JP2011017345A - Oil-cooled screw compressor - Google Patents

Oil-cooled screw compressor Download PDF

Info

Publication number
JP2011017345A
JP2011017345A JP2010238109A JP2010238109A JP2011017345A JP 2011017345 A JP2011017345 A JP 2011017345A JP 2010238109 A JP2010238109 A JP 2010238109A JP 2010238109 A JP2010238109 A JP 2010238109A JP 2011017345 A JP2011017345 A JP 2011017345A
Authority
JP
Japan
Prior art keywords
oil
rotor
rotors
working chamber
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010238109A
Other languages
Japanese (ja)
Other versions
JP5119309B2 (en
Inventor
Hirochika Kametani
裕敬 亀谷
Masaru Yamazaki
勝 山崎
Toshiyuki Yasujima
俊幸 安島
Masaharu Senoo
正治 妹尾
Hideharu Tanaka
英晴 田中
Nobunaga Suzuki
宣長 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010238109A priority Critical patent/JP5119309B2/en
Publication of JP2011017345A publication Critical patent/JP2011017345A/en
Application granted granted Critical
Publication of JP5119309B2 publication Critical patent/JP5119309B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem that, when an oil-cooled screw compressor is started after being stopped for a long period of time at a cooling environment, starting torque is increased due to a viscosity increase in oil stored in an operation chamber, and a drive means having a larger capacity than normal operation is required.SOLUTION: This oil-cooled screw compressor 1 includes: a casing 5; a pair of rotors 3, 4 housed in the casing and having threaded tooth grooves; an electric motor rotatively driving the rotors; a control device 11 controlling the electric motor; an oil supply mechanism supplying the oil to the operation chamber surrounded by the rotors and the casing by meshing the tooth grooves of the pair of the rotors; and an oil separating mechanism separating the oil from compressed gas delivered from the operating chamber. Only in a short time immediately after starting, drive is performed at low speed not increasing torque and the oil is discharged. After that, the speed is increased to the normal operation speed. Alternatively, residual pressure is released after stopping and the rotors are subsequently rotated for a short time, thereby the oil accumulated in the operation chamber is discharged and a succeeding start is easily performed.

Description

本発明は油冷式スクリュー圧縮機に係わり、この圧縮機を駆動する電動機や電源回路への負担増大を回避する技術に関する。   The present invention relates to an oil-cooled screw compressor, and relates to a technique for avoiding an increased burden on an electric motor and a power supply circuit that drive the compressor.

油冷式スクリュー圧縮機は、対となるロータの歯溝との噛み合いや、各ロータとケーシング内面との隙間を小さくすることにより形成された作動室と呼ばれる複数の閉じられた空間を、その内部に有している。   The oil-cooled screw compressor has a plurality of closed spaces called working chambers formed by meshing with the tooth spaces of the pair of rotors and reducing the gap between each rotor and the inner surface of the casing. Have.

双方のロータの回転に伴って作動室は移動するとともに、その容積は拡大と縮小を繰り返す。また、作動室は、ロータの回転位置により、ケーシングに設けた開口部を通じて外部と連通したり密閉空間となったりする。作動室の容積の拡大中には吸入口と呼ばれる開口部と連通が継続し、外部から作動室内に被圧縮気体が吸入される。作動室が最大容積時に吸入口との連通は終了し被圧縮気体は閉じ込められて、容積が縮小することにより被圧縮気体を圧縮する。所定の圧力になったところで、吐出口と呼ぶ開口部に連通し、それ以降容積が0となるまで被圧縮気体を吐出する。   As the rotors rotate, the working chamber moves and its volume repeatedly expands and contracts. The working chamber communicates with the outside through the opening provided in the casing or becomes a sealed space depending on the rotational position of the rotor. During expansion of the volume of the working chamber, communication with an opening called a suction port continues, and compressed gas is sucked into the working chamber from the outside. When the working chamber has the maximum volume, the communication with the suction port is terminated, the compressed gas is confined, and the compressed gas is compressed by reducing the volume. When a predetermined pressure is reached, the compressed gas is discharged until the volume reaches zero after communicating with an opening called a discharge port.

特開2003−3976号公報Japanese Patent Laid-Open No. 2003-3976

油冷式スクリュー圧縮機は、圧縮過程にある作動室の内部に油を注入しながら圧縮動作が進行する。油を注入する理由はロータの潤滑と冷却、そしてロータ相互間やロータとケーシング内面との隙間を油で埋めて、高圧となった作動室から低圧の作動室への被圧縮気体の漏洩を抑制するためである。   In the oil-cooled screw compressor, the compression operation proceeds while injecting oil into the working chamber in the compression process. The reason for injecting oil is to lubricate and cool the rotors, and fill the gaps between the rotors and between the rotor and the casing inner surface with oil to suppress leakage of compressed gas from the high pressure working chamber to the low pressure working chamber. It is to do.

運転中の油の温度は空気圧縮機の場合、50〜70℃であり、粘度(厳密には動粘度、以下同じ)は40mm/s2以下と低く、ロータの周囲にある油は回転の支障にならない。 In the case of an air compressor, the temperature of the oil during operation is 50 to 70 ° C., the viscosity (strictly kinematic viscosity, the same shall apply hereinafter) is as low as 40 mm / s 2 or less, and the oil around the rotor obstructs rotation. do not become.

作動室内に油を注入する機構として圧縮機自身が作り出した吸入側と吐出側の圧力差を利用した差圧給油機構が一般的である。この機構は、作動室から出た直後の被圧縮気体に混在した油を分離して溜めた高圧下にある油溜めと、圧縮開始直後の吸入圧力に近い作動室とを配管でつなぎ、両端の差圧を利用して送油するものである。この機構では圧縮機のロータが停止した後に、約10〜20秒程度の間は残っている差圧で圧縮機への給油が継続するため、作動室に油が多く溜まり、その状態で圧縮機が停止となる。   As a mechanism for injecting oil into the working chamber, a differential pressure oil supply mechanism using a pressure difference between the suction side and the discharge side created by the compressor itself is common. This mechanism connects the oil reservoir under high pressure that separates and collects oil mixed in the compressed gas immediately after leaving the working chamber, and the working chamber close to the suction pressure immediately after the start of compression by piping. Oil is fed using differential pressure. In this mechanism, after the rotor of the compressor is stopped, oil supply to the compressor is continued with the remaining differential pressure for about 10 to 20 seconds. Therefore, a large amount of oil is accumulated in the working chamber, and the compressor is in that state. Will stop.

運転中は圧縮熱等で圧縮機は吐出流路付近を中心に80〜100℃程度の高温となっているが、長く停止していると圧縮機全体が周囲環境と同じ温度となる。寒冷地の冬季にあっては氷点下となることもあり、作動室内に溜まった油は低温のため粘度が150mm/s
2以上に上昇する。
During operation, the compressor is at a high temperature of about 80 to 100 ° C. mainly in the vicinity of the discharge flow path due to the compression heat or the like. In winter in cold regions, the temperature may be below freezing, and the oil collected in the working chamber has a viscosity of 150 mm / s due to the low temperature.
Rise to 2 or higher.

このため、低温で起動しようとすると高粘度の油がロータの回転を阻害し起動に必要なトルクを増大させてしまう。特にスクリュー圧縮機においては、作動室が移動し吐出端面に達したときに端面に衝突した油の反力が歯面に作用し、大きな慣性力をトルクという形で発生する。   For this reason, if it tries to start at low temperature, highly viscous oil will inhibit rotation of a rotor and will increase the torque required for starting. Particularly in a screw compressor, when the working chamber moves and reaches the discharge end face, the reaction force of the oil colliding with the end face acts on the tooth surface, and a large inertia force is generated in the form of torque.

大容量の電動機を採用し、可変速運転する機種ではインバータに代表される電力装置を強化すれば、必要な大きな起動トルクを電動機に発生させて圧縮機は起動できる。しかし、低温環境での起動だけを目的に、運転中に必要な容量の何倍もの電動機や電力装置を備えることは無駄である上に運転中の効率も適正容量の電動機よりも劣ってしまう。   In a model that uses a large capacity motor and operates at a variable speed, if the power device represented by an inverter is strengthened, the compressor can be started by generating the required large starting torque in the motor. However, for the purpose of starting only in a low-temperature environment, it is wasteful to provide an electric motor or power device that is many times the capacity required during operation, and the efficiency during operation is inferior to that of an electric motor with an appropriate capacity.

誘導式など旧来の一部の電動機においては、極短時間であれば過大な起動トルクであっても短時間であれば耐える余力があり、起動は可能であった。しかし、その場合には、圧縮機は瞬間的に大電流を消費していた。   In some conventional motors such as induction type, even if the starting torque is excessive for a very short time, it has the capacity to withstand for a short time and can be started. However, in that case, the compressor instantaneously consumed a large current.

近年使用が広がってきた電動機にはインバータ等に代表される半導体素子により電流を制御して駆動される方式が多い。この方式では、過大電流は一瞬でも半導体素子を損傷するため、大きな起動トルクを受容できず、過大トルクがある場合の起動は苦手である。   In recent years, electric motors that have been used widely have many systems that are driven by controlling a current by a semiconductor element represented by an inverter or the like. In this method, an excessive current damages a semiconductor element even for a moment, so that a large starting torque cannot be received, and starting when there is an excessive torque is not good.

駆動力の伝達系では、電動機の出力軸と、ロータの回転軸とを一体化したものや、軸継手による結合、歯車やベルト等を介して回転伝達されるものなど、いくつかの形式がある。柔軟な軸継手やベルトを介した結合では、瞬間的に過大な起動トルクが発生しても途中の軸継手やベルトが緩衝材となり、電動機への負担が軽減される効果がある。しかし、結合が剛であれば、その効果が無く、特にロータと電動機の軸が一体化していれば、過大トルクは直に伝達するため電動機への負担は大きいままであり、電動機にとっては過酷な条件となりやすい。   There are several types of driving force transmission systems, such as those in which the output shaft of the motor and the rotating shaft of the rotor are integrated, coupling by shaft coupling, and rotation transmission through gears, belts, etc. . In the coupling via a flexible shaft coupling or belt, even if an excessive starting torque is momentarily generated, the shaft coupling or belt in the middle serves as a buffer material, which has an effect of reducing the burden on the motor. However, if the coupling is rigid, there is no effect, and especially if the rotor and the motor shaft are integrated, the excessive torque is transmitted directly and the burden on the motor remains large, which is severe for the motor. It is easy to become a condition.

スクリュー圧縮機において起動トルクの問題は古くからの課題であり、種々の取り組みがなされている。例えば、特許文献1には、通常の吐出口に加え起動時のみ開口する吐出口を設け、起動トルクを軽減する方法が示されている。   In a screw compressor, the problem of starting torque has been a problem for a long time, and various efforts have been made. For example, Patent Document 1 discloses a method of reducing a starting torque by providing a discharge port that opens only at the start-up in addition to a normal discharge port.

この方法は従来の圧縮機本体に新たに弁装置ならびにその開閉手段を付加する必要があり、構造の複雑化や製造コストの増加に課題がある。   In this method, it is necessary to newly add a valve device and its opening / closing means to the conventional compressor body, and there are problems in the complexity of the structure and the increase in manufacturing cost.

本発明の目的は上記課題に鑑み、油によって発生する過大な起動トルクを軽減することで、定常運転時に適正な容量となる電動機を備えながら、低温環境にあっても確実な起動が可能である油冷式スクリュー圧縮機を提供することにある。   In view of the above problems, the object of the present invention is to reduce the excessive starting torque generated by the oil, and to provide a reliable starting even in a low temperature environment while including an electric motor having an appropriate capacity during steady operation. The object is to provide an oil-cooled screw compressor.

また、本発明の他の目的は、電動機の起動状況に応じてインバータに指令を与える制御装置を備えたモータ駆動システムを提供することにある。   Another object of the present invention is to provide a motor drive system provided with a control device that gives a command to an inverter in accordance with the startup status of the electric motor.

上記目的を達成するために本発明の油冷式スクリュー圧縮機は、ケーシングと、ケーシングに内蔵され、ねじ山状の歯溝を有する一対のロータと、これらのロータを回転駆動する電動機と、この電動機を制御する制御装置と、前記一対のロータの歯溝を噛み合わせて、前記ロータと前記ケーシングにより囲まれて形成した作動室内へ油を供給する油供給機構と、前記作動室から吐出された圧縮気体から油を分離する油分離機構と、を有する油冷式スクリュー圧縮機において、前記ロータが通常運転状態から回転停止状態となり、この回転停止状態から前記電動機を起動して前記ロータが通常運転状態となる間に、前記制御部は、前記一対のロータを収納するケーシング内の空間に供給された油の少なくとも一部を前記空間の外に排出するものである。   In order to achieve the above object, an oil-cooled screw compressor according to the present invention includes a casing, a pair of rotors built in the casing and having thread-like tooth grooves, an electric motor that rotationally drives these rotors, A control device that controls the electric motor, an oil supply mechanism that meshes the tooth gaps of the pair of rotors, and supplies oil into a working chamber surrounded by the rotor and the casing, and discharged from the working chamber In an oil-cooled screw compressor having an oil separation mechanism for separating oil from compressed gas, the rotor is brought into a rotation stop state from a normal operation state, and the electric motor is started from the rotation stop state so that the rotor is normally operated. During the state, the control unit discharges at least part of the oil supplied to the space in the casing that houses the pair of rotors outside the space. A.

また、上記目的を達成するために本発明のモータ駆動システムは、駆動対象物と接続される電動機と、この電動機の回転数を制御するインバータと、前記駆動対象物の運転条件を設定する設定装置からの設定情報及び前記駆動対象物の出力情報を検出する検出器からの検出情報に基づいて前記インバータに対して第一の回転速度指令を付与する制御装置とを備え、この制御装置は、前記電動機の起動時に、前記インバータに対して、前記駆動対象物の起動トルク推定情報に基づいて前記第一の回転速度指令よりも低い回転速度となる第二の回転速度指令を付与し、前記電動機が前記第二の回転速度指令に基づいて駆動された後に、前記インバータに対して前記第一の回転速度指令を付与するものである。   In order to achieve the above object, a motor drive system according to the present invention includes an electric motor connected to an object to be driven, an inverter that controls the rotation speed of the electric motor, and a setting device that sets operating conditions of the object to be driven. And a control device that gives a first rotation speed command to the inverter based on detection information from a detector that detects setting information from the detector and output information of the driving object, When starting the electric motor, a second rotational speed command that gives a lower rotational speed than the first rotational speed command is given to the inverter based on the starting torque estimation information of the driven object, and the electric motor After being driven based on the second rotational speed command, the first rotational speed command is given to the inverter.

本発明によれば、油冷式スクリュー圧縮機の円滑な起動を確実に行うことができる。また、小型小出力の機器で十分起動できるため、小型軽量そして製造コストの低減が可能であり、通常運転時に最適な電動機を選択できエネルギ効率も良くなる。   According to the present invention, the oil-cooled screw compressor can be started smoothly. In addition, since it can be sufficiently activated with a small and small output device, it can be reduced in size and weight and the manufacturing cost can be reduced, and an optimum motor can be selected during normal operation, and energy efficiency is improved.

第1と第2の実施例の油冷式スクリュー圧縮機の本体周辺と油系統の模式図である。It is a schematic diagram of the periphery of the main body of the oil-cooled screw compressor of the first and second embodiments and the oil system. 起動前後のロータの回転速度の変化を示すグラフである。It is a graph which shows the change of the rotational speed of the rotor before and behind starting. 停止動作の間のロータの回転速度や注油量の変化のグラフである。It is a graph of the change of the rotational speed of a rotor and the amount of lubrication during stop operation. 第3の実施例の油冷式スクリュー圧縮機の本体周辺と油系統の模式図である。It is a schematic diagram of the main body periphery and oil system | strain of the oil-cooled screw compressor of a 3rd Example.

以下、本発明の実施例について説明する。本実施例における油冷式スクリュー圧縮機は、ケーシングと、ケーシングに内蔵され、ねじ山状の歯溝を有する一対のロータと、これらのロータを回転駆動する電動機と、この電動機を制御する制御装置と、一対のロータの歯溝を噛み合わせて、ロータとケーシングにより囲まれて形成した作動室内へ油を供給する油供給機構と、作動室から吐出された圧縮気体から油を分離する油分離機構と、を有する。   Examples of the present invention will be described below. The oil-cooled screw compressor in the present embodiment includes a casing, a pair of rotors built in the casing and having a thread-like tooth groove, an electric motor that rotationally drives these rotors, and a control device that controls the electric motor. And an oil supply mechanism that meshes the tooth spaces of the pair of rotors and supplies oil into the working chamber formed by being surrounded by the rotor and the casing, and an oil separation mechanism that separates the oil from the compressed gas discharged from the working chamber And having.

このような油冷式スクリュー圧縮機において、円滑な起動を確実に行うために、ロータが通常運転状態から回転停止状態となり、また、この回転停止状態から電動機を起動してロータが通常運転状態となる間に、制御装置は、一対のロータを収納するケーシング内の空間に供給された油の少なくとも一部を前記空間の外に排出するようにしたものである。   In such an oil-cooled screw compressor, in order to ensure smooth start-up, the rotor changes from the normal operation state to the rotation stop state, and the electric motor is started from the rotation stop state to bring the rotor into the normal operation state. In the meantime, the control device discharges at least a part of the oil supplied to the space in the casing that houses the pair of rotors out of the space.

従来の油冷式スクリュー圧縮機では、ケーシング内に設けられたロータが配された空間に油が溜まっていても、起動から一気に加速し通常の運転速度に至る。   In a conventional oil-cooled screw compressor, even if oil is accumulated in a space provided with a rotor provided in a casing, the oil is accelerated at a stroke and reaches a normal operation speed.

それに対し本実施例では、起動時には、通常の運転速度に比較し十分に遅い回転速度で一定の間だけロータを回転させ、その後に、通常の回転速度まで加速するようにした。具体的には、例えば毎分3000回転を定格運転速度とする圧縮機においては、毎分300回転以下の回転速度で、3秒間程度あるいはロータの回転回数で約5回転だけロータを回転させるものである。   On the other hand, in this embodiment, at the time of start-up, the rotor is rotated only for a certain period at a sufficiently low rotational speed compared to the normal operation speed, and then accelerated to the normal rotational speed. Specifically, for example, in a compressor having a rated operation speed of 3000 revolutions per minute, the rotor is rotated at a rotational speed of 300 revolutions per minute or less for about 3 seconds or about 5 revolutions of the rotor. is there.

この圧縮機の起動は、温度感知手段により、起動時の温度が定められた温度よりも低いときに限り、通常の運転速度に比較し十分に遅い回転速度で一定の間だけ回転した後に通常の回転速度まで加速するようにしてもよい。   This compressor is started only after the temperature is detected by the temperature sensing means when the start-up temperature is lower than a predetermined temperature, after rotating for a certain period at a sufficiently low rotation speed compared to the normal operation speed. You may make it accelerate to a rotational speed.

また、停止時には、圧縮機が運転中に停止指令を受けたとき、電動機を停止する動作がなされるが、それとともにケーシング吐出側に連なる配管内部に残留する高圧力を開放する動作がなされる。そのため吐出側の高圧は次第に吸入側圧力と同程度まで圧力が低下する。その後に、低速で短時間だけロータを回転させるように制御する。   Further, at the time of stop, when the compressor receives a stop command during operation, an operation for stopping the electric motor is performed, and at the same time, an operation for releasing the high pressure remaining in the piping connected to the casing discharge side is performed. Therefore, the high pressure on the discharge side gradually decreases to the same level as the suction side pressure. Thereafter, the rotor is controlled to rotate at a low speed for a short time.

また、ロータを収納した吸入側空間の下部から、それよりも下方に位置する前記油貯めに連通する流路を設け、その流路の途中にロータ収納空間から油貯め方向にのみ流れることを許す逆止弁を備えるようにしてもよい。   In addition, a flow path that communicates with the oil reservoir located below the suction side space in which the rotor is housed is provided, and it is allowed to flow only in the oil storage direction from the rotor storage space in the middle of the flow path. A check valve may be provided.

次に、具体的に実施例を説明する。本発明の第1の実施例を、図1と図2を用いて説明する。図1は空気用油冷式スクリュー圧縮機を示す模式図である。図2は起動前後のロータの回転速度の変化を示すグラフである。   Next, specific examples will be described. A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic view showing an oil-cooled screw compressor for air. FIG. 2 is a graph showing changes in the rotational speed of the rotor before and after startup.

空気圧縮機1はその内部に圧縮機本体2を備え、その中には互いに噛み合った雌雄のロータ3,4が回転可能に設けられている。各ロータ3,4は、軸方向表面にねじ山状の歯溝を有している。   The air compressor 1 includes a compressor main body 2 therein, and male and female rotors 3 and 4 meshed with each other are rotatably provided therein. Each rotor 3, 4 has a thread-like tooth groove on its axial surface.

両ロータを収納するケーシング5は、ロータ3,4の軸半径方向の外周と軸方向の端面とを塞ぐ内部空間を有している。この内部空間には、被圧縮気体を吸い込むための開口部である吸入口6と、圧縮された気体を排出する開口部である吐出口7とがその内部空間に設けられている。   The casing 5 that houses both rotors has an internal space that closes the outer circumference in the axial radial direction and the end face in the axial direction of the rotors 3 and 4. In this internal space, a suction port 6 that is an opening for sucking in the compressed gas and a discharge port 7 that is an opening for discharging the compressed gas are provided in the internal space.

吐出口7から先の流路は、一旦は軸方向に向かって伸びその後で下向きに曲がってUターンし、圧縮機本体2の下部に位置し、ケーシング5と一体に設けられた油分離器8と接続する。   The flow path beyond the discharge port 7 once extends in the axial direction and then bends downward and makes a U-turn, is located at the lower part of the compressor body 2 and is provided with the casing 5 and an oil separator 8 provided integrally therewith. Connect with.

雄ロータ3の一部である軸は電動機9の回転軸と接続する。電源装置であるインバータ10から供給される電力で電動機9は雄ロータ3を回転させる回転動力を生み出す。インバータ10は、付属するモータ制御装置である制御装置11の指令に基づいて電動機9に送る電力の周波数や電圧を制御する。   The shaft that is a part of the male rotor 3 is connected to the rotating shaft of the electric motor 9. The electric motor 9 generates rotational power for rotating the male rotor 3 with electric power supplied from the inverter 10 which is a power supply device. The inverter 10 controls the frequency and voltage of power to be sent to the electric motor 9 based on a command from the control device 11 that is an attached motor control device.

吐出口7の下流側には温度検出手段として温度センサ12を備え、その出力は制御装置11に入力される。この温度センサ12は圧縮機の吐出温度を監視し異常の有無を判断するためのものである。   A temperature sensor 12 is provided on the downstream side of the discharge port 7 as temperature detection means, and its output is input to the control device 11. This temperature sensor 12 is for monitoring the discharge temperature of the compressor and determining the presence or absence of abnormality.

油分離器8は、サイクロンセパレータの原理で圧縮空気に混じって圧縮機本体2から吐出される油を遠心分離し、油は内部下方に落下して溜まる。その油は油分離器8下方より引き出した管路から油冷却器13を経て再び圧縮機本体2の圧縮開始直後の作動室14ならびに両ロータ3,4を軸支する軸受15に注入される。油分離器8内はほぼ吐出圧力に等しい高圧であり、作動室14の内圧や軸受15の周囲の圧力は、吸入圧力よりやや高いものの油分離器8の内圧よりも低い圧力である。そのため本実施例における油供給機構は、油ポンプを油分離器8と作動室14や軸受15との間に設けなくとも、油は差圧で給油することができる差圧給油機構を形成している。これらの構成により、作動室14に注入された油は圧縮空気の流れに混じって吐出口7から出て、再び油分離器8に戻り循環する。   The oil separator 8 centrifuges the oil discharged from the compressor main body 2 by being mixed with the compressed air by the principle of the cyclone separator, and the oil drops and accumulates in the lower part inside. The oil is injected into the working chamber 14 immediately after the start of compression of the compressor body 2 and the bearing 15 supporting the rotors 3 and 4 from the pipe line drawn from below the oil separator 8 through the oil cooler 13. The oil separator 8 has a high pressure substantially equal to the discharge pressure, and the internal pressure of the working chamber 14 and the pressure around the bearing 15 are slightly higher than the suction pressure but lower than the internal pressure of the oil separator 8. Therefore, the oil supply mechanism in this embodiment forms a differential pressure oil supply mechanism that can supply oil with a differential pressure without providing an oil pump between the oil separator 8 and the working chamber 14 or the bearing 15. Yes. With these configurations, the oil injected into the working chamber 14 is mixed with the flow of compressed air, exits from the discharge port 7, and returns to the oil separator 8 and circulates again.

油分離器8の上部中央には圧縮空気の出口があって、大部分の油を分離した圧縮空気の流路と接続する。その流路から分岐する放気流路を設け、分岐直後に電磁弁16を備える。この電磁弁16は制御装置11の指示で開閉する。電磁弁16の2次(下流)側は消音器を経て圧縮空気を大気に開放する。電磁弁16は、後述するように、運転時は閉じておき、停止時には開く制御がなされる。   There is an outlet for compressed air at the upper center of the oil separator 8, which is connected to a flow path of compressed air from which most of the oil has been separated. An air discharge channel branched from the flow channel is provided, and an electromagnetic valve 16 is provided immediately after branching. The electromagnetic valve 16 opens and closes according to instructions from the control device 11. The secondary (downstream) side of the solenoid valve 16 opens the compressed air to the atmosphere via a silencer. As will be described later, the electromagnetic valve 16 is controlled to be closed during operation and open when stopped.

運転状態にある圧縮機1の制御装置11に対し使用者がスイッチをオフにするなどの停止操作をすると、制御装置11はインバータ10に減速と停止の指示を出す。直ちにインバータ10は電動機9への供給電力の周波数を下げていき、停止に至る。電動機9とその出力軸に直結した雄ロータ3とそれに噛み合った雌ロータ4の回転も、若干の慣性による遅れはあるものの、供給電力が停止された直後には回転を止める。制御装置11からは電動機9の停止指示とほぼ同時に電磁弁16へ開く指示が出される。圧縮機本体2の吐出口7から油分離器8そして更に下流に連なる高圧の配管内にある圧縮空気は、開かれた電磁弁16を経て大気へ放出され、その空間の内圧は約10〜30秒の時間をかけて次第に低下する。この間、油分離器8と作動室14の間の差圧は残っているため、ロータが停止してから暫くの間は停止した作動室内14への油の注入が続くことになる。この油は差圧がなくなった後にも作動室14内部に溜まったままとなり、長時間停止が続くと周囲温度まで次第に冷える。   When the user performs a stop operation, such as turning off the switch, on the control device 11 of the compressor 1 in the operating state, the control device 11 instructs the inverter 10 to decelerate and stop. Immediately, the inverter 10 decreases the frequency of the power supplied to the electric motor 9 and stops. The rotation of the motor 9 and the male rotor 3 directly connected to the output shaft and the female rotor 4 meshed with the motor 9 are also stopped immediately after the supply power is stopped, although there is a slight delay due to inertia. The control device 11 issues an instruction to open the solenoid valve 16 almost simultaneously with the instruction to stop the electric motor 9. Compressed air in the high pressure pipe connected to the oil separator 8 and further downstream from the discharge port 7 of the compressor main body 2 is discharged to the atmosphere through the opened electromagnetic valve 16, and the internal pressure of the space is about 10-30. It gradually decreases over a period of seconds. During this time, since the differential pressure between the oil separator 8 and the working chamber 14 remains, the injection of oil into the stopped working chamber 14 continues for a while after the rotor stops. This oil remains in the working chamber 14 even after the pressure difference disappears, and gradually cools to the ambient temperature when the oil stops for a long time.

次に本実施例の油冷式スクリュー圧縮機の起動プロセスについて説明する。   Next, the starting process of the oil-cooled screw compressor of this embodiment will be described.

圧縮機の起動スイッチが押されたときに、温度センサ12が周囲環境の温度を定められた温度、例えば10℃以下であると感知した場合は、制御装置11が判断して通常の起動とは異なる低温モードを採用する。図2に示すように通常モードでは、時刻T0の起動直後からロータを加速し通常運転時の回転速度Nまで一気に加速する。そうすることによって、使用者が必要とする圧縮空気をいち早く供給することができる。低温モードにおいては起動直後に一定の間(T0〜T1)だけ低速Nsで回転させる。具体例として3秒間だけ毎分300回転程度の速さでロータを回転することを想定している。その後は通常運転時の回転速度N(毎分3000〜4000回転)まで一気に加速する。   When the start switch of the compressor is pressed, if the temperature sensor 12 senses that the temperature of the surrounding environment is a predetermined temperature, for example, 10 ° C. or less, the control device 11 judges and normal start is Adopt different low temperature mode. As shown in FIG. 2, in the normal mode, the rotor is accelerated immediately after the start at time T0 and accelerated to the rotational speed N during normal operation. By doing so, the compressed air which a user needs can be supplied quickly. In the low temperature mode, the motor is rotated at a low speed Ns for a certain period (T0 to T1) immediately after starting. As a specific example, it is assumed that the rotor is rotated at a speed of about 300 revolutions per minute for 3 seconds. After that, it accelerates at once to the rotational speed N (3,000 to 4000 revolutions per minute) during normal operation.

低温時に一定の間だけ低速Nsでロータを回転させる理由は、作動室14内部に溜まっていた油を排出するためである。油を排出するのに要するトルクはロータの回転速度と相関があり、低温で粘度が高くなった油であっても、低速で押し出せばトルクは小さくてすむ。しかも、内部に溜まった油の量は限られているため、ロータを例えば5回転程度あるいは1〜2秒間だけ回せばスクリューロータの性質で溜まっていた油の大部分を吐出口7から排出させることができる。油を排出した後には、油の排出トルクは発生しないので電動機9やインバータ10に負担をかけることなく一気に加速することができる。   The reason why the rotor is rotated at a low speed Ns for a certain period at low temperature is to discharge the oil accumulated in the working chamber 14. The torque required to discharge the oil has a correlation with the rotational speed of the rotor, and even if the oil has a high viscosity at a low temperature, the torque can be reduced if it is extruded at a low speed. In addition, since the amount of oil accumulated inside is limited, if the rotor is rotated, for example, about 5 rotations or for 1 to 2 seconds, most of the oil accumulated due to the nature of the screw rotor is discharged from the discharge port 7. Can do. After the oil is discharged, no oil discharge torque is generated, so that the motor 9 and the inverter 10 can be accelerated without imposing a burden.

また、一気に加速する前に低速で数回転させることは、軸受や軸封などの油潤滑を必要とする機械要素に油を行き渡らせてから、負荷を増すことになる。これは潤滑条件をよくする効果があり、これら機械要素の摩耗防止ひいては寿命延長の効果を享受することができる。   Further, if the engine is rotated several times at a low speed before accelerating at once, the load is increased after the oil is distributed to mechanical elements such as bearings and shaft seals that require oil lubrication. This has the effect of improving the lubrication conditions, and can enjoy the effect of preventing wear of these machine elements and thus extending their life.

説明した起動プロセスは、特に長時間停止後の起動時に対して有効である。低温時にも一気に加速したい場合には、余裕をもたせた大容量の電動機9やインバータ10を備える方法もある。しかし、定常運転時には必要のない大容量の機器を備えることはエネルギ効率の面でも製造コストの面でも無駄が大きくなる。したがって、本実施例の構成によれば、コスト増と定常運転時のエネルギ効率を犠牲にすることなく、油冷式スクリュー圧縮機を低温環境でも円滑に起動できる。   The described startup process is particularly effective when starting after a long stop. When it is desired to accelerate at a low temperature even at low temperatures, there is a method including a large capacity electric motor 9 and an inverter 10 with a margin. However, providing a large-capacity device that is not necessary during steady operation is wasteful in terms of both energy efficiency and manufacturing cost. Therefore, according to the configuration of the present embodiment, the oil-cooled screw compressor can be started smoothly even in a low temperature environment without sacrificing cost increase and energy efficiency during steady operation.

また、周囲温度が十分高い場合には従来どおりの加速により迅速な圧縮空気の供給が可能である。停止期間中には作動室14内に油が溜まっているので、圧縮機内部の防錆効果も期待できる。さらに、本実施例では従来の空気圧縮機に対して高額の部品の追加が不要で、設計変更も容易である。   Further, when the ambient temperature is sufficiently high, it is possible to supply compressed air quickly by acceleration as usual. Since oil is accumulated in the working chamber 14 during the stop period, an antirust effect inside the compressor can be expected. Further, in this embodiment, it is not necessary to add expensive parts to the conventional air compressor, and the design can be easily changed.

本実施例のモータ駆動システムは、半導体の電流制限から必要性の高いインバータによる可変速運転する機種を例としたが、インバータを持たない一定速運転の機種でも同様の作用と効果がある。電動機9の出力軸と雄ロータ3の入力軸が直結せず、間に軸継手や歯車,ベルトなどの動力伝達手段を仲介した機種でも同様の効果がある。ただし、誘導電動機でベルトを介して駆動する方式では、瞬間的な起動トルクのピークは柔らかいベルトで緩和され、更に半導体を用いたインバータ等を経由しない誘導電動機は瞬間的ならば過大なトルクも発生できるので、本実施例の構成を必ずしも要しない。また、本実施例では空気圧縮機を例としたが、冷媒ガスや燃料ガス等、他の気体を圧縮する目的の油冷式スクリュー圧縮機であっても同様の効果がある。   The motor drive system of the present embodiment is an example of a model that performs variable speed operation with an inverter that is highly necessary due to semiconductor current limitation. However, a model that operates at a constant speed without an inverter has similar effects and effects. The same effect can be obtained even in a model in which the output shaft of the electric motor 9 and the input shaft of the male rotor 3 are not directly connected and a power transmission means such as a shaft coupling, a gear, or a belt is interposed therebetween. However, in the method of driving with an induction motor via a belt, the instantaneous starting torque peak is alleviated by a soft belt, and an induction motor that does not go through an inverter using a semiconductor also generates excessive torque if it is instantaneous. Therefore, the configuration of this embodiment is not necessarily required. In this embodiment, the air compressor is taken as an example, but the same effect can be obtained even in an oil-cooled screw compressor for the purpose of compressing other gases such as refrigerant gas and fuel gas.

本実施例において、一定の間だけ低速Nsでロータを回転させたが、低速Nsは必ずしも一定速度である必要はない。例えば、通常運転時の回転速度Nに対して十分に低いならば、徐々に加速しても同様の効果を得ることができる。   In this embodiment, the rotor is rotated at a low speed Ns for a certain period, but the low speed Ns is not necessarily a constant speed. For example, if the rotational speed N is sufficiently low during normal operation, the same effect can be obtained even if the vehicle is gradually accelerated.

本発明の他の実施例を、図3を用いて説明する。図3は空気用油冷式スクリュー圧縮機において、停止動作がなされている間のロータの回転速度,吐出側圧力,注入油量,作動室内部に溜まっている油量の時間変移を示すグラフである。本実施例において第1の実施例と共通する構造,作用や効果、そして適応可能な範囲については説明を省略する。   Another embodiment of the present invention will be described with reference to FIG. FIG. 3 is a graph showing the time variation of the rotational speed of the rotor, the discharge side pressure, the amount of injected oil, and the amount of oil accumulated in the working chamber in the air oil-cooled screw compressor. is there. In this embodiment, the description of the structure, operation and effect common to the first embodiment and the applicable range will be omitted.

本実施例における空気圧縮機の機器構成は図1に示した第1の実施例と同じであるが、制御装置11に内蔵されるソフトウェアが異なり、停止動作が従来と異なる手順となる。
また、温度センサ12は必ずしも必要とされない。
The device configuration of the air compressor in the present embodiment is the same as that of the first embodiment shown in FIG. 1, but the software built in the control device 11 is different, and the stopping operation is different from the conventional procedure.
Further, the temperature sensor 12 is not necessarily required.

本実施例は停止操作時に特徴があり、その作用を図3を用いて説明する。   The present embodiment is characterized by a stop operation, and its operation will be described with reference to FIG.

運転状態にあり回転速度N,吐出圧力Pdで圧縮空気を供給しているスクリュー圧縮機1の運転スイッチを使用者がオフにするなどして、時刻T5に停止操作がなされる。直ちに制御装置11はインバータ10へ停止の指示を出し、インバータ10は電動機9への供給電力の周波数を下げていき、時刻T6(具体例として2〜5秒後)には電力供給を停止する。これに合わせて電動機9ならびに両ロータ3,4の回転速度も次第に低下しほぼ時刻T6に停止に至る。   The stop operation is performed at time T5, for example, when the user turns off the operation switch of the screw compressor 1 that is in the operating state and supplies compressed air at the rotational speed N and the discharge pressure Pd. Immediately, the control device 11 instructs the inverter 10 to stop, the inverter 10 decreases the frequency of the power supplied to the electric motor 9, and stops the power supply at time T6 (as a specific example, after 2 to 5 seconds). At the same time, the rotational speeds of the electric motor 9 and the rotors 3 and 4 are gradually decreased, and the operation is stopped at about time T6.

制御装置11からは電動機9の停止指示とほぼ同時刻T5に電磁弁16へ弁を開く指示が出される。圧縮機本体2の吐出口7から油分離器8、そして更に下流に連なる高圧の管路内から電磁弁16を通って圧縮空気が大気へ放出され、管路内の圧力は運転時の吐出圧Pdから約10〜30秒の時間をかけて次第に低下し、時刻T6にはほぼ大気圧Paとなる。時刻T6からT7まで時間差があるので、ロータの回転停止後暫くの間は差圧が残っており、停止した作動室内14への油の注入が続く。図3に示すように、運転中にはロータの回転で次々に排出されていた油は、ロータ停止により排出が無くなった時刻T6から急激に作動室14内部に溜まり時刻T7まで増加が続く。   The control device 11 issues an instruction to open the valve to the electromagnetic valve 16 at approximately the same time T5 as the stop instruction of the electric motor 9. Compressed air is discharged to the atmosphere from the discharge port 7 of the compressor body 2 through the oil separator 8 and further through the high-pressure pipe line connected downstream to the electromagnetic valve 16, and the pressure in the pipe line is the discharge pressure during operation. The temperature gradually decreases from Pd over a period of about 10 to 30 seconds, and reaches approximately atmospheric pressure Pa at time T6. Since there is a time difference from time T6 to time T7, the pressure difference remains for a while after the rotor stops rotating, and oil injection into the stopped working chamber 14 continues. As shown in FIG. 3, during operation, the oil that has been discharged one after another due to the rotation of the rotor suddenly accumulates in the working chamber 14 from time T6 when the rotor is stopped and stops increasing until time T7.

従来の油冷式スクリュー圧縮機においては、この油の溜まった状態で次の起動となっていた。本実施例では、この後の動作に特徴がある。   In the conventional oil-cooled screw compressor, the next start-up is performed with this oil accumulated. This embodiment is characterized by the subsequent operation.

残圧が十分に低くなったT8の時点で、制御装置11は低速Nsで短時間(T8〜T9)だけの回転を指示し、インバータ10は低い周波数で電動機9を駆動し両ロータ3,4が毎分100回転程度の低速Nsで回転して、作動室14内部に溜まった油を吐出口7から排出する。このとき、圧縮機本体2全体は運転中の温度からそれほど低下しておらず油の粘度も低いので排出するに要するトルクは軽く、ロータ3,4は容易に回転できる。また、低速で短時間の回転であり、電磁弁16も開いたままなので吐出側の圧力は上がらず、油分離器8から作動室14へ油が送られることはない。   At time T8 when the residual pressure becomes sufficiently low, the control device 11 instructs rotation at a low speed Ns for only a short time (T8 to T9), and the inverter 10 drives the motor 9 at a low frequency to drive both rotors 3, 4 Rotates at a low speed Ns of about 100 revolutions per minute, and the oil accumulated in the working chamber 14 is discharged from the discharge port 7. At this time, the compressor body 2 as a whole is not so much lowered from the temperature during operation and the viscosity of the oil is low, so that the torque required for discharging is light and the rotors 3 and 4 can be rotated easily. Further, since the rotation is low speed and short time and the solenoid valve 16 is kept open, the pressure on the discharge side does not increase, and no oil is sent from the oil separator 8 to the working chamber 14.

したがって、このロータ3,4の回転によって圧縮機本体2の内部に溜まった油の多くは、低速運転の終了する時刻T9には排出されている。この状態で停止動作は完了し次回の起動まで待機することになる。なお、低速運転を開始する時刻T8や終了する時刻T9は、制御装置11に内蔵したタイマー機能で停止操作されたT5を基準に定めておく。   Therefore, most of the oil accumulated in the compressor body 2 due to the rotation of the rotors 3 and 4 is discharged at time T9 when the low-speed operation ends. In this state, the stop operation is completed and the system waits for the next activation. Note that the time T8 at which the low speed operation is started and the time T9 at which the low speed operation is started are determined based on T5 that is stopped by the timer function built in the control device 11.

以上の停止動作がなされた次の起動では、低温環境からであっても、ロータの周囲に油は多くは溜まっておらず、油排出に要するトルクは問題となるレベルではない。したがって、電動機9やインバータ10を大容量にせずとも円滑で確実な起動が可能となる。   In the next start after the above stop operation, a large amount of oil is not collected around the rotor even in a low temperature environment, and the torque required for oil discharge is not a problem level. Therefore, smooth and reliable start-up is possible without increasing the capacity of the electric motor 9 and the inverter 10.

停止動作の過程における短時間で低速のロータの回転は、制御装置11に内蔵したソフトウェアの設定で制御される。この回転の量は例えば2〜3秒間といった時間で制御してもかまわないし、ロータを5〜10回転といった回転総数で制御してもかまわない。いずれにしても油量やトルクを検出するセンサは不要で従来機種に対しソフトウェアの変更以外に大きな設計変更は必要ない。   The rotation of the rotor at a low speed in a short time in the process of the stop operation is controlled by setting of software built in the control device 11. The amount of this rotation may be controlled by a time such as 2 to 3 seconds, or may be controlled by the total number of rotations such as 5 to 10 rotations. In any case, a sensor for detecting the amount of oil and torque is unnecessary, and no major design change is required other than the software change compared to the conventional model.

本実施例によれば、従来の機種に大きな設計変更を加えることなく、本発明の目的を達することができる。また、低温時であっても起動直後から加速できるので、スイッチを入れてから短時間で圧縮空気を供給することができる。   According to the present embodiment, the object of the present invention can be achieved without making a major design change to the conventional model. Moreover, since it can accelerate immediately after starting even at low temperatures, compressed air can be supplied in a short time after the switch is turned on.

本発明の次の実施例を図3を用いて説明する。図3は空気用油冷式スクリュー圧縮機において、停止動作がなされている間のロータの回転速度,吐出側圧力,注入油量,作動室内部に溜まっている油量の時間変移を示すグラフである。本実施例において第1の実施例と共通する構造,作用や効果、そして適応可能な範囲については説明を省略する。   The following embodiment of the present invention will be described with reference to FIG. FIG. 3 is a graph showing the time variation of the rotational speed of the rotor, the discharge side pressure, the amount of injected oil, and the amount of oil accumulated in the working chamber in the air oil-cooled screw compressor. is there. In this embodiment, the description of the structure, operation and effect common to the first embodiment and the applicable range will be omitted.

本実施例における空気圧縮機の機器構成は図1に示した第1の実施例と同じであるが、特段の制御装置ならびに制御ソフトウェアは必要としない。また、温度センサ12は必ずしも必要とされない。   The equipment configuration of the air compressor in this embodiment is the same as that of the first embodiment shown in FIG. 1, but no special control device and control software are required. Further, the temperature sensor 12 is not necessarily required.

代わって、雌雄のロータ3,4が収納されたケーシング5内部の空間のうち、吸入側で最下部となる吸入室下部25から油分離器上部空間26に連通する連通路21を設ける。
この連通路21の途中には断面積が広い弁室22を設け、その中で自在に動ける球形の弁体23を収納する。弁室の下方には弁室壁面より内側に向けて複数個の突起24を設けておき、弁体23が通り抜けない構造とし落下を防止する。一方で弁室22上部で連通路21につながる部分は弁体23で塞がれる構造としておく。
Instead, of the space inside the casing 5 in which the male and female rotors 3 and 4 are housed, a communication passage 21 is provided that communicates from the lower portion of the suction chamber 25 on the suction side to the upper space 26 of the oil separator.
A valve chamber 22 having a wide cross-sectional area is provided in the middle of the communication passage 21, and a spherical valve body 23 that can move freely is housed therein. Below the valve chamber, a plurality of projections 24 are provided inward from the wall surface of the valve chamber to prevent the valve body 23 from passing through, thereby preventing the drop. On the other hand, the part connected to the communication path 21 at the upper part of the valve chamber 22 is configured to be closed by the valve body 23.

本圧縮機の運転状態においては、圧縮の作用により吸入室下部25内の圧力よりも油分離器上部空間26内の圧力の方が高くなる。したがって、弁体23は弁室22の上端まで押し上げられ、連通路21を塞ぐ。そのため、圧縮が完了した高い圧力の気体が吸入室下部25に戻ってしまうことはない。   In the operating state of the compressor, the pressure in the oil separator upper space 26 becomes higher than the pressure in the suction chamber lower portion 25 due to the action of compression. Therefore, the valve body 23 is pushed up to the upper end of the valve chamber 22 and closes the communication path 21. Therefore, the high-pressure gas that has been compressed does not return to the lower portion 25 of the suction chamber.

本圧縮機の停止状態においては、内部の圧力が均一となり、弁体23は重力で下方に落下し突起24に引っかかる。弁体23の外径は弁室22の内径よりも小さく、突起24の周囲も隙間が開いている。そのため、連通路21を通って吸入室下部25から油分離器上部空間26まで連通し、吸入室に溜まる油は連通路21を通って重力で油分離器8に落下する。したがって、次回の再起動時にはロータ3,4の周囲の油はわずかしかなく、起動に支障となることはない。   When the compressor is stopped, the internal pressure becomes uniform, and the valve body 23 falls downward due to gravity and is caught by the protrusion 24. The outer diameter of the valve body 23 is smaller than the inner diameter of the valve chamber 22, and a gap is also opened around the protrusion 24. Therefore, the oil that passes from the lower portion of the suction chamber 25 to the oil separator upper space 26 through the communication passage 21 and accumulates in the suction chamber falls through the communication passage 21 to the oil separator 8 by gravity. Therefore, there is little oil around the rotors 3 and 4 at the next restart, which does not hinder the start.

本実施例によれば、特段の電気的あるいは制御的機能を付加することなく、目的を達成することができる。したがって一定速度で運転することを想定し、インバータ等の可変速機能を有しない機種に採用することが可能である。   According to the present embodiment, the object can be achieved without adding a special electrical or control function. Therefore, it is possible to adopt a model that does not have a variable speed function, such as an inverter, assuming that it operates at a constant speed.

本実施例においては、逆止弁として球体で円形穴を塞ぎ、開くときは重力を利用する方式とした。同じ機能があれば、もちろん他の方式の逆止弁であってもよく、ちょうつがいで開閉する板状の弁体や、ばねの作用で開くなどの方式であってもかまわない。   In this embodiment, as a check valve, a circular hole is closed with a sphere, and gravity is used when opening. Of course, other types of check valves may be used as long as they have the same function, and a plate-like valve body that opens and closes by a hinge or a system that opens by the action of a spring may be used.

1 空気圧縮機
2 圧縮機本体
3 雄ロータ
4 雌ロータ
5 ケーシング
6 吸入口
7 吐出口
8 油分離器
9 電動機
10 インバータ
11 制御装置
12 温度センサ
13 油冷却器
14 作動室
15 軸受
16 電磁弁
21 連通路
22 弁室
23 弁体
24 突起
25 吸入室下部
26 油分離器上部空間
DESCRIPTION OF SYMBOLS 1 Air compressor 2 Compressor main body 3 Male rotor 4 Female rotor 5 Casing 6 Suction port 7 Discharge port 8 Oil separator 9 Electric motor 10 Inverter 11 Controller 12 Temperature sensor 13 Oil cooler 14 Working chamber 15 Bearing 16 Solenoid valve 21 Station Passage 22 Valve chamber 23 Valve body 24 Projection 25 Lower suction chamber 26 Upper space of oil separator

Claims (4)

ケーシングと、ケーシングに内蔵され、ねじ山状の歯溝を有する一対のロータと、これらのロータを回転駆動する電動機と、この電動機を制御する制御装置と、前記一対のロー
タの歯溝を噛み合わせて、前記ロータと前記ケーシングにより囲まれて形成した作動室内
へ油を供給する油供給機構と、前記作動室から吐出された圧縮気体から油を分離する油分
離機構と、を有する油冷式スクリュー圧縮機において、
前記ロータが通常運転状態から回転停止状態となり、この回転停止状態から前記電動機
を起動して前記ロータが通常運転状態となる間に、前記制御装置は、前記一対のロータを
収納するケーシング内の空間に供給された油の少なくとも一部を前記空間の外に排出し、
停止指令を受けた際には電動機を停止して前記ロータを回転停止状態にして、前記ケー
シングと接続して前記作動室の吐出口と連通する吐出配管の内部に残留する高圧力の圧縮
空気を大気に開放し、前記作動室と連通する吸入口の圧力まで前記吐出口内の圧力が低下
した後に、前記ロータを所定時間回転させることを特徴とする油冷式スクリュー圧縮機。
A casing, a pair of rotors built in the casing and having thread-like tooth grooves, an electric motor that rotationally drives these rotors, a control device that controls the electric motor, and the tooth grooves of the pair of rotors An oil-cooled screw having an oil supply mechanism that supplies oil into a working chamber formed by being surrounded by the rotor and the casing, and an oil separation mechanism that separates oil from the compressed gas discharged from the working chamber In the compressor,
While the rotor is in a rotation stop state from the normal operation state, and the motor is started from the rotation stop state and the rotor is in a normal operation state, the control device is a space in a casing that houses the pair of rotors. Discharging at least part of the oil supplied to the outside of the space,
When a stop command is received, the motor is stopped to stop the rotation of the rotor, and high pressure compressed air remaining in the discharge pipe connected to the casing and communicating with the discharge port of the working chamber is removed. An oil-cooled screw compressor, wherein the rotor is rotated for a predetermined time after the pressure in the discharge port is reduced to the pressure of the suction port that opens to the atmosphere and communicates with the working chamber.
請求項1記載の油冷式スクリュー圧縮機において、
前記油供給機構は、前記油分離機構で油を分離した気体の気体圧力と、前記作動室内の
吐出前の気体圧力との差圧を利用して前記作動室内に油を供給し、前記油分離機構で分離
した油を溜める油溜めと、前記油分離機構で油を分離した気体が供給された空間と吐出前
の圧力状態にある前記作動室とを接続する流路と、を有することを特徴とする油冷式スク
リュー圧縮機。
The oil-cooled screw compressor according to claim 1,
The oil supply mechanism supplies oil into the working chamber using a differential pressure between the gas pressure of the gas separated by the oil separation mechanism and the gas pressure before discharge in the working chamber, and the oil separation An oil sump for storing oil separated by the mechanism; and a flow path for connecting the space supplied with the gas separated by the oil separation mechanism and the working chamber in a pressure state before discharge. Oil-cooled screw compressor.
請求項1記載の油冷式スクリュー圧縮機において、
前記電動機は前記制御装置を経由した電流により駆動され、前記電動機の出力軸と前記
ロータの回転軸とが接続してあることを特徴とする油冷式スクリュー圧縮機。
The oil-cooled screw compressor according to claim 1,
The electric motor is driven by a current passing through the control device, and an output shaft of the electric motor and a rotary shaft of the rotor are connected to each other.
請求項1記載の油冷式スクリュー圧縮機において、
前記ロータを収納した空間の下方に前記油分離機構で分離した油を溜める油溜めと、当該油溜めに連通する流路と、その流路の途中に前記ロータを収納した空間から前記油溜め
方向にのみ流れることを許す逆止弁とを有することを特徴とする油冷式スクリュー圧縮機。
The oil-cooled screw compressor according to claim 1,
An oil sump for storing the oil separated by the oil separation mechanism below the space in which the rotor is accommodated, a flow path communicating with the oil sump, and the oil sump direction from the space in which the rotor is accommodated in the middle of the flow path An oil-cooled screw compressor, characterized by having a check valve that allows flow only into the valve.
JP2010238109A 2010-10-25 2010-10-25 Oil-cooled screw compressor Active JP5119309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010238109A JP5119309B2 (en) 2010-10-25 2010-10-25 Oil-cooled screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010238109A JP5119309B2 (en) 2010-10-25 2010-10-25 Oil-cooled screw compressor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008197175A Division JP2010031814A (en) 2008-07-31 2008-07-31 Oil-cooled screw compressor, motor driving system and motor control device

Publications (2)

Publication Number Publication Date
JP2011017345A true JP2011017345A (en) 2011-01-27
JP5119309B2 JP5119309B2 (en) 2013-01-16

Family

ID=43595291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010238109A Active JP5119309B2 (en) 2010-10-25 2010-10-25 Oil-cooled screw compressor

Country Status (1)

Country Link
JP (1) JP5119309B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013151040A1 (en) * 2012-04-04 2013-10-10 サンデン株式会社 Method and device for controlling scroll compressor
WO2018131089A1 (en) * 2017-01-11 2018-07-19 三菱電機株式会社 Refrigeration cycle device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677686U (en) * 1979-11-20 1981-06-24
JPS62129656A (en) * 1985-11-28 1987-06-11 株式会社東芝 Air conditioner
JPS63109297A (en) * 1986-10-27 1988-05-13 Hitachi Ltd Starting load reducing device for screw compressor
JPH02264191A (en) * 1989-04-05 1990-10-26 Hitachi Ltd Reduction method for starting load for oil cooling type screw compressor
JPH062671A (en) * 1992-06-18 1994-01-11 Tokico Ltd Oil cooled type scroll compressor
JPH09504069A (en) * 1993-10-29 1997-04-22 キャッシュ・エンジニアリング・リサーチ・プロプライエタリ・リミテッド Rotary compressor with a tank

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677686U (en) * 1979-11-20 1981-06-24
JPS62129656A (en) * 1985-11-28 1987-06-11 株式会社東芝 Air conditioner
JPS63109297A (en) * 1986-10-27 1988-05-13 Hitachi Ltd Starting load reducing device for screw compressor
JPH02264191A (en) * 1989-04-05 1990-10-26 Hitachi Ltd Reduction method for starting load for oil cooling type screw compressor
JPH062671A (en) * 1992-06-18 1994-01-11 Tokico Ltd Oil cooled type scroll compressor
JPH09504069A (en) * 1993-10-29 1997-04-22 キャッシュ・エンジニアリング・リサーチ・プロプライエタリ・リミテッド Rotary compressor with a tank

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013151040A1 (en) * 2012-04-04 2013-10-10 サンデン株式会社 Method and device for controlling scroll compressor
WO2018131089A1 (en) * 2017-01-11 2018-07-19 三菱電機株式会社 Refrigeration cycle device
EP3569950A4 (en) * 2017-01-11 2020-05-13 Mitsubishi Electric Corporation Refrigeration cycle device

Also Published As

Publication number Publication date
JP5119309B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP2010031814A (en) Oil-cooled screw compressor, motor driving system and motor control device
JP6137756B2 (en) Compressor device
JP4415340B2 (en) Screw compression device and operation control method thereof
KR100550300B1 (en) Hybrid compressor device
US9022748B2 (en) Screw compressor
US10781817B2 (en) Compressor having centrifugation and differential pressure structure for oil supplying
JP5510393B2 (en) Multistage compression refrigeration cycle equipment
JP5119309B2 (en) Oil-cooled screw compressor
JP6216204B2 (en) Lubricating compressor
CN101963162B (en) Turbo compressor and refrigerator
WO2016189598A1 (en) Scroll compressor
WO2012042698A1 (en) Refrigerating and air conditioning device
JP5679896B2 (en) Water supply compressor
JP2009186030A (en) Turbo refrigerator
JP4463011B2 (en) Capacity control method and capacity control apparatus for fluid compressor
JP2010031729A (en) Scroll compressor
JP4952599B2 (en) Turbo refrigerator
JP2011012583A (en) Screw compressor
JP2010038120A (en) Fluid machine
WO2014106233A1 (en) Compressor control for reverse rotation failure
JP4798145B2 (en) Turbo refrigerator
JP2001107834A (en) Operating method of water-turbine-driven comprfssor and water-turbine-driven compressor for executing this operating method
JPH06108982A (en) Fail-safe mechanical oil interrupter for screw compressor
JP2006070807A (en) Scroll compressor
JP2010025027A (en) Fluid machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101025

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

R150 Certificate of patent or registration of utility model

Ref document number: 5119309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3