鎖線「−・−・」で、非可干渉性の光の反射率は実線「___」で示した。
可干渉性の光も、非可干渉性の光も、透過率は波長による変化は少なく低い値を示し、多くの光が反射または吸収されることがわかる。可干渉性の光の反射率は4%ころであり、非可干渉性の光の反射率が波長とともに増加した。可干渉性の光の反射率4%はほとんど界面のFresnel反射により生じる。
Calculates the coherent light transmittance, coherent light reflectance, incoherent light transmittance, and non-coherent light reflectance change with wavelength in the wavelength range of 400 to 700 nm. The results are shown in FIG. In FIG. 7, the transmittance of coherent light is indicated by “x”, the reflectance of coherent light is indicated by a dotted line “..., And the transmittance of non-coherent light is indicated by a one-dot chain line“ − ”. "-" And the reflectivity of incoherent light is indicated by a solid line "___".
For both coherent light and non-coherent light, the transmittance shows a low value with little change depending on the wavelength, and it can be seen that much light is reflected or absorbed. The reflectivity of coherent light was around 4%, and the reflectivity of non-coherent light increased with wavelength. The reflectivity of 4% for coherent light is mostly caused by Fresnel reflection at the interface.

(実施例6)
屈折率1.5の樹脂からなる厚さ3μmの平板中に、半径10nmの球形の銀の粒子を半径100nmのクラスターを形成しクラスター内の粒子濃度が50体積%となるようにモンテ・カルロ法を用いてランダムに分布させ、平板内の粒子濃度が1体積%となるようにクラスターを平板内に複数分布させたモデルを作成した。可干渉性の光と非可干渉性の光が等分で混合した光が平板に垂直に入射した場合の、反射率と透過率を算出した。算出には、実施例5と同様に、FDTD法とともに、4光束のRTEを用いた。
(Example 6)
A Monte Carlo method in which a spherical silver particle having a radius of 10 nm is formed in a flat plate made of a resin having a refractive index of 1.5 and having a radius of 10 nm to form a cluster having a radius of 100 nm and the particle concentration in the cluster is 50% by volume A model was created in which a plurality of clusters were distributed in the flat plate so that the particle concentration in the flat plate was 1% by volume. The reflectance and transmissivity were calculated when light in which coherent light and non-coherent light were equally divided and entered perpendicularly to the flat plate. For the calculation, as in Example 5, RTE of four light beams was used together with the FDTD method.

波長400〜700nmの範囲における可干渉性の光の透過率、可干渉性の光の反射率、非可干渉性の光の透過率、非可干渉性の光の反射率の波長による変化を計算し、結果を図8に示した。図8において、可干渉性の光の透過率は「x」印で、可干渉性の光の反射率は点線「・・・」で、非可干渉性の光の透過率は一点鎖線「−・−・」で、非可干渉性の光の反射率は実線「___」で示した。
可干渉性の光も、非可干渉性の光も、透過率も反射率も、波長による変化は少ないが、可干渉性の光の透過率が高く、次に非可干渉性の光の反射率が高く、非可干渉性の光の透過率と、可干渉性の光の反射率が低くなった。実施例5における100nmの銀の粒子がクラスターを形成せずに分散した平板とは、電磁波の伝播挙動が全く異なる結果となった。実際の平板においても、顔料がクラスターを形成した場合と均一に分散した場合とでは光の伝播挙動が全く異なることがわかった。
Calculates the coherent light transmittance, coherent light reflectance, incoherent light transmittance, and non-coherent light reflectance change with wavelength in the wavelength range of 400 to 700 nm. The results are shown in FIG. In FIG. 8, the transmittance of coherent light is indicated by “x”, the reflectance of coherent light is indicated by a dotted line “..., And the transmittance of non-coherent light is indicated by a dashed line“ − ”. "-" And the reflectivity of incoherent light is indicated by a solid line "___".
Coherent light, non-coherent light, transmittance and reflectance change little with wavelength, but coherent light transmittance is high, and then incoherent light is reflected. The rate of transmission of incoherent light and the reflectivity of coherent light were low. The propagation behavior of electromagnetic waves was completely different from the flat plate in which silver particles of 100 nm in Example 5 were dispersed without forming clusters. Even in an actual flat plate, it has been found that the light propagation behavior is completely different between the case where the pigment forms a cluster and the case where the pigment is uniformly dispersed.

(実施例7)
銀の粒子が、半径10nm長さ30nmの円柱形である以外は、実施例6と同様のモデルを作成した。実施例6と同様の計算を行い、結果を図9に示した。図9の線は実施例6の図8と同じものを示している。
実施例6と類似した結果が得られたが、非可干渉光の反射率が、波長が長くなるに従って上昇した。
(Example 7)
A model similar to that in Example 6 was created except that the silver particles had a cylindrical shape with a radius of 10 nm and a length of 30 nm. The same calculation as in Example 6 was performed, and the results are shown in FIG. The line in FIG. 9 shows the same thing as FIG.
Although the result similar to Example 6 was obtained, the reflectance of non-coherent light increased as the wavelength increased.

(実施例8)
実施例5と同様に、屈折率1.5の樹脂からなる厚さ3μmの平板に、半径100nmの球形の銀の粒子を、銀の粒子の濃度が1体積%となるように、モンテ・カルロ法によりランダムに分散させたモデルを作成した。実施例5と同様に、可干渉性の光と非可干渉性の光が等分で混合した光を用いたが、実施例5とは異なり、平板の表面に対する垂線に対して30.556度の角度で光が伝播した場合の、反射率と透過率を算出した。一つの光束を±20度の範囲として30.556度と70.124度の二つの光束について計算した。算出には、FDTD法とともに、可干渉性の光および非可干渉性の光について、二つの光束それぞれの一方向およびその逆方向に伝播する電磁波(光)を取り扱う6光束のRTEを用いた。
(Example 8)
Similarly to Example 5, on a 3 μm thick flat plate made of a resin with a refractive index of 1.5, spherical silver particles with a radius of 100 nm were placed on a Monte Carlo so that the concentration of silver particles was 1% by volume. A randomly distributed model was created by the method. Similar to Example 5, coherent light and non-coherent light were equally mixed, but unlike Example 5, it was 30.556 degrees with respect to the normal to the surface of the flat plate. The reflectance and transmittance were calculated when light propagated at an angle of. The calculation was performed for two light fluxes of 30.556 degrees and 70.124 degrees with one light flux in a range of ± 20 degrees. For the calculation, an RTE of 6 light fluxes handling electromagnetic waves (light) propagating in one direction and the opposite direction of each of the two light fluxes for coherent light and incoherent light was used together with the FDTD method.

媒体内を伝播した光は光出射面にその法線に対して70.124度の角度で入射し全反射してしまうので、30.556度のchannel 1についてだけ計算結果を図10に示した。
透過率は低く、殆どの光は反射または吸収されてしまうことがわかった。反射率の波長依存性は小さかった。
Since the light propagating through the medium is incident on the light emitting surface at an angle of 70.124 degrees with respect to the normal line and totally reflected, the calculation result is shown in FIG. 10 only for channel 1 of 30.556 degrees. .
It was found that the transmittance was low and most of the light was reflected or absorbed. The wavelength dependence of the reflectance was small.

(実施例9)
平板のモデルは実施例6と同様とし、屈折率1.5の樹脂からなる厚さ3μmの平板中に、半径10nmの銀の球形粒子を半径100nmのクラスターを形成するようにモンテ・カルロ法を用いてランダムに分布させたモデルとした。光の伝播channelについては、実施例8と同様とし、反射率と透過率を算出した。算出には、実施例8と同様に、FDTD法とともに、6光束のRTEを用いた。
Example 9
The flat plate model is the same as in Example 6, and the Monte Carlo method is used so that a silver spherical particle with a radius of 10 nm is formed into a cluster with a radius of 100 nm in a 3 μm thick flat plate made of a resin with a refractive index of 1.5. A randomly distributed model was used. The light propagation channel was the same as in Example 8, and the reflectance and transmittance were calculated. For the calculation, RTE of 6 luminous fluxes was used together with the FDTD method as in the case of Example 8.

媒体内を伝播した光は光出射面にその法線に対して70.124度の角度で入射し全反射してしまうので、30.556度のchannel 1についてだけ計算結果を図11に示した。
透過率は低く、殆どの光は反射または吸収されてしまうことがわかった。反射率の波長依存性は小さく、100nmの銀の粒子が均一に分散した場合より低かった。
Since the light propagating through the medium is incident on the light emitting surface at an angle of 70.124 degrees with respect to the normal line and totally reflected, the calculation result is shown in FIG. 11 only for channel 1 of 30.556 degrees. .
It was found that the transmittance was low and most of the light was reflected or absorbed. The wavelength dependence of the reflectivity was small, and was lower than when 100 nm silver particles were uniformly dispersed.

(実施例10)
平板のモデルは実施例7と同様とし、半径10nm長さ30nmの円柱形である以外は、実施例6と同様のモデルを作成した。光の伝播channelについては、実施例8と同様とし、反射率と透過率を算出した。算出には、実施例8と同様に、FDTD法とともに、6光束のRTEを用いた。
(Example 10)
The flat plate model was the same as in Example 7, and a model similar to that in Example 6 was created except that the plate was a cylinder with a radius of 10 nm and a length of 30 nm. The light propagation channel was the same as in Example 8, and the reflectance and transmittance were calculated. For the calculation, RTE of 6 luminous fluxes was used together with the FDTD method as in the case of Example 8.

平板の表面に対する垂線に対して70.124度の角度で入射した光は全反射してしまうので、30.556度のchannel 1についてだけ、計算結果を図12に示した。
透過率は低く、殆どの光は反射または吸収されてしまうことがわかった。反射率の波長依存性は小さく、100nmの銀の粒子が均一に分散した場合より低く、銀の粒子が球形の場合と大きな違いは無かった。
Since light incident at an angle of 70.124 degrees with respect to the normal to the surface of the flat plate is totally reflected, the calculation result is shown in FIG. 12 only for channel 1 of 30.556 degrees.
It was found that the transmittance was low and most of the light was reflected or absorbed. The wavelength dependence of the reflectance is small, lower than when 100 nm silver particles are uniformly dispersed, and is not significantly different from the case where silver particles are spherical.

Claims (5)

複数の粒子を含む媒体からなる集合体に電磁波が入射した場合の電磁波の挙動を、計算機を用いて算出する電磁波伝播シミュレーション方法であって、粒子がランダムまたはある規則にしたがって分布した集合体に電磁波が入射した場合の電磁波の挙動を、FDTD法とラディエイティブ・トランスファー・イクエイションとを用いて計算することを特徴とする電磁波伝播シミュレーション方法。   An electromagnetic wave propagation simulation method for calculating the behavior of an electromagnetic wave when an electromagnetic wave is incident on an aggregate composed of a medium including a plurality of particles, using a computer, and the electromagnetic wave is generated in an aggregate in which particles are randomly distributed according to a certain rule. An electromagnetic wave propagation simulation method characterized in that the behavior of an electromagnetic wave when an incident light enters is calculated using an FDTD method and a radial transfer acquisition. 前記ラディエイティブ・トランスファー・イクエイションが4光束以上のラディエイティブ・トランスファー・イクエイションである請求項1記載の電磁波伝播シミュレーション方法。   The electromagnetic wave propagation simulation method according to claim 1, wherein the radial transfer equation is a radial transfer equation with four or more light beams. 計算対象の空間が、一定の厚さを有し、無限の広さの平板である請求項1または2に記載の電磁波伝播シミュレーション方法。   The electromagnetic wave propagation simulation method according to claim 1, wherein the space to be calculated is a flat plate having a constant thickness and an infinite width. 入射波が可干渉性の低い電磁波である請求項1〜3のいずれかに記載の電磁波伝播シミュレーション方法。   The electromagnetic wave propagation simulation method according to claim 1, wherein the incident wave is an electromagnetic wave having low coherence. コンピュータによって読み取り可能な記録媒体であって、複数の粒子を含む媒体からなる集合体に電磁波が入射した場合の電磁波の挙動を、計算機を用いて算出する電磁波伝播シミュレーション方法であって、粒子がランダムまたはある規則にしたがって分布した集合体の散乱特性をFDTD法で求め、この集合体が多数存在する空間の電磁波伝播特性を前記集合体の散乱特性を用いてラディエイティブ・トランスファー・イクエイションにより計算することを特徴とする電磁波伝播シミュレーションを実行するためのプログラムを格納した記録媒体。   A computer-readable recording medium, an electromagnetic wave propagation simulation method that uses a computer to calculate the behavior of an electromagnetic wave when the electromagnetic wave is incident on an aggregate composed of a medium containing a plurality of particles. Alternatively, the scattering characteristics of the aggregates distributed according to a certain rule are obtained by the FDTD method, and the electromagnetic wave propagation characteristics in a space where a large number of aggregates exist are calculated by the radial transfer acquisition using the scattering characteristics of the aggregates. The recording medium which stored the program for performing the electromagnetic wave propagation simulation characterized by the above-mentioned.
JP2009168721A 2009-07-17 2009-07-17 Method for simulating electromagnetic wave propagation Pending JP2011022889A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009168721A JP2011022889A (en) 2009-07-17 2009-07-17 Method for simulating electromagnetic wave propagation
TW099123570A TW201118625A (en) 2009-07-17 2010-07-16 Electromagnetic wave propagation simulation method
KR1020100068808A KR20110007969A (en) 2009-07-17 2010-07-16 Simulation of electromagnetic wave propagation
CN2010102334066A CN101957875A (en) 2009-07-17 2010-07-19 The electromagnetic wave propagation analogy method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009168721A JP2011022889A (en) 2009-07-17 2009-07-17 Method for simulating electromagnetic wave propagation

Publications (1)

Publication Number Publication Date
JP2011022889A true JP2011022889A (en) 2011-02-03

Family

ID=43485203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009168721A Pending JP2011022889A (en) 2009-07-17 2009-07-17 Method for simulating electromagnetic wave propagation

Country Status (4)

Country Link
JP (1) JP2011022889A (en)
KR (1) KR20110007969A (en)
CN (1) CN101957875A (en)
TW (1) TW201118625A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111783339A (en) * 2020-06-30 2020-10-16 西安理工大学 PCE-FDTD method for propagating electromagnetic wave in random dispersion medium

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102332055B (en) * 2011-09-26 2014-01-29 南京航空航天大学 Simulative calculation method for extremely-low-frequency electromagnetic waves
CN103514143B (en) * 2013-09-22 2016-06-08 西安交通大学 A kind of coarse mesh rapid time domain finite difference method
KR102489948B1 (en) * 2016-02-18 2023-01-19 삼성전자주식회사 Electronic device and manufacturing method thereof
CN109344475B (en) * 2018-09-19 2022-11-29 哈尔滨理工大学 FDTD-based carbon fiber composite material radiation characteristic numerical simulation method
CN110361707B (en) * 2019-08-09 2023-03-14 成都玖锦科技有限公司 Dynamic simulation method for motion state of radiation source

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013054482; Jon W. Wallace: 'MODELING ELECTROMAGNETIC WAVE PROPAGATION IN ELECTRICALLY LARGE STRUCTURES' インターネット , 200204 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111783339A (en) * 2020-06-30 2020-10-16 西安理工大学 PCE-FDTD method for propagating electromagnetic wave in random dispersion medium
CN111783339B (en) * 2020-06-30 2024-04-16 西安理工大学 PCE-FDTD method for electromagnetic wave propagation in random dispersion medium

Also Published As

Publication number Publication date
TW201118625A (en) 2011-06-01
KR20110007969A (en) 2011-01-25
CN101957875A (en) 2011-01-26

Similar Documents

Publication Publication Date Title
Wang et al. Propagation of polarized light in birefringent turbid media: a Monte Carlo study
Guzzi Scattering Theory from Homogeneous and Coated Spheres
Mishchenko et al. Electromagnetic scattering by a morphologically complex object: fundamental concepts and common misconceptions
Egel et al. SMUTHI: A python package for the simulation of light scattering by multiple particles near or between planar interfaces
JP2011022889A (en) Method for simulating electromagnetic wave propagation
Brunel et al. Determination of the Size of Irregular Particles Using Interferometric Out‐of‐Focus Imaging
Bodenschatz et al. Quantifying phase function influence in subdiffusively backscattered light
Liu et al. Modeling the scattering properties of mineral aerosols using concave fractal polyhedra
Mackowski et al. Direct simulation of extinction in a slab of spherical particles
Gouesbet Latest achievements in generalized Lorenz‐Mie theories: A commented reference database
Skorupski et al. Impact of morphological parameters onto simulated light scattering patterns
Berisha et al. Bim-sim: Interactive simulation of broadband imaging using mie theory
Vaillon et al. Polarized radiative transfer in a particle-laden semi-transparent medium via a vector Monte Carlo method
Stegmann et al. Comparison of measured and computed phase functions of individual tropospheric ice crystals
Moskalensky et al. Additivity of light-scattering patterns of aggregated biological particles
Loiko et al. Multiple scattering of light in ordered particulate media
Xia et al. A wave optics based fiber scattering model
Bunkin et al. Cluster structure of dissolved gas nanobubbles in ionic aqueous solutions
Guo et al. Beyond mie theory: systematic computation of bulk scattering parameters based on microphysical wave optics
Skorupski Using the DDA (discrete dipole approximation) method in determining the extinction cross section of black carbon
Shen et al. Stability in Debye series calculation for light scattering by absorbing particles and bubbles
Ramírez-Cabrera et al. The first-order scattering approximation: a closed-form extension to Beer’s law, accurate for weakly scattering media
Hedley Modelling the optical properties of suspended particulate matter of coral reef environments using the finite difference time domain (FDTD) method
Fu et al. Simulation of realistic speckle fields by using surface integral equation and multi-level fast multipole method
Starosta et al. Far-field superposition method for three-dimensional computation of light scattering from multiple cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140318