JP2011018102A - Detection device - Google Patents

Detection device Download PDF

Info

Publication number
JP2011018102A
JP2011018102A JP2009160507A JP2009160507A JP2011018102A JP 2011018102 A JP2011018102 A JP 2011018102A JP 2009160507 A JP2009160507 A JP 2009160507A JP 2009160507 A JP2009160507 A JP 2009160507A JP 2011018102 A JP2011018102 A JP 2011018102A
Authority
JP
Japan
Prior art keywords
detection
circuit
circuits
signal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009160507A
Other languages
Japanese (ja)
Inventor
Takehito Kayano
岳人 茅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2009160507A priority Critical patent/JP2011018102A/en
Publication of JP2011018102A publication Critical patent/JP2011018102A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To highly precisely detect an object to be detected across the wide range of environmental temperature.SOLUTION: Each of a plurality of detection circuits U generates a detection signal S corresponding to the presence/absence of a detected object. The plurality of detection circuits U are divided into a plurality of first detection circuits U1 and a plurality of second detection circuits U2 with the different ranges of sensible illuminance. A driving circuit 20 selectively executes a first detecting operation to obtain the detection signal S by driving the plurality of first detection circuits U1 in each unit period UP and a second detecting operation to obtain the detection signal S by driving the plurality of second detection circuits U2 in each unit period PU, according to environmental temperature τ detected by a temperature detection circuit 36.

Description

本発明は、被検出物の有無(接近や接触)を検出する技術に関する。   The present invention relates to a technique for detecting the presence or absence (approach or contact) of an object to be detected.

利用者の身体やペン型の指示部材(スタイラス)などの被検出物を検出する技術が従来から提案されている。例えば特許文献1には、受光素子を含む複数の検出回路が表示用の画素とともに行列状に配列された表示装置が開示されている。受光素子に対する照射光の照度(強度)に応じた検出信号が複数の検出回路の各々から外部装置に出力される。   Techniques for detecting an object to be detected such as a user's body and a pen-shaped pointing member (stylus) have been proposed. For example, Patent Document 1 discloses a display device in which a plurality of detection circuits including light receiving elements are arranged in a matrix with display pixels. A detection signal corresponding to the illuminance (intensity) of the irradiation light with respect to the light receiving element is output from each of the plurality of detection circuits to the external device.

特開2004−318819号公報JP 2004-318819 A

しかし、受光素子の特性は温度に依存する。例えば、所定の照度を所定の感度で受光素子が感知可能な温度は特定の範囲に限定される。したがって、被検出物を高精度に検出できるのは、環境温度が特定の範囲内にある場合に制約される。例えば、受光素子が所定の照度を所定の感度で感知可能な温度の範囲外に環境温度がある場合、被検出物を高精度に判別し得る有意な検出信号を取得することは困難である。以上の事情を考慮して、本発明は、環境温度の広い範囲にわたって被検出物を高精度に検出することを目的とする。   However, the characteristics of the light receiving element depend on temperature. For example, the temperature at which the light receiving element can sense a predetermined illuminance with a predetermined sensitivity is limited to a specific range. Therefore, the ability to detect an object to be detected with high accuracy is limited when the environmental temperature is within a specific range. For example, when the ambient temperature is outside the temperature range in which the light receiving element can sense a predetermined illuminance with a predetermined sensitivity, it is difficult to obtain a significant detection signal that can discriminate the detected object with high accuracy. In view of the above circumstances, an object of the present invention is to detect an object to be detected with high accuracy over a wide range of environmental temperatures.

以上の課題を解決するために、本発明の第1の態様に係る検出装置は、照射光の照度に応じた検出信号を各々が生成する複数の検出回路であって、所定の照度を所定の感度で感知可能な温度の範囲が相違する複数の第1検出回路と複数の第2検出回路とを含む複数の検出回路と、複数の第1検出回路を各単位期間にて駆動して検出信号を取得する第1検出動作と、複数の第2検出回路を各単位期間にて駆動して検出信号を取得する第2検出動作とを、環境温度に応じて選択的に実行する駆動回路とを具備する。以上の態様においては、各第1検出回路の駆動で検出信号を取得する第1検出動作と、各第2検出回路の動作で検出信号を取得する第2検出動作とが、環境温度に応じて選択的に実行されるから、所定の照度を感知可能な温度の範囲が全部の検出回路で共通する構成と比較すると、環境温度の広い範囲にわたって被検出物を高精度に検出できるという利点がある。   In order to solve the above-described problems, the detection device according to the first aspect of the present invention is a plurality of detection circuits each generating a detection signal corresponding to the illuminance of the irradiation light. Detection signals including a plurality of detection circuits including a plurality of first detection circuits and a plurality of second detection circuits having different temperature ranges that can be sensed by sensitivity, and driving the plurality of first detection circuits in each unit period. A drive circuit that selectively executes a first detection operation for obtaining a detection signal and a second detection operation for obtaining a detection signal by driving a plurality of second detection circuits in each unit period. It has. In the above aspect, the first detection operation for acquiring the detection signal by driving each first detection circuit and the second detection operation for acquiring the detection signal by operation of each second detection circuit are in accordance with the environmental temperature. Since it is selectively executed, there is an advantage that a detected object can be detected with high accuracy over a wide range of environmental temperature as compared with a configuration in which a temperature range capable of sensing a predetermined illuminance is common to all detection circuits. .

なお、「第1検出動作と第2検出動作とを選択的に実行する」とは、駆動回路が第1検出動作を実行する場合と駆動回路が第2検出動作を実行する場合とがあることを意味する。したがって、第1検出動作および第2検出動作に加えて他の検出動作が実行され得る構成も本発明の範囲に包含される。例えば、第1検出回路や第2検出回路とは異なる第3検出回路の駆動で検出信号を取得する第3検出動作を第1検出動作および第2検出動作のほかに駆動回路が実行し得る構成は、第1検出動作を実行する場合と第2検出動作を実行する場合とが存在する以上、「第1検出動作と第2検出動作とを選択的に実行する」という要件を当然に充足する。また、「所定の照度を所定の感度で感知可能な温度の範囲」は、換言すると、検出信号の使用の方法や目的にとって有意なレベル(電流値や電圧値)の検出信号を、所定の照度の照射時に検出回路が生成できる温度の範囲(例えば図4の範囲A1や範囲A2)である。なお、所定の照度を所定の感度で感知可能な温度の範囲が第1検出回路と第2検出回路とで重複するか否かは不問である。   “Selectively executing the first detection operation and the second detection operation” means that the drive circuit executes the first detection operation and the drive circuit executes the second detection operation. Means. Therefore, configurations in which other detection operations can be executed in addition to the first detection operation and the second detection operation are also included in the scope of the present invention. For example, a configuration in which the drive circuit can execute a third detection operation for acquiring a detection signal by driving a third detection circuit different from the first detection circuit and the second detection circuit in addition to the first detection operation and the second detection operation. Naturally satisfies the requirement of “selectively executing the first detection operation and the second detection operation” as long as there is a case where the first detection operation is executed and a case where the second detection operation is executed. . In addition, the “temperature range in which a predetermined illuminance can be sensed with a predetermined sensitivity” means, in other words, a detection signal having a level (current value or voltage value) that is significant for the method or purpose of use of the detection signal. This is a temperature range (for example, range A1 and range A2 in FIG. 4) that can be generated by the detection circuit during irradiation. It does not matter whether the temperature range in which the predetermined illuminance can be detected with the predetermined sensitivity overlaps between the first detection circuit and the second detection circuit.

第1の態様に係る検出装置の具体例において、複数の検出回路の各々は、複数の選択線と複数の検出線との各交差に対応して配置されるとともに選択線の選択により検出信号を検出線に出力し、複数の検出線は、2以上の第1検出回路が各々に接続された複数の第1検出線と、2以上の第2検出回路が各々に接続された複数の第2検出線とを含み、複数の第1検出線の各々は、複数の第2検出線の各間隙内に位置し、駆動回路は、各単位期間にて複数の選択線の各々を順次に選択する選択回路と、複数の第1検出線の各々に出力される検出信号を各単位期間にて取得する第1検出動作と、複数の第2検出線の各々に出力される検出信号を各単位期間にて取得する第2検出動作とを選択的に実行する出力回路とを含む。以上の態様においては、2以上の第1検出回路の集合(第1検出線)と2以上の第2検出回路の集合(第2検出線)とが分散して配置されるから、複数の第1検出回路(または複数の第2検出回路)が特定の領域内のみに偏在する構成と比較して、被検出物の検出に利用できる面積を確保し易いという利点がある。なお、以上の態様の具体例は例えば第1実施形態として後述される。   In the specific example of the detection device according to the first aspect, each of the plurality of detection circuits is arranged corresponding to each intersection of the plurality of selection lines and the plurality of detection lines and outputs a detection signal by selecting the selection line. The plurality of detection lines include a plurality of first detection lines connected to two or more first detection circuits, and a plurality of second detection circuits connected to two or more second detection circuits. Each of the plurality of first detection lines is located in each gap of the plurality of second detection lines, and the drive circuit sequentially selects each of the plurality of selection lines in each unit period. A selection circuit; a first detection operation for acquiring a detection signal output to each of the plurality of first detection lines in each unit period; and a detection signal output to each of the plurality of second detection lines in each unit period. And an output circuit that selectively executes the second detection operation acquired in step (b). In the above aspect, a set of two or more first detection circuits (first detection lines) and a set of two or more second detection circuits (second detection lines) are arranged in a distributed manner. Compared to a configuration in which one detection circuit (or a plurality of second detection circuits) is unevenly distributed only in a specific region, there is an advantage that it is easy to secure an area that can be used for detection of an object to be detected. In addition, the specific example of the above aspect is later mentioned as 1st Embodiment, for example.

第1の態様に係る検出装置の具体例において、複数の検出回路の各々は、複数の選択線と複数の検出線との各交差に対応して配置されるとともに選択線の選択により検出信号を検出線に出力し、複数の選択線は、2以上の第1検出回路が各々に接続された複数の第1選択線と、2以上の第2検出回路が各々に接続された複数の第2選択線とを含み、複数の第1選択線の各々は、複数の第2選択線の各間隙内に位置し、駆動回路は、各単位期間にて複数の第1選択線の各々を順次に選択する第1検出動作と、各単位期間にて複数の第2選択線の各々を順次に選択する第2検出動作とを選択的に実行する選択回路と、複数の検出線の各々に出力される検出信号を各単位期間にて取得する出力回路とを含む。以上の態様においては、2以上の第1検出回路の集合(第1選択線)と2以上の第2検出回路の集合(第2選択線)とが分散して配置されるから、複数の第1検出回路(または複数の第2検出回路)が特定の領域内のみに偏在する構成と比較して、被検出物の検出に利用できる面積を確保し易いという利点がある。なお、以上の態様の具体例は例えば第2実施形態として後述される。   In the specific example of the detection device according to the first aspect, each of the plurality of detection circuits is arranged corresponding to each intersection of the plurality of selection lines and the plurality of detection lines and outputs a detection signal by selecting the selection line. The plurality of selection lines include a plurality of first selection lines each having two or more first detection circuits connected thereto, and a plurality of second selection lines each having two or more second detection circuits connected to each other. Each of the plurality of first selection lines is located in each gap of the plurality of second selection lines, and the driving circuit sequentially selects each of the plurality of first selection lines in each unit period. A selection circuit that selectively executes a first detection operation to be selected and a second detection operation to sequentially select each of the plurality of second selection lines in each unit period, and is output to each of the plurality of detection lines. And an output circuit that acquires a detection signal in each unit period. In the above aspect, a set of two or more first detection circuits (first selection line) and a set of two or more second detection circuits (second selection line) are arranged in a distributed manner. Compared to a configuration in which one detection circuit (or a plurality of second detection circuits) is unevenly distributed only in a specific region, there is an advantage that it is easy to secure an area that can be used for detection of an object to be detected. In addition, the specific example of the above aspect is later mentioned as 2nd Embodiment, for example.

本発明の第2の態様に係る検出装置は、照射光の照度に応じた検出信号を各々が生成する複数の検出回路であって、所定の照度を所定の感度で感知可能な温度の範囲が相違する複数の第1検出回路と複数の第2検出回路とを含む複数の検出回路と、複数の検出回路から検出信号を取得する駆動回路と、各第1検出回路の検出信号に応じた第1検出データと各第2検出回路の検出信号に応じた第2検出データとを生成する処理手段(例えば図10の処理部62)と、第1検出データまたは第2検出データを環境温度に応じて選択する選択手段(例えば図10の選択部64)とを具備する。以上の態様においては、第1検出回路が生成した検出信号に応じた第1検出データと第2検出回路が生成した検出信号に応じた第2検出データとが環境温度に応じて選択されるから、所定の照度を感知可能な温度の範囲が全部の検出回路で共通する構成と比較すると、環境温度の広い範囲にわたって被検出物を高精度に検出できるという利点がある。なお、第2の態様に係る検出装置の具体例は、例えば第4実施形態として後述される。   The detection device according to the second aspect of the present invention is a plurality of detection circuits each generating a detection signal corresponding to the illuminance of the irradiated light, and has a temperature range in which the predetermined illuminance can be sensed with a predetermined sensitivity. A plurality of detection circuits including a plurality of different first detection circuits and a plurality of second detection circuits, a drive circuit for obtaining a detection signal from the plurality of detection circuits, and a first signal corresponding to the detection signal of each first detection circuit The processing means (for example, the processing unit 62 in FIG. 10) that generates one detection data and second detection data corresponding to the detection signal of each second detection circuit, and the first detection data or the second detection data according to the environmental temperature Selection means (for example, the selection unit 64 in FIG. 10). In the above aspect, the first detection data corresponding to the detection signal generated by the first detection circuit and the second detection data corresponding to the detection signal generated by the second detection circuit are selected according to the environmental temperature. Compared with a configuration in which a temperature range in which a predetermined illuminance can be sensed is common to all the detection circuits, there is an advantage that an object to be detected can be detected with high accuracy over a wide range of environmental temperatures. In addition, the specific example of the detection apparatus which concerns on a 2nd aspect is later mentioned as 4th Embodiment, for example.

なお、第2の態様において「第1検出データまたは第2検出データを選択する」とは、第1検出データを選択する場合と第2検出データを選択する場合とがあることを意味する。したがって、第1検出データおよび第2検出データとは異なる他の検出データが選択の候補となる構成も本発明の範囲に包含される。例えば、第1検出回路や第2検出回路とは異なる第3検出回路の駆動で生成された第3検出データを第1検出データおよび第2検出データのほかに処理手段が生成し、第1検出データと第2検出データと第3検出データとの何れかを選択手段が選択する構成は、第1検出データを選択する場合と第2検出データを選択する場合とが存在する以上、「第1検出データまたは第2検出データを選択する」という要件を当然に充足する。   In the second mode, “selecting the first detection data or the second detection data” means that the first detection data may be selected or the second detection data may be selected. Therefore, a configuration in which other detection data different from the first detection data and the second detection data is a selection candidate is also included in the scope of the present invention. For example, the third detection data generated by driving the third detection circuit different from the first detection circuit and the second detection circuit is generated by the processing means in addition to the first detection data and the second detection data, and the first detection data The configuration in which the selection unit selects any one of the data, the second detection data, and the third detection data has a case where the first detection data is selected and a case where the second detection data is selected. Naturally, the requirement of “selecting detection data or second detection data” is satisfied.

第1の態様の具体例に係る検出装置は、環境温度を検出する温度検出部を具備し、駆動回路は、温度検出部が検出した環境温度に応じて第1検出動作と第2検出動作とを選択的に実行する。同様に、第2の態様の具体例に係る検出装置は、環境温度を検出する温度検出部を具備し、選択手段は、温度検出部が検出した環境温度に応じて第1検出データまたは第2検出データを選択する。以上のように温度検出部を具備する態様によれば、環境温度を容易かつ確実に取得できるという利点がある。   The detection device according to the specific example of the first aspect includes a temperature detection unit that detects an environmental temperature, and the drive circuit includes a first detection operation and a second detection operation according to the environmental temperature detected by the temperature detection unit. Is selectively executed. Similarly, the detection device according to the specific example of the second aspect includes a temperature detection unit that detects the environmental temperature, and the selection unit selects the first detection data or the second data according to the environmental temperature detected by the temperature detection unit. Select the detection data. As described above, according to the aspect including the temperature detection unit, there is an advantage that the environmental temperature can be acquired easily and reliably.

また、第1の態様または第2の態様の具体例に係る検出装置は、第1検出回路が生成した検出信号と第2検出回路が生成した検出信号とから環境温度の高低を判定する温度判定手段(例えば図9のステップSB2を実行する制御回路30)を具備する。以上の態様によれば、環境温度を検出する温度検出部を検出回路から独立して設置する必要がないから、検出装置の構成が簡素化されるという利点がある。なお、本発明における「環境温度」は、検出装置が設置される環境(検出装置の表面や周囲)の温度(理想的には各検出回路の温度)を意味する。   In addition, the detection device according to the specific example of the first aspect or the second aspect includes a temperature determination that determines whether the environmental temperature is high or low from the detection signal generated by the first detection circuit and the detection signal generated by the second detection circuit. Means (for example, control circuit 30 for executing step SB2 of FIG. 9). According to the above aspect, since it is not necessary to install the temperature detection part which detects environmental temperature independently from a detection circuit, there exists an advantage that the structure of a detection apparatus is simplified. The “environment temperature” in the present invention means the temperature (ideally, the temperature of each detection circuit) of the environment (the surface and surroundings of the detection device) in which the detection device is installed.

本発明の第3の態様に係る検出装置は、照射光の照度に応じた検出信号を各々が生成する複数の検出回路であって、所定の照度を所定の感度で感知可能な温度の範囲が相違する複数の第1検出回路と複数の第2検出回路とを含む複数の検出回路と、複数の検出回路から検出信号を取得する駆動回路と、各第1検出回路の検出信号に応じた第1検出データと各第2検出回路の検出信号に応じた第2検出データとを生成する処理手段(例えば図12の処理部62)と、第1検出データと第2検出データとの平均を算定する平均手段(例えば図12の平均部66)とを具備する。以上の態様においては、第1検出回路が生成した検出信号に応じた第1検出データと第2検出回路が生成した検出信号に応じた第2検出データとが平均されるから、所定の照度を感知可能な温度の範囲が全部の検出回路で共通する構成と比較して、環境温度の広い範囲にわたって被検出物を高精度に検出できるという利点がある。なお、第3の態様に係る検出装置の具体例は、例えば第5実施形態として後述される。   The detection device according to the third aspect of the present invention is a plurality of detection circuits each generating a detection signal corresponding to the illuminance of the irradiated light, and has a temperature range in which the predetermined illuminance can be sensed with a predetermined sensitivity. A plurality of detection circuits including a plurality of different first detection circuits and a plurality of second detection circuits, a drive circuit for obtaining a detection signal from the plurality of detection circuits, and a first signal corresponding to the detection signal of each first detection circuit A processing means (for example, the processing unit 62 in FIG. 12) that generates one detection data and second detection data corresponding to the detection signal of each second detection circuit, and calculates the average of the first detection data and the second detection data Average means (for example, the average part 66 in FIG. 12). In the above aspect, since the first detection data corresponding to the detection signal generated by the first detection circuit and the second detection data corresponding to the detection signal generated by the second detection circuit are averaged, a predetermined illuminance is obtained. Compared with a configuration in which the detection temperature range is common to all detection circuits, there is an advantage that a detection object can be detected with high accuracy over a wide range of environmental temperature. In addition, the specific example of the detection apparatus which concerns on a 3rd aspect is later mentioned as 5th Embodiment, for example.

第1実施形態に係る検出装置のブロック図である。It is a block diagram of the detecting device concerning a 1st embodiment. 第1実施形態に係る検出装置の検出回路の回路図である。It is a circuit diagram of the detection circuit of the detection apparatus which concerns on 1st Embodiment. 第1実施形態における第1検出回路と第2検出回路との関係を示す概念図である。It is a conceptual diagram which shows the relationship between the 1st detection circuit and 2nd detection circuit in 1st Embodiment. 第1実施形態の第1検出回路と第2検出回路との特性の相違を示す概念図である。It is a conceptual diagram which shows the difference in the characteristic of the 1st detection circuit and 2nd detection circuit of 1st Embodiment. 第1実施形態に係る検出装置の動作を示すタイミングチャートである。It is a timing chart which shows operation | movement of the detection apparatus which concerns on 1st Embodiment. 第1実施形態に係る検出装置の制御回路の動作のフローチャートである。It is a flowchart of operation | movement of the control circuit of the detection apparatus which concerns on 1st Embodiment. 第2実施形態における第1検出回路と第2検出回路との関係を示す概念図である。It is a conceptual diagram which shows the relationship between the 1st detection circuit and 2nd detection circuit in 2nd Embodiment. 第2実施形態に係る検出装置の動作を示すタイミングチャートである。It is a timing chart which shows operation of a detecting device concerning a 2nd embodiment. 第3実施形態に係る検出装置の制御回路の動作のフローチャートである。It is a flowchart of operation | movement of the control circuit of the detection apparatus which concerns on 3rd Embodiment. 第4実施形態に係る検出装置のブロック図である。It is a block diagram of the detection apparatus which concerns on 4th Embodiment. 第4実施形態に係る検出装置の制御回路の動作のフローチャートである。It is a flowchart of operation | movement of the control circuit of the detection apparatus which concerns on 4th Embodiment. 第5実施形態に係る検出装置のブロック図である。It is a block diagram of the detection apparatus which concerns on 5th Embodiment. 第5実施形態に係る検出装置の制御回路の動作のフローチャートである。It is a flowchart of operation | movement of the control circuit of the detection apparatus which concerns on 5th Embodiment.

<A:第1実施形態>
図1は、本発明の第1実施形態に係る検出装置100Aのブロック図である。検出装置100Aは、物体(被検出物)の検出に利用される機器(例えば、利用者の身体の接触を検出するタッチパネル)である。図1に示すように、検出装置100Aは、複数の検出回路Uが配列された検出部10と、各検出回路Uを駆動する駆動回路20と、駆動回路20を制御する制御回路30とを具備する。駆動回路20は、選択回路22Aと出力回路24Aとを含んで構成される。駆動回路20は、複数の集積回路(チップ)で構成され得る。制御回路30には温度検出部36が接続される。温度検出部36は、検出装置100Aが設置された環境の温度(理想的には検出部10の温度)τを検出する温度センサである。
<A: First Embodiment>
FIG. 1 is a block diagram of a detection apparatus 100A according to the first embodiment of the present invention. The detection device 100A is a device (for example, a touch panel that detects contact of a user's body) used for detecting an object (detected object). As shown in FIG. 1, the detection apparatus 100A includes a detection unit 10 in which a plurality of detection circuits U are arranged, a drive circuit 20 that drives each detection circuit U, and a control circuit 30 that controls the drive circuit 20. To do. The drive circuit 20 includes a selection circuit 22A and an output circuit 24A. The drive circuit 20 can be composed of a plurality of integrated circuits (chips). A temperature detection unit 36 is connected to the control circuit 30. The temperature detection unit 36 is a temperature sensor that detects the temperature (ideally, the temperature of the detection unit 10) τ in which the detection device 100A is installed.

検出部10には、X方向に延在するM本の選択線12と、各選択線12に対をなしてX方向に延在するM本の初期化線14と、X方向に交差するY方向に延在する2N本の検出線16とが形成される(M,Nは自然数)。複数の検出回路Uは、M本の選択線12(初期化線14)と2N本の検出線16との各交差に対応して縦M行×横2N列の行列状に配列される。   The detection unit 10 includes M selection lines 12 extending in the X direction, M initialization lines 14 extending in the X direction in pairs with the selection lines 12, and Y crossing the X direction. 2N detection lines 16 extending in the direction are formed (M and N are natural numbers). The plurality of detection circuits U are arranged in a matrix of vertical M rows × horizontal 2N columns corresponding to the intersections of the M selection lines 12 (initialization lines 14) and the 2N detection lines 16.

図2は、各検出回路Uの回路図である。図2においては、第i行(i=1〜M)の第j列(j=1〜2N)に位置する1個の検出回路Uが代表的に図示されている。検出回路Uは、被検出物の有無(接近や接触)に応じた検出信号S(S[i,j])を生成する回路であり、図2に示すように、受光素子Eと増幅トランジスタTAMPと選択スイッチTSELと初期化スイッチTRSTとを含んで構成される。受光素子Eは、当該受光素子Eに対する照射光の照度(強度)に応じた電流値の光電流IPを生成する。例えばフォトダイオードが受光素子Eとして好適に採用される。受光素子Eに対する照射光の照度は、検出部10の上方における被検出物の有無や遠近に応じて変化する。   FIG. 2 is a circuit diagram of each detection circuit U. In FIG. 2, one detection circuit U located in the j-th column (j = 1 to 2N) of the i-th row (i = 1 to M) is representatively illustrated. The detection circuit U is a circuit that generates a detection signal S (S [i, j]) according to the presence / absence (approach or contact) of an object to be detected. As shown in FIG. And a selection switch TSEL and an initialization switch TRST. The light receiving element E generates a photocurrent IP having a current value corresponding to the illuminance (intensity) of the irradiation light with respect to the light receiving element E. For example, a photodiode is suitably employed as the light receiving element E. The illuminance of the irradiation light with respect to the light receiving element E changes according to the presence or absence of the object to be detected above the detection unit 10 and the distance.

増幅トランジスタTAMPと選択スイッチTSELと初期化スイッチTRSTとは、例えば、基板の表面に受光素子Eとともに形成されたトランジスタ(例えば、半導体層が低温ポリシリコンで形成された薄膜トランジスタ)で構成される。なお、検出回路Uを構成する各トランジスタの導電型は任意である。   The amplification transistor TAMP, the selection switch TSEL, and the initialization switch TRST are configured by, for example, a transistor (for example, a thin film transistor in which a semiconductor layer is formed of low-temperature polysilicon) formed on the surface of the substrate together with the light receiving element E. Note that the conductivity type of each transistor constituting the detection circuit U is arbitrary.

増幅トランジスタTAMPは、自身のゲートの電位に応じた検出信号(光電流IPを増幅した電流信号)S[i,j]を生成する要素であり、給電線18と第j列の検出線16との間に介在する。給電線18には電源回路(図示略)から所定の電位VRSTが供給される。増幅トランジスタTAMPのゲートは受光素子E(陰極)に接続される。   The amplification transistor TAMP is an element that generates a detection signal (a current signal obtained by amplifying the photocurrent IP) S [i, j] corresponding to its gate potential. Intervene between. The power supply line 18 is supplied with a predetermined potential VRST from a power supply circuit (not shown). The gate of the amplification transistor TAMP is connected to the light receiving element E (cathode).

選択スイッチTSELは、検出信号S[i,j]の経路上に配置され、検出線16に対する検出信号S[i,j]の出力の許否を制御する。具体的には、第j列の検出回路Uの選択スイッチTSELは、給電線18と第j列の検出線16とを結ぶ経路上に、増幅トランジスタTAMPに対して直列に配置される。第i行の各検出回路Uにおける選択スイッチTSELのゲートは、第i行の選択線12に対して共通に接続される。   The selection switch TSEL is disposed on the path of the detection signal S [i, j], and controls whether the detection signal S [i, j] is output to the detection line 16. Specifically, the selection switch TSEL of the detection circuit U in the j-th column is arranged in series with the amplification transistor TAMP on a path connecting the feeder line 18 and the detection line 16 in the j-th column. The gates of the selection switches TSEL in the detection circuits U in the i-th row are commonly connected to the selection line 12 in the i-th row.

初期化スイッチTRSTは、増幅トランジスタTAMPのゲートと給電線18(または他の配線)との間に介在して両者の電気的な接続(導通/非導通)を制御する。第i行の各検出回路Uにおける初期化スイッチTRSTのゲートは、第i行の初期化線14に対して共通に接続される。   The initialization switch TRST is interposed between the gate of the amplification transistor TAMP and the power supply line 18 (or other wiring) and controls the electrical connection (conduction / non-conduction) between the two. The gates of the initialization switches TRST in the detection circuits U in the i-th row are commonly connected to the initialization line 14 in the i-th row.

図3に示すように、検出部10内の複数の検出回路Uは、温度特性が相異なる第1検出回路U1と第2検出回路U2とに区分される。第1検出回路U1と第2検出回路U2とは、以下に説明するように、所定の照度の照射光を受光素子Eが有意な感度で感知可能な温度の範囲が相違する。   As shown in FIG. 3, the plurality of detection circuits U in the detection unit 10 are divided into a first detection circuit U1 and a second detection circuit U2 having different temperature characteristics. As described below, the first detection circuit U1 and the second detection circuit U2 have different temperature ranges in which the light receiving element E can sense irradiation light with a predetermined illuminance with significant sensitivity.

図4は、所定の照度を受光素子Eに照射したときの検出装置100A(検出部10)の温度と受光素子Eの感度(例えば光電流IPの電流値)との関係を示すグラフである。図4の特性F1で示すように、第1検出回路U1の受光素子Eは、温度が範囲A1内にある場合に、所定値αを上回る感度で所定の照射光を検知可能である。すなわち、範囲A1内の温度のもとで光電流IP(あるいは検出信号S[i,j]の電流値)が所定値を上回る。他方、所定値αを上回る感度で第2検出回路U2の受光素子Eが照射光を検知可能な温度の範囲A2は、範囲A1と比較して高温側に分布する。受光素子Eが感知可能な温度の範囲は、例えば受光素子Eの受光層の寸法や材料などの様々な要因に応じて、第1検出回路U1と第2検出回路U2とで別個に設定される。   FIG. 4 is a graph showing the relationship between the temperature of the detection device 100A (detection unit 10) and the sensitivity of the light receiving element E (for example, the current value of the photocurrent IP) when the light receiving element E is irradiated with a predetermined illuminance. As shown by the characteristic F1 in FIG. 4, the light receiving element E of the first detection circuit U1 can detect the predetermined irradiation light with sensitivity exceeding the predetermined value α when the temperature is within the range A1. That is, the photocurrent IP (or the current value of the detection signal S [i, j]) exceeds the predetermined value under the temperature within the range A1. On the other hand, the temperature range A2 in which the light receiving element E of the second detection circuit U2 can detect the irradiation light with sensitivity exceeding the predetermined value α is distributed on the high temperature side as compared with the range A1. The temperature range that can be sensed by the light receiving element E is set separately for the first detection circuit U1 and the second detection circuit U2 according to various factors such as the size and material of the light receiving layer of the light receiving element E, for example. .

図3に示すように、第1検出回路U1は、奇数列(第(2n-1)列)に位置し、第2検出回路U2は、偶数列(第2n列)に位置する(n=1〜N)。すなわち、Y方向に配列するM個の第1検出回路U1の集合(奇数列)と、Y方向に配列するM個の第2検出回路U2の集合(偶数列)とが、検出部10内にてX方向に沿って交互に配置される。したがって、N個の第1検出回路U1とN個の第2検出回路U2とが1行内に存在する。   As shown in FIG. 3, the first detection circuit U1 is located in the odd-numbered column ((2n-1) th column), and the second detection circuit U2 is located in the even-numbered column (second nth column) (n = 1). ~ N). That is, the set of M first detection circuits U1 arranged in the Y direction (odd number columns) and the set of M second detection circuits U2 arranged in the Y direction (even number columns) are included in the detection unit 10. Are alternately arranged along the X direction. Therefore, N first detection circuits U1 and N second detection circuits U2 exist in one row.

また、2N本の検出線16は、図3に示すように、M個の第1検出回路U1が各々に接続されたN本の第1検出線161と、M個の第2検出回路U2が各々に接続されたN本の第2検出線162とに区分される。第1検出線161は奇数列(第(2n-1)列)に位置し、第2検出線162は偶数列(第2n列)に位置する。   As shown in FIG. 3, 2N detection lines 16 include N first detection lines 161 connected to M first detection circuits U1 and M second detection circuits U2, respectively. It is divided into N second detection lines 162 connected to each. The first detection lines 161 are located in odd-numbered columns ((2n-1) th column), and the second detection lines 162 are located in even-numbered columns (second nth column).

図1の制御回路30は、各第1検出回路U1の駆動で検出信号S[i,2n-1]を取得する第1検出動作と、各第2検出回路U2の駆動で検出信号S[i,2n]を取得する第2検出動作とを、駆動回路20に選択的に実行させる。第1検出動作は、図5に示す各単位期間(垂直走査期間)PUにて複数の検出回路Uを行単位で順次に選択し、選択行(第i行)の2N個の検出回路UのうちN個の第1検出回路U1の各々が生成した検出信号S[i,2n-1](S[i,1],S[i,3],S[i,5],……,S[i,2N-1])を各第1検出線161から取得する動作である。他方、第2検出動作は、複数の検出回路Uを各単位期間PUにて行単位で順次に選択し、選択行(第i行)の2N個の検出回路UのうちN個の第2検出回路U2の各々が生成した検出信号S[i,2n](S[i,2],S[i,4],S[i,6],……,S[i,2N])を各第2検出線162から取得する動作である。   The control circuit 30 in FIG. 1 detects the detection signal S [i, 2n-1] by driving each first detection circuit U1, and the detection signal S [i by driving each second detection circuit U2. , 2n] is selectively executed by the drive circuit 20. In the first detection operation, a plurality of detection circuits U are sequentially selected in units of rows in each unit period (vertical scanning period) PU shown in FIG. 5, and the 2N detection circuits U in the selected row (i-th row) are selected. Of these, the detection signals S [i, 2n-1] (S [i, 1], S [i, 3], S [i, 5],..., S generated by each of the N first detection circuits U1. [i, 2N-1]) is obtained from each first detection line 161. On the other hand, in the second detection operation, the plurality of detection circuits U are sequentially selected in units of rows in each unit period PU, and N second detection circuits out of 2N detection circuits U in the selected row (i-th row). Each detection signal S [i, 2n] (S [i, 2], S [i, 4], S [i, 6],..., S [i, 2N]) generated by each circuit U2 This operation is acquired from the two detection lines 162.

制御回路30は、温度検出部36が検出した環境温度τに応じて第1検出動作および第2検出動作の何れかを選択する。図6は、制御回路30が駆動回路20の動作(第1検出動作/第2検出動作)を選択する処理のフローチャートである。所定の時間毎に図6の処理が実行される。   The control circuit 30 selects one of the first detection operation and the second detection operation according to the environmental temperature τ detected by the temperature detection unit 36. FIG. 6 is a flowchart of processing in which the control circuit 30 selects the operation of the drive circuit 20 (first detection operation / second detection operation). The process shown in FIG. 6 is executed every predetermined time.

図6の処理を開始すると、制御回路30は、閾値τTHを設定する(SA1)。閾値τTHは、例えば操作部(図示略)に対する利用者からの操作に応じて可変に設定される。そして、制御回路30は、温度検出部36が検出した環境温度τが閾値τTHを下回るか否かを判定する(SA2)。環境温度τが閾値τTHを下回る場合(SA2:YES)、制御回路30は、第1検出回路U1から検出信号S[i,2n-1]を取得する第1検出動作を選択する(SA3)。他方、環境温度τが閾値τTHを上回る場合(SA2:NO)、制御回路30は、第2検出回路U2から検出信号S[i,2n]を取得する第2検出動作を選択する(SA4)。   When the processing of FIG. 6 is started, the control circuit 30 sets a threshold value τTH (SA1). The threshold value τTH is variably set according to, for example, an operation from the user on the operation unit (not shown). Then, the control circuit 30 determines whether or not the environmental temperature τ detected by the temperature detector 36 is lower than the threshold value τTH (SA2). When the environmental temperature τ is lower than the threshold value τTH (SA2: YES), the control circuit 30 selects the first detection operation for acquiring the detection signal S [i, 2n-1] from the first detection circuit U1 (SA3). On the other hand, when the environmental temperature τ exceeds the threshold value τTH (SA2: NO), the control circuit 30 selects the second detection operation for acquiring the detection signal S [i, 2n] from the second detection circuit U2 (SA4).

図1の選択回路22Aは、各選択線12の選択/非選択を指定する選択信号GSEL[i](GSEL[1]〜GSEL[M])を生成して第i行の選択線12に出力し、初期化信号GRST[i](GRST[1]〜GRST[M])を生成して第i行の初期化線14に出力する(図2参照)。なお、選択信号GSEL[1]〜GSEL[M]を生成する回路と初期化信号GRST[1]〜GRST[M]を生成する回路とを別個に実装した構成も採用される。   The selection circuit 22A in FIG. 1 generates a selection signal GSEL [i] (GSEL [1] to GSEL [M]) that specifies selection / non-selection of each selection line 12 and outputs it to the selection line 12 in the i-th row. Then, the initialization signal GRST [i] (GRST [1] to GRST [M]) is generated and output to the i-th row initialization line 14 (see FIG. 2). A configuration in which a circuit for generating selection signals GSEL [1] to GSEL [M] and a circuit for generating initialization signals GRST [1] to GRST [M] are separately mounted is also employed.

図5に示すように、各単位期間PUはM個の選択期間PSEL[1]〜PSEL[M]を含む。選択信号GSEL[i]は、各単位期間PU内の選択期間PSEL[i]にてハイレベル(第i行の選択を意味するアクティブレベル)に設定され、選択期間PSEL[i]以外ではローレベルに維持される。初期化信号GRST[i]は、選択期間PSEL[i]の開始前の所定の期間内にてハイレベル(アクティブ)に設定され、当該期間以外ではローレベルに維持される(図示略)。   As shown in FIG. 5, each unit period PU includes M selection periods PSEL [1] to PSEL [M]. The selection signal GSEL [i] is set to a high level (active level meaning selection of the i-th row) in the selection period PSEL [i] within each unit period PU, and is set to a low level except for the selection period PSEL [i]. Maintained. The initialization signal GRST [i] is set to a high level (active) within a predetermined period before the start of the selection period PSEL [i], and is maintained at a low level during other periods (not shown).

初期化信号GRST[i]がハイレベルに設定されると、第i行の2N個の検出回路U(U1,U2)の各々の初期化スイッチTRSTがオン状態に遷移する。したがって、第i行の各増幅トランジスタTAMPのゲートの電位は給電線18の電位VRSTに初期化される。そして、初期化信号GRST[i]がローレベルに変化することで第i行の各初期化スイッチTRSTがオフ状態に遷移すると、増幅トランジスタTAMPのゲートは電気的なフローティング状態となる。したがって、増幅トランジスタTAMPのゲートの電位は、受光素子Eの光電流IPに応じた電位に設定される。   When the initialization signal GRST [i] is set to a high level, the initialization switches TRST of the 2N detection circuits U (U1, U2) in the i-th row are turned on. Therefore, the potential of the gate of each amplification transistor TAMP in the i-th row is initialized to the potential VRST of the feeder line 18. Then, when the initialization signal GRST [i] changes to the low level and each initialization switch TRST in the i-th row transitions to the OFF state, the gate of the amplification transistor TAMP enters an electrically floating state. Therefore, the potential of the gate of the amplification transistor TAMP is set to a potential corresponding to the photocurrent IP of the light receiving element E.

図5に示すように、選択期間PSEL[i]では、選択信号GSEL[i]がハイレベルに設定されることで、第i行の2N個の検出回路U(U1,U2)の各々の選択スイッチTSELがオン状態に遷移する。したがって、第i行の2N個の検出回路Uの各々においては、増幅トランジスタTAMPに流れる電流を検出信号S[i,j]として第j列の検出線16に出力することが可能な状態となる。増幅トランジスタTAMPのゲートの電位は光電流IPに応じて設定されるから、検出信号S[i,j]は、受光素子Eに対する照射光の照度に応じた電流値の電流信号となる。   As shown in FIG. 5, in the selection period PSEL [i], the selection signal GSEL [i] is set to a high level, so that each of the 2N detection circuits U (U1, U2) in the i-th row is selected. The switch TSEL transitions to the on state. Therefore, in each of the 2N detection circuits U in the i-th row, the current flowing through the amplification transistor TAMP can be output to the detection line 16 in the j-th column as the detection signal S [i, j]. . Since the potential of the gate of the amplification transistor TAMP is set according to the photocurrent IP, the detection signal S [i, j] is a current signal having a current value corresponding to the illuminance of the irradiation light with respect to the light receiving element E.

図1の出力回路24Aは、図3に示すように、N個のスイッチ42[1]〜42[N]と信号処理回路44とを含んで構成される。スイッチ42[n]は、相隣接する第(2n-1)列の第1検出線161(a端)と第2n列の第2検出線162(b端)とを選択的に信号処理回路44に導通させる。制御回路30は、制御信号GXの出力でスイッチ42[1]〜42[N]を制御する。   The output circuit 24A of FIG. 1 includes N switches 42 [1] to 42 [N] and a signal processing circuit 44 as shown in FIG. The switch 42 [n] selectively selects the first detection line 161 (a end) in the (2n-1) th column and the second detection line 162 (b end) in the second n column adjacent to each other. To conduct. The control circuit 30 controls the switches 42 [1] to 42 [N] with the output of the control signal GX.

図6の処理で第1検出動作を選択した場合、制御回路30は、図5に示すように、第1検出線161(a端)の選択を意味するハイレベルの制御信号GXをスイッチ42[1]〜42[N]に出力する。スイッチ42[1]〜42[N]は、制御信号GXに応じてN本の第1検出線161(第1検出回路U1)を信号処理回路44に導通させる。したがって、各単位期間PU内の選択期間PSEL[1]〜PSEL[M]の各々では、図5に示すように、第i行の2N個の検出回路UのうちN個の第1検出回路U1にて生成されたN系統の検出信号S[i,2n-1](S[i,1],S[i,3],S[i,5],……,S[i,2N-1])が各第1検出線161を介して信号処理回路44に並列に供給される。すなわち、駆動回路20(出力回路24A)は第1検出動作を実行する。他方、信号処理回路44とN本の第2検出線162とは電気的に絶縁されるから、各第2検出回路U2の増幅トランジスタTAMPに電流(検出信号S[i,2n])は流れない。   When the first detection operation is selected in the process of FIG. 6, the control circuit 30 supplies a high-level control signal GX, which indicates selection of the first detection line 161 (a end), to the switch 42 [ 1] to 42 [N]. The switches 42 [1] to 42 [N] conduct the N first detection lines 161 (first detection circuit U1) to the signal processing circuit 44 in response to the control signal GX. Accordingly, in each of the selection periods PSEL [1] to PSEL [M] in each unit period PU, as shown in FIG. 5, N first detection circuits U1 out of 2N detection circuits U in the i-th row. Detection signal S [i, 2n-1] (S [i, 1], S [i, 3], S [i, 5],..., S [i, 2N-1] ]) Is supplied in parallel to the signal processing circuit 44 via each first detection line 161. That is, the drive circuit 20 (output circuit 24A) performs the first detection operation. On the other hand, since the signal processing circuit 44 and the N second detection lines 162 are electrically insulated, no current (detection signal S [i, 2n]) flows through the amplification transistor TAMP of each second detection circuit U2. .

図6の処理で第2検出動作を選択した場合、制御回路30は、図5に示すように制御信号GXをローレベル(第2検出線162の選択を意味するレベル)に設定することで、N本の第2検出線162(第2検出回路U2)を信号処理回路44に導通させる。したがって、各単位期間PU内の選択期間PSEL[i]では、図5に示すように、第i行の2N個の検出回路UのうちN個の第2検出回路U2にて生成されたN系統の検出信号S[i,2n](S[i,2],S[i,4],S[i,6],……,S[i,2N])が各第2検出線162を介して信号処理回路44に並列に供給される。すなわち、駆動回路20は第2検出動作を実行する。他方、信号処理回路44とN本の第1検出線161とは電気的に絶縁されるから、各第1検出回路U1の増幅トランジスタTAMPに電流(検出信号S[i,2n-1])は流れない。   When the second detection operation is selected in the process of FIG. 6, the control circuit 30 sets the control signal GX to a low level (a level meaning selection of the second detection line 162) as shown in FIG. 5. The N second detection lines 162 (second detection circuit U2) are conducted to the signal processing circuit 44. Therefore, in the selection period PSEL [i] in each unit period PU, as shown in FIG. 5, N systems generated by the N second detection circuits U2 among the 2N detection circuits U in the i-th row. Detection signals S [i, 2n] (S [i, 2], S [i, 4], S [i, 6],..., S [i, 2N]) are transmitted via the second detection lines 162. To the signal processing circuit 44 in parallel. That is, the drive circuit 20 performs the second detection operation. On the other hand, since the signal processing circuit 44 and the N first detection lines 161 are electrically insulated, a current (detection signal S [i, 2n-1]) is supplied to the amplification transistor TAMP of each first detection circuit U1. Not flowing.

図3の信号処理回路44は、検出部10から並列に供給されるN系統の検出信号Sを選択期間PSEL[i]内にて順次に選択して1系統の検出信号SOUTを出力するP/S(parallel to serial)変換器である。検出信号SOUTは、制御回路30を介して外部装置に供給されたうえで被検出物の有無の判定や被検出物の形状の特定に利用される。なお、制御回路30が検出信号SOUTを利用して被検出物の有無や形状を判別する構成も採用される。   The signal processing circuit 44 in FIG. 3 sequentially selects the N detection signals S supplied in parallel from the detection unit 10 within the selection period PSEL [i], and outputs one detection signal SOUT. S (parallel to serial) converter. The detection signal SOUT is supplied to an external device via the control circuit 30 and then used to determine the presence or absence of the detection object and to specify the shape of the detection object. A configuration is also employed in which the control circuit 30 determines the presence or absence and shape of an object to be detected using the detection signal SOUT.

以上のように、駆動回路20は、第1検出回路U1の駆動で検出信号S[i,2n-1]を取得する第1検出動作と、第2検出回路U2の駆動で検出信号S[i,2n]を取得する第2検出動作とを、温度検出部36が検出した環境温度τに応じて選択的に実行する。したがって、受光素子Eが照射光を所定の感度で感知可能な温度の範囲が全部の検出回路Uにて共通する構成と比較すると、環境温度τの広い範囲にわたって被検出物を高精度に検出できる(すなわち、検出信号S[i,j]の電流値のダイナミックレンジを充分に確保できる)という利点がある。例えば、検出部10内の全部の検出回路Uに図4の特性F1の受光素子Eを搭載した構成では、環境温度τが高い場合(例えば範囲A2内の上限側にある場合)に被検出物の検出が困難となり、全部の検出回路Uに図4の特性F2の受光素子Eを搭載した構成では、環境温度τが低い場合(例えば範囲A1の下限側にある場合)に被検出物の検出が困難となる。第1実施形態においては、環境温度τが低い場合(閾値τTHを下回る場合)には第1検出動作が実行され、環境温度τが高い場合(閾値τTHを上回る場合)には第2検出動作が実行されるから、環境温度τが範囲A1および範囲A2の何れにある場合でも、被検出物を明確に判別可能な検出信号S[i,j]を生成できるという利点がある。携帯電話機などの可搬型の電子機器は利用者の移動とともに環境温度τが変化し易いから、以上の効果は、検出装置100Aが可搬側の電子機器に搭載された場合に格別に有効である。   As described above, the drive circuit 20 detects the detection signal S [i, 2n-1] by driving the first detection circuit U1, and the detection signal S [i by driving the second detection circuit U2. , 2n] is selectively executed according to the environmental temperature τ detected by the temperature detection unit 36. Therefore, compared with a configuration in which the temperature range in which the light receiving element E can sense the irradiated light with a predetermined sensitivity is common to all the detection circuits U, it is possible to detect the detection object with high accuracy over a wide range of the environmental temperature τ. (In other words, there is an advantage that a sufficient dynamic range of the current value of the detection signal S [i, j] can be secured). For example, in the configuration in which the light receiving element E having the characteristic F1 in FIG. 4 is mounted on all the detection circuits U in the detection unit 10, the object to be detected when the environmental temperature τ is high (for example, on the upper limit side within the range A2). In the configuration in which the light receiving element E having the characteristic F2 shown in FIG. 4 is mounted on all the detection circuits U, detection of an object to be detected is performed when the environmental temperature τ is low (for example, on the lower limit side of the range A1). It becomes difficult. In the first embodiment, the first detection operation is executed when the environmental temperature τ is low (when the temperature is lower than the threshold value τTH), and the second detection operation is performed when the environmental temperature τ is high (when the temperature is higher than the threshold value τTH). As a result, the detection signal S [i, j] that can clearly distinguish the detected object can be generated regardless of whether the environmental temperature τ is in the range A1 or the range A2. Since the portable electronic device such as a mobile phone easily changes the environmental temperature τ as the user moves, the above effect is particularly effective when the detection apparatus 100A is mounted on the portable electronic device. .

また、第1検出回路U1と第2検出回路U2とが選択的に利用されるから、各単位期間PUにて常に全部の検出回路Uから検出信号S[i,j]を取得する(すなわち、全部の検出回路Uの増幅トランジスタTAMPに電流が流れる)構成と比較して、各検出回路Uを構成する要素(例えば増幅トランジスタTAMP)の劣化を抑制することが可能である。また、各単位期間PUでは第1検出回路U1および第2検出回路U2の一方の増幅トランジスタTAMPのみに電流(検出信号S[i,j])が流れるから、常に全部の検出回路Uから検出信号S[i,j]を取得する構成と比較して、検出部10内で消費される電力が削減されるという利点もある。   Further, since the first detection circuit U1 and the second detection circuit U2 are selectively used, the detection signals S [i, j] are always obtained from all the detection circuits U in each unit period PU (that is, Compared with a configuration in which current flows in the amplification transistors TAMP of all the detection circuits U, it is possible to suppress deterioration of elements (for example, the amplification transistors TAMP) constituting each detection circuit U. In each unit period PU, since the current (detection signal S [i, j]) flows only in one amplification transistor TAMP of the first detection circuit U1 and the second detection circuit U2, the detection signal is always output from all the detection circuits U. Compared with the configuration for acquiring S [i, j], there is also an advantage that the power consumed in the detection unit 10 is reduced.

さらに、検出部10内では第1検出回路U1と第2検出回路U2とがX方向に分散して配置されるから、第1検出回路U1や第2検出回路U2が検出部10内の特定の領域に偏在する構成と比較すると、検出部10内の全体を被検出物の検出に利用する(検出可能な面積を充分に確保する)ことが可能である。   Further, since the first detection circuit U1 and the second detection circuit U2 are distributed in the X direction in the detection unit 10, the first detection circuit U1 and the second detection circuit U2 are arranged in a specific manner in the detection unit 10. Compared with a configuration that is unevenly distributed in the region, the entire detection unit 10 can be used for detection of an object to be detected (a sufficiently large area can be detected).

<B:第2実施形態>
次に、本発明の第2実施形態について説明する。なお、以下の各形態において作用や機能が第1実施形態と同様である要素については、以上と同じ符号を付して各々の詳細な説明を適宜に省略する。
<B: Second Embodiment>
Next, a second embodiment of the present invention will be described. In addition, about the element which an effect | action and function are the same as that of 1st Embodiment in each following form, the same code | symbol as above is attached | subjected and each detailed description is abbreviate | omitted suitably.

図7に示すように、検出部10には、X方向に延在する2M本の選択線12および初期化線14(図示略)と、Y方向に延在するN本の検出線16とが形成される。したがって、複数の検出回路Uは、縦2M行×横N列の行列状に配列される。複数の検出回路Uは、奇数行に位置する第1検出回路U1と偶数行に位置する第2検出回路U2とに区分される。すなわち、X方向に配列するN個の第1検出回路U1の集合(奇数行)と、X方向に配列するN個の第2検出回路U2の集合(偶数行)とが、検出部10内にてY方向に沿って交互に配置される。また、2M本の選択線12は、N個の第1検出回路U1が各々に接続されたM本の第1選択線121と、N個の第2検出回路U2が各々に接続されたM本の第2選択線122とに区分される。   As shown in FIG. 7, the detection unit 10 includes 2M selection lines 12 and initialization lines 14 (not shown) extending in the X direction, and N detection lines 16 extending in the Y direction. It is formed. Therefore, the plurality of detection circuits U are arranged in a matrix of 2M vertical rows × N horizontal columns. The plurality of detection circuits U are divided into a first detection circuit U1 located in an odd-numbered row and a second detection circuit U2 located in an even-numbered row. That is, a set of N first detection circuits U1 arranged in the X direction (odd rows) and a set of N second detection circuits U2 arranged in the X direction (even rows) are included in the detection unit 10. Are alternately arranged along the Y direction. The 2M selection lines 12 include M first selection lines 121 each having N first detection circuits U1 connected thereto, and M lines each having N second detection circuits U2 connected thereto. And the second selection line 122.

図7に示すように、第2実施形態の駆動回路20は、選択回路22Bと出力回路24Bとを含んで構成される。出力回路24Bは、第1実施形態の信号処理回路44と同様に、検出部10から並列に供給されるN系統の検出信号Sを順次に選択して1系統の検出信号SOUTを出力する。   As shown in FIG. 7, the drive circuit 20 according to the second embodiment includes a selection circuit 22B and an output circuit 24B. Similarly to the signal processing circuit 44 of the first embodiment, the output circuit 24B sequentially selects the N detection signals S supplied in parallel from the detection unit 10 and outputs one detection signal SOUT.

図7に示すように、選択回路22Bは、M個のスイッチ52[1]〜52[M]と信号生成回路54とを含んで構成される。信号生成回路54(例えばシフトレジスタ)は、図8に示すように、単位期間PU内の各選択期間PSEL[i]にて順次にハイレベル(アクティブ)に設定される制御信号G0[1]〜G0[M]を生成する。すなわち、制御信号G0[m](m=1〜M)の波形は、第1実施形態の選択信号GSEL[m]と同様である。   As shown in FIG. 7, the selection circuit 22 </ b> B includes M switches 52 [1] to 52 [M] and a signal generation circuit 54. As shown in FIG. 8, the signal generation circuit 54 (for example, a shift register) sequentially controls the control signals G0 [1] to G0 [1] to be set to high level (active) in each selection period PSEL [i] in the unit period PU. G0 [M] is generated. That is, the waveform of the control signal G0 [m] (m = 1 to M) is the same as that of the selection signal GSEL [m] of the first embodiment.

図7のスイッチ52[m]は、相隣接する第(2m-1)行の第1選択線121(a端)と第2m行の第2選択線122(b端)とを選択的に信号生成回路54に接続する。スイッチ52[1]〜52[M]は、制御回路30から供給される制御信号GXで制御される。制御回路30は、図6の処理で選択した動作(第1検出動作/第2検出動作)に応じて制御信号GXのレベルを設定する。   The switch 52 [m] in FIG. 7 selectively signals the first selection line 121 (a end) in the (2m-1) th row and the second selection line 122 (b end) in the second m row adjacent to each other. Connected to the generation circuit 54. The switches 52 [1] to 52 [M] are controlled by a control signal GX supplied from the control circuit 30. The control circuit 30 sets the level of the control signal GX according to the operation (first detection operation / second detection operation) selected in the processing of FIG.

第1検出回路U1から検出信号S[i,j]を取得する第1検出動作を選択した場合、制御回路30は、図8に示すように、第1選択線121(a端)の選択を意味するハイレベルの制御信号GXをスイッチ52[1]〜52[M]に出力する。スイッチ52[1]〜52[M]は、制御信号GXに応じてM本の第1選択線121を信号生成回路54に導通させる。したがって、信号生成回路54が生成した制御信号G0[m]は、図8に示すように、選択信号GSEL[2m-1](GSEL[1],GSEL[3],GSEL[5],……,GSEL[2M-1])として第(2m-1)行の第1選択線121に出力される。すなわち、選択回路22Bは、M本の第1選択線121の各々を単位期間PU内の各選択期間PSEL[m]にて順次に選択する。   When the first detection operation for obtaining the detection signal S [i, j] from the first detection circuit U1 is selected, the control circuit 30 selects the first selection line 121 (a end) as shown in FIG. Meaning high level control signal GX is output to switches 52 [1] to 52 [M]. The switches 52 [1] to 52 [M] connect the M first selection lines 121 to the signal generation circuit 54 in accordance with the control signal GX. Therefore, the control signal G0 [m] generated by the signal generation circuit 54 is selected from the selection signals GSEL [2m-1] (GSEL [1], GSEL [3], GSEL [5],..., As shown in FIG. , GSEL [2M-1]) is output to the first selection line 121 in the (2m-1) th row. That is, the selection circuit 22B sequentially selects each of the M first selection lines 121 in each selection period PSEL [m] within the unit period PU.

したがって、単位期間PU内の各選択期間PSEL[m]では、図8に示すように、第(2m-1)行のN個の第1検出回路U1にて生成されたN系統の検出信号S[2m-1,j](S[2m-1,1],S[2m-1,2],S[2m-1,N])が各検出線16を介して出力回路24Bに並列に供給される。すなわち、駆動回路20(選択回路22B)は第1検出動作を実行する。他方、信号生成回路54とM本の第2選択線122とは電気的に絶縁されるから、各第2検出回路U2の増幅トランジスタTAMPに電流は流れない。   Therefore, in each selection period PSEL [m] in the unit period PU, as shown in FIG. 8, N detection signals S generated by the N first detection circuits U1 in the (2m-1) th row. [2m-1, j] (S [2m-1,1], S [2m-1,2], S [2m-1, N]) are supplied in parallel to the output circuit 24B via each detection line 16 Is done. That is, the drive circuit 20 (selection circuit 22B) performs the first detection operation. On the other hand, since the signal generation circuit 54 and the M second selection lines 122 are electrically insulated, no current flows through the amplification transistor TAMP of each second detection circuit U2.

他方、第2検出回路U2から検出信号S[i,j]を取得する第2検出動作を選択した場合、制御回路30は、制御信号GXをローレベルに設定することで、M本の第2選択線122を信号生成回路54に導通させる。したがって、信号生成回路54が生成した制御信号G0[m]は、図8に示すように、選択信号GSEL[2m](GSEL[2],GSEL[4],GSEL[6],……,GSEL[2M])として第2m行の第2選択線122に出力される。すなわち、選択回路22Bは、M本の第2選択線122の各々を単位期間PU内の各選択期間PSEL[m]にて順次に選択する。   On the other hand, when the second detection operation for obtaining the detection signal S [i, j] from the second detection circuit U2 is selected, the control circuit 30 sets the control signal GX to the low level, so that the M second The selection line 122 is conducted to the signal generation circuit 54. Therefore, the control signal G0 [m] generated by the signal generation circuit 54 is selected from the selection signals GSEL [2m] (GSEL [2], GSEL [4], GSEL [6],..., GSEL as shown in FIG. [2M]) is output to the second selection line 122 in the 2m-th row. That is, the selection circuit 22B sequentially selects each of the M second selection lines 122 in each selection period PSEL [m] within the unit period PU.

したがって、各選択期間PSEL[m]では、第2m行のN個の第2検出回路U2にて生成されたN系統の検出信号S[2m,j](S[2m,1],S[2m,2],S[2m,N])が各検出線16を介して出力回路24Bに並列に供給される。すなわち、駆動回路20は第2検出動作を実行する。他方、信号生成回路54とM本の第1選択線121とは電気的に絶縁されるから、各第1検出回路U1の増幅トランジスタTAMPに電流は流れない。   Therefore, in each selection period PSEL [m], N detection signals S [2m, j] (S [2m, 1], S [2m] generated by the N second detection circuits U2 in the 2mth row. , 2], S [2m, N]) are supplied in parallel to the output circuit 24B via the detection lines 16. That is, the drive circuit 20 performs the second detection operation. On the other hand, since the signal generation circuit 54 and the M first selection lines 121 are electrically insulated, no current flows through the amplification transistor TAMP of each first detection circuit U1.

以上のように、第1検出回路U1の駆動で検出信号S[2m-1,j]を取得する第1検出動作と、第2検出回路U2の駆動で検出信号S[2m,j]を取得する第2検出動作とが、環境温度τに応じて選択的に実行されるから、第2実施形態においても第1実施形態と同様の作用および効果が実現される。   As described above, the detection signal S [2m-1, j] is acquired by driving the first detection circuit U1, and the detection signal S [2m, j] is acquired by driving the second detection circuit U2. Since the second detection operation to be performed is selectively executed according to the environmental temperature τ, the same operation and effect as in the first embodiment are realized in the second embodiment.

<C:第3実施形態>
第1実施形態においては温度検出部36が環境温度τを測定したが、第3実施形態では、各検出回路Uが生成した検出信号S[i,j]から環境温度τの高低を判定する。図9は、本発明の第3実施形態における制御回路30が駆動回路20の動作(第1検出動作/第2検出動作)を選択する処理のフローチャートである。所定の時間毎に図9の処理が実行される。
<C: Third Embodiment>
In the first embodiment, the temperature detector 36 measures the environmental temperature τ, but in the third embodiment, the level of the environmental temperature τ is determined from the detection signal S [i, j] generated by each detection circuit U. FIG. 9 is a flowchart of processing in which the control circuit 30 according to the third embodiment of the present invention selects the operation (first detection operation / second detection operation) of the drive circuit 20. The processing of FIG. 9 is executed at every predetermined time.

図9の処理に先立ち、検出部10の各検出回路Uに対する照射光の照度が略同等となる状況が生成される。例えば、全面が所定の階調に設定された用紙(例えばグレーカード)を利用者が検出部10に近接して配置することで、各検出回路Uの照度が略同等に設定される。以上の状況のもとで、制御回路30は、検出部10の全部の検出回路U(第1検出回路U1および第2検出回路U2の双方)から検出信号S[i,j](検出信号SOUT)を取得する(SB1)。例えば、制御回路30は、制御信号GXをハイレベルに設定して駆動回路20に第1検出動作を実行させることで各第1検出回路U1の検出信号S[i,2n-1]を検出信号SOUTとして取得し、制御信号GXをローレベルに設定して駆動回路20に第2検出動作を実行させることで各第2検出回路U2の検出信号S[i,2n]を検出信号SOUTとして取得する。   Prior to the processing of FIG. 9, a situation is generated in which the illuminance of the irradiation light with respect to each detection circuit U of the detection unit 10 is substantially equal. For example, the illuminance of each detection circuit U is set to be approximately equal when the user arranges paper (for example, a gray card) whose entire surface is set to a predetermined gradation close to the detection unit 10. Under the above situation, the control circuit 30 detects the detection signal S [i, j] (detection signal SOUT) from all the detection circuits U (both the first detection circuit U1 and the second detection circuit U2) of the detection unit 10. ) Is acquired (SB1). For example, the control circuit 30 sets the control signal GX to a high level and causes the drive circuit 20 to execute the first detection operation, thereby detecting the detection signal S [i, 2n-1] of each first detection circuit U1. The detection signal S [i, 2n] of each second detection circuit U2 is acquired as the detection signal SOUT by setting the control signal GX to the low level and causing the drive circuit 20 to execute the second detection operation. .

第1検出回路U1の特性F1と第2検出回路U2の特性F2とは図4の関係にあるから、環境温度τが低い場合(例えば範囲A1内にある場合)には各第1検出回路U1の検出信号S[i,2n-1]の電流値が各第2検出回路U2の検出信号S[i,2n]の電流値を上回り、環境温度τが高い場合(例えば範囲A2内にある場合)には各第2検出回路U2の検出信号S[i,2n]の電流値が各第1検出回路U1の検出信号S[i,2n-1]の電流値を上回るという傾向がある。そこで、制御回路30は、図9のステップSB1にて取得した検出信号S[i,j]から環境温度τの高低(低いか否か)を判定する(SB2)。   Since the characteristic F1 of the first detection circuit U1 and the characteristic F2 of the second detection circuit U2 are in the relationship shown in FIG. 4, each first detection circuit U1 when the environmental temperature τ is low (for example, within the range A1). When the current value of the detection signal S [i, 2n-1] exceeds the current value of the detection signal S [i, 2n] of each second detection circuit U2 and the environmental temperature τ is high (for example, within the range A2) ) Has a tendency that the current value of the detection signal S [i, 2n] of each second detection circuit U2 exceeds the current value of the detection signal S [i, 2n-1] of each first detection circuit U1. Therefore, the control circuit 30 determines whether the environmental temperature τ is high or low (whether it is low) from the detection signal S [i, j] acquired in step SB1 of FIG. 9 (SB2).

具体的には、制御回路30は、複数の第1検出回路U1が生成した検出信号S[i,2n-1]の電流値の平均値Iave1と、各第2検出回路U2が生成した検出信号S[i,2n]の電流値の平均値Iave2とを算定したうえで、平均値Iave1が平均値Iave2を上回る場合には環境温度τが低いと判定し(SB2:YES)、平均値Iave2が平均値Iave1を上回る場合には環境温度τが高いと判定する(SB2:NO)。そして、環境温度τが低いと判定した場合には第1検出動作を選択し(SB3)、環境温度τが高いと判定した場合には第2検出動作を選択する(SB4)。   Specifically, the control circuit 30 detects the average value Iave1 of the current values of the detection signals S [i, 2n-1] generated by the plurality of first detection circuits U1 and the detection signals generated by the second detection circuits U2. After calculating the average value Iave2 of the current value of S [i, 2n], if the average value Iave1 exceeds the average value Iave2, it is determined that the environmental temperature τ is low (SB2: YES), and the average value Iave2 is When the average value Iave1 is exceeded, it is determined that the environmental temperature τ is high (SB2: NO). When it is determined that the environmental temperature τ is low, the first detection operation is selected (SB3), and when it is determined that the environmental temperature τ is high, the second detection operation is selected (SB4).

以上の形態においては、検出回路Uからの検出信号S[i,j]に応じて環境温度τの高低が判定されるから、図1の温度検出部36は不要である。したがって、検出装置の構成が簡素化されるという利点がある。なお、検出信号S[i,j]から環境温度τの高低を判定する方法は任意である。例えば、第1検出回路U1の検出信号S[i,2n-1]の電流値の平均値Iave1と第2検出回路U2の検出信号S[i,2n]の電流値の平均値Iave2とに対する所定の演算で環境温度τを推定し(例えば平均値Iave1または平均値Iave2と所定の係数との乗算値を環境温度τとして算定し)、環境温度τと閾値τTHとを比較することで環境温度τの高低を判定する方法も採用される。また、第3実施形態の構成は第2実施形態にも同様に適用される。   In the above embodiment, since the level of the environmental temperature τ is determined according to the detection signal S [i, j] from the detection circuit U, the temperature detection unit 36 in FIG. 1 is unnecessary. Therefore, there exists an advantage that the structure of a detection apparatus is simplified. A method for determining the level of the environmental temperature τ from the detection signal S [i, j] is arbitrary. For example, a predetermined value for the average value Iave1 of the detection signal S [i, 2n-1] of the first detection circuit U1 and the average value Iave2 of the detection signal S [i, 2n] of the second detection circuit U2 is predetermined. The environmental temperature τ is estimated by the calculation of (for example, a value obtained by multiplying the average value Iave1 or the average value Iave2 by a predetermined coefficient as the environmental temperature τ), and the environmental temperature τ is compared with the threshold temperature τTH. A method of determining the height of the is also adopted. The configuration of the third embodiment is similarly applied to the second embodiment.

<D:第4実施形態>
図10は、本発明の第4実施形態に係る検出装置100Bのブロック図である。検出装置100Bの検出部10には複数の検出回路Uが縦M行×横N列の行列状に配列される。複数の検出回路Uは、以上の各形態と同様に第1検出回路U1と第2検出回路U2とに区分される。
<D: Fourth Embodiment>
FIG. 10 is a block diagram of a detection apparatus 100B according to the fourth embodiment of the present invention. In the detection unit 10 of the detection apparatus 100B, a plurality of detection circuits U are arranged in a matrix of vertical M rows × horizontal N columns. The plurality of detection circuits U are divided into a first detection circuit U1 and a second detection circuit U2 as in the above embodiments.

駆動回路20は、選択回路22A(図3)と出力回路24B(図7)とを含んで構成される。選択回路22Aは、選択信号GSEL[1]〜GSEL[M]の出力で単位期間PU内にM本の選択線12の各々を順次に選択し、出力回路24Bは、検出部10から並列に供給されるN系統の検出信号S[i,j]を順次に選択して1系統の検出信号SOUTを出力する。すなわち、第1実施形態から第3実施形態では、第1検出回路U1または第2検出回路U2から選択的に検出信号S[i,j]を取得したのに対し、第4実施形態においては、各第1検出回路U1および各第2検出回路U2の双方から各単位期間PU内にて検出信号S[i,j]を取得する。以上のように、検出信号S[i,j]の取得の段階では第1検出回路U1と第2検出回路U2と(第1検出動作と第2検出動作と)を区別しないから、図10の制御回路30は、制御信号GXを駆動回路20に出力しない。   The drive circuit 20 includes a selection circuit 22A (FIG. 3) and an output circuit 24B (FIG. 7). The selection circuit 22A sequentially selects each of the M selection lines 12 within the unit period PU with the outputs of the selection signals GSEL [1] to GSEL [M], and the output circuit 24B supplies the detection circuit 10 in parallel. The N detection signals S [i, j] are sequentially selected to output one detection signal SOUT. That is, in the first to third embodiments, the detection signal S [i, j] is selectively acquired from the first detection circuit U1 or the second detection circuit U2, whereas in the fourth embodiment, The detection signals S [i, j] are acquired from each of the first detection circuits U1 and each of the second detection circuits U2 within each unit period PU. As described above, the first detection circuit U1 and the second detection circuit U2 (the first detection operation and the second detection operation) are not distinguished at the stage of obtaining the detection signal S [i, j]. The control circuit 30 does not output the control signal GX to the drive circuit 20.

図10に示すように、制御回路30は、処理部62と選択部64とを含んで構成される。処理部62は、第1検出回路U1に対応する検出データD1と第2検出回路U2に対応する検出データD2とを生成する。検出データD1は、各第1検出回路U1の検出信号S[i,j]の電流値に応じた複数(第1検出回路U1と同数)の検出値d1の集合である。他方、検出データD2は、各第2検出回路U2の検出信号S[i,j]の電流値に応じた複数(第2検出回路U2と同数)の検出値d2の集合である。すなわち、検出値d1は、第1検出回路U1の受光素子Eの照度に応じた数値に相当し、検出値d2は、第2検出回路U2の受光素子Eの照度に応じた数値に相当する。   As shown in FIG. 10, the control circuit 30 includes a processing unit 62 and a selection unit 64. The processing unit 62 generates detection data D1 corresponding to the first detection circuit U1 and detection data D2 corresponding to the second detection circuit U2. The detection data D1 is a set of a plurality of detection values d1 (the same number as the first detection circuit U1) corresponding to the current value of the detection signal S [i, j] of each first detection circuit U1. On the other hand, the detection data D2 is a set of a plurality of detection values d2 (the same number as the second detection circuits U2) corresponding to the current value of the detection signal S [i, j] of each second detection circuit U2. That is, the detection value d1 corresponds to a numerical value corresponding to the illuminance of the light receiving element E of the first detection circuit U1, and the detection value d2 corresponds to a numerical value corresponding to the illuminance of the light receiving element E of the second detection circuit U2.

図10に示すように、処理部62は、A/D(analog to digital)変換器622と分離回路624とを含んで構成される。A/D変換器622は、検出信号SOUT(アナログの電流信号)として出力回路24Bから供給される各検出信号S[i,j]のA/D変換で各検出回路Uの検出値d(d1,d2)を生成する。分離回路624は、A/D変換器622による処理後の検出値dを検出値d1と検出値d2とに分離することで検出データD1と検出データD2とを生成する。選択部64は、環境温度τに応じて検出データD1および検出データD2の何れかを選択して出力する。   As illustrated in FIG. 10, the processing unit 62 includes an A / D (analog to digital) converter 622 and a separation circuit 624. The A / D converter 622 performs detection value d (d1) of each detection circuit U by A / D conversion of each detection signal S [i, j] supplied from the output circuit 24B as the detection signal SOUT (analog current signal). , D2). The separation circuit 624 generates the detection data D1 and the detection data D2 by separating the detection value d processed by the A / D converter 622 into the detection value d1 and the detection value d2. The selection unit 64 selects and outputs either the detection data D1 or the detection data D2 according to the environmental temperature τ.

図11は、第4実施形態における制御回路30の動作のフローチャートである。所定の時間毎に図11の処理が実行される。処理を開始すると、制御回路30は、閾値τTHを設定したうえで(SC1)、検出部10の全部の検出回路U(第1検出回路U1および第2検出回路U2の双方)の検出信号S[i,j]を検出信号SOUTとして取得する(SC2)。そして、制御回路30の処理部62は、ステップSC2で取得した検出信号SOUTから検出データD1および検出データD2を生成する(SC3)。   FIG. 11 is a flowchart of the operation of the control circuit 30 in the fourth embodiment. The process shown in FIG. 11 is executed every predetermined time. When the process is started, the control circuit 30 sets the threshold value τTH (SC1) and then detects the detection signals S [of all the detection circuits U (both the first detection circuit U1 and the second detection circuit U2) of the detection unit 10. i, j] is acquired as the detection signal SOUT (SC2). Then, the processing unit 62 of the control circuit 30 generates detection data D1 and detection data D2 from the detection signal SOUT acquired in step SC2 (SC3).

次いで、制御回路30は、環境温度τを特定する(SC4)。環境温度τの特定には、例えば、温度検出部36を利用する第1実施形態の方法が採用される。そして、制御回路30の選択部64は、環境温度τがステップSC1の閾値τTHを下回るか否かを判定する(SC5)。環境温度τが閾値τTHを下回る場合(SC5:YES)、選択部64は、ステップSC3で生成した検出データD1を選択して外部装置に出力する(SC6)。検出データD2は破棄される。他方、環境温度τが閾値τTHを上回る場合(SC5:NO)、選択部64は、ステップSC3で生成した検出データD2を選択して外部装置に出力する(SC7)。検出データD1は破棄される。外部装置は、制御回路30から選択的に出力される検出データD1または検出データD2を利用して被検出物の有無の判定や被検出物の形状の特定を実行する。なお、ステップSC6で選択した検出データD1またはステップSC7で選択した検出データD2を利用して制御回路30が被検出物の有無や形状を判別する構成も採用される。   Next, the control circuit 30 specifies the environmental temperature τ (SC4). For example, the method of the first embodiment using the temperature detection unit 36 is adopted to specify the environmental temperature τ. Then, the selection unit 64 of the control circuit 30 determines whether or not the environmental temperature τ is lower than the threshold value τTH of step SC1 (SC5). When the environmental temperature τ is lower than the threshold τTH (SC5: YES), the selection unit 64 selects the detection data D1 generated in step SC3 and outputs it to the external device (SC6). The detection data D2 is discarded. On the other hand, when the environmental temperature τ exceeds the threshold value τTH (SC5: NO), the selection unit 64 selects the detection data D2 generated in step SC3 and outputs it to the external device (SC7). The detection data D1 is discarded. The external device uses the detection data D1 or the detection data D2 selectively output from the control circuit 30 to determine the presence or absence of the detection object and specify the shape of the detection object. A configuration is also employed in which the control circuit 30 determines the presence / absence or shape of the detection object using the detection data D1 selected in step SC6 or the detection data D2 selected in step SC7.

以上のように、第4実施形態においては、各第1検出回路U1の検出信号S[i,j]に応じた検出データD1(検出値d1)と各第2検出回路U2の検出信号S[i,j]に応じた検出データD2(検出値d2)とが環境温度τに応じて選択される。したがって、第1実施形態と同様に、環境温度τの広い範囲にわたって被検出物を高精度に検出できるという効果が実現される。また、第4実施形態においては、第1検出回路U1と第2検出回路U2とを選択的に駆動するための構成が不要であるから、第1実施形態と比較して駆動回路20の構成が簡素化されるという利点もある。   As described above, in the fourth embodiment, the detection data D1 (detection value d1) corresponding to the detection signal S [i, j] of each first detection circuit U1 and the detection signal S [ The detection data D2 (detection value d2) corresponding to i, j] is selected according to the environmental temperature τ. Therefore, as in the first embodiment, the effect that the detection object can be detected with high accuracy over a wide range of the environmental temperature τ is realized. Further, in the fourth embodiment, the configuration for selectively driving the first detection circuit U1 and the second detection circuit U2 is unnecessary, and therefore the configuration of the drive circuit 20 is different from that in the first embodiment. There is also an advantage of being simplified.

なお、温度検出部36を利用して環境温度τを特定する以上の構成に代えて、各検出回路Uからの検出信号S[i,j]に応じて環境温度τの高低を判定する第3実施形態の構成も採用され得る。すなわち、図11のステップSC1が省略され、図11のステップSC4およびステップSC5は、ステップSC2にて取得した検出信号S[i,j]から環境温度τの高低を判定する処理(図9のステップSB2と同様の処理)に置換される。そして、制御回路30は、環境温度τが低い場合には検出データD1を選択し(SC6)、環境温度τが高い場合には検出データD2を選択する(SC7)。   In addition, instead of the configuration in which the temperature detection unit 36 is used to specify the environmental temperature τ, a third method for determining the level of the environmental temperature τ according to the detection signal S [i, j] from each detection circuit U is used. The configuration of the embodiment may also be adopted. That is, step SC1 in FIG. 11 is omitted, and step SC4 and step SC5 in FIG. 11 are processes for determining the level of the environmental temperature τ from the detection signal S [i, j] acquired in step SC2 (step in FIG. 9). It is replaced with the same processing as SB2. The control circuit 30 selects the detection data D1 when the environmental temperature τ is low (SC6), and selects the detection data D2 when the environmental temperature τ is high (SC7).

<E:第5実施形態>
図12は、第5実施形態に係る検出装置100Cのブロック図である。検出装置100Cは、第4実施形態(図10)における制御回路30の選択部64を平均部66に置換した構成である。平均部66は、処理部62が生成した検出データD1と検出データD2とを平均することで検出データDOUTを生成する。検出データDOUTは、相隣接する第1検出回路U1および第2検出回路U2の各組に対応する複数(M・N/2個)の検出値d0の集合である。検出値d0は、検出データD1における第1検出回路U1(例えば第i行第j列)の検出値d1と、検出データD2における第2検出回路U2(例えば第i行第(j+1)列)の検出値d2との平均値に相当する。
<E: Fifth Embodiment>
FIG. 12 is a block diagram of a detection apparatus 100C according to the fifth embodiment. The detection device 100C has a configuration in which the selection unit 64 of the control circuit 30 in the fourth embodiment (FIG. 10) is replaced with an average unit 66. The averaging unit 66 generates detection data DOUT by averaging the detection data D1 and the detection data D2 generated by the processing unit 62. The detection data DOUT is a set of a plurality (M · N / 2) of detection values d0 corresponding to each set of the first detection circuit U1 and the second detection circuit U2 adjacent to each other. The detection value d0 includes the detection value d1 of the first detection circuit U1 (for example, i-th row and j-th column) in the detection data D1, and the second detection circuit U2 (for example, i-th row (j + 1) -th column) in the detection data D2. Is equivalent to the average value of the detected value d2).

図13は、第5実施形態における制御回路30の動作のフローチャートである。所定の時間毎に図13の処理が実行される。処理を開始すると、制御回路30は、図11のステップSC2と同様に、検出部10の全部の検出回路U(第1検出回路U1および第2検出回路U2の双方)の検出信号S[i,j]を検出信号SOUTとして取得する(SD1)。そして、制御回路30の処理部62は、図11のステップSC3と同様に、検出信号SOUTから検出データD1および検出データD2を生成する(SD2)。制御回路30の平均部66は、検出データD1の各検出値d1と検出データD2の各検出値d2とを平均することで検出データDOUTを生成して外部装置に出力する(SD3)。外部装置は、制御回路30から出力される検出データDOUTを利用して被検出物の有無の判定や被検出物の形状の特定を実行する。なお、ステップSD3で生成した検出データDOUTを利用して制御回路30が被検出物の有無や形状を判別する構成も採用される。   FIG. 13 is a flowchart of the operation of the control circuit 30 in the fifth embodiment. The process shown in FIG. 13 is executed every predetermined time. When the processing is started, the control circuit 30 detects the detection signals S [i, of all the detection circuits U (both the first detection circuit U1 and the second detection circuit U2) of the detection unit 10 as in Step SC2 of FIG. j] is acquired as the detection signal SOUT (SD1). Then, the processing unit 62 of the control circuit 30 generates the detection data D1 and the detection data D2 from the detection signal SOUT as in step SC3 of FIG. 11 (SD2). The averaging unit 66 of the control circuit 30 generates the detection data DOUT by averaging each detection value d1 of the detection data D1 and each detection value d2 of the detection data D2, and outputs the detection data DOUT to the external device (SD3). The external device uses the detection data DOUT output from the control circuit 30 to determine the presence / absence of the detection object and specify the shape of the detection object. A configuration is also employed in which the control circuit 30 determines the presence / absence or shape of an object to be detected using the detection data DOUT generated in step SD3.

以上のように、第5実施形態においては、各第1検出回路U1の検出信号S[i,j]に応じた検出データD1(検出値d1)と各第2検出回路U2の検出信号S[i,j]に応じた検出データD2(検出値d2)との平均で検出データDOUTが生成される。すなわち、検出データDOUTの各検出値d0は、第1検出回路U1の光電流IPと第2検出回路U2の光電流IPとの双方が反映された数値となる。したがって、第1実施形態と同様に、環境温度の広い範囲にわたって被検出物を高精度に検出できるという効果が実現される。また、第1検出回路U1と第2検出回路U2とを選択的に駆動するための構成が不要であるから、第4実施形態と同様に、駆動回路20の構成を簡素化することが可能である。さらに、第5実施形態においては、検出データD1と検出データD2との平均で検出データDOUTが生成されるから、温度検出部36や各検出回路Uを利用した環境温度τの特定が不要である。したがって、検出装置100Cの構成や動作が簡素化されるという利点もある。   As described above, in the fifth embodiment, the detection data D1 (detection value d1) corresponding to the detection signal S [i, j] of each first detection circuit U1 and the detection signal S [ Detection data DOUT is generated by averaging with detection data D2 (detection value d2) corresponding to i, j]. That is, each detection value d0 of the detection data DOUT is a numerical value reflecting both the photocurrent IP of the first detection circuit U1 and the photocurrent IP of the second detection circuit U2. Therefore, as in the first embodiment, the effect that the detected object can be detected with high accuracy over a wide range of the environmental temperature is realized. In addition, since the configuration for selectively driving the first detection circuit U1 and the second detection circuit U2 is unnecessary, the configuration of the drive circuit 20 can be simplified as in the fourth embodiment. is there. Furthermore, in the fifth embodiment, since the detection data DOUT is generated by the average of the detection data D1 and the detection data D2, it is not necessary to specify the environmental temperature τ using the temperature detection unit 36 or each detection circuit U. . Therefore, there is an advantage that the configuration and operation of the detection apparatus 100C are simplified.

<F:変形例>
以上の形態には様々な変形が加えられる。具体的な変形の態様を以下に例示する。以下の例示から任意に選択された2以上の態様は併合され得る。
<F: Modification>
Various modifications are added to the above embodiment. Specific modifications are exemplified below. Two or more aspects arbitrarily selected from the following examples may be merged.

(1)変形例1
以上の各形態においては複数の検出回路Uを2種類(第1検出回路U1,第2検出回路U2)に区分したが、複数の検出回路Uを3種類以上に区分した構成も採用され得る。例えば、複数の検出回路UがK種類(K≧3)に区分された場合を想定すると、第1実施形態においては、スイッチ42[n]がK本の検出線16の何れかを選択的に信号処理回路44に導通させる構成が採用され、第2実施形態においては、スイッチ52[m]がK本の選択線12の何れかを選択的に信号生成回路54に導通させる構成が採用される。また、第4実施形態においては、処理部62が生成したK個の検出データの何れかを選択部64が選択し、第5実施形態においては、処理部62が生成したK個の検出データの平均を平均部66が算定する。
(1) Modification 1
In each of the above embodiments, the plurality of detection circuits U are divided into two types (first detection circuit U1 and second detection circuit U2). However, a configuration in which the plurality of detection circuits U are divided into three or more types may be employed. For example, assuming that a plurality of detection circuits U are divided into K types (K ≧ 3), in the first embodiment, the switch 42 [n] selectively selects any one of the K detection lines 16. A configuration in which the signal processing circuit 44 is conducted is employed, and in the second embodiment, a configuration in which the switch 52 [m] selectively conducts any one of the K selection lines 12 to the signal generation circuit 54 is employed. . Further, in the fourth embodiment, the selection unit 64 selects any of the K detection data generated by the processing unit 62, and in the fifth embodiment, the K detection data generated by the processing unit 62 The average unit 66 calculates the average.

(2)変形例2
第1検出回路U1および第2検出回路U2の区分の仕方は任意である。例えば、第1検出回路U1と第2検出回路U2とがX方向およびY方向の双方に隣合うように複数の検出回路Uを配置した構成も採用される。また、第1検出回路U1と第2検出回路U2とを分散して配置した構成は本発明において必須ではない。例えば、検出部10内に画定された境界線からみて一方の領域に複数の第1検出回路U1を分布させるとともに他方の領域に複数の第2検出回路U2を分布させた構成も採用される。
(2) Modification 2
The method of dividing the first detection circuit U1 and the second detection circuit U2 is arbitrary. For example, a configuration in which a plurality of detection circuits U are arranged so that the first detection circuit U1 and the second detection circuit U2 are adjacent to each other in both the X direction and the Y direction is also employed. Further, the configuration in which the first detection circuit U1 and the second detection circuit U2 are arranged in a distributed manner is not essential in the present invention. For example, a configuration in which a plurality of first detection circuits U1 are distributed in one region as viewed from a boundary line defined in the detection unit 10 and a plurality of second detection circuits U2 is distributed in the other region is also employed.

(3)変形例3
検出装置100(100A,100B,100C)の用途はタッチパネルに限定されない。例えば、利用者の指紋を検出する指紋センサや、利用者の手の静脈を検出する静脈センサ、原稿からの反射光を検出する読取装置(スキャナ)にも以上の各形態に係る検出装置100が利用され得る。
(3) Modification 3
The application of the detection device 100 (100A, 100B, 100C) is not limited to a touch panel. For example, the detection device 100 according to each of the above embodiments includes a fingerprint sensor that detects a user's fingerprint, a vein sensor that detects a vein of the user's hand, and a reading device (scanner) that detects reflected light from a document. Can be used.

100A,100B,100C……検出装置、10……検出部、U……検出回路、U1……第1検出回路、U2……第2検出回路、12……選択線、14……初期化線、16……検出線、18……給電線、20……駆動回路、22A,22B……選択回路、24A,24B……出力回路、30……制御回路、36……温度検出部、42[1]〜42[N]……スイッチ、44……信号処理回路、52[1]〜52[M]……スイッチ、54……信号生成回路、62……処理部、622……A/D変換器、624……分離回路、64……選択部、66……平均部。
100A, 100B, 100C... Detecting device, 10... Detecting section, U... Detecting circuit, U1... First detecting circuit, U2. , 16... Detection line, 18... Feeder line, 20... Drive circuit, 22A, 22B... Selection circuit, 24A and 24B. 1] to 42 [N] …… Switch, 44 …… Signal processing circuit, 52 [1] to 52 [M] …… Switch, 54 …… Signal generation circuit, 62 …… Processing unit, 622 …… A / D Converter, 624... Separation circuit, 64... Selection unit, 66.

Claims (6)

照射光の照度に応じた検出信号を各々が生成する複数の検出回路であって、所定の照度を所定の感度で感知可能な温度の範囲が相違する複数の第1検出回路と複数の第2検出回路とを含む複数の検出回路と、
前記複数の第1検出回路を各単位期間にて駆動して検出信号を取得する第1検出動作と、前記複数の第2検出回路を前記各単位期間にて駆動して検出信号を取得する第2検出動作とを、環境温度に応じて選択的に実行する駆動回路と
を具備する検出装置。
A plurality of detection circuits each generating a detection signal corresponding to the illuminance of the irradiation light, wherein the plurality of first detection circuits and the plurality of second detection circuits are different in temperature ranges in which the predetermined illuminance can be sensed with a predetermined sensitivity. A plurality of detection circuits including a detection circuit;
A first detection operation for obtaining a detection signal by driving the plurality of first detection circuits in each unit period, and a first detection operation for obtaining a detection signal by driving the plurality of second detection circuits in each unit period. A detection device comprising: a drive circuit that selectively executes two detection operations according to an environmental temperature.
環境温度を検出する温度検出部を具備し、
前記駆動回路は、前記温度検出部が検出した前記環境温度に応じて前記第1検出動作と前記第2検出動作とを選択的に実行する
請求項1の検出装置。
It has a temperature detector that detects the ambient temperature,
The detection device according to claim 1, wherein the drive circuit selectively executes the first detection operation and the second detection operation according to the environmental temperature detected by the temperature detection unit.
照射光の照度に応じた検出信号を各々が生成する複数の検出回路であって、所定の照度を所定の感度で感知可能な温度の範囲が相違する複数の第1検出回路と複数の第2検出回路とを含む複数の検出回路と、
前記複数の検出回路から前記検出信号を取得する駆動回路と、
前記各第1検出回路の検出信号に応じた第1検出データと前記各第2検出回路の検出信号に応じた第2検出データとを生成する処理手段と、
前記第1検出データまたは前記第2検出データを環境温度に応じて選択する選択手段と
を具備する検出装置。
A plurality of detection circuits each generating a detection signal corresponding to the illuminance of the irradiation light, wherein the plurality of first detection circuits and the plurality of second detection circuits are different in temperature ranges in which the predetermined illuminance can be sensed with a predetermined sensitivity. A plurality of detection circuits including a detection circuit;
A drive circuit for obtaining the detection signals from the plurality of detection circuits;
Processing means for generating first detection data corresponding to the detection signal of each first detection circuit and second detection data corresponding to the detection signal of each second detection circuit;
And a selection unit that selects the first detection data or the second detection data according to an environmental temperature.
環境温度を検出する温度検出部を具備し、
前記選択手段は、前記温度検出部が検出した前記環境温度に応じて前記第1検出データまたは前記第2検出データを選択する
請求項3の検出装置。
It has a temperature detector that detects the ambient temperature,
The detection device according to claim 3, wherein the selection unit selects the first detection data or the second detection data according to the environmental temperature detected by the temperature detection unit.
前記第1検出回路が生成した検出信号と前記第2検出回路が生成した検出信号とから環境温度の高低を判定する温度判定手段を具備する
請求項1または請求項3の検出装置。
The detection apparatus according to claim 1, further comprising a temperature determination unit that determines whether the environmental temperature is high or low from the detection signal generated by the first detection circuit and the detection signal generated by the second detection circuit.
照射光の照度に応じた検出信号を各々が生成する複数の検出回路であって、所定の照度を所定の感度で感知可能な温度の範囲が相違する複数の第1検出回路と複数の第2検出回路とを含む複数の検出回路と、
前記複数の検出回路から前記検出信号を取得する駆動回路と、
前記各第1検出回路の前記検出信号に応じた第1検出データと前記各第2検出回路の前記検出信号に応じた第2検出データとを生成する処理手段と、
前記第1検出データと前記第2検出データとの平均を算定する平均手段と
を具備する検出装置。
A plurality of detection circuits each generating a detection signal corresponding to the illuminance of the irradiation light, wherein the plurality of first detection circuits and the plurality of second detection circuits are different in temperature ranges in which the predetermined illuminance can be sensed with a predetermined sensitivity. A plurality of detection circuits including a detection circuit;
A drive circuit for obtaining the detection signals from the plurality of detection circuits;
Processing means for generating first detection data corresponding to the detection signals of the first detection circuits and second detection data corresponding to the detection signals of the second detection circuits;
A detection device comprising: averaging means for calculating an average of the first detection data and the second detection data.
JP2009160507A 2009-07-07 2009-07-07 Detection device Pending JP2011018102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009160507A JP2011018102A (en) 2009-07-07 2009-07-07 Detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009160507A JP2011018102A (en) 2009-07-07 2009-07-07 Detection device

Publications (1)

Publication Number Publication Date
JP2011018102A true JP2011018102A (en) 2011-01-27

Family

ID=43595868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009160507A Pending JP2011018102A (en) 2009-07-07 2009-07-07 Detection device

Country Status (1)

Country Link
JP (1) JP2011018102A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012201282A1 (en) 2011-01-31 2012-08-02 Denso Corporation Antenna device, radar device and vehicle radar system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012201282A1 (en) 2011-01-31 2012-08-02 Denso Corporation Antenna device, radar device and vehicle radar system

Similar Documents

Publication Publication Date Title
JP4338140B2 (en) Touch panel integrated display device
US20130162602A1 (en) Display device with optical sensor
TW200907474A (en) Display devices and electronic devices
KR20110063446A (en) Optical control systems with feedback control
KR20120090936A (en) Capacitive key touch sensing using analog inputs and digital outputs
US11126308B2 (en) Integrator, touch display device, and driving methods therefor
JP2019066324A (en) Detector and electronic apparatus
US20240078835A1 (en) Input sensing method and input sensing device including the same
WO2014205951A1 (en) Touch drive circuit, liquid crystal panel, and drive method of same
US10319865B2 (en) Pressure detecting apparatus and method of driving the same
US10067603B1 (en) Touch panel and sensing method of touch panel capable of simultaneously activating columns of sensors within one drive cycle
TWI764161B (en) light detection device
US8766951B2 (en) Optical touch module and optical touch display panel
JP2011018102A (en) Detection device
JP5246072B2 (en) Detection device
CN101149657B (en) Systems for displaying and capturing images
JP7336361B2 (en) detector
JP2011018101A (en) Detection device
US20120235950A1 (en) Circuit for determining positions of contacts on capacitive position detecting panel, touch panel module and method for detecting contacts on capacitive position detecting panel
WO2014134866A1 (en) Positioning detection circuit for touch point of touch panel, touch panel and display device
US10678361B2 (en) Touch circuit, touch array circuit and method for driving the same, and display panel
JP4946486B2 (en) Detection device driving method, detection device, electro-optical device, and electronic apparatus
JP2011018099A (en) Detection device
JP5251794B2 (en) Sensing device and electronic device
US20100073539A1 (en) Solid-state imaging device