JP2011019785A - Method for measurement of thickness of horny layer - Google Patents

Method for measurement of thickness of horny layer Download PDF

Info

Publication number
JP2011019785A
JP2011019785A JP2009168429A JP2009168429A JP2011019785A JP 2011019785 A JP2011019785 A JP 2011019785A JP 2009168429 A JP2009168429 A JP 2009168429A JP 2009168429 A JP2009168429 A JP 2009168429A JP 2011019785 A JP2011019785 A JP 2011019785A
Authority
JP
Japan
Prior art keywords
stratum corneum
thickness
measurement
spectrum
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009168429A
Other languages
Japanese (ja)
Other versions
JP5323600B2 (en
Inventor
Norio Shimizu
教男 清水
Noriaki Nakagawa
典昭 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2009168429A priority Critical patent/JP5323600B2/en
Publication of JP2011019785A publication Critical patent/JP2011019785A/en
Application granted granted Critical
Publication of JP5323600B2 publication Critical patent/JP5323600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for non-invasive measurement of the thickness of the horny layer, focusing a difference in Raman spectrum in the horny layer and epidermic cells by Raman spectroscopy. <P>SOLUTION: The method for the measurement of the thickness of the horny layer measures spectrum by the Raman spectroscopy while varying a measurement depth toward the depth of the skin from the surface of the skin, and determines a spectrum measurement depth when the peak peculiar to the horny layer in the spectrum disappears as the thickness of the horny layer with the peak as an index. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、化粧品の選択等の美容目的の角層厚の計測方法に関する。   The present invention relates to a method for measuring a stratum corneum thickness for cosmetic purposes such as selection of cosmetics.

角層は皮膚の最外層に位置し、皮膚における物理的・化学的なバリアとして機能している。一方、角層は人の目に触れる部分であって、角層が乾燥した場合などは一目瞭然で肌荒れを起こしていることが分かるため、角層の保湿を目的として化粧料を塗布してケアすることは、美容分野において非常に重要である。一般に、肌荒れが起こった場合、表皮のターンオーバーが遅くなり角層の厚さが増すことが知られている。従って、角層の厚さを非侵襲的に計測して肌荒れの状態を正しく把握することは、化粧品の研究や化粧品による美容方法の研究等、美容分野において有用である。近年、共焦点ラマン分光装置を用いた角層厚の計測が報告されている。Egawaらは、共焦点ラマン分光装置で計測された皮膚水分量分布の1階微分を行い、その値がゼロになる位置(すなわち、皮膚水分量分布曲線が一定値になる位置)を角層厚と定義している(非特許文献1)。また、Egawaらはこの方法を利用した「美容方法の評価方法」、すなわち角層相当厚を指標にした効果的な化粧水の塗布方法を評価する方法を報告している(特許文献1)。Crowtherらは、共焦点ラマン分光装置で計測された皮膚水分量分布をWeibull関数でフィッティングし、その傾きが0.5になる位置を角層厚と定義している(非特許文献2)。   The stratum corneum is located on the outermost layer of the skin and functions as a physical and chemical barrier in the skin. On the other hand, the stratum corneum is the part that touches the human eye, and when the stratum corneum is dry, it can be seen at a glance that it causes rough skin, so apply cosmetics and care for the purpose of moisturizing the stratum corneum. This is very important in the field of beauty. In general, when rough skin occurs, it is known that the turnover of the epidermis is delayed and the thickness of the stratum corneum increases. Therefore, non-invasively measuring the thickness of the stratum corneum and correctly grasping the state of rough skin is useful in the beauty field, such as research on cosmetics and research on beauty methods using cosmetics. In recent years, measurement of the stratum corneum thickness using a confocal Raman spectrometer has been reported. Egawa et al. Performs first-order differentiation of the skin moisture distribution measured by the confocal Raman spectroscopic device, and determines the position where the value becomes zero (that is, the position where the skin moisture distribution curve becomes a constant value) as the stratum corneum thickness. (Non-patent Document 1). Also, Egawa et al. Have reported a “beauty method evaluation method” using this method, that is, a method for evaluating an effective method of applying lotion using the equivalent thickness of the stratum corneum as an index (Patent Document 1). Crowther et al. Fit the skin moisture distribution measured by the confocal Raman spectroscopic device with the Weibull function, and define the position where the slope becomes 0.5 as the stratum corneum thickness (Non-patent Document 2).

特開2008−188302号公報JP 2008-188302 A

M.Egawa et al., Acta Derm.Venereol., vol.87, p4-8 (2007)M.Egawa et al., Acta Derm.Venereol., Vol.87, p4-8 (2007) J.M.Crowther et al., Br.J.Dermatol., vol159, p567-577 (2008)J.M.Crowther et al., Br.J.Dermatol., Vol159, p567-577 (2008)

しかしながら、これまでに報告されているラマン分光を用いた非侵襲的角層厚計測方法は、いずれも皮膚水分量の深さ分布を基に計測されたものであるが、水分子は角層に特異的に存在するものではないことから、これら従来法により得られた角層厚は正確な角層厚を示すものではない。
従って、本発明の課題は、より正確な非侵襲的角層厚計測方法を提供することにある。
However, all of the non-invasive methods for measuring stratum corneum thickness using Raman spectroscopy that have been reported so far are based on the depth distribution of skin water content. Since it does not exist specifically, the stratum corneum thickness obtained by these conventional methods does not indicate an accurate stratum corneum thickness.
Accordingly, an object of the present invention is to provide a more accurate non-invasive stratum corneum thickness measuring method.

本発明者は、ラマン分光によれば、水分子だけでなく、皮膚を構成する物質の定性的、定量的な計測が可能であることに着目し、角層とその下層の表皮細胞における物質の状態の違いをラマン分光で計測すれば、より正確な角層厚計測が可能となると考えた。そこで、皮膚切片試料を用いてラマン分光測定を実施し、そのスペクトルを測定し、スペクトルの強弱、消失等を検討してきたところ、角層には存在するが、表皮細胞では消失する信号が存在することを見出し、これを測定すれば、正確に角層厚が計測できることを見出した。   The present inventor noticed that, according to Raman spectroscopy, qualitative and quantitative measurement of not only water molecules but also substances constituting the skin is possible. We thought that more accurate stratum corneum thickness measurement would be possible if the difference in state was measured by Raman spectroscopy. Therefore, we have conducted Raman spectroscopic measurement using a skin section sample, measured the spectrum, and examined the intensity and disappearance of the spectrum. As a result, there are signals that are present in the stratum corneum but disappear in epidermal cells. It was found that the stratum corneum thickness can be accurately measured by measuring this.

従って、本発明は、角層厚の計測方法であって、
皮膚表面から皮膚深部方向に向けて、測定深度を変えながら、ラマン分光によりスペクトルを測定し、
該スペクトル中の角層に特異的なピークを指標とし、該ピークが消失するときのスペクトル測定深度を角層厚として決定する、角層厚の計測方法を提供するものである。
Therefore, the present invention is a method for measuring stratum corneum thickness,
Measure the spectrum by Raman spectroscopy while changing the measurement depth from the skin surface toward the skin depth,
The present invention provides a method for measuring a stratum corneum thickness, wherein a peak specific to the stratum corneum in the spectrum is used as an index, and a spectral measurement depth when the peak disappears is determined as a stratum corneum thickness.

本発明により、角層厚を非侵襲的に正確に計測することが可能となる。また、表皮細胞の最終分化に関しin vivoでの解析が可能となる。   According to the present invention, the stratum corneum thickness can be accurately measured non-invasively. In addition, in vivo analysis of epidermal cell terminal differentiation is possible.

皮膚切片試料の顕微ラマン分光によるスペクトル測定部位を示す(丸印はレーザー照射点、点線は表皮と真皮の境界)。(a)角層部分。(b)表皮部分。(c)真皮部分。A spectrum measurement site by microscopic Raman spectroscopy of a skin section sample is shown (circles indicate laser irradiation points, dotted lines indicate the boundary between epidermis and dermis). (A) A stratum corneum part. (B) Epidermis part. (C) Dermal part. 角層、表皮、真皮部分でのラマンスペクトルを対比した図である(図中の矢印は、2850[cm-1]と2880[cm-1]のピーク)。It is the figure which contrasted the Raman spectrum in a stratum corneum, an epidermis, and a dermis part (the arrow in a figure is a peak of 2850 [cm < -1 >] and 2880 [cm < -1 >]). 本発明により計測された角層厚の部位間での比較結果(60代男性12名の平均)を示す。The comparison result (the average of 12 men in their 60s) between the regions of the stratum corneum thickness measured by the present invention is shown. 水分分布量曲線から求めた角層厚の部位間での比較結果(非特許文献1の方法、60代男性12名の平均)を示す。The comparison result (the method of a nonpatent literature 1, the average of 12 males in 60's) between the site | parts of the stratum corneum thickness calculated | required from the moisture distribution amount curve is shown.

本発明では、はじめに、ラマン分光装置を用いて皮膚を深さ方向に非侵襲的に順次測定する。本発明で使用するラマン分光装置は、例えば、J.Raman Spectrosc.,vol.31,p813−818(2000)に開示されているような共焦点ラマン分光装置を用いて行うことができる。皮膚を深さ方向に非侵襲的に順次測定できるラマン分光装置であれば、共焦点ラマンに限らずコヒーレントアンチストークスラマン、誘導ラマン等いずれでも用いることができ、特に限定されない。   In the present invention, first, the skin is sequentially measured non-invasively in the depth direction using a Raman spectroscopic device. The Raman spectroscopic apparatus used in the present invention is disclosed in, for example, J.A. Raman Spectrosc. , Vol. 31, p813-818 (2000). As long as the Raman spectroscopic apparatus can sequentially measure the skin in the depth direction in a non-invasive manner, not only confocal Raman but also coherent anti-Stokes Raman or guided Raman can be used, and there is no particular limitation.

ラマンスペクトルは共焦点装置により、皮膚表面から200μm程度の深さまでの任意の深さのスペクトルを測定することが可能である。実際の測定では、予測される角層厚と測定の効率を考慮し、測定頻度と測定深度を適宜決定して測定を行う。通常の角層の厚さは約20μm前後であることから、皮膚表面から1〜2μm毎に、40μm程度の深さまでスペクトルを測定すれば良い。   The Raman spectrum can be measured with a confocal device at a desired depth from the skin surface to a depth of about 200 μm. In actual measurement, taking into consideration the predicted stratum corneum thickness and measurement efficiency, measurement is performed by appropriately determining the measurement frequency and the measurement depth. Since the thickness of the normal stratum corneum is about 20 μm, the spectrum may be measured to a depth of about 40 μm every 1-2 μm from the skin surface.

本発明は、ラマン分光によって、皮膚を深さ方向に測定深度を変えながら、非侵襲的にスペクトルを順次測定し、測定したスペクトル中の角層に特異的な信号を指標にして、その信号が消失するときの測定深度を角層厚とする計測方法である。本発明では、予めラマンスペクトル中の角層に特異的な信号を明らかにしておく必要がある。角層に特異的な信号を探索する方法としては、例えば、皮膚切片を試料として顕微ラマン分光によってスペクトルを測定して分析する方法が挙げられる。詳しくは、図1に示すように、皮膚切片中の角層(a)、表皮(b)、真皮(c)と測定部位を変えてラマンスペクトルを測定し、角層部分とそれ以外の部位のラマンスペクトルの比較を行い、角層に特異的な信号を決定する。図2に各部位のラマンスペクトルを比較した結果を示す。ラマンスペクトル中、2850±10[cm-1]に検出されるピークと2880±10[cm-1]に検出されるピークは、角層において特異的に検出されるピークであることが判明した(図2矢印)。2850±10[cm-1]に検出されるピークは脂質のCH2対称伸縮振動モードに由来することが、2880±10[cm-1]に検出されるピークは脂質のCH2逆対称伸縮振動モードに由来することが知られている。 In the present invention, the spectrum is sequentially measured non-invasively by changing the measurement depth in the depth direction by Raman spectroscopy, and a signal specific to the stratum corneum in the measured spectrum is used as an index. This is a measurement method in which the measurement depth when disappearing is the stratum corneum thickness. In the present invention, it is necessary to clarify a signal specific to the stratum corneum in the Raman spectrum in advance. As a method for searching for a signal specific to the stratum corneum, for example, there is a method in which a skin section is used as a sample and a spectrum is measured and analyzed by micro Raman spectroscopy. Specifically, as shown in FIG. 1, the Raman spectrum is measured by changing the measurement site from the stratum corneum (a), the epidermis (b), and the dermis (c) in the skin section, and the stratum corneum part and other parts are measured. Comparison of Raman spectra is performed to determine a signal specific to the stratum corneum. FIG. 2 shows the result of comparison of the Raman spectra of each part. In the Raman spectrum, the peak detected at 2850 ± 10 [cm −1 ] and the peak detected at 2880 ± 10 [cm −1 ] were found to be specifically detected peaks in the stratum corneum ( FIG. 2 arrow). The peak detected at 2850 ± 10 [cm −1 ] is derived from the CH 2 symmetric stretching vibration mode of lipid, and the peak detected at 2880 ± 10 [cm −1 ] is the CH 2 inversely symmetric stretching vibration of lipid. It is known to originate from the mode.

脂質は角層や表皮細胞のいずれにおいても存在する成分であるが、前記の2850±10[cm-1]と2880±10[cm-1]に検出されるピークは角層においてのみ検出されている。角層における脂質は、表皮細胞が角化して顆粒層から角層へ移行する際に、細胞内から細胞間隙に放出されラメラ構造を形成し、角層細胞間脂質として皮膚のバリア機能を担っている。一方、表皮細胞内にある脂質は、そのようなラメラ構造は形成していない。2850±10[cm-1]と2880±10[cm-1]に検出されるピークは角層において特異的であることから、これらのピークは角層中に存在する角層細胞間脂質、すなわち、ラメラ構造を形成した角層細胞間脂質に由来するものと考えられる。 Lipids are components present in both the stratum corneum and epidermal cells, but the peaks detected at 2850 ± 10 [cm −1 ] and 2880 ± 10 [cm −1 ] are detected only in the stratum corneum. Yes. Lipids in the stratum corneum are released from the cells into the interstitial space when epidermal cells keratinize and move from the granule layer to the stratum corneum, forming a lamellar structure, and are responsible for the skin barrier function as stratum corneum intercellular lipids. Yes. On the other hand, lipids in epidermal cells do not form such a lamellar structure. Since the peaks detected at 2850 ± 10 [cm −1 ] and 2880 ± 10 [cm −1 ] are specific in the stratum corneum, these peaks are stratum corneum intercellular lipids present in the stratum corneum, ie It is thought to be derived from the stratum corneum intercellular lipid that formed a lamellar structure.

本発明の角層厚の計測方法では、ラマンスペクトル中の角層に特異的なピークが消失する測定深度を角層厚として決定する。ピークの消失を検出する方法としては、目視による方法、スペクトルの1次微分を評価する方法、又は閾値を設定し、ピーク強度が閾値を下回る場合をピーク消失と判断する方法等が挙げられる。   In the stratum corneum thickness measurement method of the present invention, the measurement depth at which a peak specific to the stratum corneum in the Raman spectrum disappears is determined as the stratum corneum thickness. Examples of the method for detecting the disappearance of the peak include a method by visual observation, a method for evaluating the first derivative of the spectrum, or a method in which a threshold is set and the peak intensity falls below the threshold is determined as peak disappearance.

本発明で得られた計測値は、正確に角層の厚さを反映しており、計測時における被験者の角層厚が正確に測定できる。従って、本発明方法は、被験者に合った化粧品の選択、化粧品の研究、被験者毎の美容方法の選択、美容方法の研究等の美容目的で用いることができる。   The measurement value obtained by the present invention accurately reflects the thickness of the stratum corneum, and the subject's stratum corneum thickness at the time of measurement can be accurately measured. Therefore, the method of the present invention can be used for cosmetic purposes such as selection of cosmetics suitable for a subject, research of cosmetics, selection of a cosmetic method for each subject, and research of a cosmetic method.

以下、実施例によって本発明を詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.

実施例(計測部位間での角層厚の比較)
実施例では、パネラーに60代男性12名(63±2歳)を利用し、本発明を用いて上腕内側部と前腕屈側部と顔面頬部の角層厚を計測し比較した。測定は室内環境に15分間馴化させた後に行った。皮膚スペクトルの測定は上述の装置を用いて2700−3100[cm-1]について皮膚表面から2[μm]毎に40[μm]まで行い、1点当たりの測定時間は1[sec]とした。測定は3回繰り返して行い、平均したものを解析に供した。2700−3100[cm-1]において一般的にヒト皮膚で確認される信号は、CH2対称伸縮振動モード(2850±10[cm-1])、CH2逆対称伸縮振動モード(2880±10[cm-1])、CH3対称伸縮振動モード(2930±10[cm-1])、CH3逆対称伸縮振動モード(2960±10[cm-1])、CH伸縮振動モード(3060±10[cm-1])の5つがある。皮膚を探さ方向に順次測定した信号は蛍光等の影響で強度に差異が生じるため、CH3対称伸縮振動モード(2930±10[cm-1])の信号強度で皮膚スペクトルの補正を行った。本実施例では、角層に特異的なピークとしてCH2逆対称伸縮振動モード(2880±10[cm-1])に着目し、その信号が消失する深さを目視にて判定し、角層厚の計測を行った。
Example (comparison of stratum corneum thickness between measurement sites)
In the examples, twelve males in their 60s (63 ± 2 years old) were used as panelists, and the stratum corneum thicknesses of the inner upper arm portion, the forearm bent side portion, and the facial cheek portion were measured and compared using the present invention. Measurements were made after acclimatization to the room environment for 15 minutes. Measurement of the skin spectrum was performed for 2700-3100 [cm −1 ] from the skin surface up to 40 [μm] every 2 [μm] using the above-mentioned apparatus, and the measurement time per point was 1 [sec]. The measurement was repeated three times, and the average was used for analysis. Signals generally confirmed in human skin at 2700-3100 [cm −1 ] are CH 2 symmetric stretching vibration mode (2850 ± 10 [cm −1 ]), CH 2 inversely symmetric stretching vibration mode (2880 ± 10 [ cm −1 ]), CH 3 symmetrical stretching vibration mode (2930 ± 10 [cm −1 ]), CH 3 inversely symmetric stretching vibration mode (2960 ± 10 [cm −1 ]), CH stretching vibration mode (3060 ± 10 [ cm -1 ]). Since the signals obtained by sequentially measuring the skin in the probe direction have different intensities due to the influence of fluorescence or the like, the skin spectrum was corrected with the signal intensity of the CH 3 symmetrical stretching vibration mode (2930 ± 10 [cm −1 ]). In the present embodiment, attention is paid to the CH 2 inversely symmetric stretching vibration mode (2880 ± 10 [cm −1 ]) as a peak specific to the stratum corneum, and the depth at which the signal disappears is visually determined. The thickness was measured.

本発明を用いて上腕内側部、前腕屈側部、顔面頬部それぞれの角層厚を計測した結果を図3に示す。計測されたパネラー12名の平均の角層厚は、上腕内側部、前腕屈側部、顔面頬部でそれぞれ、13.8[μm]、13.7[μm]、6.5[μm]となり、顔面頬部は、上腕内側部及び前腕屈側部に比べて角層が薄いことが示された(対応のあるt−検定、p<0.001)。また、本発明を用いた角層厚計測と同時に、非特許文献1に記載された水分分布量曲線を用いる方法による角層厚計測を行い、比較した。非特許文献1の水分分布量曲線から求めた角層厚は、上腕内側部、前腕屈側部、顔面頬部でそれぞれ、16.8[μm]、16.8[μm]、15.5[μm]となり(図4)、顔面頬部の角層厚は上腕内側部及び前腕屈側部とは統計的な有意差はなかった(対応のあるt−検定)。Zhenらは、皮膚角層枚数の部位差を報告しており(Arch.Dermatol.Res.,vol.291,p555−559(1999))、それによると上腕内側部、前腕屈側部、顔面頬部の角層枚数は、それぞれ13±4、16±4、10±3である。顔面頬部は、上腕内側部及び前腕屈側部に比べて角層枚数が少ない、すなわち角層が薄いことを示している。非特許文献1の方法で計測された皮膚角層厚は、顔面頬部と上腕内側部及び前腕屈側部との間で明瞭な差が得られなかったが、本発明により計測した角層厚は、顔面頬部と上腕内側部及び前腕屈側部との間で明瞭な差を検出することができた。このことから、本発明で計測された角層厚は、既存の方法に比べて鋭敏な角層厚計測方法である。   FIG. 3 shows the results of measuring the horny layer thickness of the inner upper arm portion, the forearm bent side portion, and the facial cheek portion using the present invention. The average stratum corneum thicknesses of the 12 panelists measured were 13.8 [μm], 13.7 [μm], and 6.5 [μm] at the inner upper arm portion, the forearm bent side portion, and the facial cheek portion, respectively. The face cheeks were shown to have a thinner stratum corneum than the medial part of the upper arm and the bent side of the forearm (corresponding t-test, p <0.001). Further, simultaneously with the measurement of the stratum corneum thickness using the present invention, the stratum corneum thickness was measured by the method using the moisture distribution amount curve described in Non-Patent Document 1 and compared. The stratum corneum thickness obtained from the moisture distribution curve in Non-Patent Document 1 is 16.8 [μm], 16.8 [μm], and 15.5 [ μm] (FIG. 4), and the stratum corneum thickness of the facial cheek was not statistically different from the medial part of the upper arm and the bent side of the forearm (corresponding t-test). Zhen et al. Reported site differences in the number of stratum corneum (Arch. Dermatol. Res., Vol. 291, p555-559 (1999)), according to which the medial part of the upper arm, the forearm flexion, the facial cheek. The number of stratum corneum in each part is 13 ± 4, 16 ± 4, and 10 ± 3, respectively. The facial cheeks indicate that the number of stratum corneum is smaller than that of the upper arm inner side and the forearm bent side, that is, the stratum corneum is thin. The skin stratum corneum thickness measured by the method of Non-Patent Document 1 did not show a clear difference between the facial cheek, the upper arm inner side and the forearm bent side, but the stratum corneum thickness measured according to the present invention. Was able to detect a clear difference between the cheek of the face and the inner side of the upper arm and the bent side of the forearm. From this, the stratum corneum thickness measured by the present invention is a more sensitive stratum corneum thickness measuring method than the existing methods.

本発明により、非侵襲的且つより正確に角層厚を計測することが可能となり、それを利用して表皮ターンオーバーや老化の程度を非侵襲的に評価することが可能となり、美容分野で利用可能である。   The present invention makes it possible to measure the stratum corneum thickness non-invasively and more accurately, making it possible to non-invasively evaluate the degree of epidermal turnover and aging, and is used in the beauty field. Is possible.

Claims (4)

角層厚の計測方法であって、
皮膚表面から皮膚深部方向に向けて、測定深度を変えながら、ラマン分光によりスペクトルを測定し、
該スペクトル中の角層に特異的なピークを指標とし、該ピークが消失するときのスペクトル測定深度を角層厚として決定する、角層厚の計測方法。
A method for measuring stratum corneum thickness,
Measure the spectrum by Raman spectroscopy while changing the measurement depth from the skin surface toward the skin depth,
A method for measuring a stratum corneum thickness, wherein a peak specific to the stratum corneum in the spectrum is used as an index, and a spectral measurement depth when the peak disappears is determined as a stratum corneum thickness.
角層に特異的なピークが、角層中に存在する角層細胞間脂質に由来するピークである、請求項1記載の角層厚の計測方法。   The stratum corneum thickness measuring method according to claim 1, wherein the peak specific to the stratum corneum is a peak derived from stratum corneum intercellular lipid present in the stratum corneum. 角層に特異的なピークが、CH2対称伸縮振動モードに由来しスペクトル中2850±10[cm-1]に検出されるピーク、又はCH2逆対称伸縮振動モードに由来しスペクトル中2880±10[cm-1]に検出されるピークである、請求項1記載の角層厚の計測方法。 A peak specific to the stratum corneum originates from the CH 2 symmetric stretching vibration mode and is detected at 2850 ± 10 [cm −1 ] in the spectrum, or originates from the CH 2 inversely symmetric stretching vibration mode and 2880 ± 10 in the spectrum. The stratum corneum thickness measurement method according to claim 1, which is a peak detected at [cm −1 ]. 角層厚の計測が、美容目的である請求項1〜3のいずれか1項記載の角層厚の計測方法。   The method for measuring the stratum corneum thickness according to any one of claims 1 to 3, wherein the stratum corneum thickness is measured for cosmetic purposes.
JP2009168429A 2009-07-17 2009-07-17 Measuring method of stratum corneum thickness Active JP5323600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009168429A JP5323600B2 (en) 2009-07-17 2009-07-17 Measuring method of stratum corneum thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009168429A JP5323600B2 (en) 2009-07-17 2009-07-17 Measuring method of stratum corneum thickness

Publications (2)

Publication Number Publication Date
JP2011019785A true JP2011019785A (en) 2011-02-03
JP5323600B2 JP5323600B2 (en) 2013-10-23

Family

ID=43630378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009168429A Active JP5323600B2 (en) 2009-07-17 2009-07-17 Measuring method of stratum corneum thickness

Country Status (1)

Country Link
JP (1) JP5323600B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013250174A (en) * 2012-06-01 2013-12-12 Kao Corp Evaluation method for moisture permeation barrier function
JP2014180459A (en) * 2013-03-19 2014-09-29 Kao Corp Evaluation method of skin age and evaluation method of cosmetics
JP2017532541A (en) * 2014-09-04 2017-11-02 アールエスピー システムズ アクティーゼルスカブ Transdermal in vivo measurement method and apparatus by Raman spectroscopy
JP2020193915A (en) * 2019-05-29 2020-12-03 花王株式会社 Method of evaluating skin condition of infants

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001504020A (en) * 1996-11-19 2001-03-27 アストロン クリニカ リミテッド Methods for measuring skin tissue
JP2006000385A (en) * 2004-06-17 2006-01-05 Kao Corp Method of analyzing epidermis
JP2006520900A (en) * 2003-03-11 2006-09-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Spectroscopic analysis apparatus and method comprising an excitation system and a focus monitoring system
JP2008157771A (en) * 2006-12-25 2008-07-10 Toppan Printing Co Ltd Analysis method of material containing hemoglobin
JP2008188302A (en) * 2007-02-06 2008-08-21 Shiseido Co Ltd Evaluation method of beauty method
JP2009115513A (en) * 2007-11-02 2009-05-28 Shiseido Co Ltd Method, apparatus, and program for evaluating effectiveness of skin preparation for external application

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001504020A (en) * 1996-11-19 2001-03-27 アストロン クリニカ リミテッド Methods for measuring skin tissue
JP2006520900A (en) * 2003-03-11 2006-09-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Spectroscopic analysis apparatus and method comprising an excitation system and a focus monitoring system
JP2006000385A (en) * 2004-06-17 2006-01-05 Kao Corp Method of analyzing epidermis
JP2008157771A (en) * 2006-12-25 2008-07-10 Toppan Printing Co Ltd Analysis method of material containing hemoglobin
JP2008188302A (en) * 2007-02-06 2008-08-21 Shiseido Co Ltd Evaluation method of beauty method
JP2009115513A (en) * 2007-11-02 2009-05-28 Shiseido Co Ltd Method, apparatus, and program for evaluating effectiveness of skin preparation for external application

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013250174A (en) * 2012-06-01 2013-12-12 Kao Corp Evaluation method for moisture permeation barrier function
JP2014180459A (en) * 2013-03-19 2014-09-29 Kao Corp Evaluation method of skin age and evaluation method of cosmetics
JP2017532541A (en) * 2014-09-04 2017-11-02 アールエスピー システムズ アクティーゼルスカブ Transdermal in vivo measurement method and apparatus by Raman spectroscopy
JP2021035508A (en) * 2014-09-04 2021-03-04 アールエスピー システムズ アクティーゼルスカブ Method and apparatus for transdermal in vivo measurement by raman spectroscopy
JP7079306B2 (en) 2014-09-04 2022-06-01 アールエスピー システムズ アクティーゼルスカブ Percutaneous in vivo measurement method and equipment by Raman spectroscopy
JP2020193915A (en) * 2019-05-29 2020-12-03 花王株式会社 Method of evaluating skin condition of infants

Also Published As

Publication number Publication date
JP5323600B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
Egawa et al. In vivo estimation of stratum corneum thickness from water concentration profiles obtained with Raman spectroscopy
Pudney et al. An in vivo confocal Raman study of the delivery of trans retinol to the skin
US8114022B2 (en) Business method for generating advertising claims
Antonov et al. Methods for the assessment of barrier function
Mateus et al. A new paradigm in dermatopharmacokinetics–confocal Raman spectroscopy
Chrit et al. An in vivo randomized study of human skin moisturization by a new confocal Raman fiber-optic microprobe: assessment of a glycerol-based hydration cream
Binder et al. Penetration monitoring of drugs and additives by ATR-FTIR spectroscopy/tape stripping and confocal Raman spectroscopy–a comparative study
US10085682B2 (en) Apparatus and method of measuring stress
Hoppel et al. Validation of the combined ATR-FTIR/tape stripping technique for monitoring the distribution of surfactants in the stratum corneum
Byrne Bioengineering and subjective approaches to the clinical evaluation of dry skin
Binder et al. Confocal Raman spectroscopy: In vivo measurement of physiological skin parameters–A pilot study
JP5323600B2 (en) Measuring method of stratum corneum thickness
Falcone et al. Microspectroscopic confocal Raman and macroscopic biophysical measurements in the in vivo assessment of the skin barrier: perspective for dermatology and cosmetic sciences
Nogueira et al. Photosensitizer and light diffusion through dentin in photodynamic therapy
Tfaili et al. Monitoring caffeine and resveratrol cutaneous permeation by confocal Raman microspectroscopy
JP5068555B2 (en) Beauty method evaluation method
Egawa et al. Regional difference of water content in human skin studied by diffuse-reflectance near-infrared spectroscopy: consideration of measurement depth
Ri et al. In vivo tracking of DNA for precise determination of the stratum corneum thickness and superficial microbiome using confocal Raman microscopy
Abdulhameed et al. On the suitability of laser-Doppler flowmetry for capturing microvascular blood flow dynamics from darkly pigmented skin
Zhang et al. A portable ultrawideband confocal raman spectroscopy system with a handheld probe for skin studies
JP5451607B2 (en) How to determine the possibility of mutation
Sand et al. Evaluation of the epidermal refractive index measured by optical coherence tomography
Wu et al. Confocal Raman microspectroscopy of stratum corneum: a pre‐clinical validation study
Qassem et al. Use of reflectance near-infrared spectroscopy to investigate the effects of daily moisturizer application on skin optical response and barrier function
Ruini et al. In vivo examination of healthy human skin after short‐time treatment with moisturizers using confocal Raman spectroscopy and optical coherence tomography: preliminary observations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130717

R151 Written notification of patent or utility model registration

Ref document number: 5323600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250