JP2011016710A - Carbonation treatment method and apparatus of steel slag powder - Google Patents

Carbonation treatment method and apparatus of steel slag powder Download PDF

Info

Publication number
JP2011016710A
JP2011016710A JP2010090787A JP2010090787A JP2011016710A JP 2011016710 A JP2011016710 A JP 2011016710A JP 2010090787 A JP2010090787 A JP 2010090787A JP 2010090787 A JP2010090787 A JP 2010090787A JP 2011016710 A JP2011016710 A JP 2011016710A
Authority
JP
Japan
Prior art keywords
carbonation
steel slag
treatment
water
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010090787A
Other languages
Japanese (ja)
Other versions
JP5432809B2 (en
Inventor
Akira Matsuoka
亮 松岡
Takahiro Shimizu
孝浩 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010090787A priority Critical patent/JP5432809B2/en
Publication of JP2011016710A publication Critical patent/JP2011016710A/en
Application granted granted Critical
Publication of JP5432809B2 publication Critical patent/JP5432809B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • C04B5/06Ingredients, other than water, added to the molten slag or to the granulating medium or before remelting; Treatment with gases or gas generating compounds, e.g. to obtain porous slag

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Furnace Details (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for carbonating calcium oxide and calcium hydroxide in steel slag homogeneously to calcium carbonate, and an apparatus for carrying out the method.SOLUTION: Calcium oxide and/or calcium hydroxide in steel slag is transformed to calcium carbonate by forming a fluid layer of steel slag powder by using a treating water in which a gas containing carbon dioxide is dispersed as microbubbles.

Description

本発明は、鉄鋼スラグに含まれる酸化カルシウムや水酸化カルシウムを炭酸化処理するための方法および該方法を実施するための炭酸化処理装置に関するものである。   The present invention relates to a method for carbonizing calcium oxide or calcium hydroxide contained in steel slag and a carbonation processing apparatus for carrying out the method.

製鋼所では、鉄鋼を製造する際の副産物として鉄鋼スラグが発生している。鉄鋼スラグは、高炉から銑鉄とともに排出される高炉スラグと、転炉で酸化精錬の際に生じた酸化物からなる転炉スラグに大別される。これらの鉄鋼スラグは、路盤材、セメント用材料、土木用材料などに利用されている。   In steelworks, steel slag is generated as a by-product when steel is produced. Steel slag is roughly classified into blast furnace slag discharged together with pig iron from the blast furnace and converter slag composed of oxides generated during oxidation refining in the converter. These steel slags are used for roadbed materials, cement materials, civil engineering materials, and the like.

鉄鋼スラグは酸化カルシウム(CaO)を含有しており、水分と接触すると水酸化カルシウム[Ca(OH)2]を生成し、体積を増大させる膨潤現象が生じる。鉄鋼スラグを例えば路盤材として用いると、膨潤現象により寸法安定性が悪いことが問題となる。使用中の膨潤現象を抑えるには、鉄鋼スラグ中のCaOを予め水和させてCa(OH)2への変化を完了させておけばよいと考えられている。 Steel slag contains calcium oxide (CaO), and when it comes into contact with moisture, it produces calcium hydroxide [Ca (OH) 2 ], causing a swelling phenomenon that increases the volume. When steel slag is used as a roadbed material, for example, the problem is that dimensional stability is poor due to swelling phenomenon. In order to suppress the swelling phenomenon during use, it is considered that CaO in steel slag may be hydrated in advance to complete the change to Ca (OH) 2 .

CaOをCa(OH)2に変化させる方法としては、大気エージング処理、蒸気エージング処理、加圧エージング処理が知られている。大気エージング処理は、鉄鋼スラグを大気雰囲気下に数ヶ月から数年暴露させることにより鉄鋼スラグ中のCaOを充分に水和させてCa(OH)2へ変化させる方法であり、蒸気エージング処理は大気圧下で、また加圧エージング処理は加圧下で、夫々水蒸気を鉄鋼スラグに接触させて鉄鋼スラグ中のCaOをCa(OH)2へ変化させる方法である。 As a method for changing CaO to Ca (OH) 2 , atmospheric aging treatment, vapor aging treatment, and pressure aging treatment are known. Atmospheric aging treatment is a method in which steel slag is exposed to the atmosphere for several months to several years to fully hydrate CaO in the steel slag and change it to Ca (OH) 2 . Under atmospheric pressure and under pressure, aging treatment is a method in which water vapor is brought into contact with steel slag to change CaO in the steel slag to Ca (OH) 2 under pressure.

ところがエージング処理して生成するCa(OH)2は、下記(1)式に従って水に溶解する。
Ca(OH)2→Ca2++2OH- ・・・(1)
However, Ca (OH) 2 produced by aging treatment is dissolved in water according to the following formula (1).
Ca (OH) 2 → Ca 2+ + 2OH (1)

Ca(OH)2が海水に溶解し、海水のpHが約9.5以上に上昇すると、Mg(OH)2が析出し、海水の白濁現象を生じる。 When Ca (OH) 2 is dissolved in seawater and the pH of the seawater rises to about 9.5 or more, Mg (OH) 2 is precipitated, and the seawater becomes cloudy.

また、鉄鋼スラグに含まれるCaOや、鉄鋼スラグにエージング処理を施した後でも未反応で残っているCaOが海水と接触するとCa(OH)2を生成するため、このCa(OH)2が海水に溶解することによって上述したように白濁現象を発生させる原因となる。CaOやCa(OH)2に起因する海水の白濁現象の発生は、鉄鋼スラグの利用拡大を阻害する要因となる。 Further, CaO and contained in the iron and steel slag, since CaO remaining unreacted even after being subjected to an aging treatment to the steel slag to produce a Ca (OH) 2 when in contact with seawater, the Ca (OH) 2 is seawater As described above, it becomes a cause of causing the cloudiness phenomenon. Generation | occurrence | production of the cloudiness phenomenon of the seawater resulting from CaO or Ca (OH) 2 becomes a factor which inhibits the use expansion of steel slag.

鉄鋼スラグやエージング処理した鉄鋼スラグに含まれるCaOやCa(OH)2を水に難溶性化させるために、鉄鋼スラグ(或いはエージング処理した鉄鋼スラグ)に炭酸化処理を施し、鉄鋼スラグ中の酸化カルシウムや水酸化カルシウムを炭酸カルシウムに変化させる方法が知られている(例えば、特許文献1〜4)。 In order to make CaO and Ca (OH) 2 contained in steel slag and aging-treated steel slag insoluble in water, carbonization treatment is applied to steel slag (or aging-treated steel slag) and oxidation in steel slag is performed. Methods for changing calcium or calcium hydroxide to calcium carbonate are known (for example, Patent Documents 1 to 4).

特許文献1には、粒径が1mm以下の比率が60質量%以上の粒度分布を有し、3%以上の体積膨張率を示す鉄鋼スラグ粉末の含有水分量を10〜25質量%に調整した後、二酸化炭素含有気体を接触させる粉状製鋼スラグの安定化処理方法が記載されている。また、特許文献2には、溶融状態、半溶融状態、または高温固相状態にあるスラグを、金属ボール群が収容された回転ドラム内に注入し、該スラグを回転ドラム内で転動する金属ボール群と接触させることで粉砕する工程と、スラグ粉砕物を二酸化炭素または二酸化炭素含有気体と接触させ、スラグ粉砕物中に含まれる未炭酸化Caを二酸化炭素と反応させる工程を有する製鋼スラグの処理方法が開示されている。また、特許文献3には、エージング処理が施された製鋼スラグに、自由水が存在し始める水分値未満で、且つ該水分値よりも10質量%少ない値以上の範囲となるように添加する炭酸水量を調整した後に、二酸化炭素を含有し相対湿度が75〜100%のガスを流す製鋼スラグの安定化処理方法が記載されている。特許文献4及び非特許文献1には、表面付着水を伴った製鋼スラグ粒子を、充填層方式(固定床方式)でCO2含有排ガスと接触させること、及び反応槽に振動を与えるための振動装置を取り付けることが記載されている。また、特許文献5には、水中に二酸化炭素含有気体をマイクロバブルとして分散させたマイクロバブル含有水を、高炉水砕スラグと接触させて難固結性とする難固結性高炉水砕スラグの製造方法が開示されている。 In Patent Document 1, the moisture content of steel slag powder having a particle size distribution with a particle size of 1 mm or less having a particle size distribution of 60% by mass or more and a volume expansion coefficient of 3% or more was adjusted to 10 to 25% by mass. Thereafter, a stabilization method for powdered steel slag in which a carbon dioxide-containing gas is brought into contact is described. Patent Document 2 discloses a metal in which a slag in a molten state, a semi-molten state, or a high-temperature solid state is injected into a rotating drum in which a metal ball group is accommodated, and the slag rolls in the rotating drum. A steelmaking slag having a step of pulverizing by contacting with a ball group, a step of bringing a slag pulverized product into contact with carbon dioxide or a gas containing carbon dioxide, and a step of reacting uncarbonized Ca contained in the slag pulverized product with carbon dioxide A processing method is disclosed. Patent Document 3 discloses that carbon dioxide added to a steelmaking slag that has been subjected to an aging treatment so as to be less than a moisture value at which free water begins to exist and to be in a range of 10% by mass or less than the moisture value. A method for stabilizing steelmaking slag is described, in which after adjusting the amount of water, carbon dioxide is contained and a gas having a relative humidity of 75 to 100% is flowed. In Patent Document 4 and Non-Patent Document 1, steelmaking slag particles accompanied with surface adhering water are brought into contact with CO 2 -containing exhaust gas in a packed bed system (fixed bed system), and vibration for applying vibration to the reaction tank is disclosed. The installation of the device is described. Further, in Patent Document 5, a micro-bubble-containing water in which carbon dioxide-containing gas is dispersed as microbubbles in water is brought into contact with a blast furnace granulated slag to make it hard to consolidate. A manufacturing method is disclosed.

特開2008−214150号公報JP 2008-214150 A 特開2008−100893号公報JP 2008-100953 A 特開2005−47789号公報JP-A-2005-47789 特開2001−252525号公報JP 2001-252525 A 特開2007−186364号公報JP 2007-186364 A

高橋、外5名,「平成10年度新エネルギー・産業技術総合開発機構 即効提案公募事業 研究開発成果(最終版) 鉄鋼スラグによる炭酸ガス吸収」,日本鋼管株式会社,平成12年3月Takahashi and five others, “FY 1998 New Energy and Industrial Technology Development Organization Immediate Proposal Public Offering Project Research and Development Results (final version) Carbon dioxide absorption by steel slag”, Nippon Steel Pipe Co., Ltd., March 2000

上記特許文献1〜5及び非特許文献1では、鉄鋼スラグやエージング処理した鉄鋼スラグの炭酸化処理を流動状態ではなく、固定層で行っているため、鉄鋼スラグに含まれる酸化カルシウムや水酸化カルシウムを均一に炭酸化することが困難であった。これは、炭酸化処理を固定層で行うことによって、スラグ同士が固結したり、添加する水分が多過ぎてガスの通り道が塞がってしまい、スラグ層にガスが均一に分散しないことが原因であると考えられる。また、添加水分量やガスの相対湿度を最適化する方法は、操作が煩雑であった。
なお特許文献4及び非特許文献1によれば、固定層の場合、ガスを流通させ続けると、充填層が収縮してガスの通り道ができ、ガスの吹き抜けが生じることも報告されている。そこでこれら文献では、振動装置を取り付けているが、付加的設備は少なくする方が望ましい。
In Patent Documents 1 to 5 and Non-Patent Document 1, since carbonation of steel slag and aged steel slag is performed not in a fluid state but in a fixed layer, calcium oxide and calcium hydroxide contained in steel slag are used. It was difficult to uniformly carbonate. This is because the carbonization treatment is performed in the fixed layer, so that the slags are solidified or too much moisture is added to block the gas passage, and the gas is not uniformly dispersed in the slag layer. It is believed that there is. Further, the method of optimizing the amount of added water and the relative humidity of the gas is complicated.
According to Patent Document 4 and Non-Patent Document 1, it is also reported that in the case of a fixed layer, if the gas continues to flow, the packed layer contracts to create a gas passage, and gas blow-through occurs. Therefore, in these documents, the vibration device is attached, but it is desirable to reduce the additional equipment.

本発明は上記の様な事情に着目してなされたものであって、その目的は、鉄鋼スラグ中の酸化カルシウムと水酸化カルシウムを均一に炭酸化カルシウムに変化させることのできる炭酸化処理方法、および該方法を実施するための装置を提供することにある。   The present invention has been made paying attention to the above circumstances, and its purpose is a carbonation treatment method capable of uniformly changing calcium oxide and calcium hydroxide in steel slag to calcium carbonate, And providing an apparatus for carrying out the method.

上記目的を達成し得た本発明の炭酸化処理方法とは、二酸化炭素含有気体をマイクロバブルとして分散させた処理用水を用いて鉄鋼スラグ粉末の流動層を形成させることによって鉄鋼スラグ中の酸化カルシウムおよび/または水酸化カルシウムを炭酸カルシウムに変化させる点に要旨を有する。   The carbonation treatment method of the present invention that has achieved the above object is to form a fluidized bed of steel slag powder using water for treatment in which a carbon dioxide-containing gas is dispersed as microbubbles, thereby forming calcium oxide in steel slag. The point is that the calcium hydroxide is changed to calcium carbonate.

上記炭酸化処理方法を実施するうえで好ましい装置としては、二酸化炭素含有気体をマイクロバブルとして分散させた処理用水を用いて鉄鋼スラグ粉末の流動層を形成させることによって鉄鋼スラグ中の酸化カルシウムおよび/または水酸化カルシウムを炭酸カルシウムに変化させる炭酸化処理槽と、前記処理用水を調製するためのマイクロバブル発生器という基本構成を備え、ここで前記炭酸化処理槽には、前記マイクロバブル発生器で調製した処理用水を炭酸化処理槽内へ導入するための導入口を設けると共に、前記炭酸化処理槽の内壁面下方には、前記鉄鋼スラグ粉末の水中における安息角を超える傾斜面部を形成することを更に特徴的構成として備えるものである。   As a preferable apparatus for carrying out the carbonation treatment method, calcium oxide in steel slag and / or by forming a fluidized bed of steel slag powder using water for treatment in which carbon dioxide-containing gas is dispersed as microbubbles. Or, it has a basic structure of a carbonation treatment tank for changing calcium hydroxide to calcium carbonate and a microbubble generator for preparing the treatment water, wherein the carbonation treatment tank includes the microbubble generator An inlet for introducing the prepared treatment water into the carbonation tank is provided, and an inclined surface part exceeding the angle of repose of the steel slag powder in water is formed below the inner wall surface of the carbonation tank. Is further provided as a characteristic configuration.

上記炭酸化処理槽には、処理用水を炭酸化処理槽外へ排出するための排出部を設け、この排出部の最下点より下方に鉄鋼スラグ粉末が排出部に至るのを防止するための邪魔部材を設けてもよい。また、上記炭酸化処理槽の上方には、拡大内径部を設けてもよい。また、上記導入口の上方に上昇管を設けて該上昇管内に前記処理用水の上昇流を形成することにより、鉄鋼スラグを該上昇管内で上昇させる上昇流と、該上昇管外を下降させる下降流を含む対流を前記炭酸化処理槽内に生成するように構成してもよい。   The carbonation treatment tank is provided with a discharge part for discharging the treatment water to the outside of the carbonation treatment tank, and the steel slag powder is prevented from reaching the discharge part below the lowest point of the discharge part. A baffle member may be provided. An enlarged inner diameter portion may be provided above the carbonation tank. Also, by providing a rising pipe above the inlet and forming an upward flow of the treatment water in the rising pipe, the rising flow for raising the steel slag in the rising pipe and the lowering for lowering the outside of the rising pipe A convection including a flow may be generated in the carbonation tank.

本発明の炭酸化処理方法によれば、二酸化炭素含有気体をマイクロバブルとして分散させた処理用水を用いて鉄鋼スラグ粉末を流動させた状態で炭酸化処理を行うことによって、鉄鋼スラグ中の酸化カルシウムと水酸化カルシウムを効率良く炭酸カルシウムに変化させることができる。そのため炭酸化処理して得られた鉄鋼スラグを海洋土木用材料として用いても海水のpHを殆んど上昇させず、また海水の白濁現象も殆んど発生させない。本発明によれば、上記炭酸化処理方法を実施するための炭酸化処理装置も提供できる。   According to the carbonation treatment method of the present invention, by performing the carbonation treatment in a state where the steel slag powder is flowed using the treatment water in which the carbon dioxide-containing gas is dispersed as microbubbles, calcium oxide in the steel slag is obtained. And calcium hydroxide can be efficiently converted to calcium carbonate. For this reason, even when steel slag obtained by carbonation is used as a material for marine civil engineering, the pH of seawater is hardly increased, and the cloudiness phenomenon of seawater is hardly generated. According to the present invention, a carbonation treatment apparatus for carrying out the carbonation treatment method can also be provided.

図1は、本発明に係る炭酸化処理装置の構成例を示す概略説明図である。FIG. 1 is a schematic explanatory view showing a configuration example of a carbonation treatment apparatus according to the present invention. 図2は、本発明に係る炭酸化処理装置の他の構成例を示す概略説明図である。FIG. 2 is a schematic explanatory view showing another configuration example of the carbonation treatment apparatus according to the present invention. 図3は、本発明に係る炭酸化処理装置の更に他の構成例を示す概略説明図である。FIG. 3 is a schematic explanatory view showing still another configuration example of the carbonation treatment apparatus according to the present invention.

本発明者らは、高炉スラグや転炉スラグなどの鉄鋼スラグを均一に炭酸化できる方法および該方法を実施するための装置について鋭意検討してきた。その結果、二酸化炭素含有気体をマイクロバブルとして分散させた処理用水を用いて鉄鋼スラグ粉末を流動させながら炭酸化処理を行なえば、鉄鋼スラグ中の酸化カルシウムと水酸化カルシウム(以下、酸化カルシウム等と略称することがある。)を炭酸カルシウムに均一に変化させられることを見出し、本発明を完成した。   The present inventors have intensively studied a method capable of uniformly carbonizing steel slag such as blast furnace slag and converter slag and an apparatus for carrying out the method. As a result, if carbonation treatment is performed while flowing steel slag powder using water for treatment in which carbon dioxide-containing gas is dispersed as microbubbles, calcium oxide and calcium hydroxide in steel slag (hereinafter referred to as calcium oxide, etc.) The present invention has been completed by finding that it can be uniformly changed to calcium carbonate.

即ち、本発明に係る炭酸化処理方法は、鉄鋼スラグ粉末を液中で流動させながら鉄鋼スラグ中の酸化カルシウム等を炭酸カルシウムに変化させるところに特徴があり、鉄鋼スラグ粉末を流動化させると共に、炭酸化処理を行うために二酸化炭素含有気体をマイクロバブルとして分散させた処理用水を用いることが重要である。   That is, the carbonation treatment method according to the present invention is characterized in that the calcium slag in the steel slag is changed to calcium carbonate while allowing the steel slag powder to flow in the liquid, and the steel slag powder is fluidized. In order to perform the carbonation treatment, it is important to use treatment water in which carbon dioxide-containing gas is dispersed as microbubbles.

これに対し、上記特許文献1〜5及び非特許文献1では、液中で鉄鋼スラグ粉末を流動させながら炭酸化処理を行うことについては一切考慮されておらず、実質的には、流動しない固定状態の鉄鋼スラグ粉末と二酸化炭素含有気体を接触させているため、鉄鋼スラグには未反応のCaOやCa(OH)2が多く残る。そのためこの鉄鋼スラグを海洋土木用材料として用いると、上述したように、海水のpHが約9.5以上に上昇することによってMg(OH)2が析出し、海水の白濁現象を生じる。 On the other hand, in the said patent documents 1-5 and nonpatent literature 1, it is not considered at all about performing carbonation processing, making steel slag powder flow in a liquid, and it is fixing which does not flow substantially. Since the steel slag powder and the carbon dioxide-containing gas are in contact with each other, a large amount of unreacted CaO and Ca (OH) 2 remains in the steel slag. Therefore, when this steel slag is used as a marine civil engineering material, as described above, the pH of seawater rises to about 9.5 or more, so that Mg (OH) 2 is precipitated and the seawater becomes cloudy.

以下、本発明の炭酸化処理方法を実施するための炭酸化処理装置について、図面を用いて説明するが、本発明の炭酸化処理装置は、下記図面に限定されるものではなく、前・後記の趣旨に適合し得る範囲で設計変更してもよい。   Hereinafter, a carbonation treatment apparatus for carrying out the carbonation treatment method of the present invention will be described with reference to the drawings. However, the carbonation treatment apparatus of the present invention is not limited to the following drawings, and The design may be changed within a range that can be adapted to the purpose.

図1は、本発明に係る炭酸化処理装置の構成例を示す概略説明図である。図1中、1は炭酸化処理槽、2はマイクロバブル発生器、3は循環ポンプ、4は循環経路、5は二酸化酸素含有気体供給経路、6は鉄鋼スラグ粉末、7は処理用水、8は邪魔部材を夫々示している。炭酸化処理槽1の内壁面下方には傾斜面部1aを設け、炭酸化処理槽1の下方(底面)には、マイクロバブル発生器2で調製した処理用水を炭酸化処理槽1内へ導入するための導入口1bを設け、更に炭酸化処理槽1の上方には、処理用水を炭酸化処理槽1外へ排出するための排出部1cを設けている。排出部1cから炭酸化処理槽1外へ排出された処理用水7は、循環経路4上に設けられた循環ポンプ3を作動させることで、マイクロバブル発生器2を通し、導入口1bから炭酸処理槽1内へ返送されるように構成されている。循環ポンプ3の上流側には経路5を設けており、この経路5から二酸化炭素含有気体を供給している。二酸化炭素含有気体は、マイクロバブル発生器2でマイクロバブル化され、マイクロバブルとして水中に分散した処理用水が調製される。   FIG. 1 is a schematic explanatory view showing a configuration example of a carbonation treatment apparatus according to the present invention. In FIG. 1, 1 is a carbonation tank, 2 is a microbubble generator, 3 is a circulation pump, 4 is a circulation path, 5 is an oxygen dioxide-containing gas supply path, 6 is steel slag powder, 7 is water for treatment, and 8 is water for treatment. The baffle members are shown respectively. An inclined surface portion 1 a is provided below the inner wall surface of the carbonation treatment tank 1, and the treatment water prepared by the microbubble generator 2 is introduced into the carbonation treatment tank 1 below (bottom surface) of the carbonation treatment tank 1. In addition, a discharge port 1c for discharging the processing water to the outside of the carbonation treatment tank 1 is provided above the carbonation treatment tank 1. The treatment water 7 discharged from the discharge unit 1c to the outside of the carbonation treatment tank 1 is operated by the circulation pump 3 provided on the circulation path 4 to pass through the microbubble generator 2 and the carbonation treatment from the inlet 1b. It is configured to be returned into the tank 1. A path 5 is provided on the upstream side of the circulation pump 3, and a carbon dioxide-containing gas is supplied from the path 5. The carbon dioxide-containing gas is microbubbled by the microbubble generator 2 to prepare treatment water dispersed in water as microbubbles.

本発明の炭酸化処理装置では、炭酸化処理槽1の内壁面下方に設ける傾斜面部1aの傾斜角度を、炭酸化処理槽1内に導入する鉄鋼スラグ粉末の水中における安息角を超える角度とすることが重要である。炭酸化処理槽1内に導入した鉄鋼スラグ粉末6の流動層(例えば流動床)を安定に形成・維持し、鉄鋼スラグ粉末6中の酸化カルシウム等を均一に炭酸カルシウムに変化させるためである。   In the carbonation treatment apparatus of the present invention, the inclination angle of the inclined surface portion 1a provided below the inner wall surface of the carbonation treatment tank 1 is an angle that exceeds the repose angle of the steel slag powder introduced into the carbonation treatment tank 1 in water. This is very important. This is because the fluidized bed (for example, fluidized bed) of the steel slag powder 6 introduced into the carbonation treatment tank 1 is stably formed and maintained, and the calcium oxide or the like in the steel slag powder 6 is uniformly changed to calcium carbonate.

即ち、炭酸化処理槽1の下方(図1では底面中央)に設けた導入口1bから処理用水を導入すると、炭酸化処理槽1内の鉄鋼スラグ粉末6は、導入時の水圧とマイクロバブルの浮上によって形成される処理用水7の上昇流に追随して炭酸化処理槽1内を上昇する。上昇した処理用水7は、炭酸化処理槽1の上方で一部が排出部1cから系外へ排出され、残部が反転して下降流を形成する。前記上昇流に伴って上方に至った鉄鋼スラグ粉末6はこの下降流に随伴して下降する。このとき炭酸化処理槽1の底部が例えば平底であれば、下降してきた鉄鋼スラグ粉末6が炭酸化処理槽1の底部に滞留して固定層を形成するが、内壁面下方に鉄鋼スラグ粉末6の水中における安息角を超える角度の傾斜面部1aを設けておけば、鉄鋼スラグ粉末6は、その傾斜面部1aを滑って炭酸化処理槽1の底面に到達する。炭酸化処理槽1の底面に到達した鉄鋼スラグ粉末6は、上記導入口1bから導入される処理用水が形成する上昇流に追随して再度上昇し、炭酸化処理槽1内に継続的な流動状態を形成する(前記した底部での滞留は生じない)。このように鉄鋼スラグ粉末6を流動させることにより、鉄鋼スラグ粉末6同士が互いに凝集して固結することを防止できる。   That is, when the treatment water is introduced from the introduction port 1b provided below the carbonation treatment tank 1 (in the center of the bottom in FIG. 1), the steel slag powder 6 in the carbonation treatment tank 1 is reduced in water pressure and microbubbles at the time of introduction. The inside of the carbonation treatment tank 1 rises following the upward flow of the treatment water 7 formed by floating. A part of the rising treatment water 7 is discharged from the discharge part 1c to the outside of the system above the carbonation treatment tank 1, and the remaining part is reversed to form a downward flow. The steel slag powder 6 that reaches the upper side with the upward flow descends with the downward flow. At this time, if the bottom of the carbonation tank 1 is, for example, a flat bottom, the steel slag powder 6 that has descended stays at the bottom of the carbonation tank 1 to form a fixed layer, but the steel slag powder 6 is formed below the inner wall surface. If the inclined surface portion 1 a having an angle exceeding the angle of repose in water is provided, the steel slag powder 6 slides on the inclined surface portion 1 a and reaches the bottom surface of the carbonation treatment tank 1. The steel slag powder 6 that has reached the bottom surface of the carbonation treatment tank 1 rises again following the upward flow formed by the treatment water introduced from the introduction port 1b and continuously flows into the carbonation treatment tank 1. A state is formed (no stagnation at the bottom mentioned above). By causing the steel slag powder 6 to flow in this way, it is possible to prevent the steel slag powder 6 from aggregating and solidifying with each other.

本発明では、上記導入口1bから二酸化炭素含有気体をマイクロバブルとして分散させた処理用水を導入しているので、鉄鋼スラグ粉末6との反応を促進でき、鉄鋼スラグ粉末6中の酸化カルシウム等を均一に炭酸カルシウムに変化させることができる。二酸化炭素含有気体を水中にマイクロバブルとして分散させることで一般的なバブリングのときよりも、二酸化炭素含有気体の処理用水内における上昇速度が緩やかとなり、また二酸化炭素含有気体の表面積を大きくできるため、処理用水へのCO2の溶解効率が高くなり、酸化カルシウム等の炭酸化が促進される。マイクロバブルの大きさは特に限定されず、通常、直径が1μm〜100μm程度の範囲内である。 In the present invention, since the treatment water in which the carbon dioxide-containing gas is dispersed as microbubbles is introduced from the introduction port 1b, the reaction with the steel slag powder 6 can be promoted, and calcium oxide and the like in the steel slag powder 6 can be obtained. It can be uniformly changed to calcium carbonate. Dispersing the carbon dioxide-containing gas in the water as microbubbles makes the rate of increase of the carbon dioxide-containing gas in the treatment water slower than in general bubbling, and the surface area of the carbon dioxide-containing gas can be increased. The dissolution efficiency of CO 2 in the water for treatment is increased, and carbonation of calcium oxide and the like is promoted. The size of the microbubbles is not particularly limited, and usually the diameter is in the range of about 1 μm to 100 μm.

上記安息角は、鉄鋼スラグ粉末と水を入れた平底の透明容器の底面中央から鉄鋼スラグと水を自然落下させて排出したときに、容器内に残留する鉄鋼スラグ粉末が形成する谷状斜面の角度を測定することによって調べられる。この測定方法は、排出法と呼ばれている。   The angle of repose is a valley-like slope formed by steel slag powder remaining in the container when the steel slag and water are naturally dropped from the bottom center of a flat bottom transparent container containing steel slag powder and water. It is examined by measuring the angle. This measurement method is called the discharge method.

図1に示した炭酸化処理槽1では、排出部1cの最下点より下方に邪魔部材8として多孔板を設けている。邪魔部材8を設けておけば、前記上昇流に伴って上昇してきた鉄鋼スラグ粉末6を強制的に上昇流から分断し、排出部1cから槽外へ排出されるのを防止できる。   In the carbonation treatment tank 1 shown in FIG. 1, a porous plate is provided as a baffle member 8 below the lowest point of the discharge part 1c. If the baffle member 8 is provided, the steel slag powder 6 that has risen with the upward flow can be forcibly separated from the upward flow and prevented from being discharged out of the tank from the discharge portion 1c.

邪魔部材8は、多孔板に限定されず、例えば、複数の板を互い違いに組合せ、処理用水が通る程度に隙間を空けた構成としてもよい。   The baffle member 8 is not limited to a perforated plate, and for example, a plurality of plates may be combined in a staggered manner so that a clearance is provided to allow treatment water to pass.

図2は、本発明の炭酸化処理装置の他の構成例を示す概略説明図であり、上記図1と同じ箇所には同一の符号を付すことで重複説明を避ける。図2では、上記図1に示す構成例に対し、邪魔部材8を設ける代わりに、炭酸化処理槽1の上方に、拡大内径部1dを設けている。炭酸化処理槽1の胴体部1eにおける内径よりも広い拡大内径部1dを設けることにより、処理用水の上昇流速度を緩和させて炭酸化処理槽1の上方で澱み状態を形成する。そのため鉄鋼スラグ粉末6が自重で沈み始める(即ち、鉄鋼スラグ粉末6が下降する)タイミングを早め、鉄鋼スラグ粉末6が排出部に至って槽外へ流出するのを防止できる。   FIG. 2 is a schematic explanatory view showing another configuration example of the carbonation treatment apparatus of the present invention, and the same parts as those in FIG. In FIG. 2, instead of providing the baffle member 8 with respect to the configuration example shown in FIG. By providing an enlarged inner diameter portion 1 d wider than the inner diameter of the body portion 1 e of the carbonation treatment tank 1, the rising speed of the treatment water is relaxed to form a stagnation state above the carbonation treatment tank 1. Therefore, the timing at which the steel slag powder 6 begins to sink under its own weight (that is, the steel slag powder 6 descends) can be advanced, and the steel slag powder 6 can be prevented from reaching the discharge portion and flowing out of the tank.

鉄鋼スラグ粉末6が炭酸化処理槽1外へ流出するのを防止する他の手段として、排出部1cの最下点と流動状態の鉄鋼スラグ粉末6の最上点との距離が大きくなるように炭酸化処理槽1の胴体部1eを長くしてもよい。導入口1bから導入される処理用水の上昇流の勢いにも限りがあるため、胴体部1eを長くしておけば、邪魔部材8や拡大内径部1dを設けなくても鉄鋼スラグ粉末6の流出を防止できる。   As another means for preventing the steel slag powder 6 from flowing out of the carbonation treatment tank 1, the carbonic acid so that the distance between the lowest point of the discharge part 1c and the highest point of the steel slag powder 6 in the fluidized state is increased. You may lengthen the trunk | drum 1e of the chemical conversion tank 1. FIG. Since the momentum of the upward flow of treatment water introduced from the inlet 1b is limited, if the body portion 1e is lengthened, the steel slag powder 6 flows out without providing the baffle member 8 and the enlarged inner diameter portion 1d. Can be prevented.

図3は、本発明に係る炭酸化処理装置の更に他の構成例を示す概略説明図である。図3に示した炭酸化処理槽1では、導入口1bの直上方に上昇管9を設けている。なお、図3に示す構成例では、上記図1に示した邪魔部材8を設けていない。   FIG. 3 is a schematic explanatory view showing still another configuration example of the carbonation treatment apparatus according to the present invention. In the carbonation tank 1 shown in FIG. 3, the rising pipe 9 is provided immediately above the inlet 1b. In the configuration example shown in FIG. 3, the baffle member 8 shown in FIG. 1 is not provided.

導入口1bの直上方に上昇管9を設けて該上昇管9に向けて処理用水を導入すれば、上昇管9内に処理用水の上昇流を形成することができ、鉄鋼スラグ粉末6を該上昇管9内で上昇させる上昇流と、該上昇管9の上部から放出されて下降流に転ずる対流を炭酸化処理槽1内に形成できる。このとき上昇管9内を上昇する処理用水7にマイクロバブルとして分散している二酸化炭素含有気体の一部は、そのまま浮上して水面へと到達するが、その一部は、鉄鋼スラグ粉末6が上昇管9外に形成する下降流に伴って炭酸化処理槽1の下方に移動する。マイクロバブルは非常に微細であるため、水中を浮上する力が弱く、鉄鋼スラグ粉末6が形成する下降流に伴ってマイクロバブルの一部も炭酸化処理槽1内を下降すると考えられる。よって上昇管9を設ければ、鉄鋼スラグ粉末6と二酸化炭素含有気体とをより長く接触させることができるため、鉄鋼スラグ粉末6の炭酸化反応を促進できる。   If the rising pipe 9 is provided directly above the inlet 1b and the processing water is introduced toward the rising pipe 9, an upward flow of the processing water can be formed in the rising pipe 9, and the steel slag powder 6 is An ascending flow that rises in the ascending pipe 9 and a convection that is discharged from the top of the ascending pipe 9 and turns into a descending flow can be formed in the carbonation treatment tank 1. At this time, a part of the carbon dioxide-containing gas dispersed as microbubbles in the treatment water 7 rising in the riser 9 floats as it is and reaches the water surface. It moves below the carbonation tank 1 along with the downward flow formed outside the ascending pipe 9. Since the microbubbles are very fine, the force to float in the water is weak, and it is considered that a part of the microbubbles also descends in the carbonation treatment tank 1 with the downward flow formed by the steel slag powder 6. Therefore, if the ascending pipe 9 is provided, the steel slag powder 6 and the carbon dioxide-containing gas can be brought into contact with each other for a longer time, so that the carbonation reaction of the steel slag powder 6 can be promoted.

上記図1〜3において、上記導入口1bの開口径は特に限定されないが、開口径を大きくし過ぎると、処理用水7が形成する上昇流の勢いが弱くなり、鉄鋼スラグ粉末6の一部が流動せず、鉄鋼スラグ粉末6中の酸化カルシウム等を均一に炭酸化できないことがある。また、処理用水7の上昇流速度を大きくするには、設備負荷が大きくなり、不経済である。更に、炭酸化処理槽1での処理用水の上昇流速度が大きくなり過ぎると、鉄鋼スラグ粉末が浮上し、炭酸化処理槽1外へ排出されやすくなる。一方、開口径を小さくし過ぎると、処理用水7が形成する上昇流の勢いが強くなり過ぎて鉄鋼スラグ粉末6の流動状態が不均一となり、安定した炭酸化処理ができないことがある。   1-3, the opening diameter of the inlet 1b is not particularly limited, but if the opening diameter is too large, the momentum of the upward flow formed by the treatment water 7 becomes weak, and a part of the steel slag powder 6 is formed. There is a case where calcium oxide or the like in the steel slag powder 6 cannot be uniformly carbonated without flowing. Moreover, in order to increase the upward flow speed of the processing water 7, the equipment load increases, which is uneconomical. Furthermore, when the ascending flow speed of the treatment water in the carbonation treatment tank 1 becomes too large, the steel slag powder rises and is easily discharged out of the carbonation treatment tank 1. On the other hand, if the opening diameter is too small, the momentum of the upward flow formed by the treatment water 7 becomes too strong, and the flow state of the steel slag powder 6 becomes non-uniform, and stable carbonation may not be performed.

上記導入口1bから炭酸化処理槽1内へ導入する処理用水の流量は、鉄鋼スラグ粉末6の流動状態を形成する範囲で設定すればよい。例えば、鉄鋼スラグ粉末の平均粒径が75μm程度である場合は、導入口1bにおける処理用水の液速度を、鉄鋼スラグ粉末を粒径が75μmの球形粒子として仮定してストークスの式から算出される終末沈降速度である0.006m/秒より大きくすればよい。   What is necessary is just to set the flow volume of the process water introduce | transduced in the carbonation-treatment tank 1 from the said inlet 1b in the range which forms the flow state of the steel slag powder 6. FIG. For example, when the average particle size of the steel slag powder is about 75 μm, the liquid velocity of the treatment water at the inlet 1b is calculated from the Stokes equation assuming that the steel slag powder is a spherical particle having a particle size of 75 μm. What is necessary is just to make it larger than 0.006 m / sec which is a terminal sedimentation velocity.

上記図1〜図3では、導入口1bを炭酸化処理槽1の底面中央に設けた構成例を示したが、導入口1bを設ける位置は底(最下部)に限定されるものではなく、例えば、傾斜面部1aに1つ又は複数の導入口を設けてもよい。さらには、側面に1つ又は複数の導入口を設けてもよい。炭酸化処理槽1の底から水(即ち、二酸化炭素含有気体をマイクロバブルとして分散させていない水)を供給して炭酸化処理槽1内に上昇流を形成しておき、その一方で、底以外の場所(例えば、傾斜面部1a)に設けた導入口から二酸化炭素含有気体をマイクロバブルとして分散させた処理用水を導入したり、二酸化炭素含有気体のマイクロバブルを導入すれば、鉄鋼スラグ粉末6を流動させることができ、しかも鉄鋼スラグ粉末6に二酸化炭素含有気体を接触させることができる。その結果、鉄鋼スラグに含まれる酸化カルシウム等を均一に炭酸化できる。   In FIGS. 1 to 3, the configuration example in which the introduction port 1 b is provided in the center of the bottom surface of the carbonation treatment tank 1 is shown, but the position where the introduction port 1 b is provided is not limited to the bottom (lowermost part) For example, one or more introduction ports may be provided in the inclined surface portion 1a. Furthermore, you may provide one or several inlets in a side surface. Water (that is, water in which the carbon dioxide-containing gas is not dispersed as microbubbles) is supplied from the bottom of the carbonation tank 1 to form an upward flow in the carbonation tank 1, while the bottom Steel slag powder 6 can be obtained by introducing treatment water in which carbon dioxide-containing gas is dispersed as microbubbles or introducing microbubbles of carbon dioxide-containing gas from an inlet provided in a place other than the above (for example, inclined surface portion 1a). The carbon dioxide-containing gas can be brought into contact with the steel slag powder 6. As a result, calcium oxide or the like contained in the steel slag can be uniformly carbonated.

上記図1〜図3において、上記二酸化炭素含有気体は、マイクロバブル発生器2より上流側から供給すればよく、例えば、循環ポンプ3とマイクロバブル発生器2の間に上記経路5を設けてもよい。マイクロバブル発生器2としては、気液せん断法を用いた発生器や、加圧浮上法を用いた発生器、散気管方式の発生器を使用できる。上記二酸化炭素含有気体としては、例えば、純二酸化炭素ガスを供給すればよい。   1 to 3, the carbon dioxide-containing gas may be supplied from the upstream side of the microbubble generator 2. For example, even if the path 5 is provided between the circulation pump 3 and the microbubble generator 2. Good. As the microbubble generator 2, a generator using a gas-liquid shearing method, a generator using a pressurized levitation method, or a diffuser-type generator can be used. For example, pure carbon dioxide gas may be supplied as the carbon dioxide-containing gas.

上記炭酸化処理装置を用いれば、鉄鋼スラグ粉末6を流動させつつ炭酸化処理できるため、鉄鋼スラグ中の酸化カルシウム等を炭酸カルシウムに均一に変化させることができる。炭酸化処理して得られた鉄鋼スラグは、水と接触しても水のpHを上昇させず、また海水と接触しても海水の白濁現象を発生させないため、特に、海洋土木用材料として好適に利用できる。この海洋土木用材料は、例えば、潜堤材、藻場造成材、嵩上げ材(例えば、藻場造成材を建造するときの嵩上げ材)、覆砂材、深掘り跡の埋め戻し材などに利用できる。上記炭酸化処理を施した鉄鋼スラグは、例えば、路盤材、セメント用材料、土木用材料としても利用できる。   If the said carbonation processing apparatus is used, since the carbonization process can be performed while making the steel slag powder 6 flow, the calcium oxide etc. in steel slag can be changed uniformly to calcium carbonate. Steel slag obtained by carbonation treatment does not increase the pH of water even when it comes into contact with water, and does not generate sea turbidity even when it comes into contact with seawater, so it is particularly suitable as a material for marine civil engineering. Available to: This marine civil engineering material is used for, for example, submerged dike materials, seaweed bed construction materials, raising materials (for example, raising materials when building seaweed bed construction materials), sand-capping materials, backfill materials for deep digging traces it can. The steel slag subjected to the carbonation treatment can be used as, for example, a roadbed material, a cement material, and a civil engineering material.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

[実験1(発明例)]
図1に示した炭酸化処理装置を用い、次に示す手順で転炉スラグを蒸気エージングして転炉スラグに含まれる酸化カルシウムを水酸化カルシウムに変化させた後、蒸気エージング済転炉スラグに含まれる酸化カルシウムと水酸化カルシウムを炭酸カルシウムに変化させた。
[Experiment 1 (Invention)]
Using the carbonation treatment apparatus shown in FIG. 1, the converter slag is steam-aged according to the following procedure to change the calcium oxide contained in the converter slag into calcium hydroxide, and then the steam-aged converter slag is used. The calcium oxide and calcium hydroxide contained were changed to calcium carbonate.

まず、転炉スラグに48時間蒸気を吹付けて蒸気エージングを行い、蒸気エージングした転炉スラグを1kg準備した。蒸気エージングした転炉スラグの粒径は75〜420μmであった。   First, steam aging was performed by blowing steam to the converter slag for 48 hours, and 1 kg of steam-aged converter slag was prepared. The particle size of steam-aged converter slag was 75 to 420 μm.

次に、準備した蒸気エージング済転炉スラグを炭酸化処理槽1に導入した。炭酸化処理槽1は、内径180mm、高さ1200mmのアクリル製円筒管の下端に、底面直径180mmのアクリル製円錐を図1に示すように取り付けたものを用いた。アクリル製円錐の頂角は60°であり、傾斜面部の角度は60°である。この傾斜面部の角度は、蒸気エージングした転炉スラグの水中における安息角を超えている。   Next, the prepared steam-aged converter slag was introduced into the carbonation treatment tank 1. As the carbonation treatment tank 1, an acrylic cylindrical tube having an inner diameter of 180 mm and a height of 1200 mm attached to an acrylic cone having a bottom diameter of 180 mm as shown in FIG. 1 was used. The apex angle of the acrylic cone is 60 °, and the angle of the inclined surface portion is 60 °. The angle of the inclined surface portion exceeds the angle of repose of steam-aged converter slag in water.

アクリル製円錐の頂点部分は切り取られており、開口直径18mmの導入口1bが設けられている。炭酸化処理槽1の全長(導入口1bから最上端までの距離)は1340mmであり、導入口1bからの高さが1000mmの位置に排出部1cを設けた。導入口1bからの高さが700mmの位置には、図1に示すように邪魔部材8(多孔板フィルター)を設けた。   The apex portion of the acrylic cone is cut off, and an inlet 1b having an opening diameter of 18 mm is provided. The total length of the carbonation treatment tank 1 (distance from the inlet 1b to the uppermost end) was 1340 mm, and the discharge part 1c was provided at a position where the height from the inlet 1b was 1000 mm. As shown in FIG. 1, a baffle member 8 (a perforated plate filter) was provided at a position where the height from the inlet 1b was 700 mm.

経路5から純二酸化炭素ガスを流量0.1NL/分で供給すると共に、循環ポンプ3とマイクロバブル発生器2(気液せん断混合分散器)を動作させて、純二酸化炭素ガスをマイクロバブルとして分散させた処理用水を調製し、この処理用水を導入口1bから流量8L/分で供給し、蒸気エージングした転炉スラグ中の酸化カルシウムと水酸化カルシウムを炭酸化カルシウムに変化させる炭酸化処理を10時間行った。炭酸化処理中は、炭酸化処理槽1内に導入した蒸気エージング済転炉スラグが、邪魔部材8の下方全体に亘って流動していた。   Pure carbon dioxide gas is supplied from the path 5 at a flow rate of 0.1 NL / min, and the circulation pump 3 and the microbubble generator 2 (gas-liquid shear mixing / dispersing device) are operated to disperse the pure carbon dioxide gas as microbubbles. The carbonation treatment is carried out by preparing the treated water, supplying the treatment water from the inlet 1b at a flow rate of 8 L / min, and changing the calcium oxide and calcium hydroxide in the steam-aged converter slag to calcium carbonate. Went for hours. During the carbonation treatment, the steam-aged converter slag introduced into the carbonation treatment tank 1 was flowing over the entire lower portion of the baffle member 8.

10時間経過後、炭酸化処理槽1からスラグを取り出し、乾燥させた。炭酸化処理前後のスラグ中の炭酸カルシウム含有量を下記のようにして調べたところ、スラグ1トン当たりのCO2吸収量(実測CO2吸収量)は、119kgであった。また反応率(=実測CO2吸収量/理論CO2吸収量。なお理論CO2吸収量とは、炭酸化処理前のスラグが含有するCaが全てCO2と反応してCaCO3に転換できると仮定して、そのために必要なCO2の理論量である)は33%であり、CO2利用率(=供給CO2量/吸収CO2量。なお供給CO2量は、CO2の単位時間当たりの流量と供給時間の積をスラグの質量で除して求めた。吸収CO2量とは、前記実測CO2吸収量である)は、88%であった。 After 10 hours, the slag was taken out from the carbonation tank 1 and dried. When the calcium carbonate content in the slag before and after the carbonation treatment was examined as follows, the CO 2 absorption amount per 1 ton of slag (measured CO 2 absorption amount) was 119 kg. The reaction rate (= measured CO 2 absorption amount / theoretical CO 2 absorption amount. The theoretical CO 2 absorption amount means that all Ca contained in the slag before carbonation treatment can react with CO 2 and be converted to CaCO 3. Assuming that the theoretical amount of CO 2 required for this is 33%, the CO 2 utilization rate (= the amount of supplied CO 2 / the amount of absorbed CO 2. The amount of supplied CO 2 is the unit time of CO 2 . The product of the per unit flow rate and the supply time was divided by the mass of the slag, and the absorbed CO 2 amount was the measured CO 2 absorbed amount) was 88%.

[スラグ中の炭酸カルシウム含有量の測定法]
スラグを粉砕した後、塩酸を添加してスラグ中のCaCO3を化学分解した。この分解で発生するCO2を捕集し、その量を決定した。全てのCaCO3がCO2に分解したと仮定して、スラグ中のCaCO3量を決定した。
[Measurement method of calcium carbonate content in slag]
After the slag was crushed, hydrochloric acid was added to chemically decompose CaCO 3 in the slag. CO 2 generated by this decomposition was collected and the amount thereof was determined. Assuming that all CaCO 3 was decomposed to CO 2 , the amount of CaCO 3 in the slag was determined.

乾燥したスラグの質量に対して10倍の質量の人工海水に、乾燥させたスラグを浸漬し、人工海水のpHの経時変化を測定した。用いた人工海水のpHは8.5であり、本発明では、スラグを1000時間浸漬させた後の海水のpHが9.5未満である場合を合格とする。その結果、スラグを1000時間浸漬させた後の海水のpHは9程度であった。また、スラグ浸漬後の海水を目視しても、海水は白濁していなかった。   The dried slag was immersed in artificial seawater having a mass 10 times the mass of the dried slag, and the change with time in pH of the artificial seawater was measured. The pH of the artificial seawater used is 8.5. In the present invention, the case where the pH of the seawater after the slag is immersed for 1000 hours is less than 9.5 is regarded as acceptable. As a result, the pH of the seawater after the slag was immersed for 1000 hours was about 9. Moreover, even if the seawater after slag immersion was visually observed, the seawater was not cloudy.

[実験2(比較例)]
上記実験1において、次に示す炭酸化処理槽1を用いた点以外は、同じ条件で蒸気エージングした転炉スラグを炭酸化処理した。
[Experiment 2 (Comparative Example)]
In the said experiment 1, the converter slag which carried out the steam aging on the same conditions except the point which used the carbonation treatment tank 1 shown below was carbonized.

本実験2で用いた炭酸化処理槽1は、内径180mm、高さ600mmのアクリル製円筒管の下端に、底面直径180mmのアクリル製円錐を図1に示すように取り付けたものを用いた。アクリル製円錐の頂角は120°であり、傾斜面部の角度は30°である。この傾斜面部の角度は、蒸気エージングした転炉スラグの水中における安息角以下である。アクリル製円錐の頂点部分は切り取られており、開口直径18mmの導入口1bが設けられている。炭酸化処理槽1の全長(導入口1bから最上端までの距離)は1340mmであり、導入口1bからの高さが1000mmの位置に排出部1cを設けた。導入口1bからの高さが700mmの位置には、図1に示すように邪魔部材8(多孔板フィルター)を設けた。   The carbonation treatment tank 1 used in this experiment 2 was one in which an acrylic cone having a bottom diameter of 180 mm was attached to the lower end of an acrylic cylindrical tube having an inner diameter of 180 mm and a height of 600 mm as shown in FIG. The apex angle of the acrylic cone is 120 °, and the angle of the inclined surface portion is 30 °. The angle of the inclined surface portion is equal to or less than the angle of repose of steam-aged converter slag in water. The apex portion of the acrylic cone is cut off, and an inlet 1b having an opening diameter of 18 mm is provided. The total length (distance from the inlet 1b to the uppermost end) of the carbonation treatment tank 1 is 1340 mm, and the discharge part 1c is provided at a position where the height from the inlet 1b is 1000 mm. As shown in FIG. 1, a baffle member 8 (a perforated plate filter) was provided at a position where the height from the inlet 1b was 700 mm.

上記炭酸化処理槽1を用い、実験1と同じ条件で蒸気エージング済転炉スラグの炭酸化処理を10時間行った。炭酸化処理中は、転炉スラグの一部が炭酸化処理槽1の底部に滞留し、固定層を形成していることが認められた。   Using the carbonation tank 1, the carbonization of the steam-aged converter slag was performed for 10 hours under the same conditions as in Experiment 1. During the carbonation treatment, it was recognized that a part of the converter slag stayed at the bottom of the carbonation treatment tank 1 to form a fixed layer.

炭酸化処理後、炭酸化処理槽1からスラグを取り出し、乾燥させた。乾燥したスラグを上記実験1と同じ条件で人工海水に1000時間浸漬し、人工海水のpHの経時変化を測定した。その結果、スラグを24時間浸漬させた後の海水のpHは12程度であり、1000時間浸漬させた後も海水のpHは12程度であった。また、スラグ浸漬後の海水を目視すると、海水は白濁していた。   After the carbonation treatment, the slag was taken out from the carbonation treatment tank 1 and dried. The dried slag was immersed in artificial seawater for 1000 hours under the same conditions as in Experiment 1, and the change over time in the pH of the artificial seawater was measured. As a result, the pH of seawater after slag was immersed for 24 hours was about 12, and the pH of seawater was about 12 even after 1000 hours of immersion. Moreover, when the seawater after slag immersion was observed visually, the seawater was cloudy.

1 炭酸化処理槽
2 マイクロバブル発生器
3 循環ポンプ
4 循環経路
5 二酸化酸素含有気体供給経路
6 鉄鋼スラグ粉末
7 処理用水
8 邪魔部材
DESCRIPTION OF SYMBOLS 1 Carbonation processing tank 2 Microbubble generator 3 Circulation pump 4 Circulation path 5 Oxygen dioxide containing gas supply path 6 Steel slag powder 7 Water for treatment 8 Baffle member

Claims (5)

二酸化炭素含有気体をマイクロバブルとして分散させた処理用水を用いて鉄鋼スラグ粉末の流動層を形成させることによって鉄鋼スラグ中の酸化カルシウムおよび/または水酸化カルシウムを炭酸カルシウムに変化させることを特徴とする炭酸化処理方法。   It is characterized in that calcium oxide and / or calcium hydroxide in steel slag is changed to calcium carbonate by forming a fluidized bed of steel slag powder using treatment water in which carbon dioxide-containing gas is dispersed as microbubbles. Carbonation treatment method. 二酸化炭素含有気体をマイクロバブルとして分散させた処理用水を用いて鉄鋼スラグ粉末の流動層を形成させることによって鉄鋼スラグ中の酸化カルシウムおよび/または水酸化カルシウムを炭酸カルシウムに変化させる炭酸化処理槽と、前記処理用水を調製するためのマイクロバブル発生器を備えており、
前記炭酸化処理槽には、前記マイクロバブル発生器で調製した処理用水を炭酸化処理槽内へ導入するための導入口を設けていると共に、
前記炭酸化処理槽の内壁面下方には、前記鉄鋼スラグ粉末の水中における安息角を超える傾斜面部を形成していることを特徴とする炭酸化処理装置。
A carbonation treatment tank in which calcium oxide and / or calcium hydroxide in steel slag is changed to calcium carbonate by forming a fluidized bed of steel slag powder using treatment water in which carbon dioxide-containing gas is dispersed as microbubbles; A microbubble generator for preparing the treatment water,
The carbonation tank is provided with an inlet for introducing the treatment water prepared by the microbubble generator into the carbonation tank,
A carbonation treatment apparatus, wherein an inclined surface portion exceeding an angle of repose of the steel slag powder in water is formed below the inner wall surface of the carbonation treatment tank.
前記炭酸化処理槽には、前記処理用水を炭酸化処理槽外へ排出するための排出部を設けており、この排出部の最下点より下方に鉄鋼スラグ粉末が排出部に至るのを防止するための邪魔部材を設けている請求項2に記載の炭酸化処理装置。   The carbonation treatment tank is provided with a discharge part for discharging the treatment water to the outside of the carbonation treatment tank, and prevents the steel slag powder from reaching the discharge part below the lowest point of the discharge part. The carbonation processing apparatus of Claim 2 which has provided the baffle member for performing. 前記炭酸化処理槽の上方には、拡大内径部を設けている請求項2または3に記載の炭酸化処理装置。   The carbonation treatment apparatus according to claim 2 or 3, wherein an enlarged inner diameter portion is provided above the carbonation treatment tank. 前記導入口の上方に上昇管を設けて該上昇管内に前記処理用水の上昇流を形成することにより、前記鉄鋼スラグを該上昇管内で上昇させる上昇流と、該上昇管外を下降させる下降流を含む対流を前記炭酸化処理槽内に生成するように構成している請求項2〜4のいずれかに記載の炭酸化処理装置。   By providing a rising pipe above the inlet and forming an upward flow of the treatment water in the rising pipe, an upward flow for raising the steel slag in the rising pipe and a downward flow for lowering the outside of the rising pipe The carbonation processing apparatus in any one of Claims 2-4 comprised so that the convection containing this may be produced | generated in the said carbonation processing tank.
JP2010090787A 2009-06-08 2010-04-09 Carbonation treatment method and apparatus for steel slag powder Active JP5432809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010090787A JP5432809B2 (en) 2009-06-08 2010-04-09 Carbonation treatment method and apparatus for steel slag powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009137457 2009-06-08
JP2009137457 2009-06-08
JP2010090787A JP5432809B2 (en) 2009-06-08 2010-04-09 Carbonation treatment method and apparatus for steel slag powder

Publications (2)

Publication Number Publication Date
JP2011016710A true JP2011016710A (en) 2011-01-27
JP5432809B2 JP5432809B2 (en) 2014-03-05

Family

ID=43594807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010090787A Active JP5432809B2 (en) 2009-06-08 2010-04-09 Carbonation treatment method and apparatus for steel slag powder

Country Status (1)

Country Link
JP (1) JP5432809B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101283513B1 (en) 2012-12-13 2013-07-15 (주)신명건설기술공사 System for neutralization process of slag and reduction of carbon dioxide discharge
KR20140041184A (en) * 2012-09-27 2014-04-04 한국전력공사 Carbon dioxide capture device of concentrated water by the turbidimeter
JP2014214030A (en) * 2013-04-22 2014-11-17 国立大学法人東京大学 Method for producing material comprising cement hardened body
CN104759203A (en) * 2015-03-17 2015-07-08 华能国际电力股份有限公司 Fluidized bed technology and fluidized bed system for directly capturing CO2 in mineralized flue gas
US10287652B2 (en) * 2015-03-23 2019-05-14 Nisshin Steel Co., Ltd. Method for recovering calcium-containing solid component from steelmaking slag and recovered solid component
WO2019107115A1 (en) * 2017-11-30 2019-06-06 日新製鋼株式会社 Method for eluting calcium from steel-making slag, method for collecting calcium from steel-making slag, and device for eluting calcium from steel-making slag
JP7469664B2 (en) 2020-08-27 2024-04-17 日本製鉄株式会社 Steelmaking slag treatment method, slag product manufacturing method, and steelmaking slag treatment system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102628028B1 (en) 2021-12-15 2024-01-19 성균관대학교산학협력단 Method and apparatus for producing carbonate using supercritical carbon dioxide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275133A (en) * 1990-03-26 1991-12-05 Sumitomo Cement Co Ltd Material for civil engineering work
JP2001227870A (en) * 2000-02-18 2001-08-24 Hitachi Zosen Corp Outlet structure of rotary fusion kiln
JP2005047789A (en) * 2003-07-14 2005-02-24 Nippon Steel Corp Stabilization treatment method of steel slag and stabilized steel slag
JP2007186364A (en) * 2006-01-11 2007-07-26 Jfe Mineral Co Ltd Method of producing hard-to-cake granulated blast furnace slag
JP2009039669A (en) * 2007-08-10 2009-02-26 Hitachi Zosen Corp Settling method and apparatus of slurry, and waste incineration facility
JP2011237487A (en) * 2010-05-06 2011-11-24 Ricoh Co Ltd Development device, process unit and image formation apparatus, and measurement method of development gap

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275133A (en) * 1990-03-26 1991-12-05 Sumitomo Cement Co Ltd Material for civil engineering work
JP2001227870A (en) * 2000-02-18 2001-08-24 Hitachi Zosen Corp Outlet structure of rotary fusion kiln
JP2005047789A (en) * 2003-07-14 2005-02-24 Nippon Steel Corp Stabilization treatment method of steel slag and stabilized steel slag
JP2007186364A (en) * 2006-01-11 2007-07-26 Jfe Mineral Co Ltd Method of producing hard-to-cake granulated blast furnace slag
JP2009039669A (en) * 2007-08-10 2009-02-26 Hitachi Zosen Corp Settling method and apparatus of slurry, and waste incineration facility
JP2011237487A (en) * 2010-05-06 2011-11-24 Ricoh Co Ltd Development device, process unit and image formation apparatus, and measurement method of development gap

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140041184A (en) * 2012-09-27 2014-04-04 한국전력공사 Carbon dioxide capture device of concentrated water by the turbidimeter
KR102113348B1 (en) * 2012-09-27 2020-05-20 한국전력공사 Carbon Dioxide capture device of concentrated water by the turbidimeter
KR101283513B1 (en) 2012-12-13 2013-07-15 (주)신명건설기술공사 System for neutralization process of slag and reduction of carbon dioxide discharge
JP2014214030A (en) * 2013-04-22 2014-11-17 国立大学法人東京大学 Method for producing material comprising cement hardened body
CN104759203A (en) * 2015-03-17 2015-07-08 华能国际电力股份有限公司 Fluidized bed technology and fluidized bed system for directly capturing CO2 in mineralized flue gas
US10287652B2 (en) * 2015-03-23 2019-05-14 Nisshin Steel Co., Ltd. Method for recovering calcium-containing solid component from steelmaking slag and recovered solid component
WO2019107115A1 (en) * 2017-11-30 2019-06-06 日新製鋼株式会社 Method for eluting calcium from steel-making slag, method for collecting calcium from steel-making slag, and device for eluting calcium from steel-making slag
JP7469664B2 (en) 2020-08-27 2024-04-17 日本製鉄株式会社 Steelmaking slag treatment method, slag product manufacturing method, and steelmaking slag treatment system

Also Published As

Publication number Publication date
JP5432809B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP5432809B2 (en) Carbonation treatment method and apparatus for steel slag powder
Katsuyama et al. Development of a process for producing high‐purity calcium carbonate (CaCO3) from waste cement using pressurized CO2
KR101464010B1 (en) Integrated chemical process
CN102755827B (en) Flue gas desulfurization process and device adopting acetylene sludge-gypsum method
CN101468866B (en) Normal atmosphere dealkalizing method by sintering
JP4676829B2 (en) Steelmaking slag treatment method
KR20100105860A (en) Methods of sequestering co2
CN104907010B (en) A kind of reactor and application method for strengthening calcium base solid waste mineralising fixation carbon dioxide for ammonia solution system
CN105753133A (en) Ozone catalytic ozonation tower and gasified waste water treatment method utilizing same
CN112624538B (en) Green and efficient red mud carbon dioxide carbonization dealkalization system and process
JP4240638B2 (en) Manufacturing method of artificial stone
JP4328215B2 (en) Steelmaking slag treatment method
CN106731632A (en) The device and its technique of a kind of zinc oxide removing sulfur dioxide in flue gas
CN111348853A (en) Process method for converting desulfurized gypsum from dry desulfurized fly ash
CN111318156A (en) Co-treatment method and device for red mud dealkalization and flue gas desulfurization
CN113929328A (en) Method for promoting crystal growth of desulfurized gypsum by regulating and controlling carbide slag-based desulfurizer
CN103693785A (en) Method for removing exceeding sulfides from lead-zinc beneficiation wastewater
CN102428038B (en) Treatment agent and manufacture method thereof and treatment process
Chen et al. Integrated leaching–carbonation kinetic model on CO 2 mineralization of alkaline solid wastes in a high-gravity rotating packed bed
CN101306304A (en) Desulfurizing method using soda waste liquid and calcium carbide waste residue
JP2014117630A (en) Apparatus and method for wet exhaust gas desulfurization
JP3173495B2 (en) Manufacturing method and manufacturing equipment for artificial stone
JP2011084424A (en) Carbonation treatment method and fixed bed treatment apparatus of steelmaking slag
CN102688683B (en) Method and device for performing oxidization desulfurization with carbide slag as desulfurizer outside tower
JP3504427B2 (en) Exhaust gas desulfurization method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5432809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150