JP2011021111A - Hydraulic fluid composition for shock absorber - Google Patents

Hydraulic fluid composition for shock absorber Download PDF

Info

Publication number
JP2011021111A
JP2011021111A JP2009167632A JP2009167632A JP2011021111A JP 2011021111 A JP2011021111 A JP 2011021111A JP 2009167632 A JP2009167632 A JP 2009167632A JP 2009167632 A JP2009167632 A JP 2009167632A JP 2011021111 A JP2011021111 A JP 2011021111A
Authority
JP
Japan
Prior art keywords
hydraulic fluid
composition
viscosity
base oil
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009167632A
Other languages
Japanese (ja)
Other versions
JP5295892B2 (en
Inventor
Hiroshi Tochigi
弘 栃木
Kenji Takahashi
研志 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Lubricants Co Ltd
Original Assignee
Cosmo Oil Lubricants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Lubricants Co Ltd filed Critical Cosmo Oil Lubricants Co Ltd
Priority to JP2009167632A priority Critical patent/JP5295892B2/en
Publication of JP2011021111A publication Critical patent/JP2011021111A/en
Application granted granted Critical
Publication of JP5295892B2 publication Critical patent/JP5295892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fluid-Damping Devices (AREA)
  • Lubricants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydraulic fluid composition having good low-temperature characteristics and low piping resistance, and a low rate of change in damping force with temperature change, moreover a low swelling rate (rate of volume change) of sealing materials. <P>SOLUTION: The hydraulic fluid composition comprises a base oil compounded of a polymethacrylate-based viscosity index improver whose weight-average molecular weight is 200,000-600,000 and an amine salt of an acidic phosphate ester, wherein the compounding ratio of the polymethacrylate-based viscosity index improver is 0.1-5.0 mass% to the total amount of the composition, and the compounding ratio of the amine salt of an acidic phosphate ester is 2.0-5.0 mass% to the total amount of the composition, and the other properties of the composition include a kinematic viscosity of 4-8 mm<SP>2</SP>/s at 40°C, a Brookfield viscosity of ≤1,000 mPa s at -30°C, an aniline point of 85-110°C, and a viscosity index of ≥150. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、緩衝器用油圧作動油組成物に関し、特に自動車緩衝器用に適する油圧作動油に関する。 The present invention relates to a hydraulic fluid composition for shock absorbers, and more particularly to a hydraulic fluid suitable for automobile shock absorbers.

自動車のサスペンション構成要素の中で緩衝器は、操縦性、安定性、乗り心地に重要な役割をする機能部品である。緩衝器の構造としては二重管型やガス入り型など各種の緩衝器が知られているが、基本的にはピストンとシリンダからなり、内部に緩衝器用油圧作動油が封入されており、ピストンとシリンダ、ピストンロッドとシリンダの摺動面には内部の油圧作動油が漏出しないように、また摺動部分を保護するためにニトリルゴムなどのシール材でシールされている。そして、自動車の外から加わった衝撃は、内部に封入された油圧作動油の流動抵抗を利用した減衰力により吸収される。このような機能を有する緩衝器用油圧作動油には、減衰力特性、低温流動性、耐摩耗性、低摩擦特性、シール適合性等の各種性能が要求され、これらの要求を満たすために種々の緩衝器用油圧作動油が提案されている(例えば、特許文献1及び特許文献2参照)。 Among automotive suspension components, shock absorbers are functional components that play an important role in maneuverability, stability and ride comfort. Various shock absorbers such as double tube type and gas-filled type are known as the structure of the shock absorber. Basically, it consists of a piston and a cylinder, and the hydraulic fluid for the shock absorber is sealed inside. In addition, the sliding surfaces of the cylinder, piston rod, and cylinder are sealed with a sealing material such as nitrile rubber so that the internal hydraulic fluid does not leak and the sliding portion is protected. The impact applied from the outside of the automobile is absorbed by the damping force using the flow resistance of the hydraulic fluid sealed inside. Various functions such as damping force characteristics, low temperature fluidity, wear resistance, low friction characteristics, seal compatibility, etc. are required for hydraulic fluids for shock absorbers having such functions. Hydraulic fluids for shock absorbers have been proposed (see, for example, Patent Document 1 and Patent Document 2).

ところで、近年、右前輪と左後輪、及び左前輪と右後輪に配置された各緩衝器ユニット同士が、その中間に配された緩衝器ユニットを介して、従来の配管よりも約2倍の長さを有する配管で接続された緩衝器が開発された。この緩衝器ではローリング(横揺れ)とピッチング(縦揺れ)の速度を同時に抑える効果がある為、これまでの緩衝器よりも良い乗り心地や操縦安定性を得ることが出来る。しかし、この緩衝器は各緩衝器ユニット間を結ぶ配管が従来の配管より長いため、従来の緩衝器用油圧作動油をそのまま用いると配管が長い分だけ配管抵抗が増加し、その結果、目標とする減衰作用が得られないことが懸念される。また、従来型の緩衝器であっても低温下では油圧作動油の粘度増加により減衰作用が悪化する傾向にあるが、上記の新型の緩衝器においては、これに長い配管による配管抵抗の増加も影響し、低温下での油圧作動油の粘度増加は、より一層減衰作用へ影響することが懸念される。 By the way, in recent years, each shock absorber unit disposed on the right front wheel and the left rear wheel and between the left front wheel and the right rear wheel is about twice as large as the conventional piping through a shock absorber unit arranged between them. A shock absorber connected by a pipe having a length of 10 mm was developed. Since this shock absorber has the effect of simultaneously suppressing the rolling (pitch) and pitching (pitch) speeds, it is possible to obtain better ride comfort and steering stability than conventional shock absorbers. However, since this shock absorber has a longer pipe connecting each shock absorber unit than the conventional pipe, if the conventional hydraulic fluid for shock absorber is used as it is, the pipe resistance increases by the length of the pipe, and as a result the target There is a concern that the damping action cannot be obtained. In addition, even with conventional shock absorbers, the damping action tends to deteriorate due to an increase in the viscosity of the hydraulic fluid at low temperatures. However, in the above-mentioned new shock absorbers, pipe resistance due to long pipes also increases. There is a concern that the increase in the viscosity of the hydraulic fluid at low temperatures may further affect the damping action.

このような配管抵抗や低温下での減衰力への影響を低減するためには、緩衝器用油圧作動油の粘度を下げることが考えられるが、緩衝器用油圧作動油の粘度を下げると高温での粘度が低くなり過ぎ、これによっても十分な減衰力が得づらくなる。
したがって、各緩衝器が長い配管を接続された新型の緩衝器であっても、配管抵抗が十分に低く、良好な減衰力が得られ、温度による減衰力変化率も少ない緩衝器用油圧作動油が求められていた。
また、一般に粘度が低くなるとシール材のニトリルゴムの膨潤率が高くなる傾向にあり、あまり膨潤率が高すぎるとシール性が低下することも懸念されるため、この影響も抑制された緩衝器用油圧作動油が求められていた。
In order to reduce the impact on piping resistance and damping force at low temperatures, it is conceivable to reduce the viscosity of the hydraulic fluid for shock absorbers. The viscosity becomes too low, and this makes it difficult to obtain a sufficient damping force.
Therefore, even if each shock absorber is a new shock absorber connected to a long pipe, the hydraulic resistance fluid for the shock absorber has a sufficiently low pipe resistance, a good damping force, and a low rate of change in damping force due to temperature. It was sought after.
In general, when the viscosity is low, the swelling rate of the nitrile rubber of the sealing material tends to be high, and when the swelling rate is too high, there is a concern that the sealing performance may be lowered. There was a need for hydraulic oil.

特開平7−258675公報JP-A-7-258675 特開平7−271886公報JP-A-7-271886

本発明は、上記のような状況を鑑み、低温特性が良好で配管抵抗が低く、かつ温度変化による減衰力の変化率がより少なく、さらにシール材の膨潤率(体積変化率)が小さい緩衝器用油圧作動油を提供することを目的とするものである。 In view of the above situation, the present invention is for a shock absorber having good low-temperature characteristics, low pipe resistance, a lower rate of change in damping force due to temperature change, and a smaller swelling rate (volume change rate) of the sealing material. The object is to provide a hydraulic fluid.

本発明者は、上記問題点を解決するために鋭意研究を重ねた結果、基油に特定のポリメタクリレート系粘度指数向上剤、酸性リン酸エステルのアミン塩を特定量配合し、組成物の性状を、40℃の動粘度が4〜8mm/s、−30℃におけるブルックフィールド粘度が1000mPa・s以下、アニリン点が85〜110℃、粘度指数が150以上にすることにより、低温特性が良好で、低摩擦性に優れ、配管抵抗が低く、温度変化による減衰力の変化率が小さいのみならず、シール適合性にも優れた緩衝器用油圧作動油組成物が得られることを見出した。 As a result of intensive research in order to solve the above problems, the present inventor has formulated a specific amount of a specific polymethacrylate viscosity index improver and an amine salt of an acidic phosphate ester in the base oil, and the properties of the composition The low temperature characteristics are good by making the kinematic viscosity at 40 ° C. 4-8 mm 2 / s, Brookfield viscosity at −30 ° C. 1000 mPa · s or less, aniline point 85-110 ° C., and viscosity index 150 or more. Thus, it has been found that a hydraulic fluid composition for a shock absorber is obtained that has excellent low friction properties, low pipe resistance, low rate of change in damping force due to temperature change, and excellent seal compatibility.

すなわち、本発明は、基油に、重量平均分子量が200,000〜600,000であるポリメタクリレート系の粘度指数向上剤及び酸性リン酸エステルのアミン塩を配合してなる油圧作動油組成物であって、該ポリメタクリレート系の粘度指数向上剤の配合割合が該組成物の全量に対して0.1〜5.0質量%であり、該酸性リン酸エステルのアミン塩の配合割合が該組成物の全量に対して2.0〜5.0質量%であり、該組成物の性状として、40℃の動粘度が4〜8mm/s、−30℃におけるブルックフィールド粘度が1000mPa・s以下、アニリン点が85〜110℃、粘度指数が150以上であることを特徴とする緩衝器用油圧作動油組成物を提供するものである。 That is, the present invention is a hydraulic fluid composition comprising a base oil and a polymethacrylate viscosity index improver having a weight average molecular weight of 200,000 to 600,000 and an amine salt of an acidic phosphate ester. The blending ratio of the polymethacrylate-based viscosity index improver is 0.1 to 5.0% by mass with respect to the total amount of the composition, and the blending ratio of the amine salt of the acidic phosphate ester is the composition. It is 2.0-5.0 mass% with respect to the whole quantity of a thing, As a property of this composition, the kinetic viscosity of 40 degreeC is 4-8 mm < 2 > / s, and the Brookfield viscosity in -30 degreeC is 1000 mPa * s or less. The present invention provides a hydraulic fluid composition for a shock absorber having an aniline point of 85 to 110 ° C. and a viscosity index of 150 or more.

また、本発明は、上記緩衝器用油圧作動油組成物において、前記基油が、(A)40℃の動粘度が10〜15mm/s、アニリン点が100〜115℃、かつ、流動点が−40℃以下である炭化水素系基油と、(B)40℃の動粘度が2.0〜5.0mm/s、アニリン点が60〜95℃、流動点が−20〜−50℃である炭化水素系基油を、(A)と(B)の合計質量に対して(A)を25〜55質量%の割合で含有する基油である緩衝器用油圧作動油組成物を提供するものである。 In the hydraulic fluid composition for a shock absorber according to the present invention, the base oil has (A) a kinematic viscosity at 40 ° C. of 10 to 15 mm 2 / s, an aniline point of 100 to 115 ° C., and a pour point. A hydrocarbon base oil having a temperature of −40 ° C. or lower, and (B) a kinematic viscosity at 40 ° C. of 2.0 to 5.0 mm 2 / s, an aniline point of 60 to 95 ° C., and a pour point of −20 to −50 ° C. The hydraulic base oil composition for a shock absorber, which is a base oil containing the hydrocarbon base oil of (A) in a proportion of 25 to 55 mass% with respect to the total mass of (A) and (B), is provided. Is.

本発明の緩衝器用油圧作動油組成物は、低温特性が良好で、低摩擦性に優れ、配管抵抗が低く、温度変化による減衰力の変化率が小さく、さらにシール材の膨潤率(体積変化率)が小さく、シール材適合性にも優れている。 The hydraulic fluid composition for a shock absorber according to the present invention has good low-temperature characteristics, excellent low friction, low pipe resistance, small change rate of damping force due to temperature change, and swelling rate (volume change rate) of the sealing material. ) Is small and has excellent compatibility with sealing materials.

(1)緩衝器用油圧作動油組成物の性状
本発明の緩衝器用油圧作動油組成物は以下の性状を有する。
(i)40℃の動粘度は4〜8mm/sであり、 好ましくは5〜7mm/sである。
動粘度は低いほど配管抵抗が低く、低温下でも良好な減衰力を得ることができるが、4mm/s未満では高温下での減衰力が低下する傾向にあり、またピストン−シリンダ間の摩耗やシールからの油漏れが懸念される。一方、8mm/sを超えると、配管抵抗が高くなり全般に減衰力が低下する傾向にあり、特に低温下で良好な減衰力が得づらくなる。
(1) Properties of shock absorber hydraulic fluid composition The shock absorber hydraulic fluid composition of the present invention has the following properties.
(I) a kinematic viscosity of 40 ° C. is 4 to 8 mm 2 / s, preferably from 5 to 7 mm 2 / s.
Kinematic viscosity low enough piping resistance is low, but can also at a low temperature to obtain a good damping force is less than 4 mm 2 / s tend to damping force at high temperatures is lowered, the piston - wear between cylinder There is concern about oil leakage from the seal. On the other hand, if it exceeds 8 mm 2 / s, the pipe resistance increases and the damping force tends to decrease in general, and it becomes difficult to obtain a good damping force particularly at low temperatures.

(ii)−30℃におけるブルックフィールド粘度は、1000mPa・s以下であり、好ましくは300mPa・s以下である。1000mPa・sを超えると、低温下での配管抵抗が高くなり全般に減衰力が低下する傾向にある。一方、下限値に限定はないが、100mPa・s程度が現実的な下限値である。
(iii)アニリン点は85〜110℃であり、好ましくは90〜105℃であり、より好ましくは90〜100℃である。アニリン点が110℃を超えるとシール材のゴムの硬化が進み、シール性の低下が懸念される。一方、アニリン点が85℃未満では、シール材のゴムが膨潤し過ぎ、やはりシール性の低下が懸念される。あるいは、より膨潤しづらい高価なシール材への変更が必要となりコストアップとなってしまう場合がある。
(Ii) Brookfield viscosity at −30 ° C. is 1000 mPa · s or less, preferably 300 mPa · s or less. When it exceeds 1000 mPa · s, the piping resistance at low temperatures increases and the damping force tends to decrease in general. On the other hand, there is no limitation on the lower limit value, but about 100 mPa · s is a realistic lower limit value.
(Iii) An aniline point is 85-110 degreeC, Preferably it is 90-105 degreeC, More preferably, it is 90-100 degreeC. When the aniline point exceeds 110 ° C., the rubber of the sealing material is hardened, and there is a concern that the sealing performance is lowered. On the other hand, if the aniline point is less than 85 ° C., the rubber of the sealing material swells too much, and there is a concern that the sealing performance is lowered. Alternatively, it may be necessary to change to an expensive sealing material that is more difficult to swell, resulting in an increase in cost.

(iv)粘度指数は150以上であり、好ましくは160以上である。粘度指数が150未満では、温度による減衰力の変化率が大きくなってしまう。なお、粘度指数の上限値に制限はないが、粘度指数を高くするためには粘度指数向上剤であるポリメタクリレートの配合量を増量する必要があり、その場合にはせん断安定性が低下し長期使用による粘度低下がすすみ、本発明の組成物で必要な所定の動粘度を維持しづらい場合もあるため、実質的な上限値は230程度であり、よりせん断安定性を重視するのであれば上限値は200程度とすることがより好ましい。 (Iv) The viscosity index is 150 or more, preferably 160 or more. If the viscosity index is less than 150, the rate of change of the damping force due to temperature increases. The upper limit of the viscosity index is not limited, but in order to increase the viscosity index, it is necessary to increase the blending amount of polymethacrylate which is a viscosity index improver. Since the viscosity decreases due to use, it may be difficult to maintain the predetermined kinematic viscosity necessary for the composition of the present invention, so the practical upper limit is about 230, and if the shear stability is more important, the upper limit The value is more preferably about 200.

(2)基油
本発明の緩衝器用油圧作動油組成物に用いる基油としては特に制限はなく、鉱油系基油、合成系基油、及びこれらの混合基油などから、本発明の緩衝器用油圧作動油組成物の性状を満たす基油を適宜選択すればよいが、本発明の組成物の性状を得やすいという点では、
(A)40℃の動粘度が10〜15mm/s、好ましくは10.5〜13.5mm/s、アニリン点が100〜115℃、好ましくは102〜112℃、かつ、流動点が−40℃以下、好ましくは−50℃以下である炭化水素系基油と、
(B)40℃の動粘度が2.0〜5.0mm/s、アニリン点が60〜95℃、好ましくは70〜90℃、かつ、流動点が−20〜−50℃、好ましくは−20〜−45℃である炭化水素系基油を、
(A)の基油と(B)の基油の合計量に対する(A)の基油の含有割合が25〜55質量%、好ましくは30〜45質量%となるように混合したものを用いることが好ましい。
なお、(A)成分の炭化水素系基油の流動点の下限値は、上記物性を満たすものであれば、低ければ低いほど好ましいが、上記の40℃動粘度の範囲内で得られるものは、−70℃程度が実質的な下限値である。
(2) Base oil The base oil used in the hydraulic fluid composition for a shock absorber according to the present invention is not particularly limited, and it can be used for the shock absorber according to the present invention from mineral base oils, synthetic base oils, and mixed base oils thereof. A base oil that satisfies the properties of the hydraulic fluid composition may be selected as appropriate, but in terms of easily obtaining the properties of the composition of the present invention,
(A) a kinematic viscosity of 40 ° C. is 10-15 mm 2 / s, preferably 10.5~13.5mm 2 / s, aniline point 100 to 115 ° C., preferably 102 - 112 ° C., and pour point - A hydrocarbon base oil having a temperature of 40 ° C. or lower, preferably −50 ° C. or lower;
(B) Kinematic viscosity at 40 ° C. is 2.0 to 5.0 mm 2 / s, aniline point is 60 to 95 ° C., preferably 70 to 90 ° C., and pour point is −20 to −50 ° C., preferably − A hydrocarbon base oil having a temperature of 20 to −45 ° C.
Use what mixed so that the content rate of the base oil of (A) with respect to the total amount of the base oil of (A) and the base oil of (B) may be 25-55 mass%, Preferably it is 30-45 mass%. Is preferred.
In addition, the lower limit value of the pour point of the hydrocarbon base oil of component (A) is preferably as low as possible if it satisfies the above physical properties, but what is obtained within the above 40 ° C. kinematic viscosity range is The lower limit is about −70 ° C.

上記(A)の基油としては、例えば、減圧軽油や溶剤脱ロウによるスラックワックスやフィッシャー・トロプシュ合成で得られたワックス等を原料とし、これらを水素化処理、水素化分解する方法、さらに水素化異性化脱ロウする方法等により得られる、水素化分解鉱油やGTL基油等が好ましいものとして挙げられる。
上記(B)の基油としては、例えば、原油を常圧蒸留して得られた沸点範囲が150〜200℃のガソリン留分から、その中に含まれる芳香族成分を取り除くことによって得られる鉱油が好ましいものとして挙げられる。
(A)の基油及び(B)の基油は、それぞれ、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
本発明の緩衝器用油圧作動油組成物における基油の含有量は、好ましくは90〜97質量%であり、より好ましくは92〜95質量%である。
As the base oil (A), for example, vacuum gas oil, slack wax by solvent dewaxing, wax obtained by Fischer-Tropsch synthesis, etc. are used as raw materials, and these are hydrotreated, hydrocracked, and hydrogen Hydrocracked mineral oil, GTL base oil, and the like obtained by a method of hydroisomerization and dewaxing are preferred.
Examples of the base oil (B) include mineral oil obtained by removing aromatic components contained in a gasoline fraction having a boiling range of 150 to 200 ° C. obtained by atmospheric distillation of crude oil. It is mentioned as preferable.
Each of the base oil (A) and the base oil (B) may be used alone or in combination of two or more.
The content of the base oil in the hydraulic fluid composition for a shock absorber of the present invention is preferably 90 to 97% by mass, more preferably 92 to 95% by mass.

(3)粘度指数向上剤
本発明の組成物は、重量平均分子量が200,000〜600,000であるポリメタクリレート系粘度指数向上剤を組成物の全量に対して0.1〜5.0質量%含有する。なお、本発明における重量平均分子量(Mw)はゲルパーミエーションクロマトグラフィー(GPC)で測定された分子量算定用標準ポリスチレン換算である。
ポリメタクリレート系粘度指数向上剤の重量平均分子量が200,000未満であると所定の粘度指数を得づらい。一方、ポリメタクリレート系粘度指数向上剤の重量平均分子量が600,000を超えると十分なせん断安定性が得られず、長期使用で二次せん断を受けて低粘度化がすすみ、本発明の組成物で必要な所定の動粘度を維持できなくなることが懸念される。
(3) Viscosity index improver The composition of the present invention is a polymethacrylate viscosity index improver having a weight average molecular weight of 200,000 to 600,000, and 0.1 to 5.0 mass relative to the total amount of the composition. %contains. In addition, the weight average molecular weight (Mw) in this invention is the standard polystyrene conversion for molecular weight calculation measured by the gel permeation chromatography (GPC).
When the weight average molecular weight of the polymethacrylate viscosity index improver is less than 200,000, it is difficult to obtain a predetermined viscosity index. On the other hand, when the weight average molecular weight of the polymethacrylate viscosity index improver exceeds 600,000, sufficient shear stability cannot be obtained, and secondary viscosity is lowered after long-term use, and the viscosity of the composition is increased. Therefore, there is a concern that the required kinematic viscosity that is required cannot be maintained.

本発明で使用するポリメタクリレート系粘度指数向上剤の構造は下記一般式(1)で表されるメタクリル酸エステルの重合体を有する構造であり、モノマーがメタクリル酸エステルのみの重合体であっても、モノマーがメタクリル酸エステルとそれ以外のモノマーとの共重合体であっても、また、構造の一部にポリメタクリレート以外の高分子化合物を含有するものであってもよい。また、分子中にアミノ基やスルホン酸基などの極性基を有する「分散型」であってもよいし、極性基を持たない「非分散型」であってもよいが、より好ましいポリメタクリレート系粘度指数向上剤は摩擦特性への影響が少ない「非分散型」である。   The structure of the polymethacrylate viscosity index improver used in the present invention is a structure having a polymer of a methacrylic acid ester represented by the following general formula (1), and even if the monomer is a polymer of only a methacrylic acid ester. The monomer may be a copolymer of a methacrylic acid ester and another monomer, or may contain a polymer compound other than polymethacrylate in a part of the structure. Further, a “dispersion type” having a polar group such as an amino group or a sulfonic acid group in the molecule or a “non-dispersion type” having no polar group may be used. Viscosity index improvers are “non-dispersed” with little impact on frictional properties.

Figure 2011021111
Figure 2011021111

(式(1)中、Rは水素原子又は炭素数1〜20のアルキル基であり、kは1以上の整数である。)
ポリメタクリレート系粘度指数向上剤の配合量は、組成物の全量に対して0.1質量%〜5質量%であり、好ましくは0.5〜3.0質量%である。配合量が0.1質量%未満では所定の粘度指数を得づらい。一方、5.0質量%を超えるとせん断安定性が低下し粘度低下を起こしやすく、本発明の組成物で必要な所定の動粘度を維持できなくなることが懸念される。
(In the formula (1), R 1 is a hydrogen atom or an alkyl group having a carbon number of 1 to 20, k is an integer of 1 or more.)
The compounding quantity of a polymethacrylate type viscosity index improver is 0.1 mass%-5 mass% with respect to the whole quantity of a composition, Preferably it is 0.5-3.0 mass%. When the blending amount is less than 0.1% by mass, it is difficult to obtain a predetermined viscosity index. On the other hand, if it exceeds 5.0% by mass, the shear stability is lowered and the viscosity is liable to be lowered, and there is a concern that the predetermined kinematic viscosity necessary for the composition of the present invention cannot be maintained.

(3)酸性リン酸エステルのアミン塩
本発明の組成物には、酸性リン酸エステルのアミン塩を組成物の全量に対して2.0〜5.0質量%含有する。
酸性リン酸エステルのアミン塩を構成する酸性リン酸エステルは、モノエステル、ジエステルのいずれであってもよく、そのアルコール残基としては、例えば、ブチル、オクチル、ラウリル、ステアリル、オレイル基などの炭素数4〜30のアルキル基、フェニル基などの炭素数6〜30のアリール基、メチルフェニル、オクチルフェニル基などの炭素数7〜30のアルキル置換アリール基などが挙げられる。
(3) Amine salt of acidic phosphate ester The composition of the present invention contains 2.0 to 5.0% by mass of an amine salt of acidic phosphate ester based on the total amount of the composition.
The acid phosphate ester constituting the amine salt of the acid phosphate ester may be either a monoester or a diester. Examples of the alcohol residue include carbon such as butyl, octyl, lauryl, stearyl, and oleyl groups. Examples thereof include alkyl groups having 4 to 30 carbon atoms, aryl groups having 6 to 30 carbon atoms such as phenyl groups, and alkyl-substituted aryl groups having 7 to 30 carbon atoms such as methylphenyl and octylphenyl groups.

酸性リン酸エステルのアミン塩の配合量は、組成物の全量に対して2.0〜5質量%であり、好ましくは3.0質量%〜4.0質量%である。配合量が2.0質量%未満ではピストン−シリンダ間やピストンロッド−シリンダ間の摩擦が大きくなり、スムーズな減衰力を得づらい。一方、5.0質量%を超えて配合しても特に問題はないが、配合量に見合った効果の向上を得られるのは5.0質量%程度までである。 The compounding quantity of the amine salt of acidic phosphoric acid ester is 2.0-5 mass% with respect to the whole quantity of a composition, Preferably it is 3.0 mass%-4.0 mass%. When the blending amount is less than 2.0% by mass, friction between the piston and the cylinder or between the piston rod and the cylinder becomes large, and it is difficult to obtain a smooth damping force. On the other hand, even if it exceeds 5.0 mass%, there is no particular problem, but it is only up to about 5.0 mass% that an effect corresponding to the blending amount can be obtained.

(4)その他の添加剤
本発明の緩衝器用油圧作動油組成物には、本発明の目的が損なわれない範囲で、必要に応じて各種公知の添加剤を配合することができる。例えば酸化防止剤、極圧剤、油性剤、清浄分散剤、さび止め剤、金属不活性化剤、流動点降下剤、泡消剤、抗乳化剤等が挙げられる。
酸化防止剤としては、2,6−ジ−tert−ブチル−p−クレゾール等のフェノール系酸化防止剤、アルキル化ジフェニルアミン、アルキル化フェニル−α−ナフチルアミン等のアミン系酸化防止剤、ホスホン酸エステル等のリン系酸化防止剤等が挙げられる。
(4) Other Additives Various known additives can be blended with the hydraulic fluid composition for a shock absorber of the present invention, if necessary, as long as the object of the present invention is not impaired. For example, antioxidants, extreme pressure agents, oily agents, detergent dispersants, rust inhibitors, metal deactivators, pour point depressants, foam depressants, demulsifiers and the like can be mentioned.
Antioxidants include phenol-based antioxidants such as 2,6-di-tert-butyl-p-cresol, amine-based antioxidants such as alkylated diphenylamine and alkylated phenyl-α-naphthylamine, phosphonic acid esters, etc. And phosphorus-based antioxidants.

極圧剤としては、ホスフェート、ホスファイト等のリン系極圧剤、硫化オレフィン等の硫黄系極圧剤、ZnDTP、ZnDTC等の有機金属系極圧剤が挙げられる。
油性剤としては、オレイン酸、ステアリン酸等の高級脂肪酸、オレイルアルコール等の高級アルコール、オレイルアミン等のアミン、ブチルステアレート等のエステルが挙げられる。
清浄分散剤としては、アルケニルコハク酸イミド、アルケニルコハク酸エステル等の無灰系清浄分散剤、アルカリ土類金属系清浄分散剤が挙げられる。
Examples of the extreme pressure agent include phosphorus extreme pressure agents such as phosphate and phosphite, sulfur extreme pressure agents such as olefin sulfide, and organometallic extreme pressure agents such as ZnDTP and ZnDTC.
Examples of the oily agent include higher fatty acids such as oleic acid and stearic acid, higher alcohols such as oleyl alcohol, amines such as oleylamine, and esters such as butyl stearate.
Examples of the cleaning dispersant include ashless cleaning dispersants such as alkenyl succinimides and alkenyl succinic esters, and alkaline earth metal cleaning dispersants.

さび止め剤としては、カルボン酸、金属セッケン、カルボン酸アミン塩、スルホン酸の金属塩、多価アルコールの部分エステル等が挙げられる。
金属不活性化剤としては、ベンゾトリアゾ−ルおよびその誘導体、アルキルコハク酸誘導体が挙げられる。
流動点降下剤としては、ポリアルキルメタクリレート、ポリブテン、ポリアルキルスチレン、ポリビニルアセテート、ポリアルキルアクリレート等が挙げられる。
消泡剤としては、シリコーン油やエステル系消泡剤等が挙げられる。
抗乳化剤としては、アニオン系界面活性剤、カチオン系界面活性剤、非イオン系界面活性剤等の抗乳化剤が挙げられる。
これら添加剤は、1種を単独使用してもよいし、2種以上を併用してもよい。
Examples of the rust inhibitor include carboxylic acid, metal soap, carboxylic acid amine salt, sulfonic acid metal salt, and partial ester of polyhydric alcohol.
Examples of metal deactivators include benzotriazole and derivatives thereof, and alkyl succinic acid derivatives.
Examples of the pour point depressant include polyalkyl methacrylate, polybutene, polyalkyl styrene, polyvinyl acetate, polyalkyl acrylate and the like.
Examples of antifoaming agents include silicone oil and ester-based antifoaming agents.
Examples of the demulsifier include demulsifiers such as an anionic surfactant, a cationic surfactant, and a nonionic surfactant.
These additives may be used alone or in combination of two or more.

次に、本発明を実施例及び比較例によりさらに具体的に説明するが、本発明はこれらの例によって何ら制限されるものではない。
表1に示す組成により実施例1、比較例1による緩衝器用油圧作動油組成物を調整した。これらの組成物に対し以下に示す(1)減衰力変化率測定試験、(2)摩擦力測定試験、(3)シール材適合試験を実施した。
EXAMPLES Next, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not restrict | limited at all by these examples.
The hydraulic fluid composition for a shock absorber according to Example 1 and Comparative Example 1 was prepared according to the composition shown in Table 1. These compositions were subjected to the following (1) damping force change rate measurement test, (2) frictional force measurement test, and (3) sealing material compatibility test.

Figure 2011021111
Figure 2011021111

*1 基油A1: 炭化水素系基油(水素化分解系鉱油)で以下の性状を有するもの。
動粘度@40℃:11.6mm/s、アニリン点:107℃、流動点:<−50℃
*2 基油A2: 炭化水素系基油で以下の性状を有する3種の鉱油の混合物。
(1)ニュートラル基油; 動粘度@40℃:9.4mm/s、アニリン点:96℃、流動点:−13℃
(2)ナフテン系基油; 動粘度@40℃:11.6mm/s、アニリン点:57℃、流動点:<−50℃
(3)ナフテン系基油; 動粘度@40℃:8.6mm/s、アニリン点:59℃、流動点:<−50℃
* 1 Base oil A1: Hydrocarbon base oil (hydrocracking mineral oil) having the following properties.
Kinematic viscosity @ 40 ° C: 11.6 mm 2 / s, aniline point: 107 ° C, pour point: <-50 ° C
* 2 Base oil A2: A mixture of three mineral oils that are hydrocarbon base oils and have the following properties.
(1) Neutral base oil; kinematic viscosity @ 40 ° C: 9.4 mm 2 / s, aniline point: 96 ° C, pour point: -13 ° C
(2) Naphthenic base oil; Kinematic viscosity @ 40 ° C .: 11.6 mm 2 / s, aniline point: 57 ° C., pour point: <−50 ° C.
(3) Naphthenic base oil; Kinematic viscosity @ 40 ° C: 8.6 mm 2 / s, aniline point: 59 ° C, pour point: <-50 ° C

*3 基油B1:炭化水素系基油(原油を常圧蒸留して得られた沸点範囲150〜200℃のガソリン留分から芳香族分を除去したもの)で以下の性状を有する2種の基油を同量ずつ混合した混合物。動粘度@40℃:3.1mm/s、アニリン点:85.9℃、流動点:−32.5℃
(1)動粘度@40℃:2.5mm/s、アニリン点:78℃、流動点:−45℃、芳香族分0.1質量%、
(2)動粘度@40℃:4.1mm/s、アニリン点:89℃、流動点:−35℃、芳香族分0.2質量%
* 3 Base oil B1: Hydrocarbon base oil (obtained by removing aromatics from a gasoline fraction having a boiling range of 150 to 200 ° C. obtained by atmospheric distillation of crude oil) and having the following properties: A mixture of equal amounts of oil. Kinematic viscosity @ 40 ° C: 3.1 mm 2 / s, aniline point: 85.9 ° C, pour point: -32.5 ° C
(1) Kinematic viscosity @ 40 ° C: 2.5 mm 2 / s, aniline point: 78 ° C, pour point: -45 ° C, aromatic content 0.1% by mass,
(2) Kinematic viscosity @ 40 ° C: 4.1 mm 2 / s, aniline point: 89 ° C, pour point: -35 ° C, aromatic content 0.2% by mass

*4 基油B2:炭化水素系基油(原油を常圧蒸留して得られた沸点範囲150〜200℃のガソリン留分から芳香族分を除去したもの)で以下の性状を有するもの。動粘度@40℃:4.1mm/s、アニリン点:89℃、流動点:−35℃
*5 ポリメタクリレートA: 非分散型、重量平均分子量:400,000
*6 ポリメタクリレートB: 分散型、重量平均分子量:150,000
*7 酸性リン酸エステルのアミン塩; オレイルアシッドフォスフェートのアミン塩
* 4 Base oil B2: Hydrocarbon base oil (obtained by removing aromatics from a gasoline fraction having a boiling range of 150 to 200 ° C. obtained by atmospheric distillation of crude oil) and having the following properties. Kinematic viscosity @ 40 ° C: 4.1 mm 2 / s, aniline point: 89 ° C, pour point: -35 ° C
* 5 Polymethacrylate A: non-dispersed, weight average molecular weight: 400,000
* 6 Polymethacrylate B: Dispersion type, weight average molecular weight: 150,000
* 7 Amine salt of acidic phosphate; Amine salt of oleyl acid phosphate

(1)減衰力変化率測定試験
実施例1及び比較例1に記載した緩衝器用油圧作動油組成物を用いて、台上実機試験を行い、減衰力の温度変化率を測定した。
減衰力変化率は実施例、比較例ともに20℃での測定値を基準にし、以下に示す計算式から算出した。実験は具体的には、試験油を封入した自動車用緩衝器を以下に示す実験条件にて振動させ、末端の緩衝器のピストンが伸びる際にかかる減衰力を測定した。減衰力変化率が低いほど温度変化による減衰力の変化が小さいことを示し、自動車の乗り心地、操縦安定性が維持できていることを意味する。
結果は表2示す。
(1) Damping force change rate measurement test Using the hydraulic fluid composition for shock absorbers described in Example 1 and Comparative Example 1, a bench-top actual machine test was performed to measure the temperature change rate of the damping force.
The rate of change in damping force was calculated from the following formula based on the measured value at 20 ° C. for both the example and the comparative example. Specifically, in the experiment, a shock absorber for automobile in which test oil was sealed was vibrated under the following experimental conditions, and the damping force applied when the piston of the end shock absorber was extended was measured. The lower the rate of change in damping force, the smaller the change in damping force due to temperature change, which means that the ride comfort and steering stability of the car can be maintained.
The results are shown in Table 2.

「減衰力変化率測定試験条件」
実施例1計測時の試験条件
温度 :−30℃±3℃、20±3℃、80±3℃
加振波形 :正弦波
ピストン速度:0.05m/s、0.10m/s、0.30m/s
横力 :0N
比較例1計測時の試験条件
温度 :20±3℃、50±3℃、80±3℃
加振波形 :正弦波
ピストン速度:0.05m/s、0.10m/s、0.30m/s
横力 :0N
"Damping force change rate measurement test conditions"
Example 1 Test condition temperature at the time of measurement: −30 ° C. ± 3 ° C., 20 ± 3 ° C., 80 ± 3 ° C.
Excitation waveform: sine wave piston speed: 0.05 m / s, 0.10 m / s, 0.30 m / s
Lateral force: 0N
Comparative Example 1 Test condition temperature during measurement: 20 ± 3 ° C., 50 ± 3 ° C., 80 ± 3 ° C.
Excitation waveform: sine wave piston speed: 0.05 m / s, 0.10 m / s, 0.30 m / s
Lateral force: 0N

(減衰力変化率計算式)
減衰力変化率(%)={(T℃における減衰力)―(20℃における減衰力)}/(20℃における減衰力)×100

(比較例1の-30℃における減衰力変化率算出式)
減衰力変化率(%) ={比較例1の20℃→-30℃の粘度変化率}/{実施例1の20℃→-30℃の粘度変化率}
×(-30℃における実施例1の減衰力変化率)
(Damping force change rate calculation formula)
Damping force change rate (%) = {(damping force at T ° C.) − (Damping force at 20 ° C.)} / (Damping force at 20 ° C.) × 100

(Comparison 1 damping force change rate calculation formula at -30 ° C)
Damping force change rate (%) = {Viscosity change rate of 20 ° C. → -30 ° C. of Comparative Example 1} / {Viscosity change rate of 20 ° C. → -30 ° C. of Example 1}
× (Damping force change rate of Example 1 at −30 ° C.)

Figure 2011021111
Figure 2011021111

(2)摩擦力測定試験
減衰力変化率測定試験と同様に、実施例1及び比較例1に記載した緩衝器用油圧作動油組成物を用いて台上実機試験を行い、摩擦力を測定した。
結果は表3に示す。
「摩擦力測定試験条件」
実施例1、比較例1計測時の実験条件
温度 :20±3℃
加振波形 :正弦波
ストローク :±5mm
ピストン速度:0.001m/s
横力 :0N
(2) Friction force measurement test Similar to the damping force change rate measurement test, the bench actual machine test was performed using the hydraulic fluid composition for shock absorbers described in Example 1 and Comparative Example 1, and the friction force was measured.
The results are shown in Table 3.
"Frictional force measurement test conditions"
Example 1 and Comparative Example 1 Experimental condition temperature during measurement: 20 ± 3 ° C.
Excitation waveform: Sine wave stroke: ± 5mm
Piston speed: 0.001m / s
Lateral force: 0N

Figure 2011021111
Figure 2011021111

(3)シール材適合試験
実施例1及び比較例1に記載した緩衝器用油圧作動油組成物にシール材を浸し体積変化率と重量変化率を測定した。
結果は表4に示す。
「シール材適合性試験条件」
シール材 :ニトリルゴム
試験油温 :100℃
試験時間 :70h
(3) Sealing material compatibility test The sealing material was immersed in the hydraulic fluid composition for shock absorbers described in Example 1 and Comparative Example 1, and the volume change rate and the weight change rate were measured.
The results are shown in Table 4.
"Seal compatibility test conditions"
Sealing material: Nitrile rubber test oil temperature: 100 ° C
Test time: 70h

Figure 2011021111
Figure 2011021111

Claims (2)

基油に、重量平均分子量が200,000〜600,000であるポリメタクリレート系の粘度指数向上剤及び酸性リン酸エステルのアミン塩を配合してなる油圧作動油組成物であって、該ポリメタクリレート系の粘度指数向上剤の配合割合が該組成物の全量に対して0.1〜5.0質量%であり、該酸性リン酸エステルのアミン塩の配合割合が該組成物の全量に対して2.0〜5.0質量%であり、該組成物の性状として、40℃の動粘度が4〜8mm/s、−30℃におけるブルックフィールド粘度が1000mPa・s以下、アニリン点が85〜110℃、粘度指数が150以上であることを特徴とする緩衝器用油圧作動油組成物。 A hydraulic fluid composition comprising a base oil and a polymethacrylate viscosity index improver having a weight average molecular weight of 200,000 to 600,000 and an amine salt of an acidic phosphate ester, the polymethacrylate The blending ratio of the viscosity index improver of the system is 0.1 to 5.0% by mass with respect to the total amount of the composition, and the blending ratio of the amine salt of the acidic phosphate is based on the total amount of the composition As the properties of the composition, the kinematic viscosity at 40 ° C. is 4 to 8 mm 2 / s, the Brookfield viscosity at −30 ° C. is 1000 mPa · s or less, and the aniline point is 85 to 85%. A hydraulic fluid composition for a shock absorber, having a viscosity index of 110 ° C. or higher at 110 ° C. 前記基油が、(A)40℃の動粘度が10〜15mm/s、アニリン点が100〜115℃、かつ、流動点が−40℃以下である炭化水素系基油と、(B)40℃の動粘度が2.0〜5.0mm/s、アニリン点が60〜95℃、流動点が−20〜−50℃である炭化水素系基油を、(A)と(B)の合計質量に対して(A)を25〜55質量%の割合で含有する基油である請求項1に記載の緩衝器用油圧作動油組成物。
The base oil is (A) a hydrocarbon base oil having a kinematic viscosity at 40 ° C. of 10 to 15 mm 2 / s, an aniline point of 100 to 115 ° C., and a pour point of −40 ° C. or less, and (B) Hydrocarbon base oils having a kinematic viscosity at 40 ° C. of 2.0 to 5.0 mm 2 / s, an aniline point of 60 to 95 ° C., and a pour point of −20 to −50 ° C. are represented by (A) and (B). The hydraulic fluid composition for a shock absorber according to claim 1, which is a base oil containing (A) at a ratio of 25 to 55 mass% with respect to the total mass of the buffer.
JP2009167632A 2009-07-16 2009-07-16 Hydraulic fluid composition for shock absorber Active JP5295892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009167632A JP5295892B2 (en) 2009-07-16 2009-07-16 Hydraulic fluid composition for shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009167632A JP5295892B2 (en) 2009-07-16 2009-07-16 Hydraulic fluid composition for shock absorber

Publications (2)

Publication Number Publication Date
JP2011021111A true JP2011021111A (en) 2011-02-03
JP5295892B2 JP5295892B2 (en) 2013-09-18

Family

ID=43631455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009167632A Active JP5295892B2 (en) 2009-07-16 2009-07-16 Hydraulic fluid composition for shock absorber

Country Status (1)

Country Link
JP (1) JP5295892B2 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0441594A (en) * 1990-06-08 1992-02-12 Tokico Ltd Shock absorber oil composition
JPH04314794A (en) * 1990-03-31 1992-11-05 Tonen Corp Hydraulic fluid for automobile suspension
JPH05255683A (en) * 1992-03-11 1993-10-05 Tonen Corp Hydraulic oil composition for bumper
JPH07224293A (en) * 1994-02-14 1995-08-22 Nippon Oil Co Ltd Hydraulic oil composition for shock absorber
JP2000044971A (en) * 1998-07-28 2000-02-15 Idemitsu Kosan Co Ltd Lubricating oil composition for shock absorber
JP2000063866A (en) * 1998-08-20 2000-02-29 Showa Shell Sekiyu Kk Lubricating oil composition
JP2000109877A (en) * 1998-10-09 2000-04-18 Tonen Corp Hydraulic oil composition for buffer
JP2000154391A (en) * 1998-11-20 2000-06-06 Idemitsu Kosan Co Ltd Lubricating oil composition for automobile shock absorber
JP2003147379A (en) * 2001-11-13 2003-05-21 Idemitsu Kosan Co Ltd Lubricating oil composition for automobile shock absorber
JP2005314609A (en) * 2004-04-30 2005-11-10 Idemitsu Kosan Co Ltd Shock absorbing oil composition
WO2007001000A1 (en) * 2005-06-29 2007-01-04 Nippon Oil Corporation Base oil for hydraulic oil and hydraulic oil compositions
JP2008133332A (en) * 2006-11-27 2008-06-12 Idemitsu Kosan Co Ltd Lubricating oil composition for automobile shock absorber
WO2008123249A1 (en) * 2007-03-30 2008-10-16 Nippon Oil Corporation Operating oil for buffer
JP2009013380A (en) * 2007-07-09 2009-01-22 Idemitsu Kosan Co Ltd Lubricant composition for shock absorber
JP2010531922A (en) * 2007-06-28 2010-09-30 シェブロン ユー.エス.エー. インコーポレイテッド Method for producing shock absorber fluid

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04314794A (en) * 1990-03-31 1992-11-05 Tonen Corp Hydraulic fluid for automobile suspension
JPH0441594A (en) * 1990-06-08 1992-02-12 Tokico Ltd Shock absorber oil composition
JPH05255683A (en) * 1992-03-11 1993-10-05 Tonen Corp Hydraulic oil composition for bumper
JPH07224293A (en) * 1994-02-14 1995-08-22 Nippon Oil Co Ltd Hydraulic oil composition for shock absorber
JP2000044971A (en) * 1998-07-28 2000-02-15 Idemitsu Kosan Co Ltd Lubricating oil composition for shock absorber
JP2000063866A (en) * 1998-08-20 2000-02-29 Showa Shell Sekiyu Kk Lubricating oil composition
JP2000109877A (en) * 1998-10-09 2000-04-18 Tonen Corp Hydraulic oil composition for buffer
JP2000154391A (en) * 1998-11-20 2000-06-06 Idemitsu Kosan Co Ltd Lubricating oil composition for automobile shock absorber
JP2003147379A (en) * 2001-11-13 2003-05-21 Idemitsu Kosan Co Ltd Lubricating oil composition for automobile shock absorber
JP2005314609A (en) * 2004-04-30 2005-11-10 Idemitsu Kosan Co Ltd Shock absorbing oil composition
WO2007001000A1 (en) * 2005-06-29 2007-01-04 Nippon Oil Corporation Base oil for hydraulic oil and hydraulic oil compositions
JP2008133332A (en) * 2006-11-27 2008-06-12 Idemitsu Kosan Co Ltd Lubricating oil composition for automobile shock absorber
WO2008123249A1 (en) * 2007-03-30 2008-10-16 Nippon Oil Corporation Operating oil for buffer
JP2010531922A (en) * 2007-06-28 2010-09-30 シェブロン ユー.エス.エー. インコーポレイテッド Method for producing shock absorber fluid
JP2009013380A (en) * 2007-07-09 2009-01-22 Idemitsu Kosan Co Ltd Lubricant composition for shock absorber

Also Published As

Publication number Publication date
JP5295892B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
ES2546852T3 (en) Lubricating oil composition
JP6014540B2 (en) Lubricating oil composition for internal combustion engines
JP5735827B2 (en) Viscosity index improver, lubricating oil additive and lubricating oil composition
KR20150037750A (en) Poly(meth)acrylate-based viscosity index improver, lubricant additive and lubricant composition containing viscosity index improver
JP6454278B2 (en) Lubricating oil composition for shock absorbers
KR102431118B1 (en) Alkyl capped oil soluble polymer viscosity index improving additives for base oils in automotive applications
JP5507933B2 (en) Engine oil composition
JP6104083B2 (en) Gear oil composition
JP2019516847A (en) Lubricating fluid
JP5305457B2 (en) Lubricating oil composition for wet clutch
JP5295892B2 (en) Hydraulic fluid composition for shock absorber
JP5421697B2 (en) Industrial hydraulic oil composition
JP5395474B2 (en) Industrial hydraulic oil composition
JP7266382B2 (en) lubricating oil composition
JP2023539763A (en) engine oil composition
JP6077955B2 (en) Poly (meth) acrylate viscosity index improver, and lubricating oil additive and lubricating oil composition containing the viscosity index improver
JP5489838B2 (en) Industrial hydraulic oil composition
JP6088924B2 (en) Poly (meth) acrylate viscosity index improver, and lubricating oil additive and lubricating oil composition containing the viscosity index improver
JP6134212B2 (en) Hydraulic fluid composition
JP5395473B2 (en) Industrial hydraulic oil composition
CN101643684A (en) Power transmitting fluid composition
JP2010047735A (en) Hydraulic oil composition
JP5467819B2 (en) Rotary compressor oil composition
JP5284148B2 (en) Industrial hydraulic oil composition
JP6077956B2 (en) Poly (meth) acrylate viscosity index improver, and lubricating oil additive and lubricating oil composition containing the viscosity index improver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130612

R150 Certificate of patent or registration of utility model

Ref document number: 5295892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250