JP2011017661A - 加速度センサ - Google Patents

加速度センサ Download PDF

Info

Publication number
JP2011017661A
JP2011017661A JP2009163625A JP2009163625A JP2011017661A JP 2011017661 A JP2011017661 A JP 2011017661A JP 2009163625 A JP2009163625 A JP 2009163625A JP 2009163625 A JP2009163625 A JP 2009163625A JP 2011017661 A JP2011017661 A JP 2011017661A
Authority
JP
Japan
Prior art keywords
damper
flexible
weight
acceleration sensor
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009163625A
Other languages
English (en)
Inventor
Atsuo Hattori
敦夫 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2009163625A priority Critical patent/JP2011017661A/ja
Publication of JP2011017661A publication Critical patent/JP2011017661A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】 強い衝撃を受けても破損しにくい加速度センサを提供する。
【解決手段】 枠部(S)と、前記枠部の内側に一端が結合している板ばね形の可撓部(F)と、前記可撓部の他端が結合している錘部(M)と、前記可撓部の歪みを検出する第一歪み検出手段(P1〜P4)と、前記枠部および前記可撓部および前記錘部のいずれかに設けられ前記錘部が予め設計された所定範囲より大きく変位することを抑制するダンパであって、前記錘部の運動方向に撓む板ばね形のダンパ(40,41)と、を備える。
【選択図】図1

Description

本発明は、MEMS(Micro Electro Mechanical System)センサに関し、特に、加速度センサに関する。
従来、加速度センサにおいて、過度の衝撃が加わったときに錘が所定範囲を超えて変位することを防止するためのストッパを設けることが知られている(例えば特許文献1〜8)。
特開平10−104262号公報 特開2000−338124号公報 特開平7−159432号公報 特開2003−270262号公報 特開2004−233072号公報 特開2006−153519号公報 特開2006−208272号公報 特開2006−317180号公報
特許文献1〜8に記載されているストッパは強直であるため、それ自体が変形したり変位したりして錘部の運動を抑制するものではない。そのため、衝撃を吸収できずに錘部や可撓部やストッパ自体が破損してしまう可能性がある。
本発明は、強い衝撃を受けても破損しにくい加速度センサを提供することを目的の1つとする。
(1)上記目的を達成するための加速度センサは、枠部と、前記枠部の内側に一端が結合している板ばね形の可撓部と、前記可撓部の他端が結合している錘部と、前記可撓部の歪みを検出する第一歪み検出手段と、前記枠部および前記可撓部および前記錘部のいずれかに設けられ前記錘部が予め設計された所定範囲より大きく変位することを抑制するダンパであって、前記錘部の運動方向に撓む板ばね形のダンパと、を備える。
錘部が所定範囲を超えて変位すると、ダンパが錘部または枠部に接触する(ダンパが設けられる構成によって接触する対象は異なる)。ダンパは錘部の運動方向に撓む板ばね形をしているので、ダンパは錘部が所定範囲より大きく変位することを抑制しつつ可撓部とともに撓む。そのため、錘部は枠部の内壁に強い衝撃で衝突することを防ぐことができ、錘部や可撓部を破損しにくくすることができる。また、ダンパ自体も弾性を有するため破損しにくい。なお、予め設計された所定範囲とは、撓んだダンパが接触対象部位(ダンパを設ける構成に応じて異なる)に接触しない状態で錘部が運動可能な範囲を指す。
(2)上記目的を達成するための加速度センサにおいて、前記ダンパの厚さ方向と直交する前記ダンパの短手方向と、前記可撓部の厚さ方向と直交する前記可撓部の短手方向と、前記枠部の開口面に直交する方向とが、平行であってもよい。
この構成によると、ダンパの形成と、可撓部の形成と、枠部の開口の形成を、共通の工程で行うことができる。
(3)上記目的を達成するための加速度センサにおいて、前記ダンパの歪みを検出する第二歪み検出手段を備えていてもよい。
この構成によると、錘部や枠部や可撓部の破損を防止できるとともに、検出する加速度のダイナミックレンジを広げることができる。錘部の変位が所定範囲内である間は、可撓部の歪みを検出する第一歪み検出手段によって加速度を検出することができる。錘部が所定範囲を超えて変位すると、可撓部とともにダンパも撓む。そのときのダンパの歪みを第二歪み検出手段によって検出すると、所定範囲を超えて錘部が変位するほどの大きな加速度も検出することができる。すなわち、一つの加速度センサの中に、検出する加速度の大きさ別に二種類の検出機構を設け、可撓部の厚さを薄くして感度を上げることと、ダンパの存在によって大きな加速度も検出できることとを両立させダイナミックレンジを広げることができる。また、所定範囲を超えて錘部が運動するような大きな加速度が加わったか否かを、第一歪み検出手段の出力のみならずダンパの第二歪み検出手段の出力によっても判定することができるので、当該大きな加速度が加わったか否かの判定の信頼性を高めることができる。
(1A)は第一実施形態にかかる加速度センサの上面図、(1B)〜(1D)はその断面図。 (2A)は第一実施形態にかかる加速度センサの動作を説明するための図、(2B)は歪みを検出するための回路図。 (3A),(3C)〜(3E)は第一実施形態にかかる加速度センサの製造方法を示す断面図、(3B)は上面図。 (4A)は第二実施形態にかかる加速度センサの上面図、(4B)は出力電圧と加速度との関係を示すグラフ。 (5A)〜(5D)は他の実施形態にかかる加速度センサの上面図。
以下、本発明の実施の形態を添付図面を参照しながら以下の順に説明する。尚、各図において対応する構成要素には同一の符号が付され、重複する説明は省略される。
1.第一実施形態
(構成)
図1および図2は、本発明による加速度センサの第一実施形態を示している。図1Aは加速度センサ1の上面図、図1Bは図1AのBB線における断面図、図1Cは図1AのCC線における断面図、図1Dは図1AのDD線における断面図を示している。説明の便宜のために図1に示すように直交するxyz軸を定める(静止状態における可撓部Fの長手方向をx軸とし、可撓部Fの厚さ方向をy軸とし、xy軸に直交する軸をz軸とする)。加速度センサ1はy軸方向の加速度を検出する1軸加速度センサである。加速度センサ1はMEMSとして構成され、単結晶珪素(Si)からなるバルク層10、二酸化珪素(SiO)などからなる絶縁層11、アルミニウム(Al)等からなる配線部13などで構成される積層構造体である。加速度センサ1は、図示しないパッケージに収容され、パッケージ内部に枠部Sが固定される。
加速度センサ1は、矩形枠形態を有する枠部Sと、枠部Sの内側に一端が結合している板ばね形の可撓部Fと、可撓部Fの他端に結合している錘部Mと、可撓部Fの両端近傍に設けられたピエゾ抵抗素子P1〜P4(第一歪み検出手段)と、枠部Sの内側に一端が結合しているダンパ40,41とを備えている。図2Aにおいては、請求項に対応する各構成要素の境界を破線で示している。加速度センサ1は、錘部Mに作用する力に応じた可撓部Fの変形をピエゾ抵抗素子P1〜P4によって電気信号に変換することによって加速度を検出することができる。枠部Sは、バルク層10と絶縁層11とで主に構成される。バルク層10の厚さは625μm、絶縁層11の厚さは1μmである。
錘部Mは、凹部50が形成されたコの字形状を有しており、錘部Mの重心は当該凹部50の内部にある。錘部Mは、バルク層10と絶縁層11とで主に構成される。可撓部Fは、y軸方向に薄い板ばね形を有しており、錘部Mの凹部50の底面と結合している。ピエゾ抵抗素子P1とピエゾ抵抗素と子P2の配列方向、およびピエゾ抵抗素子P3とピエゾ抵抗素子P4の配列方向が可撓部Fの厚さ方向と平行である。可撓部Fは、バルク層10と絶縁層11とで主に構成される。ダンパ40,41は、y軸方向に薄い板ばね形を有しており、静止状態において可撓部Fの長手方向とダンパ40,41の長手方向とは平行であり、枠部Sの開口面とも平行である。ダンパ40,41は、バルク層10と絶縁層11とで主に構成される。すなわち、可撓部Fと枠部Sと錘部Mとダンパ40,41とは共通の積層構造を有しており、z軸方向の厚さが等しい。
錘部Mのy軸方向の全長W1は800μm、凹部50の両外側の幅W2は370μm、凹部50の深さW4は650μm、凹部50の底面からx軸方向の錘部Mの端部までの長さW3は100μmである。また、可撓部Fのy軸方向の幅(厚さ)W5は30μm、ダンパ40,41のy軸方向の幅(厚さ)W6は30μmである。枠部Sの幅W7は可撓部Fやダンパ40,41の厚さに比べて十分厚く強直であり、300μm程度である。
可撓部Fの端部近傍のバルク層10には、前述のピエゾ抵抗素子P1〜P4が形成されている。ピエゾ抵抗素子P1〜P4は、厚さ方向に直交する方向が厚さ方向よりも長く形成されている。ピエゾ抵抗素子P1〜P4の両端には低抵抗部60がそれぞれ形成されている。絶縁層11にはコンタクトホールが形成されており、ピエゾ抵抗素子P1〜P4は低抵抗部60を介してコンタクトホール内の配線部13に接続する。ピエゾ抵抗素子P1〜P4は図2Bに示すように、可撓部Fの厚さ方向および長手方向に隣り合う素子同士で結線されブリッジ回路が構成されている。
(動作)
加速度センサ1がy軸方向に加速したとき、可撓部Fは略S字形状に変形する。枠部Sを基準にすると、枠部Sに対して錘部M(凹部50内に重心がある)は、加速方向と逆方向に平行移動しようとするが、凹部50の底面に可撓部Fが結合しているため、錘部Mは加速方向と逆方向に移動しつつ、凹部50の底面を中心として加速方向に回転する。そのために可撓部Fは弓なりではなく略S字に変形する。図2Aは、ピエゾ抵抗素子P2,P4が圧縮され、ピエゾ抵抗素子P1,P3が引っ張られている状態を示している。可撓部FがS字形状に変形すると、図2Bに示すブリッジ回路において隣り合うピエゾ抵抗の抵抗値の差が広がり、出力電圧が変化する。この出力電圧の変化から加速度を導出することができる。
予め設計された所定範囲(本実施形態では、錘部Mが、静止状態のダンパ40またはダンパ41に接触しない範囲)を超えて錘部Mが変位すると、錘部Mはダンパ40またはダンパ41に接触し、ダンパ40またはダンパ41がy軸方向に撓む。図2Aは、錘部Mが所定範囲をダンパ41側に超えて変位した場合にダンパ41がy軸方向に撓んでいる様子を表している。ダンパ40またはダンパ41が撓むことにより、錘部Mとの接触による衝撃をダンパ40またはダンパ41が吸収することができる。そのため、枠部Sや錘部M、可撓部F、ダンパ40,41が破損しにくい。
(製造方法)
図3は加速度センサ1の製造方法を説明するための断面図および上面図である。まず、図3Aに示すように、バルク層10としての単結晶シリコン基板の表面に絶縁層11を形成し、フォトレジストからなる保護層R1を用いて、絶縁層11をエッチングしてコンタクトホールH1と凹部30とを形成する。凹部30は、完成状態において枠部Sと錘部Mと可撓部Fとダンパ40,41との間に形成されている空隙の位置と重なり(図3Bは図3Aに示す状態における上面図を示している)、絶縁層11のみが除去されバルク層10が残存した状態であるために出現する凹部である。絶縁層11としては例えば、プラズマ−CVD(Chemical Vapor Deposition)法を用いて厚さ1μmのSiOあるいはSiを成膜する。LP(Low Pressure)−CVDを用いてSiOを成膜してもよい。絶縁層11のエッチングには、例えばCHFを用いた反応性イオンエッチング法を用いる。コンタクトホールH1および凹部30が形成された位置ではバルク層10が露出している(図3B参照)。その後、保護層R1を除去する。
続いて、図3Cに示すように、低抵抗部60およびピエゾ抵抗素子Pxを形成する位置に開口が形成された保護層R2(フォトレジスト)を絶縁層11の表面に形成する。このとき、低抵抗部60を形成しようとする位置においてバルク層10は露出しており、ピエゾ抵抗素子Pxを形成しようとする位置においてバルク層10の表面には絶縁層11が積層している状態である。その状態で保護層R2の開口位置に絶縁層11ごしに、バルク層10に不純物イオンを導入し、ピエゾ抵抗素子Pxと低抵抗部60とを形成する。例えば、ホウ素(B)イオンを6×1020/cmの濃度で注入すると、ピエゾ抵抗素子PxのBイオン濃度は2×1018/cmとなる。この工程によると、一度の不純物イオン注入で、ピエゾ抵抗素子Pxと低抵抗部60を形成できる。
続いて、コンタクトホールH1内部と絶縁層11の表面に配線層を形成し、図3Dに示すように、フォトレジストからなる保護層R4を用いて配線層をエッチングして配線部13を形成する。配線層には例えば、厚さ0.6μmのAlを用いる。Alを成膜する前に密着層として厚さ300AのTiを成膜してもよい。また、バリアメタルとしてTiNxを成膜してもよい。また、Alの代わりにAlSiやAlSiCuを用いてもよい。配線層のエッチングには、例えばClガスを用いた反応性イオンエッチングを採用する。配線層をエッチングして配線部13を形成した後、保護層R4を除去する。
続いて、図3Eに示すように、絶縁層11をマスクパターンに用いて、バルク層10をエッチングすることによって、枠部Sと可撓部Fと錘部Mとダンパ40,41とを形成する。具体的には例えば、絶縁層11をマスクパターンに用いて、バルク層10をDeep−RIEによりエッチングする。Deep−RIEには、Cプラズマによる保護ステップと、SFプラズマによるエッチングステップを短く交互に繰り返すボッシュプロセスを用いる。以上の工程によって、図1に示す加速度センサ1を製造することができる。
2.第二実施形態
(構成)
図4Aは、第二実施形態にかかる加速度センサ2を示している。第二実施形態の加速度センサ2は、ダンパに40,41の端部近傍に第二歪み検出手段としてのピエゾ抵抗素子P5〜P8,P9〜P12が設けられている点で、第一実施形態の加速度センサ1と相違する。ピエゾ抵抗素子P5,P8,P9,P12は枠部Sに設けられ、ピエゾ抵抗素子P6,P7はダンパ40の枠部Sと結合している端部に設けられ、ピエゾ抵抗素子P10,P11はダンパ41の枠部Sと結合している端部に設けられている。P5〜P8の4つのピエゾ抵抗素子を一組としてブリッジ回路を構成しており、ダンパ40の歪みを検出することができる。また、P9〜P12の4つのピエゾ抵抗素子を一組としてブリッジ回路を構成しているおり、ダンパ41の歪みを検出することができる。その他の構成は第一実施形態と共通する。
(動作)
図4Bは、加速度センサ2に作用する加速度と、上述のブリッジ回路の出力電圧との関係を示すグラフである。予め設計された所定範囲内で錘部Mが変位するとき、すなわち、錘部Mがダンパに接触しない範囲で変位するときは、可撓部Fのみが撓むので、ピエゾ抵抗素子P1〜P4で構成されるブリッジ回路の出力電圧から加速度を導出することができる。錘部Mが所定範囲を超えて変位すると、錘部Mはダンパ40あるいはダンパ41に接触し、ダンパ40あるいはダンパ41を撓ませる。例えば錘部Mがダンパ41に接触しダンパ41が撓むと、ダンパ41の歪みを検出するピエゾ抵抗素子P9〜P12で構成されるブリッジ回路の出力電圧が変化する。すなわち、錘部Mがダンパ41に接触した直後から、図4Bの第二歪み検出手段として示した直線のように、加速度に比例して第二歪み検出手段に対応するブリッジ回路の出力電圧が変化する。そのため、錘部Mが所定範囲を超えて変位するほどの大きな加速度も本実施形態の加速度センサ2によって検出することができる。したがって、本実施形態の加速度センサ2によると、検出する加速度のダイナミックレンジを広げることができる。
なお、ダンパの歪みを検出するブリッジ回路の出力電圧と加速度の関係(図4Bのグラフにおける傾き)は、ダンパの厚さで制御することができる。可撓部Fについても同様に、ブリッジ回路の出力電圧と加速度との関係は可撓部Fの厚さによって制御することができる。
また、本実施形態によると、所定範囲を超えて錘部Mが運動するような大きな加速度が加わったか否かを、可撓部Fの第一歪み検出手段の出力のみならずダンパ40,41の第二歪み検出手段の出力によっても判定することができるので、当該大きな加速度が加わったか否かの判定の信頼性を高めることができる。
なお、ストッパ40,41のy軸方向に直交する側面であって錘部Mと対向しない方の側面の、枠部Sと結合していない端部に、ストッパ40,41と枠部Sとのスティッキングを防止するための凸部あるいは凹凸部を形成してもよい。
(製造方法)
第一実施形態の製造方法における図3Aで説明した工程において、第一実施形態の保護層R1の開口に加えて、ダンパ40,41に対応する低抵抗部60を形成する位置に開口が形成された保護層R1を用いる。また、図3Cの工程においては、ピエゾ抵抗素子P5〜P12と当該ピエゾ抵抗素子P5〜P12の両端の低抵抗部60とを形成するために、第一実施形態の保護層R2の開口に加えて、当該ピエゾ抵抗素子と低抵抗部60とを形成する位置が追加された保護層R2を用いる。他の工程は第一実施形態と共通する。
3.他の実施形態
尚、本発明の技術的範囲は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、上記実施形態で示した材質や寸法や形状や成膜方法やパターン転写方法はあくまで例示であるし、当業者であれば自明である工程の追加や削除や工程順序の入れ替えについては説明が省略されている。
上記実施形態では、ダンパが枠部に設けられている例を説明したが、ダンパは枠部以外にも可撓部や錘部に設けられていてもよい。図5A〜図5Dは、本発明の他の実施形態にかかる加速度センサを示している。図5A〜図5Dにおいては、請求項に対応する各構成要素の境界を破線で示している。また、説明の便宜のためにxy軸を定義している(静止状態における可撓部Fの長手方向をx軸とし、可撓部Fの厚さ方向をy軸とする)。図5Aに示す実施形態では、ダンパ40,41の両端が枠部Sの内側のy軸に垂直な面においてそれぞれ結合し、x軸方向の中央部が両端部より錘部M側に接近するようにカーブした形状となっており、錘部Mのy軸方向に所定範囲を超える変位を抑制する。錘部Mの重心は可撓部Fの端部より先にあるため錘部Mが運動するとき可撓部Fは弓なりに変形する。ピエゾ抵抗素子Pは可撓部Fの枠部Sと結合している端部でかつ可撓部Fの厚さ方向に離間して2つ設けられ、他の2つのピエゾ抵抗素子Pは枠部Sに設けられる。なお、ダンパ40,41は、y軸に平行な枠部Sの内側の2つの面に両端が結合している形態でもよい。
図5Bに示す実施形態では、錘部Mは長手方向が互いに平行な2つの可撓部Fによって枠部Sの内側に連結しており、ダンパ40,41は、板ばね形であり、直方体形状の錘部Mのy軸方向に直交する側面に一端が結合するように設けられている。ダンパ40,41の錘部Mと結合していない方の端部には枠部Sに対するスティッキング防止用の凸部40a、41aが形成されている。錘部Mにy軸方向の力が作用したとき、2つの可撓部Fが互いに錘部Mの回転運動を妨げるため、錘部Mはy軸方向に平行移動する。そのため可撓部Fが略S字形状に変形する。ピエゾ抵抗素子Pは、1つの可撓部につき4つずつ設けられている(当該可撓部の両端近傍に当該可撓部の厚さ方向に離間して2つずつ計4つ)。錘部Mが所定範囲(ダンパ40,41が枠部Sに接触しない状態で錘部Mが運動できる範囲)を超えて平行移動すると、ダンパ40またはダンパ41(凸部40aまたは凸部41a)が枠部Sに接触して撓み、錘部Mが所定範囲を超えて変位することを抑制する。凸部40a,41aは曲面を有しており、枠部Sとの接触面積は、凸部が設けられていない場合のストッパ40,41と枠部Sとの接触面積と比較すると小さい。そのため錘部Mがy軸方向に平行移動するために可撓部FがS字に変形するのにともなって錘部Mがわずかにx軸方向に変位する際に、枠部Sとの摩擦抵抗を少なくすることができ、ストッパ40,41は枠部Sに対して滑らかに摺動することができる。凸部を設けることにより、特に、ストッパの歪みからも加速度を検出する構成の場合に、精度よく加速度を検出することができる。
図5Cに示す実施形態では、可撓部Fのy軸に直交する側面にダンパ40,41が設けられている。錘部Mの重心は可撓部Fの端部より先にあるため、錘部Mが運動するとき可撓部Fは弓なりに変形する。この実施形態では、錘部Mに関する予め設計された所定範囲とは、すなわちダンパ40あるいはダンパ41が枠部Sに接触しない状態で錘部Mが運動する範囲である。当該所定範囲を超えて錘部Mが変位すると、ダンパ40,41は枠部Sに接触して撓み、錘部Mが当該所定範囲を超えて変位することを抑制する。ピエゾ抵抗素子Pは可撓部Fの枠部Sと結合している端部でかつ可撓部Fの厚さ方向に離間して2つ設けられ、他の2つのピエゾ抵抗素子Pは枠部Sに設けられる。
図5Dに示す実施形態では、互いに平行な2つの可撓部Fを介してT字形状の錘部Mが枠部Sの内周に連結している。錘部Mにy軸方向の力が作用したとき、2つの可撓部Fが互いに錘部Mの回転運動を妨げるため、錘部Mはy軸方向に平行移動する。ダンパ40,41は、可撓部Fの厚さ方向に直交する一方の側面(錘部Mと対向しない側の側面)に一端が結合するように設けられている。錘部Mがy軸方向に平行移動するとき、可撓部Fが略S字形状に変形する。本実施形態における錘部Mに対する予め設計された所定範囲とは、可撓部Fに設けられたダンパ40,41が枠部Sに接触しない状態で錘部Mが変位する範囲である。当該所定範囲を超えて錘部Mが変位すると、ダンパ40あるいはダンパ41が枠部に接触し、錘部Mの当該所定範囲を超える変位を抑制する。ピエゾ抵抗素子Pは、図5Bの実施形態と同様に1つの可撓部につき4つずつ設けられている。
なお、上記実施形態では、可撓部Fの厚さ方向に直交する可撓部Fの短手方向と、ダンパ40,41の厚さ方向に直交するダンパの短手方向と、枠部Sの開口面に直交する方向とが、平行である形態を説明したが、本発明はその形態に限定されるものではない。例えば、可撓部がz軸方向に薄い板ばね形で、ダンパがy軸方向に薄い板ばね形であってもよい。
1:加速度センサ、2:加速度センサ、10:バルク層、11:絶縁層、13:配線部、30:凹部、40,41:ダンパ、40a,41a:凸部、50:凹部、60:低抵抗部、F:可撓部、H1:コンタクトホール、M:錘部、P,P1〜P12,Px:ピエゾ抵抗素子、S:枠部。

Claims (3)

  1. 枠部と、
    前記枠部の内側に一端が結合している板ばね形の可撓部と、
    前記可撓部の他端が結合している錘部と、
    前記可撓部の歪みを検出する第一歪み検出手段と、
    前記枠部および前記可撓部および前記錘部のいずれかに設けられ前記錘部が予め設計された所定範囲より大きく変位することを抑制するダンパであって、前記錘部の運動方向に撓む板ばね形のダンパと、
    を備える加速度センサ。
  2. 前記ダンパの厚さ方向と直交する前記ダンパの短手方向と、前記可撓部の厚さ方向と直交する前記可撓部の短手方向と、前記枠部の開口面に直交する方向とが、平行である、
    請求項1に記載の加速度センサ。
  3. 前記ダンパの歪みを検出する第二歪み検出手段を備える、
    請求項1または請求項2に記載の加速度センサ。
JP2009163625A 2009-07-10 2009-07-10 加速度センサ Withdrawn JP2011017661A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009163625A JP2011017661A (ja) 2009-07-10 2009-07-10 加速度センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009163625A JP2011017661A (ja) 2009-07-10 2009-07-10 加速度センサ

Publications (1)

Publication Number Publication Date
JP2011017661A true JP2011017661A (ja) 2011-01-27

Family

ID=43595556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009163625A Withdrawn JP2011017661A (ja) 2009-07-10 2009-07-10 加速度センサ

Country Status (1)

Country Link
JP (1) JP2011017661A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105004314A (zh) * 2015-07-16 2015-10-28 郑州双杰科技有限公司 基于mems阵列的大坝变形连续观测方法与装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105004314A (zh) * 2015-07-16 2015-10-28 郑州双杰科技有限公司 基于mems阵列的大坝变形连续观测方法与装置

Similar Documents

Publication Publication Date Title
CN109696164B (zh) 具有两阶段运动限制结构的mems装置
US8096182B2 (en) Capacitive sensor with stress relief that compensates for package stress
US7005193B2 (en) Method of adding mass to MEMS structures
JP5637638B2 (ja) 応力分離部を有するmemsデバイスおよび製造方法
US8584523B2 (en) Sensor device and method for manufacturing a sensor device
KR100944426B1 (ko) 3축 가속도계
JP2011033617A (ja) 1軸加速度センサ
US8596123B2 (en) MEMS device with impacting structure for enhanced resistance to stiction
JP6020392B2 (ja) 加速度センサ
EP3151018B1 (en) Mems sensor with reduced cross-axis sensitivity
JP6067026B2 (ja) マイクロ電気機械システム(mems)
US8516891B2 (en) Multi-stage stopper system for MEMS devices
US8186220B2 (en) Accelerometer with over-travel stop structure
US8698315B2 (en) Semiconductor device
US20240103035A1 (en) Micromechanical component, in particular, inertial sensor, including a seismic mass, a substrate, and a cap
CN108423633B (zh) 具有离轴防震的mems装置
JP2011017661A (ja) 加速度センサ
CN112525181A (zh) 具有集成阻尼结构的惯性传感器
JP5083635B2 (ja) 加速度センサ
US9964561B2 (en) Acceleration sensor
KR20160059766A (ko) 센서 패키지 및 그 제조 방법
JP5299353B2 (ja) 半導体装置
US20230331544A1 (en) Micromechanical sensor structure with damping structure
JP2010216834A (ja) 力学量検出センサ
CN108249381B (zh) 具冲击吸收器的微机电装置

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110818

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20121002