JP2011015485A - Electrical power system - Google Patents

Electrical power system Download PDF

Info

Publication number
JP2011015485A
JP2011015485A JP2009155362A JP2009155362A JP2011015485A JP 2011015485 A JP2011015485 A JP 2011015485A JP 2009155362 A JP2009155362 A JP 2009155362A JP 2009155362 A JP2009155362 A JP 2009155362A JP 2011015485 A JP2011015485 A JP 2011015485A
Authority
JP
Japan
Prior art keywords
fuel cell
storage device
supply system
power supply
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009155362A
Other languages
Japanese (ja)
Other versions
JP5313062B2 (en
Inventor
Kenji Takeda
賢治 武田
Motoo Futami
基生 二見
Hiroshi Takahashi
高橋  宏
Koji Shimizu
孝治 清水
Yoichi Iriuchijima
洋一 入内嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Hitachi Information and Telecommunication Engineering Ltd
Original Assignee
Hitachi Computer Peripherals Co Ltd
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Computer Peripherals Co Ltd, KDDI Corp filed Critical Hitachi Computer Peripherals Co Ltd
Priority to JP2009155362A priority Critical patent/JP5313062B2/en
Publication of JP2011015485A publication Critical patent/JP2011015485A/en
Application granted granted Critical
Publication of JP5313062B2 publication Critical patent/JP5313062B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrical power system which keeps the state of a storage battery suitably by saving fuel without annexing a converter for charge/discharge control to the storage battery in an electrical power system where a fuel cell and a storage battery are combined.SOLUTION: This electrical power system supplies a load with power by connecting an accumulator and a fuel cell device each in parallel with the load. The accumulator is equipped with a secondary battery pack where one piece or plural pieces of secondary batteries are connected in series or in parallel. The fuel cell device is equipped with a fuel cells stack where a plurality of fuel battery cells are stacked, a DC/DC converter which converts power generated by the fuel cell stack and supplies it to the output of the fuel cell device, a voltage detector which detects the output voltage of the fuel cell device, a current detector which detects the output current of the fuel cell device, and an accumulator state determiner which determines the charge/discharge state of the accumulator from an output voltage value detected with the voltage detector and an output current value detected with the current detector and controls the output voltage of the DC/DC converter based on the determination results.

Description

本発明は、バックアップ電源等に用いられ、燃料電池と蓄電池とを併用して構成した電源システムに関する。   The present invention relates to a power supply system that is used for a backup power supply or the like and is configured by using a fuel cell and a storage battery in combination.

燃料電池の一種である固体高分子型燃料電池(PEFC)は、水素を主成分とする燃料ガスと酸化剤ガスを電気化学的に反応させて起電力を得る電池である。PEFCは、発電電力および排熱を利用するコージェネシステムのほか、停電など系統電力の異常時に、特に通信インフラやデータサーバなどの基幹産業機器へバックアップ給電を行う電源システムへの利用が検討されている。また、他のバックアップ電源としては鉛蓄電池を用いた電源システムが利用されている。さらに、鉛蓄電池と燃料電池を並列接続して併用することも考えられる。   A polymer electrolyte fuel cell (PEFC), which is a type of fuel cell, is a cell that obtains an electromotive force by electrochemically reacting a fuel gas mainly composed of hydrogen and an oxidant gas. In addition to cogeneration systems that use generated power and exhaust heat, PEFC is being considered for use in power systems that provide backup power supply to core industrial equipment such as communication infrastructure and data servers in the event of system power abnormalities such as power outages. . As another backup power source, a power supply system using a lead storage battery is used. Furthermore, it is conceivable to use a lead storage battery and a fuel cell in parallel.

特開2004−112871号公報JP 2004-112871 A

燃料電池は燃料を消費して電力を得るため、経済的な動作を行うためには燃料の節約が重要となる。蓄電池と燃料電池を並列接続して併用した電源システムでは、燃料電池システム、蓄電池、負荷の電力バランスにより蓄電池に出入りする電力が変動する。蓄電池は充放電の際に損失が発生するため、燃料電池の発電電力を蓄電池に充電させない動作を行うことで燃料の節約が可能となる。蓄電池に充放電制御用の変換器を付設することで蓄電池の充電を回避する方法があるが、変換器により損失が発生する課題がある。また、蓄電池はその充電率や放電深度を適切に管理しない場合、寿命に影響が出ることが知られている。   The fuel cell consumes fuel and obtains electric power, so that it is important to save the fuel in order to perform an economical operation. In a power supply system in which a storage battery and a fuel cell are connected in parallel, the power entering and exiting the storage battery varies depending on the power balance of the fuel cell system, the storage battery, and the load. Since the storage battery loses when it is charged and discharged, fuel can be saved by performing an operation that does not charge the storage battery with the power generated by the fuel cell. Although there exists a method of avoiding charge of a storage battery by attaching the converter for charging / discharging control to a storage battery, there exists a subject which a loss generate | occur | produces with a converter. In addition, it is known that the storage battery has an influence on the life if the charge rate and the depth of discharge are not properly managed.

本発明の目的は、上記課題を解決すべく、燃料電池と蓄電池を併用するバックアップ電源システムにおいて、蓄電池に充放電制御用の変換器を付設せず、燃料電池装置の動作により蓄電池の状態を管理することで、燃料を節約し、蓄電池の状態を好適に維持することができる電源システムを提供することにある。   In order to solve the above problems, the object of the present invention is to manage the state of the storage battery by the operation of the fuel cell device without attaching a converter for charge / discharge control to the storage battery in a backup power supply system using both the fuel cell and the storage battery. Thus, an object of the present invention is to provide a power supply system that can save fuel and can favorably maintain the state of a storage battery.

上記目的を達成すべく本発明に係る電源システムは、蓄電装置と燃料電池装置とをそれぞれ負荷に並列接続し、該負荷に電力を供給する電源システムであって、前記蓄電装置は、1個または複数個の二次電池を直列または並列接続した二次電池群を備え、前記燃料電池装置は、複数の燃料電池セルを積層した燃料電池スタックと、該燃料電池スタックの発電電力を変換し前記燃料電池装置の出力に供給するDC/DCコンバータと、前記燃料電池装置の出力電圧を検出する電圧検出手段と、前記燃料電池装置の出力電流を検出する電流検出手段と、前記電圧検出手段が検出した出力電圧値と前記電流検出手段が検出した出力電流値とから前記蓄電装置の充放電状態を判定し、その判定結果に基づいて前記DC/DCコンバータの出力電圧を制御する蓄電装置状態判定手段とを備えたことを特徴とする。   In order to achieve the above object, a power supply system according to the present invention is a power supply system in which a power storage device and a fuel cell device are respectively connected in parallel to a load and supplies power to the load. A fuel cell stack comprising a plurality of secondary batteries connected in series or in parallel, wherein the fuel cell device is a fuel cell stack in which a plurality of fuel cells are stacked; DC / DC converter supplied to output of battery device, voltage detection means for detecting output voltage of fuel cell device, current detection means for detecting output current of fuel cell device, and voltage detection means The charge / discharge state of the power storage device is determined from the output voltage value and the output current value detected by the current detection means, and the output voltage of the DC / DC converter is controlled based on the determination result Power storage device state determination means.

本発明によれば、燃料電池と蓄電池を併用する電源システムにおいて、蓄電池に充放電制御用の変換器を付設することなく、燃料を節約し、蓄電池の状態を好適に維持することができる。   According to the present invention, in a power supply system using both a fuel cell and a storage battery, fuel can be saved and the state of the storage battery can be suitably maintained without adding a converter for charge / discharge control to the storage battery.

本発明に係る電源システムの第1の実施形態を示す概略構成図である。1 is a schematic configuration diagram showing a first embodiment of a power supply system according to the present invention. 図1の電源システムの動作タイムチャートである。It is an operation | movement time chart of the power supply system of FIG. 図1の蓄電装置の充放電判定を説明するための出力電圧−出力電流の分布特性を示すグラフである。4 is a graph showing output voltage-output current distribution characteristics for explaining charge / discharge determination of the power storage device of FIG. 1. 図3の分布特性を説明するための出力回路の計算モデルを示す回路図である。FIG. 4 is a circuit diagram illustrating a calculation model of an output circuit for explaining the distribution characteristics of FIG. 3. 蓄電装置充放電判定の負荷変動判定を示す図であり、(a)は出力電圧−出力電流特性の偏差が小さい場合、(b)は出力電圧−出力電流特性の偏差が大きい場合の例を示す図である。It is a figure which shows the load fluctuation determination of electrical storage apparatus charging / discharging determination, (a) shows the example when the deviation of an output voltage-output current characteristic is small, (b) shows the example when the deviation of an output voltage-output current characteristic is large. FIG. 本発明に係る電源システムの第2の実施形態において、蓄電装置の充電率の判定例を示すグラフである。It is a graph which shows the example of determination of the charge rate of an electrical storage apparatus in 2nd Embodiment of the power supply system which concerns on this invention.

以下、本発明の好適な実施形態を添付図面に基づいて説明する。
(第1の実施形態)
図1は、第1の実施形態の電源システムの構成を示す概略図である。図1に示すように、電源システムは、燃料電池装置を構成する燃料電池モジュール1と、蓄電装置4とを備え、燃料電池モジュール1と蓄電装置4とを負荷7に並列接続し、負荷7に電力を供給するシステムである。本実施形態では、燃料電池モジュール1と蓄電装置4は、系統電源6から供給される交流電力を変換して直流電力を得る整流器5と共に負荷7に接続され、系統電源6の停止時等のバックアップ電源として機能する。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the accompanying drawings.
(First embodiment)
FIG. 1 is a schematic diagram illustrating a configuration of a power supply system according to the first embodiment. As shown in FIG. 1, the power supply system includes a fuel cell module 1 that constitutes a fuel cell device, and a power storage device 4. The fuel cell module 1 and the power storage device 4 are connected in parallel to a load 7. It is a system that supplies power. In the present embodiment, the fuel cell module 1 and the power storage device 4 are connected to the load 7 together with the rectifier 5 that converts the AC power supplied from the system power supply 6 to obtain DC power, and are backed up when the system power supply 6 is stopped. Functions as a power source.

燃料電池モジュール1は、内部に燃料電池スタック8とDC/DCコンバータ9と補器10とを備える。燃料電池モジュール1の燃料電池スタック8には、水素ボンベ2より水素配管3を通じて水素燃料が供給される。水素配管3より供給された水素燃料と燃料電池モジュール1周辺の空気の一部は、補器10の動作により燃料電池スタック8を通流し、燃料電池スタック8の起電力として消費される。   The fuel cell module 1 includes a fuel cell stack 8, a DC / DC converter 9, and an auxiliary device 10 inside. Hydrogen fuel is supplied from the hydrogen cylinder 2 through the hydrogen pipe 3 to the fuel cell stack 8 of the fuel cell module 1. Part of the hydrogen fuel supplied from the hydrogen pipe 3 and the air around the fuel cell module 1 flows through the fuel cell stack 8 by the operation of the auxiliary device 10 and is consumed as an electromotive force of the fuel cell stack 8.

燃料電池スタック8は、複数の燃料電池セルを直列接続するように積層した構造を有し、最端部の燃料電池セルの正負端子がDC/DCコンバータ9の入力に接続される。DC/DCコンバータ9は、入力より得られた燃料電池スタック8の起電力を、所定の電圧指令VO_refに制御された電圧の直流電力に変換する。なおDC/DCコンバータ9の出力には逆流防止用のダイオードを設けてもよい。   The fuel cell stack 8 has a structure in which a plurality of fuel cells are stacked so as to be connected in series, and the positive and negative terminals of the outermost fuel cell are connected to the input of the DC / DC converter 9. The DC / DC converter 9 converts the electromotive force of the fuel cell stack 8 obtained from the input into DC power having a voltage controlled by a predetermined voltage command VO_ref. A diode for preventing backflow may be provided at the output of the DC / DC converter 9.

DC/DCコンバータ9の出力は、燃料電池モジュール1の外部に出力として取り出され、負荷7、整流器5の直流出力、および蓄電装置4にそれぞれ並列に接続されている。ここで負荷7には直流電力を消費する機器、例えば放送・通信用基地局、データサーバなどを設けてもよい。DC/DCコンバータ9の出力に接続される直流電力伝送回路は、DC24V又はDC48Vなどを基準の電圧として運用してもよい。整流器5は、系統電源6より受電する商用のAC100VまたはAC200V級の交流電力を入力とし、直流電力の出力に変換する機能があり、停電など系統電源6の異常時には出力を停止する。燃料電池モジュール1、および蓄電装置4は、主に系統電源6が異常となり整流器5の出力が停止した場合に負荷7への電力供給を継続するためのバックアップ動作を行う。   The output of the DC / DC converter 9 is taken out as an output to the outside of the fuel cell module 1 and connected in parallel to the load 7, the DC output of the rectifier 5, and the power storage device 4. Here, the load 7 may be provided with a device that consumes DC power, such as a broadcasting / communication base station, a data server, or the like. The DC power transmission circuit connected to the output of the DC / DC converter 9 may be operated using DC 24V or DC 48V as a reference voltage. The rectifier 5 has a function of converting commercial AC100V or AC200V class AC power received from the system power supply 6 into DC power output, and stops output when the system power supply 6 is abnormal such as a power failure. The fuel cell module 1 and the power storage device 4 mainly perform a backup operation for continuing power supply to the load 7 when the system power supply 6 becomes abnormal and the output of the rectifier 5 stops.

燃料電池モジュール1は、さらに、DC/DCコンバータ9の出力電圧VOを検出する電圧検出手段11と、DC/DCコンバータの出力電流IOを検出する電流検出手段12と、出力電圧VO及び出力電流IOに基づき蓄電装置4の充放電状態の判定を行う蓄電装置状態判定手段13とを備える。蓄電装置状態判定手段13は、DC/DCコンバータ9の出力電圧VOを制御する電圧指令VO_refを算出し、DC/DCコンバータ9に送信する。電流検出手段12は、ホール素子またはシャント抵抗を用いた電流センサを用いて構成されてもよい。また、蓄電装置状態判定手段13は電気回路、電気回路上のマイコン又はDSPなどに搭載される制御プログラムなどの手段で燃料電池モジュール1に実装されることが望ましい。   The fuel cell module 1 further includes a voltage detection means 11 for detecting the output voltage VO of the DC / DC converter 9, a current detection means 12 for detecting the output current IO of the DC / DC converter, and the output voltage VO and the output current IO. Power storage device state determination means 13 for determining the charge / discharge state of the power storage device 4 based on the above. The power storage device state determination unit 13 calculates a voltage command VO_ref for controlling the output voltage VO of the DC / DC converter 9 and transmits it to the DC / DC converter 9. The current detection means 12 may be configured using a current sensor using a Hall element or a shunt resistor. The power storage device state determination means 13 is preferably mounted on the fuel cell module 1 by means such as an electric circuit, a control program installed in a microcomputer or DSP on the electric circuit, and the like.

図2は、燃料電池モジュール1の動作に関するタイムチャートの一例を示している。図2に示すように、燃料電池モジュール1の動作は、大きくモードAとモードBの2つのモードに分類されている。本実施形態では、燃料電池モジュール1は、モードAとモードBとを交互に繰り返し、モードAとモードBの継続時間がそれぞれ設定されている。   FIG. 2 shows an example of a time chart regarding the operation of the fuel cell module 1. As shown in FIG. 2, the operation of the fuel cell module 1 is roughly classified into two modes, mode A and mode B. In the present embodiment, the fuel cell module 1 alternately repeats mode A and mode B, and the duration times of mode A and mode B are set.

モードAでは、燃料電池モジュール1は電圧指令VO_refを変動させながら、変動に応答する出力電圧VO、出力電流IOをそれぞれ蓄電装置状態判定手段13に記憶する。図2では、5段階の電圧変動を与えている。DC/DCコンバータ9は出力電圧VOをVO_refに一致するように制御を行うため、出力電圧VOは電圧指令VO_refに概ね一致する。   In mode A, the fuel cell module 1 stores the output voltage VO and the output current IO that respond to the fluctuations in the power storage device state determination means 13 while varying the voltage command VO_ref. In FIG. 2, voltage fluctuations in five stages are given. Since the DC / DC converter 9 performs control so that the output voltage VO coincides with VO_ref, the output voltage VO substantially coincides with the voltage command VO_ref.

本実施形態のように蓄電装置4が充放電制御用の変換器を付設しない二次電池である場合、出力電流IOは所定の跳ね上がり形状の過渡変化を示す。これは二次電池の分極電圧によるものであり、蓄電装置状態判定手段13が記憶するデータはこの過渡変化が収束した時点が望ましい。従って、電圧指令VO_refに所定の変動を与えた後、所定の遅れ時間Tdを経過した後の出力電圧VO、出力電流IOのデータを蓄電装置状態判定に用いる。蓄電装置4が鉛蓄電池で構成される場合、遅れ時間Tdは1分から5分程度が望ましい。モードAにおける出力電圧VO及び出力電流IOの計測については、アナログフィルタ、もしくは一次遅れや移動平均などのデジタルフィルタ処理により計測ノイズを除去する操作を行ってもよく、フィルタには上述の過渡変化の収束時間を考慮した時定数を選定してもよい。   When the power storage device 4 is a secondary battery not provided with a converter for charge / discharge control as in the present embodiment, the output current IO shows a transient change in a predetermined jumping shape. This is due to the polarization voltage of the secondary battery, and the data stored in the power storage device state determination means 13 is preferably at the time when this transient change has converged. Therefore, the data of the output voltage VO and the output current IO after the predetermined delay time Td has elapsed after giving a predetermined change to the voltage command VO_ref is used for the power storage device state determination. When the power storage device 4 is composed of a lead storage battery, the delay time Td is preferably about 1 to 5 minutes. Regarding the measurement of the output voltage VO and the output current IO in the mode A, an operation for removing measurement noise may be performed by an analog filter or digital filter processing such as first-order lag or moving average. A time constant considering the convergence time may be selected.

モードAの終了時点では、蓄電装置状態判定手段13は記憶された出力電圧VO及び出力電流IOのデータを用いて蓄電装置4の状態を判定し、判定の結果に従い最適な出力電圧VBを求め、電圧指令VO_refをVB相当の値に変更し、モードBへ移行する。次に、モードBでは、電圧指令VO_refをVB相当の値に固定した動作を行い、モードBの継続期間終了後はモードAの動作を再開する。   At the end of mode A, the power storage device state determination unit 13 determines the state of the power storage device 4 using the stored data of the output voltage VO and the output current IO, and obtains the optimum output voltage VB according to the determination result. The voltage command VO_ref is changed to a value equivalent to VB, and the mode is shifted to mode B. Next, in mode B, an operation with the voltage command VO_ref fixed to a value equivalent to VB is performed, and after the duration of mode B ends, the operation of mode A is resumed.

蓄電装置状態判定手段13は、出力電流IOに対する出力電圧VOの分布に基づき、蓄電装置が放電状態、充電状態、放電と充電の境界状態となる出力電圧の範囲を判定する。以下、充放電状態の判定方法について説明する。   Based on the distribution of the output voltage VO with respect to the output current IO, the power storage device state determination unit 13 determines the output voltage range in which the power storage device is in a discharge state, a charge state, and a boundary state between discharge and charge. Hereinafter, a method for determining the charge / discharge state will be described.

図3は、蓄電装置状態判定手段13における、蓄電装置の充放電判定に用いられる出力電圧−出力電流の分布特性の一例を示すグラフである。モードAにおいて、例えば、5段階の電圧指令VO_refの変動を与えた場合、出力電圧VO−出力電流IOの分布は、図3に示すように、5つ得られる。なお、図3では5段階の電圧指令VO_refに関する分布をそれぞれ5つの点で表示したが、電圧指令VO_refの条件毎に複数回の記録を行った場合は、偏差を含む複数個の点の集合が5つ表示されることになる。このような場合は、各集合について、分布の重心、平均値、最大値、最小値、中央値などを求め、各集合の代表点として取り扱っても構わない。   FIG. 3 is a graph showing an example of output voltage-output current distribution characteristics used for determining the charge / discharge of the power storage device in the power storage device state determination means 13. In the mode A, for example, when the fluctuation of the voltage command VO_ref in five steps is given, five distributions of the output voltage VO-the output current IO are obtained as shown in FIG. In FIG. 3, the distribution relating to the voltage command VO_ref in five steps is displayed with five points. However, when recording is performed a plurality of times for each condition of the voltage command VO_ref, a set of a plurality of points including deviations is obtained. Five will be displayed. In such a case, for each set, the center of gravity, average value, maximum value, minimum value, median value, etc. of the distribution may be obtained and handled as representative points of each set.

モードAの間において負荷7の消費電力PLが大きく変動していない場合、図3に示すように、出力電圧VO、出力電流IOの分布は、傾きの異なる2種類の直線状となる。ここで、2直線の交点における出力電圧VOを電圧VBと判定する。   When the power consumption PL of the load 7 does not fluctuate greatly during the mode A, the distribution of the output voltage VO and the output current IO becomes two types of linear shapes with different slopes, as shown in FIG. Here, the output voltage VO at the intersection of the two straight lines is determined as the voltage VB.

図4は、出力電圧VO−出力電流IOの分布が2種類の直線状となる分布特性を説明するための計算モデルである。図4の計算モデルでは、蓄電装置4を電圧源V2と内部抵抗rとで模擬し、負荷7の消費電流をIL、燃料電池モジュール1と蓄電装置4との間の配線抵抗をRとしている。この計算モデルについて、出力電圧VO−出力電流IOの関係は以下の式1で表すことができる。一般の電源システムでは損失低減のため配線抵抗Rを十分小さい値に設計するため、式1において負荷7の消費電流ILと電圧源V2が概ね一定であれば、出力電圧VO−出力電流IOの関係は概ね直線状の分布となり、その傾きは蓄電装置4の内部抵抗rによって定まる。 FIG. 4 is a calculation model for explaining the distribution characteristics in which the distribution of the output voltage VO−the output current IO is two types of straight lines. The calculation model of FIG. 4, to simulate a power storage device 4 by the voltage source V2 and the internal resistance r b, and the current consumption of the load 7 IL, the wiring resistance between the fuel cell module 1 and the power storage device 4 and R . Regarding this calculation model, the relationship of output voltage VO−output current IO can be expressed by the following Equation 1. In a general power supply system, the wiring resistance R is designed to be a sufficiently small value to reduce the loss. Therefore, if the consumption current IL of the load 7 and the voltage source V2 are substantially constant in Equation 1, the relationship between the output voltage VO and the output current IO. is generally becomes a linear distribution, the slope is determined by the internal resistance r b of the power storage device 4.

Figure 2011015485
一般に蓄電装置4に用いられる二次電池の内部抵抗rは、充電時においては放電時よりも大きい値を示す。特に、充電率が80%程度以上の高い状態での充電時は内部抵抗rが大きく上昇する。従って、出力電圧VOと出力電流IOの関係は、内部抵抗rの変化により、放電状態および充電状態とで傾きの異なる2種類の直線状の分布特性となり、2直線の交点電圧VBよりも低い出力電圧VOの範囲では放電状態、電圧VBよりも高い出力電圧VOの範囲では充電状態と判定できる。
Figure 2011015485
Generally the internal resistance r b of the rechargeable battery used in the power storage device 4, at the time of charge indicates a value greater than the time of discharge. In particular, the charging rate when charging at a high state of about 80% or more the internal resistance r b is increased greatly. Therefore, the relationship the output voltage VO and the output current IO, a change in the internal resistance r b, between the discharge state and charge state becomes two kinds of linear distribution characteristics of different slopes, less than two lines of intersection voltage VB It can be determined that the battery is discharged in the range of the output voltage VO, and the battery is charged in the range of the output voltage VO higher than the voltage VB.

ここで、燃料電池モジュール1と蓄電装置4を併用したシステム全体のバックアップ動作について検討する。燃料電池モジュール1は水素ボンベ2から供給される水素を用いて発電を行うため、消費した水素ボンベ2を交換する手間を省くには水素消費を節約する必要がある。一方、蓄電装置4は、充放電の際に発生する損失が発生するほか、水素を用いずとも系統電源6より充電できることから、燃料電池モジュール1の発電電力で蓄電装置4を充電する動作を避けることで消費する水素の節約ができる。従って、本電源システムは、蓄電装置状態判定手段13において蓄電装置4の充放電状態を判定し、動作モードBにおいて電圧指令VO_refを電圧VB以下に保つことで、燃料電池モジュール1の発電電力で蓄電装置4を充電する動作を避けることができ、水素ボンベ2の消費水素節約に貢献できる。   Here, the backup operation of the entire system using both the fuel cell module 1 and the power storage device 4 will be examined. Since the fuel cell module 1 generates power using hydrogen supplied from the hydrogen cylinder 2, it is necessary to save hydrogen consumption in order to save the trouble of replacing the consumed hydrogen cylinder 2. On the other hand, the power storage device 4 can be charged from the system power source 6 without using hydrogen in addition to the loss that occurs during charging and discharging, and therefore avoids the operation of charging the power storage device 4 with the generated power of the fuel cell module 1. This saves the hydrogen consumed. Therefore, in the power supply system, the power storage device state determination unit 13 determines the charge / discharge state of the power storage device 4 and maintains the voltage command VO_ref at the voltage VB or less in the operation mode B, thereby storing power with the generated power of the fuel cell module 1. The operation of charging the device 4 can be avoided, and the hydrogen consumption of the hydrogen cylinder 2 can be saved.

また、モードAにおいて記憶する出力電圧VO−出力電流IOの分布に偏差が現れると、蓄電装置状態判定手段で演算される判定結果に影響を与えるため、出力電圧VO及び出力電流IOの記録はできるだけ偏差を生じない条件が望ましい。偏差を生じる条件としては、特に、蓄電装置4の分極電圧や負荷7の電力PLの変動が挙げられる。   Further, if a deviation appears in the distribution of output voltage VO−output current IO stored in mode A, the determination result calculated by the power storage device state determination means is affected, and therefore the output voltage VO and output current IO can be recorded as much as possible. Conditions that do not cause deviation are desirable. Examples of the conditions that cause the deviation include fluctuations in the polarization voltage of the power storage device 4 and the power PL of the load 7.

蓄電装置4の分極電圧は一般に負荷7の電力PLの変動が無ければ過渡変化として最終的に収束する形で変化するため、モードAの継続時間を、蓄電装置4を構成する二次電池の分極電圧の平衡時定数よりも長い時間に設定することにより、分極電圧の影響を最低限に抑制できる。   Since the polarization voltage of power storage device 4 generally changes so as to finally converge as a transient change if there is no fluctuation in power PL of load 7, the duration of mode A is set to the polarization of the secondary battery constituting power storage device 4. By setting the time longer than the voltage equilibrium time constant, the influence of the polarization voltage can be minimized.

図5(a)及び図5(b)は、蓄電装置充放電判定における負荷7の変動判定を示す図である。負荷7の電力PLに変動が生じると、出力電圧VO−出力電流IOの分布に偏差が生じる。そこで、各分布の出力電流IOについて平均電流IAVEを求め、所定の偏差幅ΔIを加算した上下限電流閾値IAVE±ΔIを逸脱する分布点が存在した場合に、負荷7の変動として判定する。図5(a)では、上下限電流閾値IAVE±ΔIを超える分布点が存在せず、偏差が小さいとみなされ、負荷7の電力PLの変動がないと判定されるのに対し、図5(b)では、上下限電流閾値IAVE±ΔIを超える分布点が存在するため、偏差が大きいとみなされ、負荷7の電力PLに変動があったと判定される。なお、図5では、出力電流IOの偏差を求めて負荷7の変動判定を行っているが、出力電圧VOについて偏差を求めて負荷7の変動と判定してもよい。 FIG. 5A and FIG. 5B are diagrams showing variation determination of the load 7 in the storage device charge / discharge determination. When fluctuation occurs in the power PL of the load 7, a deviation occurs in the distribution of the output voltage VO-the output current IO. Therefore, the average current I AVE is obtained for the output current IO of each distribution, and when there is a distribution point that deviates from the upper and lower limit current threshold value I AVE ± ΔI obtained by adding a predetermined deviation width ΔI, it is determined as the variation of the load 7. . In FIG. 5A, there is no distribution point exceeding the upper and lower limit current threshold value I AVE ± ΔI, and it is determined that the deviation is small, and it is determined that there is no variation in the power PL of the load 7. In (b), since there are distribution points exceeding the upper and lower limit current threshold value I AVE ± ΔI, it is considered that the deviation is large, and it is determined that the power PL of the load 7 has changed. In FIG. 5, the variation of the load 7 is determined by obtaining the deviation of the output current IO. However, the variation of the load 7 may be determined by obtaining the deviation of the output voltage VO.

ここで、負荷7の変動を判定した場合に蓄電装置充放電判定の結果を補正してもよい。その補正方法としては、例えば、負荷7の変動を判定した場合に、変動を判定した当該モードAにおける蓄電装置充放電判定を無視し、前回のモードA以前に得られた出力電圧VBを基に次回のモードBの動作を実施すれば、負荷7の変動による影響を回避することができる。また、負荷7の変動を判定した場合や、常時変動し蓄電装置充放電判定が適当に実施できない負荷7が接続されていると判定した場合に、その判定結果を燃料電池モジュール1の外部に表示・通信などの手段を用いて通知する機能を設けてもよい。   Here, when the variation of the load 7 is determined, the result of the determination of charge / discharge of the power storage device may be corrected. As the correction method, for example, when the fluctuation of the load 7 is determined, the power storage device charging / discharging determination in the mode A in which the fluctuation is determined is ignored, and the output voltage VB obtained before the previous mode A is based on the output voltage VB. If the operation of the next mode B is performed, the influence due to the fluctuation of the load 7 can be avoided. In addition, when it is determined that the load 7 has changed, or when it is determined that the load 7 that is constantly changing and the charge / discharge determination of the power storage device cannot be appropriately performed is connected, the determination result is displayed outside the fuel cell module 1. -You may provide the function to notify using means, such as communication.

本実施形態の電源システムによれば、燃料電池モジュール1の出力電圧VOと出力電流IOとから蓄電装置4の充放電状態(充電状態、放電状態、或いは、充電と放電の境界状態)を判定し、その蓄電装置4の充放電状態に基づいてDC/DCコンバータ9への電圧指令VO_refを用いて出力電圧VOを制御することにより、水素燃料の消費を抑え、かつ蓄電池の状態を好適に維持することができる。   According to the power supply system of the present embodiment, the charge / discharge state (charge state, discharge state, or boundary state between charge and discharge) of the power storage device 4 is determined from the output voltage VO and the output current IO of the fuel cell module 1. By controlling the output voltage VO using the voltage command VO_ref to the DC / DC converter 9 based on the charge / discharge state of the power storage device 4, the consumption of hydrogen fuel is suppressed and the state of the storage battery is suitably maintained. be able to.

ただし、モードAの動作時には、一時的に、最適な出力電圧VBよりも大きい電圧指令VO_refの動作を含むため、蓄電装置4への充電が行われ水素を多く消費する場合がある。そこで、両モード全体での水素消費を考慮し、モードBでの水素節約効果がモードAでの余分な水素消費を相殺すべく、少なくともモードBの継続時間をモードAの継続時間よりも長く設定することにより、水素の節約効果を高めることが可能となる。例えば、モードBの継続期間はモードAの継続時間の2倍以上に設定されるのが好ましい。
(第2の実施形態)
次に、本発明の第2の実施形態について説明する。
However, since the operation of mode A temporarily includes the operation of a voltage command VO_ref that is larger than the optimum output voltage VB, the power storage device 4 may be charged and a large amount of hydrogen may be consumed. Therefore, considering the hydrogen consumption in both modes as a whole, at least the duration of mode B is set longer than the duration of mode A so that the hydrogen saving effect in mode B offsets the extra hydrogen consumption in mode A By doing so, it becomes possible to increase the saving effect of hydrogen. For example, the duration of mode B is preferably set to be twice or more the duration of mode A.
(Second Embodiment)
Next, a second embodiment of the present invention will be described.

本実施形態の電源システムの基本的な構成部分は、図1の電源システムとほぼ同様である。本実施形態では、蓄電装置状態判定手段13が、出力電流値IOに対する出力電力値VOの分布に基づき、蓄電装置4の充電率(SOC)を判定する機能を有する。   The basic components of the power supply system of this embodiment are almost the same as those of the power supply system of FIG. In the present embodiment, the power storage device state determination unit 13 has a function of determining the charging rate (SOC) of the power storage device 4 based on the distribution of the output power value VO with respect to the output current value IO.

図6は、蓄電装置状態判定手段13における、蓄電装置充電率判定に関する一例を示す図である。蓄電装置4を構成する二次電池の2通りの充電率S1及びS2(S1>S2)について、出力電圧VO−出力電流IOの分布を示している。図6に示すグラフによれば、例えば、出力電圧VO−出力電流IOの分布は充電率が高くなるにつれて右側にシフトするように、充電率S1、S2の違いに応じて出力電圧VO−出力電流IOの分布はそれぞれ異なる。出力電圧VO−出力電流IOの分布と充電率との関係を、蓄電装置状態判定手段13に予め記憶しておくか、もしくは実際の動作の経過より学習することによって、充電率を推定することが可能となる。   FIG. 6 is a diagram showing an example of the power storage device charging rate determination in the power storage device state determination means 13. The distribution of the output voltage VO-the output current IO is shown for the two charge rates S1 and S2 (S1> S2) of the secondary battery constituting the power storage device 4. According to the graph shown in FIG. 6, for example, the distribution of the output voltage VO-output current IO shifts to the right side as the charging rate increases, so that the output voltage VO-output current depends on the difference between the charging rates S1, S2. The distribution of IO is different. It is possible to estimate the charging rate by storing the relationship between the distribution of the output voltage VO−the output current IO and the charging rate in the power storage device state determination unit 13 in advance or by learning from the actual operation. It becomes possible.

二次電池、特に鉛蓄電池は、放電が進み充電率が下がると電池の寿命に影響を与える傾向がある。従って、蓄電装置状態判定手段13において蓄電装置充電率判定を行い適切な充電率に蓄電装置4を維持することにより、蓄電装置4の寿命を延長することが可能である。具体的には、モードBの動作時において、蓄電装置4の充電率が予め設定された充電率(第1の充電率閾値)より低い場合には、蓄電装置4の充電率が第1の充電率閾値より高いときの固定電圧(電圧指令VO_ref(通常時の電圧指令))よりも、固定電圧(電圧指令VO_ref)を高く設定する。これにより、燃料電池モジュール1の出力を増加させ、蓄電装置4の放電量を緩和することができ、電池の寿命への影響を防止することができる。   Secondary batteries, particularly lead-acid batteries, tend to affect the battery life as discharge progresses and the charge rate decreases. Therefore, it is possible to extend the lifetime of the power storage device 4 by determining the power storage device charge rate in the power storage device state determination means 13 and maintaining the power storage device 4 at an appropriate charge rate. Specifically, when the charge rate of power storage device 4 is lower than a preset charge rate (first charge rate threshold) during operation in mode B, the charge rate of power storage device 4 is the first charge. The fixed voltage (voltage command VO_ref) is set higher than the fixed voltage (voltage command VO_ref (normal voltage command)) when higher than the rate threshold. Thereby, the output of the fuel cell module 1 can be increased, the amount of discharge of the power storage device 4 can be relaxed, and the influence on the battery life can be prevented.

蓄電装置4の充電率が十分に高い場合、例えば、充電率が90%以上であった場合は燃料電池モジュール1が発電しなくとも、蓄電装置4の放電のみで負荷7をバックアップ可能な場合がある。このように、所定の充電率閾値(第2の充電率閾値)よりも充電率が高いと判定した場合は、モードBにおいて燃料電池モジュール1の発電動作を休止して、水素の消費を節約することができる。   When the charging rate of the power storage device 4 is sufficiently high, for example, when the charging rate is 90% or more, the load 7 can be backed up only by discharging the power storage device 4 even if the fuel cell module 1 does not generate power. is there. As described above, when it is determined that the charging rate is higher than the predetermined charging rate threshold (second charging rate threshold), the power generation operation of the fuel cell module 1 is paused in mode B to save hydrogen consumption. be able to.

以上、本発明は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定される。   As described above, the present invention is not limited to the above-described embodiments, and various other ones are assumed.

1…燃料電池モジュール 4…蓄電装置 5…整流器 7…負荷 8…燃料電池スタック 9…DC/DCコンバータ 11…電圧検出手段 12…電流検出手段 13…蓄電装置状態判定手段   DESCRIPTION OF SYMBOLS 1 ... Fuel cell module 4 ... Power storage device 5 ... Rectifier 7 ... Load 8 ... Fuel cell stack 9 ... DC / DC converter 11 ... Voltage detection means 12 ... Current detection means 13 ... Power storage device state determination means

Claims (11)

蓄電装置と燃料電池装置とをそれぞれ負荷に並列接続し、該負荷に電力を供給する電源システムであって、
前記蓄電装置は、1個または複数個の二次電池を直列または並列接続した二次電池群を備え、
前記燃料電池装置は、複数の燃料電池セルを積層した燃料電池スタックと、該燃料電池スタックの発電電力を変換し前記燃料電池装置の出力に供給するDC/DCコンバータと、前記燃料電池装置の出力電圧を検出する電圧検出手段と、前記燃料電池装置の出力電流を検出する電流検出手段と、前記電圧検出手段が検出した出力電圧値と前記電流検出手段が検出した出力電流値とから前記蓄電装置の充放電状態を判定し、その判定結果に基づいて前記DC/DCコンバータの出力電圧を制御する蓄電装置状態判定手段とを備えたことを特徴とする電源システム。
A power supply system for connecting a power storage device and a fuel cell device in parallel to a load, respectively, and supplying power to the load,
The power storage device includes a secondary battery group in which one or a plurality of secondary batteries are connected in series or in parallel,
The fuel cell device includes a fuel cell stack in which a plurality of fuel cells are stacked, a DC / DC converter that converts the generated power of the fuel cell stack and supplies it to the output of the fuel cell device, and the output of the fuel cell device Voltage storage means for detecting voltage, current detection means for detecting output current of the fuel cell device, output voltage value detected by the voltage detection means, and output current value detected by the current detection means, the power storage device A power supply system comprising: a power storage device state determination unit that determines a charge / discharge state of the battery and controls an output voltage of the DC / DC converter based on the determination result.
請求項1記載の電源システムであって、前記燃料電池装置は、
前記燃料電池装置の出力電圧を前記DC/DCコンバータの操作により所定範囲で変動させて出力すると共に、その変動に応答する前記出力電圧値および前記出力電流値の分布を前記蓄電装置状態判定手段に記録する動作モードAと、
前記動作モードAにおいて記録した前記分布から前記蓄電装置の充放電状態を判定し、燃料電池装置の出力電圧を蓄電装置状態に対応した所定の固定電圧を出力する動作モードBと
のどちらか一方のモードで動作されることを特徴とする電源システム。
The power supply system according to claim 1, wherein the fuel cell device includes:
The output voltage of the fuel cell device is varied within a predetermined range by the operation of the DC / DC converter, and the distribution of the output voltage value and the output current value responding to the variation is output to the power storage device state determination means. Recording operation mode A;
The charge / discharge state of the power storage device is determined from the distribution recorded in the operation mode A, and the output voltage of the fuel cell device is one of the operation mode B that outputs a predetermined fixed voltage corresponding to the power storage device state. A power supply system that is operated in a mode.
請求項2記載の電源システムであって、前記動作モードAの継続時間を、前記二次電池の分極電圧の平衡時定数よりも長い時間に設定したことを特徴とする電源システム。   The power supply system according to claim 2, wherein the duration of the operation mode A is set to a time longer than an equilibrium time constant of the polarization voltage of the secondary battery. 請求項2又は3記載の電源システムであって、前記動作モードA及び前記動作モードBを交互に繰り返す動作を行い、前記動作モードBの継続時間を、前記動作モードAの継続時間より長い時間に設定したことを特徴とする電源システム。   4. The power supply system according to claim 2, wherein the operation mode A and the operation mode B are alternately repeated, and the duration of the operation mode B is set to be longer than the duration of the operation mode A. 5. A power system characterized by setting. 請求項2乃至4のいずれか1項記載の電源システムであって、前記蓄電装置状態判定手段は、前記動作モードAにおける所定の出力電圧値に対する出力電流値の偏差或いは出力電流値に対する出力電圧値の偏差に基づき、前記負荷の変動を判定することを特徴とする電源システム。   5. The power supply system according to claim 2, wherein the power storage device state determination unit includes a deviation of an output current value with respect to a predetermined output voltage value in the operation mode A or an output voltage value with respect to an output current value. The power supply system is characterized in that a change in the load is determined based on a deviation of the load. 請求項5記載の電源システムであって、前記蓄電装置状態判定手段は、前記負荷の変動の判定結果に基づき、前記蓄電装置の充放電状態判定を補正することを特徴とする電源システム。   6. The power supply system according to claim 5, wherein the power storage device state determination unit corrects the charge / discharge state determination of the power storage device based on the determination result of the load fluctuation. 請求項1乃至6のいずれか1項記載の電源システムであって、前記蓄電装置状態判定手段は、前記出力電流値に対する前記出力電圧値の分布に基づき、前記蓄電装置が放電状態、充電状態又は放電と充電の境界状態となる出力電圧の範囲を判定することを特徴とする電源システム。   7. The power supply system according to claim 1, wherein the power storage device state determination unit is configured to determine whether the power storage device is in a discharged state, a charged state, or a charge state based on a distribution of the output voltage value with respect to the output current value. A power supply system that determines a range of an output voltage that is a boundary state between discharging and charging. 請求項7記載の電源システムであって、前記動作モードBにおける前記固定電圧を、放電状態となる前記出力電圧の範囲に設定することを特徴とする電源システム。   8. The power supply system according to claim 7, wherein the fixed voltage in the operation mode B is set to a range of the output voltage that is in a discharge state. 請求項1乃至8のいずれか1項記載の電源システムであって、前記蓄電装置状態判定手段は、前記出力電流値に対する出力電圧値の分布に基づき、前記蓄電装置の充電率を判定することを特徴とする電源システム。   9. The power supply system according to claim 1, wherein the power storage device state determination unit determines a charging rate of the power storage device based on a distribution of output voltage values with respect to the output current value. A featured power supply system. 請求項9記載の電源システムであって、前記充電率が所定の第1の充電率閾値より低いときは、前記動作モードBにおける前記固定電圧を、前記充電率が前記第1の充電率閾値より高いときの固定電圧より高く設定することを特徴とする電源システム。   10. The power supply system according to claim 9, wherein when the charging rate is lower than a predetermined first charging rate threshold, the fixed voltage in the operation mode B is set so that the charging rate is higher than the first charging rate threshold. A power supply system that is set higher than a fixed voltage when high. 請求項9又は10記載の電源システムであって、前記蓄電装置状態判定手段が、前記充電率が所定の第2の充電率閾値よりも高いと判定した場合、前記燃料電池装置は、前記動作モードBの開始時に発電動作を停止し、前記動作モードBの終了時に発電動作を開始することを特徴とする電源システム。   11. The power supply system according to claim 9, wherein when the power storage device state determination unit determines that the charging rate is higher than a predetermined second charging rate threshold, the fuel cell device is configured to operate in the operation mode. A power supply system that stops a power generation operation at the start of B and starts a power generation operation at the end of the operation mode B.
JP2009155362A 2009-06-30 2009-06-30 Power system Expired - Fee Related JP5313062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009155362A JP5313062B2 (en) 2009-06-30 2009-06-30 Power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009155362A JP5313062B2 (en) 2009-06-30 2009-06-30 Power system

Publications (2)

Publication Number Publication Date
JP2011015485A true JP2011015485A (en) 2011-01-20
JP5313062B2 JP5313062B2 (en) 2013-10-09

Family

ID=43593820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009155362A Expired - Fee Related JP5313062B2 (en) 2009-06-30 2009-06-30 Power system

Country Status (1)

Country Link
JP (1) JP5313062B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279371A (en) * 2011-05-11 2011-12-14 烽火通信科技股份有限公司 Main power supply panel and spare power supply panel voltage fault detecting system for communication equipment
JP2013211962A (en) * 2012-03-30 2013-10-10 Ntt Docomo Inc Dc power supply system
JP2014135825A (en) * 2013-01-09 2014-07-24 Toyota Motor Corp Power storage system
JP2016531270A (en) * 2013-06-25 2016-10-06 コミッサリア ア レネルジー アトミーク エ オ エナジーズ アルタナティブス How to evaluate the state of charge of a battery
CN110406431A (en) * 2018-04-26 2019-11-05 武汉众宇动力系统科技有限公司 Electric power supply system of fuel cell and its electricity for unmanned plane adjust can present be absorbed and utilized circuit and it is electric adjust to present method is absorbed and utilized

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291668A (en) * 1989-01-09 1990-12-03 Fuji Electric Co Ltd Control device of fuel cell power generation system
JPH07320752A (en) * 1994-05-24 1995-12-08 Osaka Gas Co Ltd Direct current hybrid power supply system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291668A (en) * 1989-01-09 1990-12-03 Fuji Electric Co Ltd Control device of fuel cell power generation system
JPH07320752A (en) * 1994-05-24 1995-12-08 Osaka Gas Co Ltd Direct current hybrid power supply system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279371A (en) * 2011-05-11 2011-12-14 烽火通信科技股份有限公司 Main power supply panel and spare power supply panel voltage fault detecting system for communication equipment
JP2013211962A (en) * 2012-03-30 2013-10-10 Ntt Docomo Inc Dc power supply system
JP2014135825A (en) * 2013-01-09 2014-07-24 Toyota Motor Corp Power storage system
JP2016531270A (en) * 2013-06-25 2016-10-06 コミッサリア ア レネルジー アトミーク エ オ エナジーズ アルタナティブス How to evaluate the state of charge of a battery
US9632143B2 (en) 2013-06-25 2017-04-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for evaluating the state of charge of a battery
CN110406431A (en) * 2018-04-26 2019-11-05 武汉众宇动力系统科技有限公司 Electric power supply system of fuel cell and its electricity for unmanned plane adjust can present be absorbed and utilized circuit and it is electric adjust to present method is absorbed and utilized
CN110406431B (en) * 2018-04-26 2024-01-19 武汉众宇动力系统科技有限公司 Fuel cell power supply system for unmanned aerial vehicle and electric energy adjustment feed absorption and utilization circuit and electric energy adjustment feed absorption and utilization method thereof

Also Published As

Publication number Publication date
JP5313062B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
KR100754734B1 (en) Hybrid power supply and power management method thereof
KR101349874B1 (en) Battery management system and method for ship propulsion
JP5583781B2 (en) Power management system
US20120176095A1 (en) Electric power management system
US20140021925A1 (en) Battery power supply apparatus and battery power supply system
KR101319381B1 (en) Fuel cell system and driving method thereof
US20140239908A1 (en) Stationary electrical storage system and control method
JP2015514390A (en) Battery capacity management
US20110077792A1 (en) Method for controlling distributed power sources
JP5313062B2 (en) Power system
WO2012165300A1 (en) Battery system
WO2005091424A1 (en) Power system and its management method
US20120088170A1 (en) Fuel cell system and method of operating the same
JP2010098866A (en) Imbalance determination circuit, imbalance reduction circuit, battery power supply, and imbalance evaluation method
WO2009081755A1 (en) Fuel cell system and fuel cell degradation judgment method
KR20170067864A (en) Method for the operation of a power grid, in particular a power grid of a watercraft
JP2005160233A (en) Battery pack and cell battery pack
JP5732596B2 (en) Method for controlling the operation of a hybrid system
JP5534688B2 (en) Fuel cell power supply system and control method thereof
US9837692B2 (en) Power controlling apparatus
US20110204852A1 (en) Power storage system
WO2019155507A1 (en) Dc power supply system
WO2012049955A1 (en) Power management system
CN109120059B (en) Method for controlling an uninterruptible power supply system and associated power supply system
JP2012088086A (en) Power management system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5313062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees