JP2011017588A - Laser level tripod for slope face - Google Patents

Laser level tripod for slope face Download PDF

Info

Publication number
JP2011017588A
JP2011017588A JP2009161765A JP2009161765A JP2011017588A JP 2011017588 A JP2011017588 A JP 2011017588A JP 2009161765 A JP2009161765 A JP 2009161765A JP 2009161765 A JP2009161765 A JP 2009161765A JP 2011017588 A JP2011017588 A JP 2011017588A
Authority
JP
Japan
Prior art keywords
slope
laser
level
tripod
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009161765A
Other languages
Japanese (ja)
Inventor
Naomasa Nitta
新田尚正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009161765A priority Critical patent/JP2011017588A/en
Publication of JP2011017588A publication Critical patent/JP2011017588A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To develop a laser level tripod for slope face accurately performing excavating and shaping works by means of an excavation support device mounted on a backhoe, by causing a rotary laser device to project light parallel to a slope face, in a slope face shaping work of civil-engineering and construction engineering works.SOLUTION: The surveying tripod for mounting a laser projection device, rotationally radiating a laser light beam includes a level device for grasping the inclination slope in one direction and a level device for grasping the level, in a direction orthogonal to the direction at one end part of a plate-shaped base table for mounting the laser projection device. A collimation telescope is installed on a plate-shaped mount base, extending upward from the other end part of the base table and provided parallel to the base table. The laser level tripod for slope face capable of predicting and adjusting the position of a laser light projection line with the collimation telescope is used to perform laser light projection and slope-surface shaping.

Description

本発明は、レーザ光を照射することで、あるいは往復操作させ、さらに回転することで、基準点、基準線、測定基準平面を形成し、特に水平基準面のほかに水平基準面に対して所定の角度に傾斜した任意傾斜設定面を形成可能な法面用回転レーザ装置の三脚に関するものである。 The present invention forms a reference point, a reference line, and a measurement reference plane by irradiating a laser beam, or reciprocating and further rotating, and in particular, in addition to a horizontal reference plane, a predetermined reference is made with respect to a horizontal reference plane. It is related with the tripod of the rotary laser apparatus for slopes which can form the arbitrary inclination setting surface inclined in this angle.

近年、高さ方向の測定、特に基準高さに基づいてラインおよび平面等を形成する場合において、回転レーザ装置が使用されている。回転レーザ装置は、レーザ光線を水平方向に照射しつつ回転し、或は往復走査し、回転基準面を形成し、或は部分的な基準ライン、基準面、更に基準線、基準点を形成するものである。 In recent years, rotating laser devices have been used in the case of forming a line, a plane, or the like based on measurement in the height direction, particularly based on a reference height. The rotating laser device rotates while irradiating a laser beam in the horizontal direction, or reciprocally scans to form a rotating reference plane, or to form a partial reference line, reference plane, reference line, and reference point. Is.

例えば、内装関係で窓枠の位置出し等の基準ラインを形成するものとして、更に土木工事においては盛土を行い、切土面を形成するための基準水平面を形成するものとして使用される。更に、回転レーザ装置において1方向、あるいは2方向に傾斜させた基準平面を形成することができるものがあり、傾斜した基準面も容易に得ることが出来るようになった。 For example, it is used to form a reference line for positioning the window frame in relation to the interior, and further, in civil engineering work, it is used to fill in and form a reference horizontal plane for forming a cut surface. Further, some rotary laser devices can form a reference plane inclined in one direction or two directions, and an inclined reference plane can be easily obtained.

従来の回転レーザ装置として特開平10−38571が開示されている。
特開平10−38571
Japanese Patent Laid-Open No. 10-38571 is disclosed as a conventional rotary laser device.
JP-A-10-38571

上記従来の回転レーザ装置では、傾斜角は傾斜センサによって電気的に検出され、又傾動機構により電気的に設定されるため、高精度で設定が可能である。しかしながら、傾斜した基準面は、水平面より機器の構造上、角度で30度くらいが限界でそれ以上の大きな角度の傾斜した基準面は、従来技術では、設定不可能であった。本発明の法面用レーザレベル三脚は、特願2008−329745の掘削支援装置に対応するために開発されたものである。この装置を取り付けたバックホウによって法面の掘削をするために、レーザ光を法面と平行に照射しなければならない。そのために考えられたものである。 In the conventional rotary laser device, the tilt angle is electrically detected by the tilt sensor and is electrically set by the tilt mechanism, so that it can be set with high accuracy. However, the tilted reference plane cannot be set by the prior art with a tilted reference plane having an angle larger than the horizontal plane by about 30 degrees due to the structure of the device. The slope level laser tripod of the present invention has been developed in order to cope with the excavation support device of Japanese Patent Application No. 2008-329745. In order to excavate the slope with the backhoe attached with this device, the laser beam must be irradiated in parallel with the slope. That is why it was conceived.

土木建設業などの建設現場の法面において、レーザ光線を回転照射するレーザ投光器を載置する測量用三脚であって、レーザ投光器を載置する板状の基台の一方の端部に、一方向の傾斜勾配が分かる水準器と前記方向と直角方向の水準が分かる水準器を備え、前記基台の他方の端部から上方に伸びて、基台と平行に設けられた板状の台座に視準望遠鏡を設置し、レーザ投光ラインの位置を視準望遠鏡で予測して調整できるものである。また、前記三脚のひとつの脚が、4節平行リンク構造からなり、法面に掛けられた丁張の貫板に前記4節平行リンク構造の法面側のリンクを固定できるものである。標尺においては、法面に立てる側の二つの平行リンクに目盛表記された4節平行リンク構造からなり、法面に掛けられた貫板に前記4節平行リンク構造の法面側のリンクを固定できる装置を設け、法面と平行なもうひとつのリンクには傾斜勾配が分かる水準器を設け、前記4節平行リンク構造に転倒防止のための伸縮脚を設けるものである。 On the slope of a construction site such as a civil engineering construction industry, a tripod for surveying that mounts a laser projector that rotates and irradiates a laser beam, is attached to one end of a plate-like base on which the laser projector is mounted. A plate-shaped pedestal that is provided in parallel with the base and has a level that can be seen in the direction of inclination and a level that can be seen in the direction perpendicular to the direction, and extends upward from the other end of the base. A collimating telescope is installed, and the position of the laser projection line can be predicted and adjusted by the collimating telescope. In addition, one leg of the tripod has a four-node parallel link structure, and a link on the slope side of the four-node parallel link structure can be fixed to a stringed through plate hung on the slope. The standard measure consists of a four-bar parallel link structure that is graduated on the two parallel links on the side facing the slope, and the link on the slope side of the four-bar parallel link structure is fixed to a through plate that is hung on the slope. A leveling device is provided on the other link parallel to the slope, and a telescopic leg is provided on the four-bar parallel link structure to prevent falling.

本発明の法面用レーザレベル三脚を使用することによって、2方向の傾斜角を、簡単に設定でき、視準望遠鏡で微調整を調整出来るので、バックホウによる法面整形作業が簡単で、作業員による指示が必要なく、正確に早く法面整形できるようになった。 By using the laser level tripod for slope of the present invention, the tilt angle in two directions can be easily set, and fine adjustment can be adjusted with a collimating telescope. It is now possible to shape the slope accurately and quickly without the need for instructions.

本発明の法面用レーザレベル三脚を図に基づいて説明する。図1は、本発明の法面用レーザレベル三脚の斜視図である。図2は、本発明の法面用レーザレベル三脚の側面図である。
図3は、本発明の法面用レーザレベル三脚の基台付近の説明図である。
1は、本発明の法面用レーザレベル三脚である。2は二方向水準器、3は視準望遠鏡、4は基台、5は台座、6は姿勢調整ネジ、7は方向調整ネジ、8は伸縮脚、9は平行リンク脚、10はレーザレベル、11は貫板用止めネジ、12は貫板、である。
A slope laser level tripod according to the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of a slope laser level tripod according to the present invention. FIG. 2 is a side view of the slope laser level tripod of the present invention.
FIG. 3 is an explanatory view of the vicinity of the base of the laser level tripod for slope according to the present invention.
Reference numeral 1 denotes a laser level tripod for slope according to the present invention. 2 is a bi-directional level, 3 is a collimating telescope, 4 is a base, 5 is a pedestal, 6 is a posture adjustment screw, 7 is a direction adjustment screw, 8 is a telescopic leg, 9 is a parallel link leg, 10 is a laser level, 11 is a set screw for a through plate, and 12 is a through plate.

二方向水準器2を説明する。ここで、図3の中で、傾斜方向および貫板の長手方向をX軸、X軸と角度で90度交差する方向をY軸とする。二方向水準器2は、二つの気胞管が水平面上で上側から見てT字状に接続固定したもので、Y軸の気胞管の長手方向の軸芯を中心として回転できるように基台4に取り付けられている。X軸の回転する気胞管は、気胞管の水平状態で位置する気胞の位置を、中心としたリングに囲まれて固定されている。水平の状態でリングの最高端に印をつけておく。前記リングは、外側より回動可能に支持するように構成されている。基台4のリングを囲う部分には、傾斜させた状態で気胞管を水平にすると前記リングに付けた印に合うように上側に傾斜勾配を、例えば、1割、2割、3分、4分という格好に、印を付けておく。 The two-way level 2 will be described. Here, in FIG. 3, the inclination direction and the longitudinal direction of the through plate are defined as the X axis, and the direction intersecting with the X axis by 90 degrees is defined as the Y axis. The two-way level 2 is formed by connecting and fixing two air ducts in a T-shape when viewed from above on a horizontal plane, and a base 4 so that it can rotate around the longitudinal axis of the Y-axis air duct. Is attached. The airway tube rotating in the X axis is fixed by being surrounded by a ring centered on the position of the airway located in the horizontal state of the airway tube. Mark the highest end of the ring in a horizontal position. The ring is configured to be rotatably supported from the outside. In the portion surrounding the ring of the base 4, when the alveolar tube is leveled in an inclined state, an inclined gradient is formed on the upper side so as to match the mark attached to the ring, for example, 10%, 20%, 3 minutes, 4 Mark the minute appearance.

視準望遠鏡3は、X軸方向とY軸方向の基台4の方向を視準するためのもので、視野内には台座5と平行な線と垂直な線が十字に見えるようになっている。姿勢調整ネジは、付いてなく、台座5の面と平行に視準されるものである。図3の中で、台座5には、X軸方向とY軸方向が刻印されており、その刻印に合わせて視準望遠鏡3を取り付ける。視準望遠鏡3には、その刻印に合わせると、X軸、Y軸ともに簡単に方向設定できるようになっている。 The collimating telescope 3 is for collimating the directions of the base 4 in the X-axis direction and the Y-axis direction, and a line parallel to the pedestal 5 and a line perpendicular to the pedestal 5 can be seen as a cross in the field of view. Yes. The posture adjusting screw is not attached and is collimated parallel to the surface of the base 5. In FIG. 3, the pedestal 5 is marked in the X-axis direction and the Y-axis direction, and the collimating telescope 3 is attached in accordance with the marking. The collimating telescope 3 can be easily set in the direction of both the X axis and the Y axis according to the marking.

基台4は、図3の中で、基台4のX軸Y軸が二方向水準器2のX軸Y軸に平行になるように二方向水準器2が取り付けられており、中ほどにレーザ光を回転しながら投光するレーザ投光器10が設置できるようになっており、他方には、台座5への支持柱が上方へ、伸びている。基台4の面と台座5の面は、平行になっており、レーザ光と視準望遠鏡3の視準ラインAとは平行に、保たれる。 The two-way level 2 is attached to the base 4 so that the X-axis Y-axis of the base 4 is parallel to the X-axis Y-axis of the two-way level 2 in FIG. A laser projector 10 that projects light while rotating the laser beam can be installed. On the other hand, a support column for the base 5 extends upward. The surface of the base 4 and the surface of the pedestal 5 are parallel, and the laser beam and the collimation line A of the collimating telescope 3 are kept parallel.

姿勢調整ネジ6は、X軸、Y軸方向の微調整をするものである。方向調整ネジ7は、方向を微調整するものである。伸縮脚8は、平行リンク脚9を法面と垂直に立てるためのもので、伸縮可能となっている。平行リンク脚9は、法面もしくは法面に設定された貫板12に固定して使用するもので、平行リンク構造によって法面の勾配が、基台4の傾斜と合うようになっている。平行リンク脚9の法面側のリンクには、貫板用止めネジ11が設置されており、蝶ねじを締めることによって貫板12を挟み込んで固定できるようになっている。また、貫板12がない場合、平行リンク脚9の法面と平行でない二つのリンクの法面側の先端が、尖っており足で踏みこんで地面に食い込むようになっている。各リンクの軸には、片方が蝶ねじでできており、締めることで各リンクの軸を固定できるようになっている。また、平行リンク脚9は、4節リンク構造になっており、お互い向かい合うリンクは、同じ長さで平行である。バックホウの掘削支援装置に対応するレーザ光は、掘削する整形面16より1.2メートルほどの高さでレーザ光を投光しなければならない。よって平行リンクの傾斜方向でない二つのリンクは、1.2メートル程度の長さとする。整形前ではほとんどの場合、地盤が凹凸になっている。そのために、法面の丁張12を入れた場合、仕上り面より30センチとか50センチほど上がって、丁張がかけられる場合が多い。その場合に、平行リンク脚9をひし形状に折りたたんで、整形面16よりレーザ投光面までの距離を1.2メートル程度に調整するために、平行リンク構造となっている。 The posture adjustment screw 6 is used for fine adjustment in the X-axis and Y-axis directions. The direction adjusting screw 7 finely adjusts the direction. The extendable legs 8 are for standing the parallel link legs 9 perpendicular to the slope, and are extendable. The parallel link leg 9 is used by being fixed to a slope or a through plate 12 set to the slope, and the slope of the slope is matched with the inclination of the base 4 by the parallel link structure. A through-plate set screw 11 is installed on the link on the slope side of the parallel link leg 9, and the through-plate 12 can be sandwiched and fixed by tightening a thumbscrew. Further, when there is no through plate 12, the front ends of the two link links that are not parallel to the parallel link leg 9 are pointed so that they step into the ground by stepping on their feet. One of the shafts of each link is made of a thumbscrew, and the shaft of each link can be fixed by tightening. The parallel link legs 9 have a four-bar link structure, and the links facing each other are the same length and parallel. The laser beam corresponding to the backhoe excavation support apparatus must project the laser beam at a height of about 1.2 meters from the shaping surface 16 to be excavated. Therefore, the two links that are not inclined in the parallel links have a length of about 1.2 meters. In most cases, the ground is uneven before shaping. For this reason, when the sloped string 12 is inserted, the sheet is often raised by 30 cm or 50 cm from the finished surface. In this case, the parallel link leg 9 is folded in a diamond shape, and the parallel link structure is used to adjust the distance from the shaping surface 16 to the laser projection surface to about 1.2 meters.

レーザレベル10は、市販のもので、自動水平設定機構などないもので、基台4と平行な面を投光できるものとする。貫板用止めネジ11は、蝶ねじを締めることによって貫板12と平行リンク脚9を固定できるようになっている。貫板12は、土木工事では丁張と呼ばれ、出来型の高さ、傾斜面などの形状を貫板12で形を表すものである。 The laser level 10 is commercially available, does not have an automatic level setting mechanism, and can project a surface parallel to the base 4. The through-plate set screw 11 can fix the through-plate 12 and the parallel link leg 9 by tightening the thumbscrew. In the civil engineering work, the through plate 12 is referred to as sword tension, and the shape of the finished mold, such as the height and the inclined surface, is represented by the through plate 12.

標尺13は、水準器14を備えており、二方向水準器2のX軸のものと同様な目盛を付けて水準器を水平に合わせて目盛を見て傾斜が分かるようになっている。また、法面用レーザレベル三脚1の平行リンク脚9と同様な構造となっており、法面と垂直方向のリンクが二つ目盛り板15になっている。 The scale 13 includes a level 14, and a scale similar to that of the X-axis of the two-way level 2 is attached so that the level can be leveled and the scale can be seen by looking at the scale. Further, it has a structure similar to that of the parallel link leg 9 of the laser level tripod 1 for the slope, and the scale plate 15 has two links in the direction perpendicular to the slope.

図5は、法面用レーザレベル三脚1の法面据え付け方法を示した図である。
H1は、視準望遠鏡の視準ラインAより整形面16までの距離、S1は、設置された法面用レーザレベル三脚1の法面上方での視準ラインAより整形面16までの距離、S2は、丁張を掛けた場所での視準ラインAより整形面16までの距離、S3はS2の法面上方での視準ラインAより整形面16までの距離である。
はじめに、法面用レーザレベル三脚1の法面側のリンクに設けられている貫板用止めネジ11を貫板12に締めこんで貫板側のリンクを固定する。基台4の高さを仕上げ面より垂直高さで1.2メートル程度に4節リンク脚9を回動させて、各リンク軸の蝶ねじを締めて固定する。これは、掘削支援装置を取り付けたバックホウ用のレーザ光高さである。
Y軸方向に対して水平になるように、二つの伸縮脚の伸縮用止めネジを緩めて、尖った先端部を地面に足で踏みこんで固定し、伸縮用止めネジを締めて固定する。傾斜用の水準器によって、設定された勾配と合っているか確認する。Y軸方向の水準器を姿勢調整ネジ6で調整して水平に合わす。次に、視準望遠鏡3を台座5に角度で90度ごとに刻印された印に合わせて取り付ける。視準望遠鏡3の上側の回転できる方にも刻印をしておく。視準望遠鏡3の視野内の十字線は設定されているものとする。X軸Y軸ともに視準出来るようにしておく。視準する丁張の貫板12に標尺13を、法面側のリンクに設けられている貫板用止めネジ11を貫板12に締めこんで貫板側のリンクを固定する。筋かいの棒を掛けて、整形面16X軸方向垂直に目盛り板が立つようにして、角リンク軸の蝶ねじを締めて固定する。それから、伸縮脚9を伸ばして整形面16Y軸方向より、垂直に立つようにして固定する。法面距離が短い場合、法面用レーザレベル三脚1と標尺13を設置したら、視準望遠鏡3のY軸方向に印を合わせて、Y軸方向にある標尺13を見る。ここでY軸方向と標尺13の位置が違っていてもかまわない。標尺13の位置に合わせて、視準ラインAのH1と、S2の長さを比較する。姿勢調整ネジ6を使って、S2の距離をH1に合わせる。標尺の左側の目盛り板15と右側の目盛り板15の読みが違う場合、これは法面用レーザレベル三脚1を設置している貫板12と標尺13を設置している貫板12の勾配が違うということである。両方の貫板12の勾配を確認しなければならない。どちらかの勾配を修正して、もう一度設定やり直す。
法面距離が長い場合、法面用レーザレベル三脚1と標尺13を設置したら、まず法面用レーザレベル三脚1を設置している貫板12の上側の標尺を見る。ここで視準望遠鏡のX軸と合っているか確認する。外れている場合、貫板12が勾配方向に垂直に掛けられていないということで、実際の勾配は、貫板の勾配よりは緩い。貫板の曲がり、勾配の誤差を多少含んでいるので、H1とS2は多少違っている場合が多い。大きく違う場合、貫板の勾配と法面用レーザレベル三脚1の勾配が違うということになる。これをもう一度合わせ、修正する。S1をH1に合わせたら、Y軸に視準望遠鏡を合わせ、S2を見る。S2をH1に、Y軸の姿勢調整ネジ6を回転させてあわせる。確認のためにS3を視準望遠鏡3で見てみる。違っている場合、二つの貫板12の勾配が違うので、原因を検討してみる。姿勢調整ネジ6を回転させて調整した場合、二方向水準器2のX軸の勾配が変化するので、最終調整においては、S1,S2,S3,二方向水準器2のX軸の勾配を検討して決める。最終調整が終わると、レーザレベルを基台4に取り付け、レーザ光Bの高さHと視準ラインAの高さH1と比較してその差を考慮して、レーザ投光して掘削支援装置を取り付けたバックホウによって、法面整形を開始する。
FIG. 5 is a diagram showing a method for installing the slope of the slope laser level tripod 1.
H1 is the distance from the collimation line A of the collimating telescope to the shaping surface 16, S1 is the distance from the collimation line A to the shaping surface 16 above the normal surface of the installed laser plane tripod 1, and S2 is the distance from the collimation line A to the shaping surface 16 at the place where the tension is applied, and S3 is the distance from the collimation line A above the normal surface of S2 to the shaping surface 16.
First, the through-plate set screw 11 provided on the slope-side link of the slope-side laser level tripod 1 is fastened to the through-plate 12 to fix the link on the through-plate side. The four-joint link leg 9 is rotated so that the height of the base 4 is about 1.2 meters above the finished surface, and the wing screw of each link shaft is tightened and fixed. This is the laser beam height for the backhoe to which the excavation support device is attached.
Loosen the expansion / contraction stop screws of the two expansion / contraction legs so that they are horizontal to the Y-axis direction, step on the pointed tip with the foot with the foot, and fix the expansion / contraction stop screw. Check if the gradient is correct with the level for tilting. Adjust the level in the Y-axis direction with the posture adjustment screw 6 and adjust it horizontally. Next, the collimating telescope 3 is attached to the pedestal 5 in accordance with a mark stamped at an angle of 90 degrees. An inscription is also made on the upper side of the collimating telescope 3 which can be rotated. It is assumed that the crosshairs in the field of view of the collimating telescope 3 are set. Both the X axis and the Y axis should be collimated. The penetrating plate 12 to be collimated is fastened to the penetrating plate 12 and the through plate 12 set screw 11 provided on the slope side link is fastened to the through plate 12 to fix the link on the through plate side. A brace bar is hung and the scale plate stands vertically in the direction of the shaping surface 16X axis, and the wing screw of the square link shaft is tightened and fixed. Then, the telescopic legs 9 are extended and fixed so as to stand vertically from the shaping surface 16 Y-axis direction. When the slope distance is short, when the slope laser level tripod 1 and the measure 13 are set, the mark 13 is aligned with the Y-axis direction of the collimating telescope 3, and the measure 13 in the Y-axis direction is viewed. Here, the Y-axis direction and the position of the staff 13 may be different. The length of the collimation line A is compared with the length of the collimation line A in accordance with the position of the scale 13. Using the posture adjusting screw 6, the distance of S2 is adjusted to H1. When the left scale plate 15 and the right scale plate 15 have different readings, this means that the gradient between the through plate 12 on which the slope laser level tripod 1 is installed and the through plate 12 on which the measure 13 is installed. It is different. The slope of both through plates 12 must be confirmed. Correct one of the slopes and set again.
If the slope distance is long and the slope laser level tripod 1 and the measure 13 are installed, first, the gauge on the upper side of the through plate 12 on which the slope laser level tripod 1 is installed is viewed. Check if it matches the X-axis of the collimating telescope. When deviated, the actual gradient is less than the gradient of the through plate because the through plate 12 is not hung perpendicular to the gradient direction. In many cases, H1 and S2 are slightly different because of some bending error and gradient error. If there is a large difference, this means that the slope of the plate is different from the slope of the slope laser level tripod 1. Match this again and correct it. When S1 is set to H1, the collimating telescope is set to the Y axis and S2 is viewed. S2 is set to H1, and the Y-axis posture adjusting screw 6 is rotated to adjust. Look at S3 with the collimating telescope 3 for confirmation. If they are different, the slopes of the two through-plates 12 are different. When the posture adjustment screw 6 is rotated and adjusted, the gradient of the X-axis of the two-way level 2 changes. Therefore, in the final adjustment, consider the gradient of the X-axis of S1, S2, S3 and the two-level level 2 And decide. When the final adjustment is finished, the laser level is attached to the base 4, and the excavation support device is configured by laser projection in consideration of the difference between the height H of the laser beam B and the height H1 of the collimation line A. The slope shaping is started by the backhoe attached with.

本発明の法面用レーザレベル三脚の斜視図である。It is a perspective view of the laser level tripod for slopes of this invention. 本発明の法面用レーザレベル三脚の側面図である。It is a side view of the laser level tripod for slopes of this invention. 本発明の法面用レーザレベル三脚の基台付近の説明図である。It is explanatory drawing of the base vicinity of the laser level tripod for slopes of this invention. 本発明の法面用レーザレベル三脚専用の標尺の側面図である。It is a side view of the scale for exclusive use of the laser level tripod for slopes of the present invention. 本発明の法面用レーザレベル三脚の法面据え付け方法を示した図である。It is the figure which showed the slope installation method of the laser level tripod for slopes of this invention.

1 法面用レーザレベル三脚
2 二方向水準器
3 視準望遠鏡
4 基台
5 台座
51 アイマーク
52 目盛
6 姿勢調整ネジ
7 方向調整ネジ
8 伸縮脚
9 平行リンク脚
10 レーザレベル
11 貫板用止めネジ
12 貫板
13 標尺
14 水準器
15 目盛り板
16 整形面
DESCRIPTION OF SYMBOLS 1 Laser level tripod for slope 2 Bidirectional level 3 Sighting telescope 4 Base 5 Base 51 Eye mark 52 Scale 6 Posture adjustment screw 7 Direction adjustment screw 8 Telescopic leg 9 Parallel link leg 10 Laser level 11 12 Penetration plate 13 Scale 14 Level 15 Scale plate 16 Shaped surface

Claims (3)

土木建設業などの建設現場の法面において、レーザ光線を回転照射するレーザ投光器を載置する測量用三脚であって、レーザ投光器を載置する板状の基台の一方の端部に、一方向の傾斜勾配が分かる水準器と前記方向と直角方向の水準が分かる水準器を備え、前記基台の他方の端部から上方に伸びて、基台と平行に設けられた板状の台座に視準望遠鏡を設置し、レーザ投光ラインの位置を視準望遠鏡で予測して調整できる事を特徴とする法面用レーザレベル三脚。 On the slope of a construction site such as a civil engineering construction industry, a tripod for surveying that mounts a laser projector that rotates and irradiates a laser beam, is attached to one end of a plate-like base on which the laser projector is mounted. A plate-shaped pedestal that is provided in parallel with the base and has a level that can be seen in the direction of inclination and a level that can be seen in the direction perpendicular to the direction, and extends upward from the other end of the base. A laser level tripod for daylighting, characterized by installing a collimating telescope and predicting and adjusting the position of the laser projection line with a collimating telescope. 前記三脚のひとつの脚が、4節平行リンク構造からなり、法面に掛けられた丁張の貫板に前記4節平行リンク構造の法面側のリンクを固定できる装置を設けた請求項1記載の法面用レーザレベル三脚。 The one leg of the tripod has a four-bar parallel link structure, and a device is provided that can fix a link on the slope side of the four-bar parallel link structure to a tension plate that is hung on the slope. The laser level tripod for slopes as described. 法面に立てる側の二つの平行リンクに目盛表記された4節平行リンク構造からなり、法面に掛けられた貫板に前記4節平行リンク構造の法面側のリンクを固定できる装置を設け、法面と平行なもうひとつのリンクには傾斜勾配が分かる水準器を設け、前記4節平行リンク構造に転倒防止のための伸縮脚を設けたことを特徴とする標尺。 It consists of a four-bar parallel link structure that is graduated on two parallel links on the side facing the slope, and is equipped with a device that can fix the link on the slope side of the four-bar parallel link structure to a through plate hung on the slope A scale having a level on the other link parallel to the slope so that the slope can be seen, and a telescopic leg for preventing overturning in the 4-bar parallel link structure.
JP2009161765A 2009-07-08 2009-07-08 Laser level tripod for slope face Pending JP2011017588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009161765A JP2011017588A (en) 2009-07-08 2009-07-08 Laser level tripod for slope face

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009161765A JP2011017588A (en) 2009-07-08 2009-07-08 Laser level tripod for slope face

Publications (1)

Publication Number Publication Date
JP2011017588A true JP2011017588A (en) 2011-01-27

Family

ID=43595497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009161765A Pending JP2011017588A (en) 2009-07-08 2009-07-08 Laser level tripod for slope face

Country Status (1)

Country Link
JP (1) JP2011017588A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014048198A (en) * 2012-08-31 2014-03-17 Taisei Corp Cutting and filling state confirmation method, and laser light receiver
CN109612450A (en) * 2019-02-20 2019-04-12 山西三建集团有限公司 Concreting wall form verticality easy detection device and detection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014048198A (en) * 2012-08-31 2014-03-17 Taisei Corp Cutting and filling state confirmation method, and laser light receiver
CN109612450A (en) * 2019-02-20 2019-04-12 山西三建集团有限公司 Concreting wall form verticality easy detection device and detection method

Similar Documents

Publication Publication Date Title
US7886450B1 (en) Elevated laser beam positioning device
US9109892B2 (en) Light-enabled plumb indicator and wall brace device
KR101568639B1 (en) Height adjustable laser level Machine
KR101604106B1 (en) Target supporter for light wave surveying instrument theodolite
JP2011017588A (en) Laser level tripod for slope face
KR101984507B1 (en) the improved portable prism receiver and the measurement method using the same
JP6431995B2 (en) Improved portable prism receiver, improved portable GPS receiver, and surveying method using the same
JP2004317406A (en) Light receiving jig for light wave measurement device
US20090219522A1 (en) Levelling device
KR100911047B1 (en) Laser horizontality-perpendicularity equipment type trivet
KR101291451B1 (en) Level measurement staff having reflection apparatus
JP7199925B2 (en) Method for leveling when placing concrete and device for leveling when placing concrete
US7076879B2 (en) Stabilizer jig for distance measuring laser
JPH07270157A (en) Setting method of reference device for installing railway and measuring apparatus used therefor
JPH07180400A (en) Leg member mounting adjustment method of tower structure
KR100881144B1 (en) Laser horizontality-perpendicularity equipment
KR101974946B1 (en) the improved portable prism receiver and the measurement method using the same
JP2020179998A (en) Fixture for elevator rail
CN220542058U (en) Slope ratio controller capable of accurately controlling slope ratio
JP5464091B2 (en) Bevel angle measuring device, angle measuring method and pile penetration method
CN216977900U (en) Laser pay-off device for determining stand column supporting height of photovoltaic support
JP2003315044A (en) Level mount
CN210089680U (en) Surveyor's level for job site survey
JP6937660B2 (en) Level staff for leveling
JP2018031613A (en) Manufacturing method of laser surveying device, and laser surveying device