JP2011014395A - Capacitor management device - Google Patents

Capacitor management device Download PDF

Info

Publication number
JP2011014395A
JP2011014395A JP2009157946A JP2009157946A JP2011014395A JP 2011014395 A JP2011014395 A JP 2011014395A JP 2009157946 A JP2009157946 A JP 2009157946A JP 2009157946 A JP2009157946 A JP 2009157946A JP 2011014395 A JP2011014395 A JP 2011014395A
Authority
JP
Japan
Prior art keywords
capacitor
battery
management device
open circuit
internal temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009157946A
Other languages
Japanese (ja)
Other versions
JP5354787B2 (en
Inventor
Noriyuki Shimizu
紀之 清水
Giichi Nishida
義一 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009157946A priority Critical patent/JP5354787B2/en
Publication of JP2011014395A publication Critical patent/JP2011014395A/en
Application granted granted Critical
Publication of JP5354787B2 publication Critical patent/JP5354787B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a capacitor management device capable of timely estimating an inner temperature of a capacitor with high accuracy.SOLUTION: The capacitor management device for managing the capacitor which has a correlation between a charging state and an open circuit voltage and of which the correlation changes depending on a temperature is provided with a charging state calculation unit for calculating a value showing a charging state of the capacitor, an open circuit voltage calculation unit for calculating an open circuit voltage of the capacitor, and an estimated inner temperature calculation unit for calculating the estimated inner temperature of the capacitor based on the value showing the charging state calculated by the charging state calculation unit, the open circuit voltage calculated by the open circuit voltage calculation unit, and the correlation depending on the temperature of the capacitor.

Description

本発明は、蓄電器の内部温度を推定する蓄電器管理装置に関する。   The present invention relates to a capacitor management device that estimates an internal temperature of a capacitor.

EV(Electric Vehicle:電気自動車)やHEV(Hybrid Electrical Vehicle:ハイブリッド電気自動車)等の車両には、電動機等に電力を供給する蓄電器が搭載される。蓄電器には、直列及び並列に接続された複数の蓄電セルが外装体内に設けられている。蓄電セルには、ニッケル水素電池やリチウムイオン電池等の2次電池が用いられる。このような蓄電器の信頼性や安全性を損なわないためには、蓄電器の内部温度を監視する必要がある。   Vehicles such as EVs (Electric Vehicles) and HEVs (Hybrid Electrical Vehicles) are equipped with a battery that supplies electric power to an electric motor or the like. In the battery, a plurality of power storage cells connected in series and in parallel are provided in the exterior body. Secondary batteries, such as a nickel metal hydride battery and a lithium ion battery, are used for an electrical storage cell. In order not to impair the reliability and safety of such a capacitor, it is necessary to monitor the internal temperature of the capacitor.

従来は、蓄電器の外装体に取り付けられた温度センサの検出温度を蓄電器の内部温度として扱うことが一般的だった。しかし、当該温度センサは、蓄電器の内部に設けられている訳ではないため、あくまでも外装体の温度を検出しているに過ぎない。しかも、蓄電器内部の熱が外装体に伝達するまでの時間差、及び蓄電器内部から外装体に伝達するまでの熱損失のために、当該温度センサの検出温度からは蓄電器の正確な内部温度が適時に得られない。   Conventionally, it has been common to treat the temperature detected by a temperature sensor attached to the outer package of the capacitor as the internal temperature of the capacitor. However, since the temperature sensor is not provided inside the battery, it merely detects the temperature of the exterior body. In addition, due to the time difference until the heat inside the battery is transferred to the exterior body and the heat loss from the inside of the battery to the exterior body, the accurate internal temperature of the battery is timely determined from the detected temperature of the temperature sensor. I can't get it.

特開2006−101674号公報JP 2006-101684 A 特許第3175558号明細書Japanese Patent No. 3175558

図5は、特許文献1に開示された密閉形蓄電池の一部断面を示す斜視図である。図5に示すように、当該特許文献1の密閉形蓄電池では、蓋4の極柱部近傍に電池内方向に突出する有底の中空突出部6が少なくとも1ヵ所に形成され、中空突出部6に挿入された温度検知機が電極群2及びリード部を含む極柱全体部の温度を測定する。しかし、当該温度検知機は、蓄電池の内部により近い位置で温度を測定するが、原理的には蓄電池の外部から温度を測定する。このため、当該温度検知機は、上述した熱伝達及び熱損失の影響を受けてしまう。   FIG. 5 is a perspective view showing a partial cross section of the sealed storage battery disclosed in Patent Document 1. As shown in FIG. As shown in FIG. 5, in the sealed storage battery of Patent Document 1, a bottomed hollow projecting portion 6 projecting inward in the battery is formed in the vicinity of the pole column portion of the lid 4. The temperature detector inserted into the electrode measures the temperature of the entire pole column including the electrode group 2 and the lead portion. However, the temperature detector measures the temperature at a position closer to the inside of the storage battery, but in principle, measures the temperature from the outside of the storage battery. For this reason, the said temperature detector will receive to the influence of the heat transfer and heat loss which were mentioned above.

また、特許文献2に開示されたハイブリッドECU(充放電制御装置)は、バッテリの電解質の内部抵抗等によって影響される電池発熱損失等から、以下に示す式によりバッテリ推定温度Tb(K)を計算する。
・Ploss(K)=R・Ib(K)2
・dTb(K)/dt=X(K)={Ploss(K)-(Tb(K-1)-Ta(K))・h・S}/Cb
・Tb(K)=Tb(K-1)+Δt・X(K)
In addition, the hybrid ECU (charge / discharge control device) disclosed in Patent Document 2 calculates the estimated battery temperature Tb (K) from the following equation from the battery heat loss caused by the internal resistance of the battery electrolyte. To do.
・ Ploss (K) = R ・ Ib (K) 2
・ DTb (K) / dt = X (K) = {Ploss (K)-(Tb (K-1) -Ta (K)) ・ h ・ S} / Cb
・ Tb (K) = Tb (K-1) + Δt ・ X (K)

上記式において、Ploss(K)はバッテリの内部発熱量、Rはバッテリの内部抵抗値、Ib(K)はバッテリの電流値、Ta(K)は外気温、hはバッテリの放熱係数、Sはバッテリの投下放熱面積、Cbはバッテリの熱容量である。なお、バッテリの内部抵抗値R、バッテリの放熱係数h、バッテリの等価放熱面積S、バッテリの熱容量Cbは、バッテリの冷却ファンの動作状況、バッテリ温度及び外気温に依存するため、これらの状態で適宜修正演算される。   In the above equation, Ploss (K) is the internal heat generation amount of the battery, R is the internal resistance value of the battery, Ib (K) is the current value of the battery, Ta (K) is the outside temperature, h is the heat dissipation coefficient of the battery, and S is The dropped heat radiation area of the battery, Cb, is the heat capacity of the battery. Note that the internal resistance value R of the battery, the heat dissipation coefficient h of the battery, the equivalent heat dissipation area S of the battery, and the heat capacity Cb of the battery depend on the operating state of the cooling fan of the battery, the battery temperature, and the outside air temperature. Corrective calculation is performed as appropriate.

しかし、上記式は複雑であり、外因等によって誤差を生じるパラメータを多く含むため、ハイブリッドECUによって算出されたバッテリ推定温度の精度は高いとは言えない。   However, since the above equation is complicated and includes many parameters that cause errors due to external factors or the like, it cannot be said that the accuracy of the estimated battery temperature calculated by the hybrid ECU is high.

本発明の目的は、蓄電器の内部温度を高い精度で適時推定可能な蓄電器管理装置を提供することである。   An object of the present invention is to provide a capacitor management device capable of estimating the internal temperature of a capacitor with high accuracy and timely.

上記課題を解決して係る目的を達成するために、請求項1に記載の発明の蓄電器管理装置は、充電状態と開回路電圧の間に相関関係を有し、当該相関関係が温度に依存して変化する蓄電器(例えば、実施の形態での蓄電器103)を管理する蓄電器管理装置(例えば、実施の形態での蓄電器管理装置113)であって、前記蓄電器の充電状態を示す値を算出する充電状態算出部(例えば、実施の形態での初期SOC導出部201、電池容量算出部203、SOC変化量算出部205及びSOC補正部207)と、前記蓄電器の開回路電圧を算出する開回路電圧算出部(例えば、実施の形態での内部抵抗推定部209、電圧降下量算出部213及び電圧補正部215)と、前記充電状態算出部が算出した前記充電状態を示す値及び前記開回路電圧算出部が算出した前記開回路電圧と、前記蓄電器の温度に依存する前記相関関係とに基づいて、前記蓄電器の推定内部温度を導出する推定内部温度導出部(例えば、実施の形態での推定内部温度導出部217)と、を備えたことを特徴としている。   In order to solve the above-mentioned problems and achieve the object, the battery management device of the invention according to claim 1 has a correlation between the charged state and the open circuit voltage, and the correlation depends on the temperature. A storage device management device (for example, the storage device management device 113 in the embodiment) that manages a storage device that changes (for example, the storage device 103 in the embodiment), and calculates a value indicating a charge state of the storage device State calculation unit (for example, initial SOC derivation unit 201, battery capacity calculation unit 203, SOC change amount calculation unit 205, and SOC correction unit 207 in the embodiment), and open circuit voltage calculation for calculating the open circuit voltage of the battery Units (for example, the internal resistance estimation unit 209, the voltage drop amount calculation unit 213, and the voltage correction unit 215 in the embodiment), the value indicating the charge state calculated by the charge state calculation unit, and the open circuit power Based on the open circuit voltage calculated by the calculation unit and the correlation depending on the temperature of the capacitor, an estimated internal temperature deriving unit that derives the estimated internal temperature of the capacitor (for example, the estimated internal temperature in the embodiment) A temperature deriving unit 217).

さらに、請求項2に記載の発明の蓄電器管理装置では、前記蓄電器は、当該蓄電器の内部温度に対する開回路電圧の変化率が、当該蓄電器管理装置が識別可能な前記内部温度の最小単位に対する当該蓄電器管理装置が識別可能な前記開回路電圧の最小単位の比以上の特性を有することを特徴としている。   Furthermore, in the electric storage device management apparatus according to claim 2, the electric storage device has the change rate of the open circuit voltage with respect to the internal temperature of the electric storage device with respect to the minimum unit of the internal temperature that can be identified by the electric storage device management device. It is characterized by having a characteristic equal to or higher than the ratio of the minimum unit of the open circuit voltage that can be identified by the management device.

さらに、請求項3に記載の発明の蓄電器管理装置では、前記蓄電器は、当該蓄電器の内部温度に対する充電状態を示す値の変化率が、当該蓄電器管理装置が識別可能な前記内部温度の最小単位に対する当該蓄電器管理装置が識別可能な前記充電状態を示す値の最小単位の比以上の特性を有することを特徴としている。   Furthermore, in the electric storage device management apparatus according to claim 3, the electric storage device has a rate of change of a value indicating a charging state with respect to an internal temperature of the electric storage device with respect to a minimum unit of the internal temperature that can be identified by the electric storage device management device. It is characterized in that it has a characteristic equal to or greater than the ratio of the minimum unit of the value indicating the state of charge that can be identified by the storage device management apparatus.

さらに、請求項4に記載の発明の蓄電器管理装置では、前記充電状態算出部は、前記蓄電器の充放電電流に応じて、前記充電状態を示す値を算出し、前記開回路電圧算出部は、前記蓄電器の前記充放電電流及び端子電圧に応じて、前記開回路電圧を算出することを特徴としている。   Furthermore, in the battery management device according to the invention of claim 4, the charge state calculation unit calculates a value indicating the charge state according to a charge / discharge current of the battery, and the open circuit voltage calculation unit includes: The open circuit voltage is calculated according to the charge / discharge current and terminal voltage of the battery.

さらに、請求項5に記載の発明の蓄電器管理装置では、当該蓄電器管理装置は、前記推定内部温度導出部が導出した前記推定内部温度が第1のしきい値以上のとき、前記蓄電器を冷却する手段(例えば、実施の形態での冷却ファン115)を駆動することを特徴としている。   Furthermore, in the electric storage device management apparatus according to claim 5, the electric storage device management device cools the electric storage device when the estimated internal temperature derived by the estimated internal temperature deriving unit is equal to or higher than a first threshold value. Means (for example, cooling fan 115 in the embodiment) is driven.

さらに、請求項6に記載の発明の蓄電器管理装置では、当該蓄電器管理装置は、前記推定内部温度導出部が導出した前記推定内部温度が第2のしきい値以上のとき、前記蓄電器の入出力電力を制限することを特徴としている。   Furthermore, in the storage battery management device according to claim 6, when the estimated internal temperature derived by the estimated internal temperature deriving unit is equal to or higher than a second threshold value, the storage battery management device is configured to input / output the capacitor. It is characterized by limiting power.

請求項1〜6に記載の発明の蓄電器管理装置によれば、蓄電器の内部温度を高い精度で適時推定できる。   According to the storage device management apparatus of the inventions described in claims 1 to 6, the internal temperature of the storage device can be estimated in a timely manner with high accuracy.

請求項5及び6に記載の発明の蓄電器管理装置によれば、蓄電器の信頼性及び安全性を損なうことなく、当該蓄電器を利用できる。   According to the capacitor management device of the inventions of the fifth and sixth aspects, the capacitor can be used without impairing the reliability and safety of the capacitor.

一実施形態の蓄電器管理装置113を搭載したEVの概略構成図Schematic configuration diagram of an EV equipped with the battery management device 113 of one embodiment 蓄電器103における充電深度(SOC)と開回路電圧(OCV)と内部温度の相関関係を示すグラフThe graph which shows the correlation of the charging depth (SOC) in the electrical storage device 103, an open circuit voltage (OCV), and internal temperature. 蓄電器管理装置113の内部構成を示すブロック図The block diagram which shows the internal structure of the electrical storage device management apparatus 113 蓄電器103の内部温度に対する開回路電圧(OCV)の変化量を示すグラフThe graph which shows the variation | change_quantity of the open circuit voltage (OCV) with respect to the internal temperature of the battery 103. 特許文献1に開示された密閉形蓄電池の一部断面を示す斜視図The perspective view which shows the partial cross section of the sealed storage battery disclosed by patent document 1

以下、本発明の実施形態について、図面を参照して説明する。以下説明する実施形態の蓄電器管理装置は、蓄電器から供給された電力によって駆動する電動機が駆動源として設けられたEV(Electric Vehicle:電気自動車)やHEV(Hybrid Electrical Vehicle:ハイブリッド電気自動車)等の車両に搭載されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. An electric storage device management apparatus according to an embodiment described below is a vehicle such as an EV (Electric Vehicle) or an HEV (Hybrid Electric Vehicle) provided with an electric motor driven by electric power supplied from the electric storage device as a drive source. It is mounted on.

図1は、一実施形態の蓄電器管理装置を搭載したEVの概略構成図である。図1に示すEV(以下、単に「車両」という)は、電動機Mと、変速機構Tと、駆動輪Wと、電力制御装置101と、蓄電器103と、メモリ105と、電流センサ107と、電圧センサ109と、温度センサ111と、蓄電器管理装置113と、冷却ファン115とを主に備える。当該車両では、電動機Mの駆動力は変速機構Tを介して駆動輪Wに伝達される。また、減速時に駆動輪W側から電動機M側に駆動力が伝達されると、電動機Mは発電機として機能していわゆる回生制動力を発生し、車体の運動エネルギーを電気エネルギーとして蓄電器103に回収する。   FIG. 1 is a schematic configuration diagram of an EV equipped with a storage battery management device according to an embodiment. 1 (hereinafter simply referred to as “vehicle”) includes an electric motor M, a transmission mechanism T, drive wheels W, a power control device 101, a capacitor 103, a memory 105, a current sensor 107, a voltage, It mainly includes a sensor 109, a temperature sensor 111, a storage battery management device 113, and a cooling fan 115. In the vehicle, the driving force of the electric motor M is transmitted to the drive wheels W via the speed change mechanism T. Further, when the driving force is transmitted from the driving wheel W side to the electric motor M side during deceleration, the electric motor M functions as a generator to generate a so-called regenerative braking force, and the kinetic energy of the vehicle body is collected in the battery 103 as electric energy. To do.

電力制御装置101は、電動機Mの駆動に係る蓄電器103から電動機Mへの電力供給、及び電動機Mから蓄電器103への回生エネルギーの回収を制御する。   The power control device 101 controls power supply from the capacitor 103 to the motor M related to driving of the motor M and recovery of regenerative energy from the motor M to the capacitor 103.

蓄電器103は、例えば負極にチタン酸リチウム(Li4Ti5O12)及び正極にリチウム遷移金属酸化物を用いたリチウムイオン電池、又は金属水素化物を陰極活物質とするNi−MH(nickel-metal hydride)電池等である。蓄電器103は、高電圧(例えば100〜200V)を出力するために、直列及び並列に接続された複数の蓄電セルを外装体内に有する。したがって、蓄電器103は大型である。   The capacitor 103 is, for example, a lithium ion battery using lithium titanate (Li4Ti5O12) as a negative electrode and a lithium transition metal oxide as a positive electrode, or a Ni-MH (nickel-metal hydride) battery using a metal hydride as a cathode active material. is there. In order to output a high voltage (for example, 100 to 200 V), the battery 103 has a plurality of power storage cells connected in series and in parallel in the exterior body. Therefore, the capacitor 103 is large.

図2は、蓄電器103における充電深度(SOC)と開回路電圧(OCV)と内部温度の相関関係を示すグラフである。図2に示すように、蓄電器103の特性として、充電深度(SOC:State of Charge)と開回路電圧(OCV:Open Circuit Voltage)の関係を示す曲線は、蓄電器103の内部温度によって異なる。すなわち、これら2つの値の相関特性は蓄電器103の内部温度に依存する。したがって、蓄電器103の充電深度(SOC)及び開回路電圧(OCV)の2つの値から、蓄電器103の内部温度が求まる。   FIG. 2 is a graph showing the correlation between the charging depth (SOC), the open circuit voltage (OCV), and the internal temperature in the battery 103. As shown in FIG. 2, as a characteristic of the capacitor 103, a curve indicating a relationship between a state of charge (SOC) and an open circuit voltage (OCV) varies depending on the internal temperature of the capacitor 103. That is, the correlation characteristic of these two values depends on the internal temperature of the battery 103. Therefore, the internal temperature of the battery 103 can be obtained from the two values of the charging depth (SOC) and the open circuit voltage (OCV) of the battery 103.

メモリ105は、蓄電器103の充電深度(SOC)と開回路電圧(OCV)と内部温度の相関関係を示す3次元マップ、又は温度を変数とした充電深度(SOC)及び開回路電圧(OCV)の各関数を記憶する。また、メモリ105は、車両のイグニッションがオンされた直後のSOCの履歴を走行毎に記憶する。なお、本明細書における「走行」とは、車両のイグニッションがオンされて再びオフされるまでの期間をいう。さらに、メモリ105は、車両が走行時に使用した電気量を走行毎に記憶する。   The memory 105 is a three-dimensional map showing the correlation between the charging depth (SOC) and open circuit voltage (OCV) of the battery 103 and the internal temperature, or the charging depth (SOC) and open circuit voltage (OCV) with temperature as a variable. Store each function. The memory 105 stores the SOC history immediately after the vehicle ignition is turned on for each run. In the present specification, “running” refers to a period from when the vehicle ignition is turned on to when it is turned off again. Further, the memory 105 stores the amount of electricity used by the vehicle during travel for each travel.

電流センサ107は、蓄電器103の充放電電流Iを検出する。なお、充放電電流Iは、蓄電器103から電動機Mに供給される放電電流、及び回生動作を行う電動機Mから蓄電器103に供給される充電電流を含む。電圧センサ109は、蓄電器103の端子電圧Vを検出する。温度センサ111は、蓄電器103の外装体又はその周辺に取り付けられている。温度センサ111は、蓄電器103の外装体又はその周辺の温度Tを検出する。   Current sensor 107 detects charging / discharging current I of battery 103. The charging / discharging current I includes a discharging current supplied from the capacitor 103 to the electric motor M and a charging current supplied from the electric motor M that performs a regenerative operation to the electric capacitor 103. The voltage sensor 109 detects the terminal voltage V of the battery 103. The temperature sensor 111 is attached to the outer package of the battery 103 or the periphery thereof. The temperature sensor 111 detects the temperature T of the outer package of the battery 103 or the surrounding area.

蓄電器管理装置113は、蓄電器103の充電深度(SOC)及び開回路電圧(OCV)を推定し、かつ、これら2つの推定値から蓄電器103の推定内部温度を導出する。図3は、蓄電器管理装置113の内部構成を示すブロック図である。図3に示すように、蓄電器管理装置113は、初期SOC導出部201と、電池容量算出部203と、SOC変化量算出部205と、SOC補正部207と、内部抵抗推定部209と、LPF(Low Pass Filter)211と、電圧降下量算出部213と、電圧補正部215と、推定内部温度導出部217とを有する。   The storage battery management device 113 estimates the charging depth (SOC) and open circuit voltage (OCV) of the storage battery 103, and derives the estimated internal temperature of the storage battery 103 from these two estimated values. FIG. 3 is a block diagram showing an internal configuration of the battery management device 113. As shown in FIG. 3, the battery management device 113 includes an initial SOC derivation unit 201, a battery capacity calculation unit 203, an SOC change amount calculation unit 205, an SOC correction unit 207, an internal resistance estimation unit 209, an LPF ( Low Pass Filter) 211, voltage drop amount calculation unit 213, voltage correction unit 215, and estimated internal temperature deriving unit 217.

初期SOC導出部201は、走行開始時、すなわち、車両のイグニッションがオンされた直後に動作する。車両のイグニッションがオンされた時点では、前回の走行終了時から十分に時間が経過していると考えられる。したがって、このとき温度センサ111が検出した温度Tは、蓄電器103の内部温度とみなすことができる。また、走行開始時は、蓄電器103にとっての負荷が略0と考えられる。したがって、このとき電圧センサ109が検出した端子電圧Vは、蓄電器103の開回路電圧(OCV)とみなすことができる。   The initial SOC deriving unit 201 operates at the start of traveling, that is, immediately after the ignition of the vehicle is turned on. When the ignition of the vehicle is turned on, it is considered that a sufficient time has elapsed since the end of the previous run. Therefore, the temperature T detected by the temperature sensor 111 at this time can be regarded as the internal temperature of the battery 103. At the start of traveling, the load on the battery 103 is considered to be substantially zero. Therefore, the terminal voltage V detected by the voltage sensor 109 at this time can be regarded as an open circuit voltage (OCV) of the battery 103.

したがって、初期SOC導出部201は、走行開始時に電圧センサ109が検出した端子電圧V及び温度センサ111が検出した温度Tと、メモリ105に記録されている蓄電器103の充電深度(SOC)と開回路電圧(OCV)と内部温度の相関関係を示す3次元マップ又は関数とに基づいて、初期SOCを導出する。なお、初期SOC導出部201は、導出した初期SOCの値をメモリ105に記録する。   Therefore, the initial SOC deriving unit 201 has the terminal voltage V detected by the voltage sensor 109 at the start of traveling, the temperature T detected by the temperature sensor 111, the charging depth (SOC) of the battery 103 recorded in the memory 105, and the open circuit. An initial SOC is derived based on a three-dimensional map or function indicating the correlation between voltage (OCV) and internal temperature. The initial SOC deriving unit 201 records the derived initial SOC value in the memory 105.

電池容量算出部203も、走行開始時に動作する。電池容量算出部203は、初期SOC導出部201が導出した初期SOCと、メモリ105が記憶する前回走行開始時の初期SOCの差を算出する。さらに、電池容量算出部203は、メモリ105が記憶する前回走行で使用された電気量を当該初期SOCの差で除算する。この演算で得られる値は、蓄電器103の容量(以下「電池容量」という)である。   The battery capacity calculation unit 203 also operates at the start of traveling. The battery capacity calculation unit 203 calculates the difference between the initial SOC derived by the initial SOC deriving unit 201 and the initial SOC stored in the memory 105 at the start of the previous run. Further, the battery capacity calculation unit 203 divides the amount of electricity used in the previous travel stored in the memory 105 by the difference in the initial SOC. The value obtained by this calculation is the capacity of the battery 103 (hereinafter referred to as “battery capacity”).

SOC変化量算出部205は、電流センサ107が検出した充放電電流Iに演算単位時間を乗算して電気量を導出する。当該電気量は、演算単位時間中に蓄電器103が消費した又は蓄電器103に回生された電気量である。また、SOC変化量算出部205は、走行開始時からの経過時間に応じて、各演算単位時間の電気量を積算する。さらに、SOC変化量算出部205は、電気量の積算値を電池容量算出部203で算出された電池容量で除算する。この演算で得られる値は、走行開始時からの蓄電器103のSOC変化量(ΔSOC)である。   The SOC change amount calculation unit 205 multiplies the charging / discharging current I detected by the current sensor 107 by a calculation unit time to derive an electric amount. The amount of electricity is the amount of electricity consumed or regenerated by the battery 103 during the operation unit time. Further, the SOC change amount calculation unit 205 integrates the amount of electricity for each calculation unit time according to the elapsed time from the start of traveling. Further, the SOC change amount calculation unit 205 divides the integrated value of the amount of electricity by the battery capacity calculated by the battery capacity calculation unit 203. The value obtained by this calculation is the SOC change amount (ΔSOC) of the battery 103 from the start of traveling.

SOC補正部207は、初期SOC導出部201が導出した初期SOCを、SOC変化量算出部205が算出したSOC変化量(ΔSOC)で補正する。SOC補正部207は、当該補正によって得られた値を「推定SOC」として出力する。なお、SOC補正部207は、初期SOCをSOC変化量(ΔSOC)で補正した値のバラツキが所定範囲内に収束した後に推定SOCを出力する。   The SOC correction unit 207 corrects the initial SOC derived by the initial SOC deriving unit 201 with the SOC change amount (ΔSOC) calculated by the SOC change amount calculation unit 205. The SOC correction unit 207 outputs the value obtained by the correction as “estimated SOC”. Note that the SOC correction unit 207 outputs the estimated SOC after the variation in the value obtained by correcting the initial SOC with the SOC change amount (ΔSOC) has converged within a predetermined range.

内部抵抗推定部209は、電圧センサ109が検出した端子電圧Vを微分した値(ΔV)を、電流センサ107が検出した充放電電流Iを微分した値(ΔI)で除算する。この演算で得られる値は、蓄電器103の内部抵抗の推定値(Rin)である。LPF211は、内部抵抗推定部209によって得られた内部抵抗推定値(Rin)をフィルタ処理することによって平滑化する。電圧降下量算出部213は、平滑化された内部抵抗推定値に電流センサ107が検出した充放電電流Iを乗算する。この演算で得られる値は、蓄電器103の内部抵抗による電圧降下量(ΔVd)である。   The internal resistance estimation unit 209 divides the value (ΔV) obtained by differentiating the terminal voltage V detected by the voltage sensor 109 by the value (ΔI) obtained by differentiating the charge / discharge current I detected by the current sensor 107. The value obtained by this calculation is an estimated value (Rin) of the internal resistance of the battery 103. The LPF 211 smoothes the internal resistance estimated value (Rin) obtained by the internal resistance estimation unit 209 by filtering. The voltage drop amount calculation unit 213 multiplies the smoothed internal resistance estimated value by the charge / discharge current I detected by the current sensor 107. The value obtained by this calculation is the voltage drop amount (ΔVd) due to the internal resistance of the battery 103.

電圧補正部215は、電圧センサ109が検出した端子電圧Vを、電圧降下量算出部213が算出した電圧降下量(ΔVd)で補正する。電圧補正部215は、当該補正によって得られた値を「推定OCV」として出力する。なお、電圧補正部215は、端子電圧Vを電圧降下量(ΔVd)で補正した値のバラツキが所定範囲内に収束した後に推定OCVを出力する。   The voltage correction unit 215 corrects the terminal voltage V detected by the voltage sensor 109 with the voltage drop amount (ΔVd) calculated by the voltage drop amount calculation unit 213. The voltage correction unit 215 outputs the value obtained by the correction as “estimated OCV”. The voltage correction unit 215 outputs the estimated OCV after the variation in the value obtained by correcting the terminal voltage V with the voltage drop amount (ΔVd) converges within a predetermined range.

推定内部温度導出部217は、SOC補正部207から出力された推定SOC及び電圧補正部215から出力された推定OCVと、メモリ105に記録されている蓄電器103の充電深度(SOC)と開回路電圧(OCV)と内部温度の相関関係を示す3次元マップ又は関数とに基づいて、蓄電器103の推定内部温度を導出する。   The estimated internal temperature deriving unit 217 includes the estimated SOC output from the SOC correcting unit 207, the estimated OCV output from the voltage correcting unit 215, the charging depth (SOC) of the battery 103 recorded in the memory 105, and the open circuit voltage. The estimated internal temperature of the battery 103 is derived based on a three-dimensional map or function indicating the correlation between (OCV) and the internal temperature.

図4は、蓄電器103の内部温度に対する開回路電圧(OCV)の変化量を示すグラフである。なお、図4に示されたグラフ中の点線で区切られた縦軸の一目盛り「a」は、蓄電器管理装置113が識別可能な開回路電圧(OCV)の最小単位を示す。すなわち、蓄電器管理装置113における開回路電圧(OCV)の分解能は「a[V/LSB]」である。一方、図4に示されたグラフ中の区切られた横軸の一目盛り「b」は、蓄電器管理装置113が識別可能な内部温度の最小単位を示す。すなわち、蓄電器管理装置113における内部温度の分解能は「b[℃/LSB]」である。なお、LSBは「Less Significant Bit」の略記である。   FIG. 4 is a graph showing the amount of change in the open circuit voltage (OCV) with respect to the internal temperature of the battery 103. Note that the vertical scale “a” divided by the dotted line in the graph shown in FIG. 4 indicates the minimum unit of the open circuit voltage (OCV) that can be identified by the battery management device 113. That is, the resolution of the open circuit voltage (OCV) in the capacitor management device 113 is “a [V / LSB]”. On the other hand, the division “b” on the horizontal axis in the graph shown in FIG. 4 indicates the minimum unit of the internal temperature that can be identified by the battery management device 113. That is, the resolution of the internal temperature in the storage battery management device 113 is “b [° C./LSB]”. Note that LSB is an abbreviation for “Less Significant Bit”.

また、図4には、蓄電器103の内部温度に対する開回路電圧(OCV)の変化率の絶対値|k|[V/℃]が3種類、すなわち|k|>|a/b|、|k|=|a/b|及び|k|<|a/b|の各特性を示す線A,B,Cが示されている。|k|>|a/b|の特性を示す線Aによれば、開回路電圧(OCV)が1LSB(a[v])変化したときの内部温度の変化量は1LSB(b[℃])未満(1LSBの約半分)である。また、|k|=|a/b|の特性を示す線Bによれば、開回路電圧(OCV)が1LSB(a[v])変化したときの内部温度の変化量は1LSB(b[℃])である。また、|k|<|a/b|の特性を示す線Cによれば、開回路電圧(OCV)が1LSB(a[v])変化したときの内部温度の変化量は2LSB(2b[℃])である。   Also, FIG. 4 shows three types of absolute values | k | [V / ° C.] of the change rate of the open circuit voltage (OCV) with respect to the internal temperature of the battery 103, that is, | k |> | a / b |, | k. Lines A, B, and C showing the characteristics of | = | a / b | and | k | <| a / b | are shown. According to the line A indicating the characteristic of | k |> | a / b |, the amount of change in the internal temperature when the open circuit voltage (OCV) changes by 1 LSB (a [v]) is 1 LSB (b [° C.]). (Less than half of 1LSB). Further, according to the line B indicating the characteristic of | k | = | a / b |, the amount of change in the internal temperature when the open circuit voltage (OCV) changes by 1 LSB (a [v]) is 1 LSB (b [° C. ]). Further, according to the line C indicating the characteristic of | k | <| a / b |, the amount of change in the internal temperature when the open circuit voltage (OCV) changes by 1 LSB (a [v]) is 2 LSB (2 b [° C. ]).

このように、|k|<|a/b|の場合、開回路電圧(OCV)が1LSB(a[v])変化したときの内部温度の真の値は、2LSB(2b[℃])の範囲内にあるはずであるが、蓄電器管理装置113が有する図4に示した内部温度の分解能では、蓄電器103の内部温度の真の値を判別できない。したがって、蓄電器103の開回路電圧(OCV)の変化に対する内部温度を蓄電器管理装置113が演算によってより正確に求めるためには、開回路電圧(OCV)が1LSB(a[v])変化したときの内部温度の変化量が1LSB(b[℃])以内である必要がある。   Thus, when | k | <| a / b |, the true value of the internal temperature when the open circuit voltage (OCV) changes by 1 LSB (a [v]) is 2 LSB (2 b [° C.]). Although it should be within the range, the true value of the internal temperature of the battery 103 cannot be determined with the resolution of the internal temperature shown in FIG. Therefore, in order for the storage device management device 113 to obtain the internal temperature with respect to the change in the open circuit voltage (OCV) of the battery 103 more accurately by calculation, when the open circuit voltage (OCV) changes by 1 LSB (a [v]) The amount of change in the internal temperature needs to be within 1 LSB (b [° C.]).

このように、蓄電器103の特性として、内部温度に対する開回路電圧(OCV)の変化量|k|は、|a/b|以上(|k|≧|a/b|)であることが望ましい。蓄電器管理装置113は、当該変化量|k|が大きいほど、より高精度に蓄電器103の内部温度を導出できる。   Thus, as a characteristic of the capacitor 103, the amount of change | k | in the open circuit voltage (OCV) with respect to the internal temperature is preferably | a / b | or more (| k | ≧ | a / b |). The capacitor management device 113 can derive the internal temperature of the capacitor 103 with higher accuracy as the change amount | k | is larger.

なお、蓄電器管理装置113は、上記説明と同様に、内部温度に対する充電深度(SOC)の変化量の絶対値が大きい特性の蓄電器であるほど、より高精度に当該蓄電器の内部温度を導出できる。   Note that, similarly to the above description, the capacitor management device 113 can derive the internal temperature of the capacitor more accurately as the capacitor has a characteristic that the absolute value of the change amount of the charging depth (SOC) with respect to the internal temperature is larger.

図1に示した冷却ファン115及び電力制御装置101は、蓄電器管理装置113が導出した蓄電器103の推定内部温度に応じて制御される。例えば、蓄電器管理装置113は、蓄電器103の推定内部温度が第1のしきい値以上のときには、冷却ファン115を駆動する。また、蓄電器管理装置113は、蓄電器103の推定内部温度が第2のしきい値以上のときには、蓄電器103の入出力電力を制限するよう電力制御装置101を制御する。さらに、蓄電器管理装置113は、蓄電器103の推定内部温度が第3のしきい値以上のときには、蓄電器103と電動機Mの間の経路を遮断するよう電力制御装置101を制御する。したがって、蓄電器103の信頼性及び安全性を損なうことなく、当該蓄電器103を利用できる。なお、上記第1のしきい値、第2のしきい値及び第3のしきい値は、「第1のしきい値<第2のしきい値<第3のしきい値」の関係を有する。   The cooling fan 115 and the power control device 101 shown in FIG. 1 are controlled according to the estimated internal temperature of the battery 103 derived by the battery management device 113. For example, the capacitor management device 113 drives the cooling fan 115 when the estimated internal temperature of the capacitor 103 is equal to or higher than the first threshold value. In addition, the storage device management device 113 controls the power control device 101 to limit the input / output power of the storage device 103 when the estimated internal temperature of the storage device 103 is equal to or higher than the second threshold value. Furthermore, when the estimated internal temperature of the battery 103 is equal to or higher than the third threshold value, the battery management device 113 controls the power control apparatus 101 to cut off the path between the battery 103 and the electric motor M. Therefore, the battery 103 can be used without impairing the reliability and safety of the battery 103. The first threshold value, the second threshold value, and the third threshold value have the relationship of “first threshold value <second threshold value <third threshold value”. Have.

以上説明したように、本実施形態の蓄電器管理装置113は、蓄電器103の充放電電流I及び端子電圧V等の情報に基づいて蓄電器103の充電深度(SOC)及び開回路電圧(OCV)を推定し、かつ、これら2つの推定値から蓄電器103の推定内部温度を導出する。電流センサ107及び電圧センサ109によって検出される蓄電器103の充放電電流I及び端子電圧Vは遅延なく得られる情報であるため、蓄電器管理装置113は、蓄電器103の内部温度を適宜推定できる。また、充放電電流I及び端子電圧Vは外因等によって発生する誤差が小さいため、蓄電器管理装置113は、高精度かつ安定して蓄電器103の内部温度を推定できる。   As described above, the storage battery management device 113 of the present embodiment estimates the charging depth (SOC) and open circuit voltage (OCV) of the storage battery 103 based on information such as the charge / discharge current I and the terminal voltage V of the storage battery 103. In addition, the estimated internal temperature of the battery 103 is derived from these two estimated values. Since the charging / discharging current I and the terminal voltage V of the battery 103 detected by the current sensor 107 and the voltage sensor 109 are information obtained without delay, the battery management device 113 can appropriately estimate the internal temperature of the battery 103. In addition, since the charge / discharge current I and the terminal voltage V have small errors caused by external factors, the battery management device 113 can estimate the internal temperature of the battery 103 with high accuracy and stability.

M 電動機
T 変速機構
W 駆動輪
101 電力制御装置
103 蓄電器
105 メモリ
107 電流センサ
109 電圧センサ
111 温度センサ
113 蓄電器管理装置
115 冷却ファン
201 初期SOC導出部
203 電池容量算出部
205 SOC変化量算出部
207 SOC補正部
209 内部抵抗推定部
211 LPF
213 電圧降下量算出部
215 電圧補正部
217 推定内部温度導出部
M motor T speed change mechanism W drive wheel 101 power control device 103 power storage device 105 memory 107 current sensor 109 voltage sensor 111 temperature sensor 113 power storage device management device 115 cooling fan 201 initial SOC deriving unit 203 battery capacity calculation unit 205 SOC change amount calculation unit 207 SOC Correction unit 209 Internal resistance estimation unit 211 LPF
213 Voltage drop amount calculation unit 215 Voltage correction unit 217 Estimated internal temperature deriving unit

Claims (6)

充電状態と開回路電圧の間に相関関係を有し、当該相関関係が温度に依存して変化する蓄電器を管理する蓄電器管理装置であって、
前記蓄電器の充電状態を示す値を算出する充電状態算出部と、
前記蓄電器の開回路電圧を算出する開回路電圧算出部と、
前記充電状態算出部が算出した前記充電状態を示す値及び前記開回路電圧算出部が算出した前記開回路電圧と、前記蓄電器の温度に依存する前記相関関係とに基づいて、前記蓄電器の推定内部温度を導出する推定内部温度導出部と、
を備えたことを特徴とする蓄電器管理装置。
A capacitor management device that manages a capacitor that has a correlation between a charge state and an open circuit voltage, and the correlation changes depending on temperature,
A state-of-charge calculator that calculates a value indicating the state of charge of the battery;
An open circuit voltage calculation unit for calculating an open circuit voltage of the capacitor;
Based on a value indicating the charge state calculated by the charge state calculation unit, the open circuit voltage calculated by the open circuit voltage calculation unit, and the correlation depending on a temperature of the capacitor, the estimated internal state of the capacitor An estimated internal temperature deriving unit for deriving the temperature;
A capacitor management device comprising:
請求項1に記載の蓄電器管理装置であって、
前記蓄電器は、当該蓄電器の内部温度に対する開回路電圧の変化率が、当該蓄電器管理装置が識別可能な前記内部温度の最小単位に対する当該蓄電器管理装置が識別可能な前記開回路電圧の最小単位の比以上の特性を有することを特徴とする蓄電器管理装置。
The capacitor management device according to claim 1,
The capacitor has a ratio of a change rate of the open circuit voltage with respect to the internal temperature of the capacitor that is a ratio of a minimum unit of the open circuit voltage that can be identified by the capacitor management device to a minimum unit of the internal temperature that can be identified by the capacitor management device. A capacitor management device having the above characteristics.
請求項1又は2に記載の蓄電器管理装置であって、
前記蓄電器は、当該蓄電器の内部温度に対する充電状態を示す値の変化率が、当該蓄電器管理装置が識別可能な前記内部温度の最小単位に対する当該蓄電器管理装置が識別可能な前記充電状態を示す値の最小単位の比以上の特性を有することを特徴とする蓄電器管理装置。
The storage battery management device according to claim 1 or 2,
In the battery, the rate of change of the value indicating the charging state with respect to the internal temperature of the battery is a value indicating the charging state that can be identified by the battery management device with respect to the minimum unit of the internal temperature that can be identified by the battery management device. A capacitor management device characterized by having a characteristic equal to or greater than a ratio of minimum units.
請求項1〜3のいずれか一項に記載の蓄電器管理装置であって、
前記充電状態算出部は、前記蓄電器の充放電電流に応じて、前記充電状態を示す値を算出し、
前記開回路電圧算出部は、前記蓄電器の前記充放電電流及び端子電圧に応じて、前記開回路電圧を算出することを特徴とする蓄電器管理装置。
It is a storage device management device according to any one of claims 1 to 3,
The charge state calculation unit calculates a value indicating the charge state according to a charge / discharge current of the battery,
The open circuit voltage calculation unit calculates the open circuit voltage according to the charge / discharge current and the terminal voltage of the storage battery.
請求項1〜4のいずれか一項に記載の蓄電器管理装置であって、
当該蓄電器管理装置は、前記推定内部温度導出部が導出した前記推定内部温度が第1のしきい値以上のとき、前記蓄電器を冷却する手段を駆動することを特徴とする蓄電器管理装置。
It is a capacitor | condenser management apparatus as described in any one of Claims 1-4,
The storage battery management apparatus is configured to drive means for cooling the storage battery when the estimated internal temperature derived by the estimated internal temperature deriving unit is equal to or higher than a first threshold value.
請求項1〜5のいずれか一項に記載の蓄電器管理装置であって、
当該蓄電器管理装置は、前記推定内部温度導出部が導出した前記推定内部温度が第2のしきい値以上のとき、前記蓄電器の入出力電力を制限することを特徴とする蓄電器管理装置。
It is a capacitor | condenser management apparatus as described in any one of Claims 1-5,
The storage battery management apparatus limits the input / output power of the storage battery when the estimated internal temperature derived by the estimated internal temperature deriving unit is equal to or higher than a second threshold value.
JP2009157946A 2009-07-02 2009-07-02 Capacitor management device Expired - Fee Related JP5354787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009157946A JP5354787B2 (en) 2009-07-02 2009-07-02 Capacitor management device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009157946A JP5354787B2 (en) 2009-07-02 2009-07-02 Capacitor management device

Publications (2)

Publication Number Publication Date
JP2011014395A true JP2011014395A (en) 2011-01-20
JP5354787B2 JP5354787B2 (en) 2013-11-27

Family

ID=43593076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009157946A Expired - Fee Related JP5354787B2 (en) 2009-07-02 2009-07-02 Capacitor management device

Country Status (1)

Country Link
JP (1) JP5354787B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013190259A (en) * 2012-03-13 2013-09-26 Sony Corp Method for measuring derivative of open circuit voltage with respect to battery temperature, device for measuring derivative of open circuit voltage with respect to battery temperature, battery temperature estimation method, battery temperature estimation device, battery degradation state prediction method, and battery degradation state prediction device
WO2015153770A1 (en) * 2014-04-01 2015-10-08 The Regents Of The University Of Michigan Real-time battery thermal management for electric vehicles
JP2016531270A (en) * 2013-06-25 2016-10-06 コミッサリア ア レネルジー アトミーク エ オ エナジーズ アルタナティブス How to evaluate the state of charge of a battery
JP2017511566A (en) * 2014-05-12 2017-04-20 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング How to determine battery temperature
US10601085B2 (en) 2015-10-12 2020-03-24 Samsung Electronics Co., Ltd. Apparatus and method for estimating temperature of battery, and apparatus and method for managing battery
CN111830422A (en) * 2020-06-22 2020-10-27 国网河南省电力公司电力科学研究院 State evaluation method and device for storage battery for transformer substation
JP7381356B2 (en) 2020-02-03 2023-11-15 日野自動車株式会社 temperature estimation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030080A (en) * 2004-07-20 2006-02-02 Fuji Heavy Ind Ltd Remaining capacity calculation device for electric power storage device
JP2007071535A (en) * 2005-09-02 2007-03-22 Toyota Motor Corp Vehicle, and power supply device and current detection device of vehicle
JP2008271781A (en) * 2004-09-30 2008-11-06 Toyota Motor Corp Charge/discharge controller for secondary battery
JP2009103471A (en) * 2007-10-19 2009-05-14 Honda Motor Co Ltd Device for estimating state of battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030080A (en) * 2004-07-20 2006-02-02 Fuji Heavy Ind Ltd Remaining capacity calculation device for electric power storage device
JP2008271781A (en) * 2004-09-30 2008-11-06 Toyota Motor Corp Charge/discharge controller for secondary battery
JP2007071535A (en) * 2005-09-02 2007-03-22 Toyota Motor Corp Vehicle, and power supply device and current detection device of vehicle
JP2009103471A (en) * 2007-10-19 2009-05-14 Honda Motor Co Ltd Device for estimating state of battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013190259A (en) * 2012-03-13 2013-09-26 Sony Corp Method for measuring derivative of open circuit voltage with respect to battery temperature, device for measuring derivative of open circuit voltage with respect to battery temperature, battery temperature estimation method, battery temperature estimation device, battery degradation state prediction method, and battery degradation state prediction device
US9632143B2 (en) 2013-06-25 2017-04-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for evaluating the state of charge of a battery
JP2016531270A (en) * 2013-06-25 2016-10-06 コミッサリア ア レネルジー アトミーク エ オ エナジーズ アルタナティブス How to evaluate the state of charge of a battery
KR20160142336A (en) * 2014-04-01 2016-12-12 더 리젠츠 오브 더 유니버시티 오브 미시건 Real-time battery thermal management for electric vehicles
CN106463801A (en) * 2014-04-01 2017-02-22 密执安州立大学董事会 Real-time battery thermal management for electric vehicles
WO2015153770A1 (en) * 2014-04-01 2015-10-08 The Regents Of The University Of Michigan Real-time battery thermal management for electric vehicles
US9893394B2 (en) 2014-04-01 2018-02-13 The Regents Of The University Of Michigan Real-time battery thermal management for electric vehicles
CN106463801B (en) * 2014-04-01 2019-01-25 密执安州立大学董事会 Real-time battery thermal management for electric vehicle
KR102240717B1 (en) 2014-04-01 2021-04-15 더 리젠츠 오브 더 유니버시티 오브 미시건 Real-time battery thermal management for electric vehicles
JP2017511566A (en) * 2014-05-12 2017-04-20 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング How to determine battery temperature
US10601085B2 (en) 2015-10-12 2020-03-24 Samsung Electronics Co., Ltd. Apparatus and method for estimating temperature of battery, and apparatus and method for managing battery
JP7381356B2 (en) 2020-02-03 2023-11-15 日野自動車株式会社 temperature estimation device
CN111830422A (en) * 2020-06-22 2020-10-27 国网河南省电力公司电力科学研究院 State evaluation method and device for storage battery for transformer substation
CN111830422B (en) * 2020-06-22 2022-04-22 国网河南省电力公司电力科学研究院 State evaluation method and device for storage battery for transformer substation

Also Published As

Publication number Publication date
JP5354787B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5354787B2 (en) Capacitor management device
JP6065561B2 (en) Secondary battery control device and SOC detection method
JP5401366B2 (en) Control device for hybrid vehicle
JP6135110B2 (en) Secondary battery control device, charge control method, and SOC detection method
JP2012085452A (en) Control device for lithium ion battery
US20200168958A1 (en) Charge voltage controller for energy storage device, energy storage apparatus, battery charger for energy storage device, and charging method for energy storage device
US20200126516A1 (en) Display device and vehicle including the same
JP4810417B2 (en) Remaining capacity calculation device for power storage device
JP2009071986A (en) Calculation device for deterioration degree of in-vehicle battery
JP5775725B2 (en) Charge control system
JP2012198175A (en) Battery state monitor device
JP2012104239A (en) Lithium ion battery electricity storage amount estimation method, lithium ion battery electricity storage amount estimation program, lithium ion battery electricity storage amount correction method, and lithium ion battery electricity storage amount correction program
JP2018155706A (en) Device for estimating degradation state of secondary battery, battery system having the same, and electric vehicle
JP2013083525A (en) Vehicle controller and residual capacity estimation method
JP6711155B2 (en) Control device and moving body
JP2014169937A (en) Charge state calculation device
JP7131002B2 (en) Secondary battery deterioration estimation device
US11180051B2 (en) Display apparatus and vehicle including the same
US10527681B2 (en) Degradation estimator for energy storage device, energy storage apparatus, input-output control device for energy storage device, and method for controlling input and output of energy storage device
JP6713283B2 (en) Power storage device, transportation device, and control method
JP2021099951A (en) Battery system
JP5609807B2 (en) Hysteresis reduction system for battery device
JP6717066B2 (en) Battery system
JP6095239B2 (en) Capacitor management apparatus and capacitor management method
JP5975925B2 (en) Battery control device, power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130626

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees