JP2011020642A - Shock absorbing structure - Google Patents

Shock absorbing structure Download PDF

Info

Publication number
JP2011020642A
JP2011020642A JP2009169301A JP2009169301A JP2011020642A JP 2011020642 A JP2011020642 A JP 2011020642A JP 2009169301 A JP2009169301 A JP 2009169301A JP 2009169301 A JP2009169301 A JP 2009169301A JP 2011020642 A JP2011020642 A JP 2011020642A
Authority
JP
Japan
Prior art keywords
shock absorbing
flange
absorbing member
web
impact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009169301A
Other languages
Japanese (ja)
Other versions
JP5297288B2 (en
Inventor
Toyomi Tanaka
豊己 田中
Naoki Higuchi
尚希 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2009169301A priority Critical patent/JP5297288B2/en
Priority to EP10799904.7A priority patent/EP2455285B1/en
Priority to PCT/JP2010/062013 priority patent/WO2011007846A1/en
Priority to US13/384,003 priority patent/US8827057B2/en
Publication of JP2011020642A publication Critical patent/JP2011020642A/en
Application granted granted Critical
Publication of JP5297288B2 publication Critical patent/JP5297288B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • B64C1/061Frames
    • B64C1/062Frames specially adapted to absorb crash loads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/18Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Vibration Dampers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To downsize a shock absorbing structure. <P>SOLUTION: The shock absorbing structure is provided with a beam-like structure member having a recess, and a shock absorbing member, one end of which is arranged in the inside of the recess and the other end of which is arranged outside of the recess. Since the area of the recess overlaps the place where the structure member supports the structure even at a dead-stroke in which the shock absorbing member is bottomed out, the space is not wasted. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、衝撃吸収部材の取り付け構造に関する。   The present invention relates to an impact absorbing member mounting structure.

炭素繊維強化プラスチックに例示される部材を用いた衝撃吸収部材が知られている。例えば角筒形状に形成された衝撃吸収部材は、その軸線方向に衝撃が加わると、軸線方向に圧壊しながら衝撃を吸収する。その結果、衝撃吸収部材が取り付けられた本体にかかる衝撃が軽減される。   An impact absorbing member using a member exemplified by carbon fiber reinforced plastic is known. For example, when an impact is applied in the axial direction, an impact absorbing member formed in a rectangular tube shape absorbs the impact while being crushed in the axial direction. As a result, the impact applied to the main body to which the impact absorbing member is attached is reduced.

航空機(例えば回転翼航空機であるヘリコプタ)、自動車等の航行体の構造体として、衝突時の衝撃吸収のために、衝撃吸収構造体が用いられる。例えば、回転翼航空機であるヘリコプタでは、不時着時における乗員の安全性確保のために、衝撃吸収構造体を備えた床下構造が提案されている。   As a structure of a navigation body such as an aircraft (for example, a helicopter which is a rotary wing aircraft) or an automobile, an impact absorbing structure is used for absorbing the impact at the time of collision. For example, in a helicopter that is a rotary wing aircraft, an underfloor structure provided with an impact absorbing structure has been proposed in order to ensure the safety of passengers during emergency landing.

衝撃吸収部材は、ある長さ以上が潰れると衝撃吸収部材の破壊部分の破片が衝撃吸収部材の内部に詰まり、それ以上ほとんど潰れることができず、底付きして衝撃吸収能力を失う。図1は、衝撃吸収部材における変位(潰れた長さ)と荷重との関係の例を示す。変位がBの点を超えると、衝撃荷重が急激に増加し始め、衝撃吸収能力が失われる。   If the impact absorbing member is crushed for a certain length or more, the broken part of the impact absorbing member is clogged inside the impact absorbing member and can hardly be crushed any more. FIG. 1 shows an example of the relationship between displacement (collapsed length) and load in an impact absorbing member. When the displacement exceeds the point B, the impact load starts to increase rapidly, and the impact absorbing ability is lost.

図2Aは、衝撃吸収部材の取り付け構造の参考例を示す。この図は、回転翼航空機の下部に衝撃吸収部材が取り付けられた例を示す。回転翼航空機の胴体は構造梁102によって形成される。構造梁102は床板101を支持する。構造梁102に衝撃吸収部材103が取り付けられる。構造梁102の厚さがL11、衝撃吸収部材103の長さがL12、床板101から衝撃吸収部材103の端部までの長さがL13で示されている。   FIG. 2A shows a reference example of the mounting structure of the shock absorbing member. This figure shows an example in which an impact absorbing member is attached to the lower part of a rotary wing aircraft. The fuselage of the rotorcraft is formed by structural beams 102. The structural beam 102 supports the floor board 101. An impact absorbing member 103 is attached to the structural beam 102. The thickness of the structural beam 102 is indicated by L11, the length of the shock absorbing member 103 is indicated by L12, and the length from the floor board 101 to the end of the shock absorbing member 103 is indicated by L13.

図2Bは、図2Aの衝撃吸収部材の軸線方向に衝撃が加わり、底付きが発生した状態を示す。破壊部分104が潰れて底付きした衝撃吸収部材103aの長さがL14で示されている。図1の底付き変位Bとの関係は、L12−L14=Bである。底付きした状態の衝撃吸収部材の長さL14はデッドストロークとなる。   FIG. 2B shows a state where an impact is applied in the axial direction of the impact absorbing member of FIG. The length of the shock absorbing member 103a with the broken portion 104 crushed and bottomed is indicated by L14. The relationship with the bottomed displacement B in FIG. 1 is L12−L14 = B. The length L14 of the shock absorbing member in the bottomed state is a dead stroke.

底付きに対処する技術の参考例として、特許文献1を挙げる。特許文献1には、ヘリコプタの耐衝撃構造が記載されている。この技術では、各繊維強化複合材中空チューブ同士の隙間の空間、及び各繊維強化複合材中空チューブの内部の空間のうちの一部の空間にだけ発泡剤が注入される。これにより、破壊小片が発泡剤に喰い込み又は破壊小片が断面空間に収容されて破壊小片のコンパクションによる部材全体の剛化が防止され、有効ストロークが生かされる。   Patent Document 1 is given as a reference example of a technique for dealing with bottoming. Patent Document 1 describes a shock resistant structure of a helicopter. In this technique, the foaming agent is injected only into a space between the fiber reinforced composite material hollow tubes and a part of the space inside each fiber reinforced composite material hollow tube. As a result, the broken piece bites into the foaming agent, or the broken piece is accommodated in the cross-sectional space to prevent the entire member from being stiffened by compaction of the broken piece, and the effective stroke is utilized.

特許第3888630号公報Japanese Patent No. 3888630

衝撃吸収部材の図2Bに示した長さL14の部分はデッドストロークであり、衝撃を吸収する能力がない。そのため十分な衝撃吸収能力を確保するには底付き分の長さL14に十分な有効ストロークを加えた長さL12の衝撃吸収部材を用いる必要がある。更に構造梁102の厚さL11が加わるため、床板101から衝撃吸収部材103の端部までの長さL13がかなり長くなる。この長さL13を確保する必要があるために、衝撃吸収部材を備えた構造体の小型化が難しくなる。   The portion of the length L14 shown in FIG. 2B of the impact absorbing member is a dead stroke, and has no ability to absorb the impact. Therefore, in order to ensure a sufficient shock absorbing capability, it is necessary to use a shock absorbing member having a length L12 obtained by adding a sufficient effective stroke to the bottom length L14. Furthermore, since the thickness L11 of the structural beam 102 is added, the length L13 from the floor board 101 to the end of the shock absorbing member 103 becomes considerably long. Since it is necessary to secure this length L13, it is difficult to reduce the size of the structure including the shock absorbing member.

図3は、構造梁102以外の部分において床板101に衝撃吸収部材103を固定した例を示す。この場合、床板101から衝撃吸収部材103の端部までの長さは衝撃吸収部材103の長さL12であり、図2Aの場合に対して構造梁102の厚さL11だけ短くすることができる。しかしながら、このような構造では、衝撃吸収部材103に衝撃が加わったとき、その反力によって床板101が破壊されないように、床板101を補強する必要がある。そのため重量が増える。   FIG. 3 shows an example in which the impact absorbing member 103 is fixed to the floor board 101 at a portion other than the structural beam 102. In this case, the length from the floor board 101 to the end of the shock absorbing member 103 is the length L12 of the shock absorbing member 103, and can be shortened by the thickness L11 of the structural beam 102 compared to the case of FIG. 2A. However, in such a structure, when an impact is applied to the impact absorbing member 103, it is necessary to reinforce the floor plate 101 so that the floor plate 101 is not destroyed by the reaction force. Therefore, the weight increases.

自動車や航空機などの構造体を小型化、軽量化するために、衝撃吸収構造体の小型化、軽量化が望まれる。   In order to reduce the size and weight of structures such as automobiles and aircraft, it is desirable to reduce the size and weight of shock absorbing structures.

以下に、[発明を実施するための形態]で使用される番号を括弧付きで用いて、課題を解決するための手段を説明する。これらの番号は、[特許請求の範囲]の記載と[発明を実施するための形態]との対応関係を明らかにするために付加されたものである。ただし、それらの番号を、[特許請求の範囲]に記載されている発明の技術的範囲の解釈に用いてはならない。   Hereinafter, means for solving the problem will be described using the numbers used in [DETAILED DESCRIPTION] in parentheses. These numbers are added to clarify the correspondence between the description of [Claims] and [Mode for Carrying Out the Invention]. However, these numbers should not be used to interpret the technical scope of the invention described in [Claims].

本発明の一側面において、衝撃吸収構造体は、凹部を有する梁状の構造部材(6)と、一端が凹部の内側に配置されて構造部材に当接し、他端が凹部の外部に配置された衝撃吸収部材(12)とを備える。   In one aspect of the present invention, the shock absorbing structure includes a beam-shaped structural member (6) having a recess, one end disposed inside the recess and abutting the structural member, and the other end disposed outside the recess. A shock absorbing member (12).

このような衝撃吸収構造体によれば、凹部の領域では、衝撃吸収部材が底付きするデッドストロークとなった場合でも、衝撃吸収部材が構造梁の場所と重なるため、無駄なスペースとならない。   According to such a shock absorbing structure, even when the shock absorbing member has a dead stroke in which the shock absorbing member bottoms out, the shock absorbing member overlaps with the place of the structural beam in the region of the recess, so that no useless space is created.

本発明の他の側面において、梁状の構造部材(6)は、第1のフランジ(18)と、一端が第1のフランジ(18)の一側面に固定された第1のウェブ(20−1)と、第1のウェブ(20−1)の他端に固定され、第1のウェブ(20−1)と平行に配置された第2のフランジ(22−1)とを備える。凹部は、第1のウェブ(20−1)と第1のフランジ(18)の一側面とによって形成される。   In another aspect of the present invention, the beam-like structural member (6) includes a first flange (18) and a first web (20-) having one end fixed to one side of the first flange (18). 1) and a second flange (22-1) fixed to the other end of the first web (20-1) and disposed in parallel with the first web (20-1). The recess is formed by the first web (20-1) and one side of the first flange (18).

本発明の更に他の側面において、梁状の構造部材(6)は更に、一端が第1のフランジ(18)の一側面に固定され、第1のウェブ(20−1)と平行に配置された第2のウェブ(20−2)と、第2のウェブ(20−2)の他端に固定され、第1のウェブ(20−1)と平行に且つ第2のフランジ(22−1)との間に隙間を設けて配置された第3のフランジ(22−2)とを備える。凹部は、第1のウェブ(20−1)と第2のウェブ(20−2)と第1のフランジ(18)の一側面とによって形成される。   In still another aspect of the present invention, the beam-like structural member (6) is further fixed at one end to one side of the first flange (18) and arranged in parallel with the first web (20-1). The second web (20-2) is fixed to the other end of the second web (20-2), parallel to the first web (20-1) and the second flange (22-1). And a third flange (22-2) disposed with a gap therebetween. The recess is formed by one side of the first web (20-1), the second web (20-2), and the first flange (18).

本発明の更に他の側面において、第1のフランジ(18)の、衝撃吸収部材(12)の一端が当接する領域には貫通孔(28)が形成されている。   In still another aspect of the present invention, a through hole (28) is formed in a region of the first flange (18) where one end of the shock absorbing member (12) contacts.

本発明の一側面における回転翼航空機(2)は、第1のフランジ(18)に支持された床面(30)と、梁状の構造部材(6)に支持され、床面の下側に配置された底面(8)とを備える。衝撃吸収部材(12)は、一端と他端とを結ぶ長手方向が鉛直方向を向いて配置される。   The rotary wing aircraft (2) according to one aspect of the present invention is supported by a floor surface (30) supported by a first flange (18) and a beam-like structural member (6), and below the floor surface. And a disposed bottom surface (8). The shock absorbing member (12) is arranged such that the longitudinal direction connecting one end and the other end faces the vertical direction.

本発明の一側面における自動車(34)において、衝撃吸収部材(12)は、他端が当該自動車のフロント面(36)の方向に向くように配置される。   In the automobile (34) according to one aspect of the present invention, the shock absorbing member (12) is disposed so that the other end faces the front surface (36) of the automobile.

本発明により、衝撃吸収構造体を小型化することが可能である。   According to the present invention, it is possible to reduce the size of the shock absorbing structure.

図1は、衝撃吸収部材の変位と荷重との関係を示す。FIG. 1 shows the relationship between the displacement of the shock absorbing member and the load. 図2Aは、参考例における衝撃吸収部材の取り付け構造を示す。FIG. 2A shows the mounting structure of the shock absorbing member in the reference example. 図2Bは、参考例における衝撃吸収部材が底付きした状態を示す。FIG. 2B shows a state where the shock absorbing member in the reference example is bottomed. 図3は、他の参考例における衝撃吸収部材の取り付け構造を示す。FIG. 3 shows an impact absorbing member mounting structure in another reference example. 図4は、衝撃吸収構造体を備えた回転翼航空機の側面図である。FIG. 4 is a side view of a rotary wing aircraft provided with a shock absorbing structure. 図5は、回転翼航空機の床下構造を示す。FIG. 5 shows the underfloor structure of a rotary wing aircraft. 図6は、構造梁の構成を示す斜視図である。FIG. 6 is a perspective view showing the structure of the structural beam. 図7Aは、一実施形態における衝撃吸収構造体の断面図である。FIG. 7A is a cross-sectional view of a shock absorbing structure in one embodiment. 図7Bは、一実施形態における衝撃吸収構造体が底付きした状態を示す。FIG. 7B shows a state where the shock absorbing structure according to an embodiment is bottomed. 図8は、床面の上面図である。FIG. 8 is a top view of the floor surface. 図9は、構造梁の他の構成例を示す斜視図である。FIG. 9 is a perspective view showing another configuration example of the structural beam. 図10は、他の構成例における衝撃吸収構造体の断面図である。FIG. 10 is a cross-sectional view of a shock absorbing structure in another configuration example. 図11は、衝撃吸収構造体を備えた自動車の上面図である。FIG. 11 is a top view of an automobile provided with an impact absorbing structure.

以下、本発明の実施形態について図面を参照して説明する。図4は、本実施形態における衝撃吸収構造体を備えた回転翼航空機(特にヘリコプタ)を側面から見た断面図である。回転翼航空機2は、胴体4を備える。胴体4は床面10を備える。床面10は座席や貨物等を支持する。床面10の下に、衝撃吸収構造体が配置される。衝撃吸収構造体は構造梁6と衝撃吸収部材12とを備える。衝撃吸収部材12の下側には、胴体2の下面側の外板である底板8が構造梁6に支持されて配置される。このような回転翼航空機において、底部が地面や障害物に衝突すると、衝撃吸収部材12が圧壊しつつ衝撃を吸収することにより、胴体4の構造とその内部の搭乗員とを保護する。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 4 is a cross-sectional view of a rotary wing aircraft (particularly a helicopter) provided with the shock absorbing structure in the present embodiment as seen from the side. The rotary wing aircraft 2 includes a fuselage 4. The body 4 includes a floor surface 10. The floor surface 10 supports seats and cargo. An impact absorbing structure is disposed under the floor surface 10. The shock absorbing structure includes a structural beam 6 and a shock absorbing member 12. Below the shock absorbing member 12, a bottom plate 8, which is an outer plate on the lower surface side of the body 2, is supported and disposed on the structural beam 6. In such a rotary wing aircraft, when the bottom collides with the ground or an obstacle, the shock absorbing member 12 is crushed and absorbs the shock, thereby protecting the structure of the fuselage 4 and the crew inside the fuselage 4.

図5は、回転翼航空機2の床面10の下部の構造を示す。床下に、構造梁6−1、6−2が配置される。複数の構造梁6−1は、回転翼航空機2の前後方向に平行に配置される。複数の構造梁6−2は、回転翼航空機2の左右方向に平行に配置される。構造梁6−1、6−2は、それぞれ回転翼航空機2の運用中に発生する荷重に耐荷する縦方向及び横方向強度部材である。   FIG. 5 shows the structure of the lower part of the floor surface 10 of the rotary wing aircraft 2. Under the floor, structural beams 6-1 and 6-2 are arranged. The plurality of structural beams 6-1 are arranged in parallel to the front-rear direction of the rotary wing aircraft 2. The plurality of structural beams 6-2 are arranged in parallel to the left-right direction of the rotary wing aircraft 2. The structural beams 6-1 and 6-2 are longitudinal and lateral strength members that withstand loads generated during operation of the rotary wing aircraft 2, respectively.

回転翼航空機2の床下には更に、構造梁6−1に支持されて構造梁6−1と同方向に延長するウェブ14と、構造梁6−2に支持されて構造梁6−2と同方向に延長するフレーム16とが配置される。ウェブ14とフレーム16の下端を覆うように底板8が取り付けられる。   Under the floor of the rotary wing aircraft 2, a web 14 supported by the structural beam 6-1 and extending in the same direction as the structural beam 6-1 and a web 14 supported by the structural beam 6-2 and the same as the structural beam 6-2 are provided. A frame 16 extending in the direction is arranged. The bottom plate 8 is attached so as to cover the lower ends of the web 14 and the frame 16.

図6は、構造梁6の構成を示す斜視図である。構造梁6は、図5の各構造梁6−1、6−2に相当する。構造梁6はフランジ18、22−1、22−2と、ウェブ20−1、20−2とを有する。フランジ18と、フランジ22−1及び22−2とは、I型構造梁における上側のフランジと下側のフランジとにそれぞれ対応する。ウェブ20−1、20−2はI型構造梁におけるウェブに対応する。但しI型構造梁と異なり、フランジ18に対して垂直に、互いに平行な2つのウェブ20−1、20−2が設けられている。2つのウェブ20−1、20−2の間には所定幅を有し構造梁6の長手方向に一定の断面形状で延長する隙間26が存在する。第1のウェブ20−1の下端は第1のフランジ22−1の一端と接続する。第1のフランジ22−1はその一端から隙間26の反対側に延長する。第2のウェブ20−1の下端は第2のフランジ22−2の一端と接続する。第2のフランジ22−2はその一端から隙間26の反対側に延長する。構造梁6は、フランジ18を上辺とし、ウェブ20−1とフランジ22−1とを左脚とし、ウェブ20−2とフランジ22−2を右脚とするπ型の断面形状を有するπ梁である。   FIG. 6 is a perspective view showing the configuration of the structural beam 6. The structural beam 6 corresponds to each of the structural beams 6-1 and 6-2 in FIG. The structural beam 6 has flanges 18, 22-1, 22-2 and webs 20-1, 20-2. The flange 18 and the flanges 22-1 and 22-2 correspond to an upper flange and a lower flange in the I-type structural beam, respectively. The webs 20-1 and 20-2 correspond to the webs in the I-type structural beam. However, unlike the I-type structural beam, two webs 20-1 and 20-2 that are perpendicular to the flange 18 and parallel to each other are provided. Between the two webs 20-1 and 20-2, there is a gap 26 having a predetermined width and extending in the longitudinal direction of the structural beam 6 with a constant cross-sectional shape. The lower end of the first web 20-1 is connected to one end of the first flange 22-1. The first flange 22-1 extends from one end to the opposite side of the gap 26. The lower end of the second web 20-1 is connected to one end of the second flange 22-2. The second flange 22-2 extends from one end to the opposite side of the gap 26. The structural beam 6 is a π beam having a π-type cross-sectional shape with the flange 18 as the upper side, the web 20-1 and the flange 22-1 as the left leg, and the web 20-2 and the flange 22-2 as the right leg. is there.

フランジ18には貫通孔28が設けられる。貫通孔28は、フランジ18の下面側の隙間26と、フランジ18の上面側の空間とを連通する。貫通孔28は、構造梁6の長手方向に沿って複数配置される。貫通孔28が配置される位置は、衝撃吸収部材12が配置される位置である。衝撃吸収部材12は、フランジ18の下面と、第1のウェブ20−1の隙間26に面した内側面24−1と、第2のウェブ20−2の隙間26に面した内側面24−2とによって形成される凹部に一端が挿し込まれて固定される。衝撃吸収部材12の取り付けは、隙間26の内側面24−1、24−2や、ウェブ14、フレーム16などに対する接着剤を用いた接着によって行うことができる。   A through hole 28 is provided in the flange 18. The through hole 28 communicates the gap 26 on the lower surface side of the flange 18 and the space on the upper surface side of the flange 18. A plurality of through holes 28 are arranged along the longitudinal direction of the structural beam 6. The position where the through hole 28 is disposed is a position where the shock absorbing member 12 is disposed. The shock absorbing member 12 includes a lower surface of the flange 18, an inner side surface 24-1 facing the gap 26 of the first web 20-1, and an inner side surface 24-2 facing the gap 26 of the second web 20-2. One end is inserted and fixed in the recess formed by. The shock absorbing member 12 can be attached by bonding using an adhesive to the inner surfaces 24-1 and 24-2 of the gap 26, the web 14, the frame 16, and the like.

図7Aは、本実施形態における衝撃吸収構造体の断面図である。構造梁6の長手方向に垂直な断面が示されている。回転翼航空機2の床板30の下側の面である取付面11に構造梁6のフランジ18の上面が取り付けられる。   FIG. 7A is a cross-sectional view of the shock absorbing structure in the present embodiment. A cross section perpendicular to the longitudinal direction of the structural beam 6 is shown. The upper surface of the flange 18 of the structural beam 6 is attached to the attachment surface 11 which is the lower surface of the floor board 30 of the rotorcraft 2.

衝撃吸収部材12は棒状の部材であり、その長手方向は、衝撃が加わったときに潰れて圧縮される方向である圧壊方向である。衝撃吸収部材12は、長手方向を回転翼航空機2の上下方向(鉛直方向)として、その上端が構造梁6の凹部である隙間26に取り付けられる。衝撃吸収部材12の幅が隙間26の幅に接着剤の厚さを加えた幅と同一であると、取り付けが容易であり望ましい。その場合、衝撃吸収部材12の上端は隙間26に面したフランジ18の下面に当接し、側面は内側面24−1及び内側面24−2に接する。   The impact absorbing member 12 is a rod-shaped member, and the longitudinal direction thereof is a crushing direction that is a direction in which the impact absorbing member 12 is crushed and compressed when an impact is applied. The shock absorbing member 12 is attached to a gap 26 whose upper end is a concave portion of the structural beam 6 with the longitudinal direction being the vertical direction (vertical direction) of the rotary wing aircraft 2. When the width of the shock absorbing member 12 is the same as the width of the gap 26 plus the thickness of the adhesive, attachment is easy and desirable. In that case, the upper end of the shock absorbing member 12 contacts the lower surface of the flange 18 facing the gap 26, and the side surface contacts the inner side surface 24-1 and the inner side surface 24-2.

フランジ18の衝撃吸収部材12が当接する位置に、貫通孔28が設けられる。貫通孔28が設けられた領域に対応する位置の床板30に、貫通孔32が設けられる。貫通孔28と貫通孔32とにより、衝撃吸収部材12の上端が床面10の側に露出する。貫通孔28が設けられている領域は、衝撃吸収部材12が当接するフランジ18の下面の領域よりも小さい。そのため衝撃が加わったとき、衝撃吸収部材12は上端が構造梁6のフランジ18によって支持された状態で下端側から破壊される。   A through hole 28 is provided at a position of the flange 18 where the impact absorbing member 12 abuts. A through hole 32 is provided in the floor plate 30 at a position corresponding to the region where the through hole 28 is provided. Through the through hole 28 and the through hole 32, the upper end of the shock absorbing member 12 is exposed to the floor surface 10 side. The region where the through hole 28 is provided is smaller than the region of the lower surface of the flange 18 with which the shock absorbing member 12 abuts. Therefore, when an impact is applied, the impact absorbing member 12 is broken from the lower end side with the upper end supported by the flange 18 of the structural beam 6.

図7Bに、衝撃により圧壊し、底付きした状態の衝撃吸収部材12aが示されている。衝撃吸収部材12aの底付きによるデッドストロークの長さがL5で示されている。衝撃吸収部材12aの長さL5のうち、上側のフランジ18の下面から下側のフランジ22−1、22−2の下面までの長さL3は、構造梁6と重なっている。そのため、構造梁6の外部におけるデッドストロークの長さL5−L3を短くすることができる。   FIG. 7B shows the shock absorbing member 12a in a state of being crushed and bottomed by an impact. The length of the dead stroke due to the bottom of the shock absorbing member 12a is indicated by L5. Of the length L5 of the shock absorbing member 12a, the length L3 from the lower surface of the upper flange 18 to the lower surfaces of the lower flanges 22-1 and 22-2 overlaps the structural beam 6. Therefore, the length L5-L3 of the dead stroke outside the structural beam 6 can be shortened.

図2Aの衝撃吸収構造体と比較すると、同一素材の衝撃吸収部材103と衝撃吸収部材12とを用いた場合、図2Aの構造体では、床下に必要なサイズはL13=L11+L12である。それに対して図7Aの例では、床下に必要なサイズはL2=L4+(L1−L3)である。同一サイズの衝撃吸収部材と構造梁とを用いた場合、図7Aの場合の方が、同一の有効ストロークL4−L5を確保しつつ、床下の長さL2をL3だけ小型化することができる。そのため図7Aに示すようなπ型の構造梁6を用いることにより、図2Aの場合に対して、より小さい床下構造によって同等の衝撃吸収効果を得ることができる。あるいは同じ外形寸法の胴体内に、より大きい床上空間を形成することができる。   Compared to the shock absorbing structure of FIG. 2A, when the shock absorbing member 103 and the shock absorbing member 12 of the same material are used, the size required under the floor is L13 = L11 + L12 in the structure of FIG. 2A. On the other hand, in the example of FIG. 7A, the size required under the floor is L2 = L4 + (L1-L3). When the shock absorbing member and the structural beam having the same size are used, the length L2 under the floor can be reduced by L3 while securing the same effective stroke L4-L5 in the case of FIG. 7A. Therefore, by using the π-type structural beam 6 as shown in FIG. 7A, an equivalent shock absorbing effect can be obtained by a smaller underfloor structure as compared with the case of FIG. 2A. Alternatively, a larger space above the floor can be formed in the body having the same outer dimensions.

衝撃吸収部材12が衝撃を受けて破壊が進行したとき、その破片の一部は、貫通孔28、32から床面10の上側に抜ける。その結果、衝撃吸収部材12の底付きを遅らせ、デッドストロークを小さくすることができる。従って同一の衝撃吸収効果を得るために衝撃吸収部材12の長さL4を小さくすることができ、床下構造のサイズを更に小さくすることができる。床上に破片が飛散することを防ぎたい場合は、樹脂のシートなどの飛散防止部材が貫通孔32を覆うように床面10に取り付けられる。   When the impact absorbing member 12 receives an impact and breakage progresses, a part of the fragments are pulled out from the through holes 28 and 32 to the upper side of the floor surface 10. As a result, the bottom of the shock absorbing member 12 can be delayed and the dead stroke can be reduced. Accordingly, the length L4 of the shock absorbing member 12 can be reduced in order to obtain the same shock absorbing effect, and the size of the underfloor structure can be further reduced. When it is desired to prevent debris from scattering on the floor, a scattering prevention member such as a resin sheet is attached to the floor surface 10 so as to cover the through hole 32.

図8は、床面10の上から見た上面図を示す。床板30に貫通孔28が形成される。衝撃吸収部材12は、どのような断面形状でもよいが、本実施形態では図8に点線で示されるように断面が四角である。このような四角柱形状であると、π型の断面を有する構造梁6の内側面24−1、24−2と衝撃吸収部材12の側面とが面接触するため、衝撃吸収部材12を固定しやすい。   FIG. 8 shows a top view as seen from above the floor surface 10. A through hole 28 is formed in the floor plate 30. The shock absorbing member 12 may have any cross-sectional shape, but in this embodiment, the cross section is a square as shown by the dotted line in FIG. With such a quadrangular prism shape, the inner surfaces 24-1 and 24-2 of the structural beam 6 having a π-shaped cross section and the side surfaces of the shock absorbing member 12 are in surface contact, so the shock absorbing member 12 is fixed. Cheap.

構造梁6の形状は、衝撃吸収部材12の一端を支持する凹部を有する形状ならば、他の形状でもよい。例えば衝撃吸収部材12が取り付けられる箇所にのみπ型の断面形状を有し、他の箇所では一般的なI型梁の形状の梁でもよい。しかし図6に示したような一様の断面形状を有する梁は、製造の容易さの点において優れている。図6に示したようなπ梁は、強度と製造の容易さとを両立できる点で特に優れている。   The shape of the structural beam 6 may be other shapes as long as it has a concave portion that supports one end of the shock absorbing member 12. For example, a beam having a π-type cross section may be provided only at a location where the shock absorbing member 12 is attached, and a general I-shaped beam may be used at other locations. However, a beam having a uniform cross-sectional shape as shown in FIG. 6 is excellent in terms of ease of manufacture. The π-beam as shown in FIG. 6 is particularly excellent in that both strength and ease of manufacture can be achieved.

図9は、構造梁の形状の他の例を示す。構造梁6aは、図6に示したπ梁と比べて、第2のウェブ20−2と第2のフランジ22−2を省略したJ字の断面形状を有するJ梁である。図10は、この構造梁6aに衝撃吸収部材12を取り付けた衝撃吸収構造体の側面図である。この場合、フランジ18の下面側とウェブ20−1の内側面24−1とによって形成される凹部に衝撃吸収部材12が取り付けられる。この例においても、図7A、図7Bを参照して説明した効果と同様の効果を得ることができる。   FIG. 9 shows another example of the shape of the structural beam. The structural beam 6a is a J beam having a J-shaped cross-sectional shape in which the second web 20-2 and the second flange 22-2 are omitted as compared to the π beam shown in FIG. FIG. 10 is a side view of the shock absorbing structure in which the shock absorbing member 12 is attached to the structural beam 6a. In this case, the impact absorbing member 12 is attached to a recess formed by the lower surface side of the flange 18 and the inner surface 24-1 of the web 20-1. Also in this example, the same effects as those described with reference to FIGS. 7A and 7B can be obtained.

図11は、本実施形態における衝撃吸収構造体を自動車に適用した例を示す上面図である。構造梁6が自動車34のフロント面36の付近に車体の幅方向を長手方向として取り付けられる。構造梁6の向きは、図6の構造梁6の例で言えば、フランジ18の面が垂直、ウェブ20−1、20−2の面が水平方向となり、フランジ18が自動車34の進行方向の後ろ側、隙間26の開口部が進行方向の前側となる向きである。構造梁6の隙間に衝撃吸収部材12が挿し込まれる。衝撃吸収部材12は、自動車34の進行方向を長手方向として固定される。このような衝撃吸収構造体によれば、自動車34の車長を抑制しつつ、高い衝撃吸収効果を得ることができる。   FIG. 11 is a top view showing an example in which the shock absorbing structure in the present embodiment is applied to an automobile. The structural beam 6 is attached in the vicinity of the front surface 36 of the automobile 34 with the width direction of the vehicle body as the longitudinal direction. In the example of the structural beam 6 in FIG. 6, the direction of the structural beam 6 is that the surface of the flange 18 is vertical, the surfaces of the webs 20-1 and 20-2 are horizontal, and the flange 18 is in the traveling direction of the automobile 34. The rear side is the direction in which the opening of the gap 26 is the front side in the traveling direction. The shock absorbing member 12 is inserted into the gap between the structural beams 6. The shock absorbing member 12 is fixed with the traveling direction of the automobile 34 as the longitudinal direction. According to such a shock absorbing structure, a high shock absorbing effect can be obtained while suppressing the vehicle length of the automobile 34.

2 回転翼航空機
4 胴体
6 構造梁
6a 構造梁
6−1 構造梁
6−2 構造梁
8 底板
10 床面
11 取付面
12 衝撃吸収部材
12a 衝撃吸収部材
14 ウェブ
16 フレーム
18 フランジ
20−1 ウェブ
20−2 ウェブ
22−1 フランジ
22−2 フランジ
24−1 内側面
24−2 内側面
26 隙間
28 貫通孔
30 床板
32 貫通孔
34 自動車
36 フロント面
101 床板
102 構造梁
103 衝撃吸収部材
103a 衝撃吸収部材
104 破壊部分
2 Rotary wing aircraft 4 Body 6 Structural beam 6a Structural beam 6-1 Structural beam 6-2 Structural beam 8 Bottom plate 10 Floor surface 11 Mounting surface 12 Shock absorbing member 12a Shock absorbing member 14 Web 16 Frame 18 Flange 20-1 Web 20- 2 Web 22-1 Flange 22-2 Flange 24-1 Inner surface 24-2 Inner surface 26 Clearance 28 Through hole 30 Floor plate 32 Through hole 34 Automobile 36 Front surface 101 Floor plate 102 Structural beam 103 Shock absorbing member 103a Shock absorbing member 104 Destruction portion

Claims (6)

凹部を有する梁状の構造部材と、
一端が前記凹部の内側に配置されて前記構造部材に当接し、他端が前記凹部の外部に配置された衝撃吸収部材
とを具備する衝撃吸収構造体。
A beam-like structural member having a recess;
An impact absorbing structure comprising: an impact absorbing member having one end disposed inside the recess and contacting the structural member, and the other end disposed outside the recess.
請求項1に記載された衝撃吸収構造体であって、
前記梁状の構造部材は、
第1のフランジと、
一端が前記第1のフランジの一側面に固定された第1のウェブと、
前記第1のウェブの他端に固定され、前記第1のウェブと平行に配置された第2のフランジとを備え、
前記凹部は、前記第1のウェブと前記第1のフランジの前記一側面とによって形成される
衝撃吸収構造体。
The shock absorbing structure according to claim 1,
The beam-like structural member is
A first flange;
A first web having one end fixed to one side of the first flange;
A second flange fixed to the other end of the first web and disposed in parallel with the first web;
The recess is formed by the first web and the one side surface of the first flange.
請求項2に記載された衝撃吸収構造体であって、
前記梁状の構造部材は更に、
一端が前記第1のフランジの前記一側面に固定され、前記第1のウェブと平行に配置された第2のウェブと、
前記第2のウェブの他端に固定され、前記第1のウェブと平行に且つ前記第2のフランジとの間に隙間を設けて配置された第3のフランジとを備え、
前記凹部は、前記第1のウェブと前記第2のウェブと前記第1のフランジの前記一側面とによって形成される
衝撃吸収構造体。
The shock absorbing structure according to claim 2,
The beam-shaped structural member further includes
A second web having one end fixed to the one side of the first flange and disposed in parallel with the first web;
A third flange fixed to the other end of the second web, and arranged in parallel with the first web and with a gap between the second flange,
The recess is formed by the first web, the second web, and the one side surface of the first flange.
請求項2又は3に記載された衝撃吸収構造体であって、
前記第1のフランジの前記一端が当接する領域に貫通孔が形成されている
衝撃吸収構造体。
The shock absorbing structure according to claim 2 or 3,
A shock absorbing structure in which a through hole is formed in a region where the one end of the first flange contacts.
請求項2から4のいずれかに記載された衝撃吸収構造体と、
前記第1のフランジに支持された床面と、
前記梁状の構造部材に支持され、前記床面の下側に配置された底面とを具備し、
前記衝撃吸収部材は、前記一端と前記他端とを結ぶ長手方向が鉛直方向を向いて配置される
回転翼航空機。
The shock absorbing structure according to any one of claims 2 to 4,
A floor supported by the first flange;
Supported by the beam-like structural member, and comprises a bottom surface disposed below the floor surface,
The impact absorbing member is arranged such that a longitudinal direction connecting the one end and the other end is oriented in a vertical direction.
請求項1から4のいずれかに記載された衝撃吸収構造体と、
前記衝撃吸収部材は、前記他端が当該自動車のフロント面の方向に向くように配置された
自動車。
The shock absorbing structure according to any one of claims 1 to 4,
The shock absorbing member is an automobile arranged such that the other end faces the front surface of the automobile.
JP2009169301A 2009-07-17 2009-07-17 Shock absorbing structure Active JP5297288B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009169301A JP5297288B2 (en) 2009-07-17 2009-07-17 Shock absorbing structure
EP10799904.7A EP2455285B1 (en) 2009-07-17 2010-07-15 Shock absorbing structure
PCT/JP2010/062013 WO2011007846A1 (en) 2009-07-17 2010-07-15 Shock absorbing structure
US13/384,003 US8827057B2 (en) 2009-07-17 2010-07-15 Shock absorbing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009169301A JP5297288B2 (en) 2009-07-17 2009-07-17 Shock absorbing structure

Publications (2)

Publication Number Publication Date
JP2011020642A true JP2011020642A (en) 2011-02-03
JP5297288B2 JP5297288B2 (en) 2013-09-25

Family

ID=43449456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009169301A Active JP5297288B2 (en) 2009-07-17 2009-07-17 Shock absorbing structure

Country Status (4)

Country Link
US (1) US8827057B2 (en)
EP (1) EP2455285B1 (en)
JP (1) JP5297288B2 (en)
WO (1) WO2011007846A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013244791A (en) * 2012-05-24 2013-12-09 Toyota Motor Corp Impact absorbing device
CN109309274A (en) * 2018-09-18 2019-02-05 张淼淼 A kind of communication base station coupler
CN113766867A (en) * 2019-10-08 2021-12-07 Hoya株式会社 Endoscope and endoscope device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2876042B1 (en) * 2013-11-20 2018-01-03 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Helicopter airframe
EP2889212B1 (en) * 2013-12-30 2016-01-06 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Subfloor structure with an integral hull for a rotary wing aircraft
MX2019010405A (en) * 2017-03-03 2020-01-09 Siemens Healthcare Diagnostics Inc Nanobead containing biosensors and methods of production and use thereof.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2677676B2 (en) * 1988-06-08 1997-11-17 アエロスパシアル・ソシエテ・ナシオナル・アンデユストリエル In particular, aircraft fuselage frame and manufacturing method thereof
JP2009113596A (en) * 2007-11-05 2009-05-28 Toyoda Iron Works Co Ltd Vehicular shock absorbing member
JP2009154587A (en) * 2007-12-25 2009-07-16 Toyota Motor Corp Shock absorbing structure

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3088561A (en) * 1958-11-06 1963-05-07 Wright Barry Corp Damped structures
DE2927036A1 (en) * 1979-07-04 1981-01-15 Daimler Benz Ag BUMPER FOR VEHICLES
US4465312A (en) * 1982-10-04 1984-08-14 Chrysler Corporation Tuned bumper mounting system
US4593870A (en) * 1983-09-09 1986-06-10 Bell Helicopter Textron Inc. Energy absorbing composite aircraft structure
JPH05139242A (en) * 1991-11-19 1993-06-08 Toyota Motor Corp Body front part structure
US5308675A (en) * 1992-09-15 1994-05-03 The United States Of America As Represented By The Secretary Of The Navy Flexible high damping structure
JP3486839B2 (en) * 2000-06-13 2004-01-13 川崎重工業株式会社 Impact resistant structural material
JP3888630B2 (en) 2002-12-04 2007-03-07 川崎重工業株式会社 Energy absorbing member and helicopter impact resistant structure using the same
US7204515B2 (en) * 2004-03-09 2007-04-17 Toyota Technical Center Usa, Inc. Occupant restraint mechanism
US7938362B2 (en) * 2006-02-21 2011-05-10 The Boeing Company Airplane floor assembly
FR2903961B1 (en) * 2006-07-21 2009-09-25 Eurocopter France STRUCTURAL COMPONENT OF THE ROTOR CELL, METHOD FOR MANUFACTURING THE SAME, ROTARY CELL AND GIRAVION COMPRISING SUCH STRUCTURAL ELEMENTS
JP2009107536A (en) * 2007-10-31 2009-05-21 Toyota Motor Corp Vehicle bumper structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2677676B2 (en) * 1988-06-08 1997-11-17 アエロスパシアル・ソシエテ・ナシオナル・アンデユストリエル In particular, aircraft fuselage frame and manufacturing method thereof
JP2009113596A (en) * 2007-11-05 2009-05-28 Toyoda Iron Works Co Ltd Vehicular shock absorbing member
JP2009154587A (en) * 2007-12-25 2009-07-16 Toyota Motor Corp Shock absorbing structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013244791A (en) * 2012-05-24 2013-12-09 Toyota Motor Corp Impact absorbing device
CN109309274A (en) * 2018-09-18 2019-02-05 张淼淼 A kind of communication base station coupler
CN109309274B (en) * 2018-09-18 2020-12-15 阜阳市恒祥生产力促进有限公司 Communication base station coupler
CN113766867A (en) * 2019-10-08 2021-12-07 Hoya株式会社 Endoscope and endoscope device
CN113766867B (en) * 2019-10-08 2024-03-19 Hoya株式会社 Endoscope and endoscope device

Also Published As

Publication number Publication date
EP2455285A4 (en) 2017-04-05
EP2455285A1 (en) 2012-05-23
EP2455285B1 (en) 2019-04-03
JP5297288B2 (en) 2013-09-25
US8827057B2 (en) 2014-09-09
WO2011007846A1 (en) 2011-01-20
US20120112004A1 (en) 2012-05-10

Similar Documents

Publication Publication Date Title
JP5297288B2 (en) Shock absorbing structure
CN111344217B (en) Longitudinal beam device for vehicle
RU2231462C2 (en) Rail vehicle with driver&#39;s cabin of energy absorbing design made for taking up collision forces action onto cabin at level higher than vehicle frame
US20180057062A1 (en) Motor Vehicle
US8333425B2 (en) Vehicle front structure
JP5749959B2 (en) Body front structure
US10953826B1 (en) Vehicular shock-absorbing member
JP2009029244A (en) Vehicle body structure
CA2795863A1 (en) Aircraft with an integrated energy-absorbing deformation structure and aircraft with such a fuselage
WO2010100716A1 (en) Framework structure for vehicle
JP5994321B2 (en) Body front structure
JP2008155699A (en) Vehicle body skeleton structure
CN201009895Y (en) Collision-prevention device for high speed rail vehicle
JP2009012676A (en) Vehicle body rear part structure
JP2009083756A (en) Vehicular side member structure
JP5063287B2 (en) Body front structure
JP6225800B2 (en) Vehicle energy absorption structure
JP4520367B2 (en) Impact structure of aircraft
JP2007008346A (en) Vehicle rear part structure
JP4059042B2 (en) Body structure
CN214823091U (en) Vehicle front cabin structure and vehicle
CN117529431A (en) Crash absorbing element for a motor vehicle
KR101350191B1 (en) Apparatus for reduction wound of passenger&#39;s foot
JP5513904B2 (en) Front body structure of the vehicle
JP4069748B2 (en) Vehicle front structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130614

R151 Written notification of patent or utility model registration

Ref document number: 5297288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250