JP2011014301A - Linear lighting device - Google Patents

Linear lighting device Download PDF

Info

Publication number
JP2011014301A
JP2011014301A JP2009155835A JP2009155835A JP2011014301A JP 2011014301 A JP2011014301 A JP 2011014301A JP 2009155835 A JP2009155835 A JP 2009155835A JP 2009155835 A JP2009155835 A JP 2009155835A JP 2011014301 A JP2011014301 A JP 2011014301A
Authority
JP
Japan
Prior art keywords
light
cylindrical lens
unit
light guide
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009155835A
Other languages
Japanese (ja)
Inventor
Misaki Ueno
岬 上野
Yuji Azuma
祐二 我妻
Osamu Tsuzaki
修 津崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Harison Toshiba Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harison Toshiba Lighting Corp filed Critical Harison Toshiba Lighting Corp
Priority to JP2009155835A priority Critical patent/JP2011014301A/en
Publication of JP2011014301A publication Critical patent/JP2011014301A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Planar Illumination Modules (AREA)
  • Facsimile Heads (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Light Sources And Details Of Projection-Printing Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a linear lighting device capable of forming a linear light of high illuminance free from non-uniform brightness, using efficiently a light emitted from a light source.SOLUTION: A light emitting part 12 of the light source 11 is formed into a band shape extended linearly. An optical member 3 for converting the emitted light from the light emitting part 12 into the linear light is constituted to include a light guide part 20 with an incident face 21 extended oppositely to the light emitting part 12, a cylindrical lens part 22 formed integrally with the light guide part 20 in an opposite side of the incident face 21, and a reflecting optical part 23 formed integrally in short-directional both sides of the light guide part 20. A reflecting face 32 extended adjacently to a side face 24 is formed further in an outgoing side of the reflecting optical part 23, by a frame 4 surrounding the optical member 3. Thus, the linear light of high illuminance free from non-uniform brightness is formed, using efficiently the light emitted from the light source 11.

Description

本発明は、連続的な直線状の範囲に照明光を集光させる線状照明装置に関する。   The present invention relates to a linear illumination device that collects illumination light in a continuous linear range.

複写機やファクシミリ装置等には、画像読取用の照明光として、細長な線状の照明光を形成する線状照明装置が用いられる。この線状照明装置には、一般に、入射側に対して1軸方向のみ変化を与えて線状のビームを形成するための集光レンズとしてシリンドリカルレンズが用いられる。   In a copying machine, a facsimile machine, and the like, a linear illumination device that forms an elongated linear illumination light is used as illumination light for image reading. In this linear illumination device, a cylindrical lens is generally used as a condensing lens for forming a linear beam by changing only one axial direction with respect to the incident side.

このような線状照明装置として、例えば、特許文献1には、シリンドリカルレンズ部の入射側に直方体形状の導光部を一体的に設け、この導光部の長手方向の両端部にLEDチップ等からなる光源を取り付けると共に、光源から導光部に入射された光を拡散反射する拡散反射部をシリンドリカルレンズ部に対向する導光部上の面に設けた技術が開示されている。   As such a linear illumination device, for example, in Patent Document 1, a rectangular parallelepiped light guide unit is integrally provided on the incident side of the cylindrical lens unit, and LED chips or the like are provided at both ends in the longitudinal direction of the light guide unit. A technique is disclosed in which a light source composed of the above is attached and a diffuse reflection part for diffusing and reflecting light incident on the light guide part from the light source is provided on the surface on the light guide part facing the cylindrical lens part.

特開2000−21221号公報JP 2000-21221 A

ところで、上述の特許文献1に開示された技術のように、導光部の長手方向の端部にLEDチップ等を配置して線状の照明光を形成する場合、高い照度の線状照明光を広範囲に亘って形成するには限界がある。   By the way, when the linear illumination light is formed by arranging the LED chip or the like at the end portion in the longitudinal direction of the light guide as in the technique disclosed in the above-mentioned Patent Document 1, the linear illumination light with high illuminance is formed. There is a limit to forming the film over a wide range.

そこで、シリンドリカルレンズ部の反対側に延在する導光部上の面(すなわち、シリンドリカルレンズ部の直下に位置する導光部上の面)を入射面として設定し、当該入射面に沿ってLEDを直線状に対向配置することが考えられる。   Therefore, a surface on the light guide portion extending on the opposite side of the cylindrical lens portion (that is, a surface on the light guide portion located immediately below the cylindrical lens portion) is set as an incident surface, and an LED is formed along the incident surface. It is conceivable to arrange them in a straight line.

しかしながら、点光源であるLEDをシリンドリカルレンズ部の直下に配置した場合、照明光に輝度ムラが生じ易くなる。また、一般に、LED等の発光部で発光された光は広範囲に放射されるため、全ての光をシリンドリカルレンズ部によって線状に集光することが困難であり、光の利用効率を低下させる虞がある。   However, when an LED that is a point light source is arranged directly below the cylindrical lens portion, luminance unevenness easily occurs in the illumination light. In general, since light emitted from a light emitting unit such as an LED is emitted in a wide range, it is difficult to condense all the light into a linear shape by the cylindrical lens unit, which may reduce the light use efficiency. There is.

その一方で、LED等の点光源に代えて、有機エレクトロルミネッセンス(有機EL)等の面光源を入射面に沿って連続的に配置することにより、照明光の輝度ムラを改善することが考えられる。   On the other hand, instead of a point light source such as an LED, it may be possible to improve luminance unevenness of illumination light by continuously arranging a surface light source such as organic electroluminescence (organic EL) along the incident surface. .

しかしながら、LED等の点光源に代えて有機EL等の面光源を採用した場合、より多くの光がシリンドリカルレンズ部の光路外に拡散されてしまうため、光の利用効率の低下はより顕著となる。   However, when a surface light source such as an organic EL is employed instead of a point light source such as an LED, more light is diffused out of the optical path of the cylindrical lens portion, so that the reduction in light use efficiency becomes more noticeable. .

本発明は、光源から放射される光を効率良く利用して輝度ムラのない高い照度の線状光を形成することができる線状照明装置を提供することを目的とする。   An object of this invention is to provide the linear illuminating device which can form the linear light of high illuminance without the brightness nonuniformity using the light radiated | emitted from a light source efficiently.

本発明は、発光部が帯状に形成された面光源と、前記発光部に対向して入射面が延在する導光部と、前記入射面の反対側において前記導光部に一体形成され、前記導光部に入射された光を屈折によって線状に集光するシリンドリカルレンズ部と、前記導光部の短手方向両側に一体形成され、前記導光部に入射された光のうち前記シリンドリカルレンズ部への光路外に放射された光を側面で全反射して前記シリンドリカルレンズ部の焦点に向けて出射する反射光学部と、前記側面に連続して延在する反射面を前記反射光学部の出射側に形成する反射部材と、を備えたことを特徴とする。   The present invention is integrally formed in the light guide unit, the surface light source in which the light emitting unit is formed in a strip shape, the light guide unit in which the incident surface extends opposite to the light emitting unit, and the opposite side of the incident surface, A cylindrical lens unit that condenses light incident on the light guide unit into a linear shape by refraction, and a cylindrical lens unit that is integrally formed on both sides of the light guide unit in the short-side direction and that is incident on the light guide unit. A reflection optical unit that totally reflects light emitted outside the optical path to the lens unit on the side surface and emits the light toward the focal point of the cylindrical lens unit, and a reflection surface that extends continuously to the side surface. And a reflecting member formed on the light exit side.

本発明の線状照明装置によれば、光源から放射される光を効率良く利用して輝度ムラのない高い照度の線状光を形成することができる。   According to the linear illumination device of the present invention, it is possible to form linear light with high illuminance without uneven brightness by efficiently using light emitted from a light source.

本発明の第1の実施形態に係わり、線状照明装置の概略構成を示す分解斜視図1 is an exploded perspective view showing a schematic configuration of a linear illumination device according to a first embodiment of the present invention. 同上、有機ELを底面側から見た平面図Same as above, top view of organic EL from bottom side 同上、線状照明装置の短手方向に沿う要部断面図Same as above, main part sectional view along the short direction of the linear illumination device 同上、照明光の挙動を線状照明装置の短手方向に沿って示す説明図As above, an explanatory diagram showing the behavior of the illumination light along the short direction of the linear illumination device 同上、照明光の照度分布を線状照明装置の短手方向に沿って示す説明図As above, an explanatory diagram showing the illuminance distribution of illumination light along the short direction of the linear illumination device 本発明の第2の実施形態に係わり、線状照明装置の短手方向に沿う要部断面図The principal part sectional view which concerns on the 2nd Embodiment of this invention, and follows the transversal direction of a linear illuminating device. 同上、照明光の挙動を線状照明装置の短手方向に沿って示す説明図As above, an explanatory diagram showing the behavior of the illumination light along the short direction of the linear illumination device 同上、照明光の照度分布を線状照明装置の短手方向に沿って示す説明図As above, an explanatory diagram showing the illuminance distribution of illumination light along the short direction of the linear illumination device 同上、線状照明装置の変形例を短手方向に沿って示す要部断面図Same as above, main part sectional view showing a modification of the linear illumination device along the short direction 同上、線状照明装置の変形例を短手方向に沿って示す要部断面図Same as above, main part sectional view showing a modification of the linear illumination device along the short direction 同上、線状照明装置の変形例を短手方向に沿って示す要部断面図Same as above, main part sectional view showing a modification of the linear illumination device along the short direction

以下、図面を参照して本発明の第1の実施形態を説明する。
図1に示す線状照明装置1は、例えば、複写機用の線状照明光を形成するためのものであり、この線状照明装置1は、例えば、発光部が直線の帯状に形成された光源ユニット2と、この光源ユニット2からの光を直線状の光束に変換する光学部材3と、光源ユニット2上で光学部材3を収容する枠体4とを有する。なお、例えば、複写機の画像読取用の照明装置として線状照明装置1が用いられる場合において、線状照明装置1は、例えば、図3に示すように、紙面等の照射対象100に対し、所定の照射距離D(D=数mm程度)離間した状態で対向配置される。この照射距離は、適用される複写機の仕様等にもよるが、例えば、D=4mm程度に設定されている。
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
A linear illumination device 1 shown in FIG. 1 is, for example, for forming linear illumination light for a copying machine. For example, the linear illumination device 1 has a light emitting portion formed in a linear strip shape. The light source unit 2 includes an optical member 3 that converts light from the light source unit 2 into a linear light beam, and a frame 4 that houses the optical member 3 on the light source unit 2. For example, when the linear illumination device 1 is used as an illumination device for image reading of a copying machine, the linear illumination device 1 is applied to an irradiation target 100 such as a paper as shown in FIG. They are arranged opposite each other with a predetermined irradiation distance D (D = about several mm) apart. This irradiation distance is set to, for example, about D = 4 mm, although it depends on the specifications of the copying machine to be applied.

光源ユニット2は、例えば、平面視形状が細長な略矩形形状をなす透明基板としてのガラス基板10を有し、このガラス基板10上に、有機エレクトロルミネッセンス(有機EL)からなる光源11が配設されている。   The light source unit 2 includes, for example, a glass substrate 10 as a transparent substrate having an elongated rectangular shape in plan view, and a light source 11 made of organic electroluminescence (organic EL) is disposed on the glass substrate 10. Has been.

具体的には、本実施形態の光源11は、ガラス基板10の裏面側に積層された正電極15と負電極16との間に、発光部12が介装されて要部が構成されている(図1,2参照)。   Specifically, the light source 11 of the present embodiment includes a light emitting unit 12 interposed between a positive electrode 15 and a negative electrode 16 stacked on the back side of the glass substrate 10 to form a main part. (See FIGS. 1 and 2).

正電極15は、例えば、ITO等からなる帯状の透明電極膜で構成され、ガラス基板10の長手方向に沿って延在するよう直線状に配置されている。また、正電極15の中途には、ガラス基板10の短手方向の一側に延在する端子部15aが一体形成されている。   The positive electrode 15 is composed of, for example, a strip-shaped transparent electrode film made of ITO or the like, and is arranged linearly so as to extend along the longitudinal direction of the glass substrate 10. Further, in the middle of the positive electrode 15, a terminal portion 15 a extending to one side in the short direction of the glass substrate 10 is integrally formed.

一方、負電極16は、例えば、アルミニウム等の高反射性を有する金属導電膜からなる帯状の電極膜で構成され、正電極15の上層でガラス基板10の長手方向に沿って延在するよう直線状に配置されている。また、負電極16の両端部には、ガラス基板10の短手方向の一側に延在する端子部16aが一体形成され、これら端子部16aは、正電極15の端子部15aに対して所定間隔離間されている。   On the other hand, the negative electrode 16 is composed of a strip-shaped electrode film made of a metal conductive film having high reflectivity such as aluminum, and is a straight line extending along the longitudinal direction of the glass substrate 10 on the upper layer of the positive electrode 15. Arranged in a shape. Further, terminal portions 16 a extending to one side in the short direction of the glass substrate 10 are integrally formed at both ends of the negative electrode 16, and these terminal portions 16 a are predetermined with respect to the terminal portion 15 a of the positive electrode 15. Spaced apart.

また、これら正電極15と負電極16との重畳領域に介装される発光部12は、正孔輸送層、発光層、及び電子輸送層等(何れも図示せず)からなる多層構造をなし、正電極15と負電極16との間に電圧が印加された際に、正孔輸送層を通過した正孔と電子輸送層を通過した電子とが結合することにより発光する。そして、この発光部12から発光した光は、負電極16で反射された後に正電極15及びガラス基板10を透過して、或いは、直接的に正電極15及びガラス基板10を透過して、放射される。これにより、ガラス基板10の表面側では、発光部12に略対応した所定の幅を有する直線状(帯状)の発光領域Aから光が放射される。   Further, the light emitting portion 12 interposed in the overlapping region of the positive electrode 15 and the negative electrode 16 has a multilayer structure including a hole transport layer, a light emitting layer, an electron transport layer, and the like (all not shown). When a voltage is applied between the positive electrode 15 and the negative electrode 16, light is emitted by combining holes that have passed through the hole transport layer and electrons that have passed through the electron transport layer. The light emitted from the light emitting unit 12 is reflected by the negative electrode 16 and then transmitted through the positive electrode 15 and the glass substrate 10 or directly transmitted through the positive electrode 15 and the glass substrate 10. Is done. Thereby, on the surface side of the glass substrate 10, light is emitted from a linear (band-shaped) light emitting region A having a predetermined width substantially corresponding to the light emitting portion 12.

光学部材3は、例えば、透明樹脂材料等の光透過性材料からなる導光部20を中心として構成されている。この導光部20は、発光部12に沿って延在する長尺な部材で構成され、ガラス基板10との対向面側に、発光部12からの放射光を入射するための入射面21を有する。図1,2に示すように、入射面21は、その長手方向及び短手方向の長さが発光部12よりも長尺に形成されている。そして、この入射面21が、ガラス基板10上の発光領域Aを含む領域に対し、透明接着剤5を介して固設されることにより、導光部20内には発光部12からの光が入射される。この場合において、ガラス基板10側から光学部材3側に入射する光の損失を低減するため、透明接着剤5には、その屈折率が光学部材3及びガラス基板10の屈折率に近いものが用いられることが望ましい。   The optical member 3 is configured with a light guide 20 made of a light transmissive material such as a transparent resin material as a center. The light guide unit 20 is formed of a long member extending along the light emitting unit 12, and an incident surface 21 for incident radiation light from the light emitting unit 12 is provided on the side facing the glass substrate 10. Have. As shown in FIGS. 1 and 2, the incident surface 21 is formed to have a longer length in the longitudinal direction and a shorter direction than the light emitting portion 12. Then, the incident surface 21 is fixed to the region including the light emitting region A on the glass substrate 10 via the transparent adhesive 5, so that the light from the light emitting unit 12 is received in the light guide unit 20. Incident. In this case, in order to reduce the loss of light incident on the optical member 3 side from the glass substrate 10 side, the transparent adhesive 5 having a refractive index close to that of the optical member 3 and the glass substrate 10 is used. It is desirable that

また、光学部材3において、入射面21に正対する導光部20の出射側には、当該導光部20と同一の光透過性材料によって、シリンドリカルレンズ部22が一体形成されている。図1,3に示すように、シリンドリカルレンズ部22は、例えば、光学部材3の短手方向(すなわち、導光部20の延在方向に直交する方向)に沿って略円弧状をなすレンズ曲面22aを有する。そして、図4(a)に示すように、シリンドリカルレンズ部22は、導光部20に入射された光のうち、主として、導光部20の短手方向の放射角が所定角度未満の狭角で放射する光を、屈折によって焦点Fに集光させ、線状の照明光を形成する。   Further, in the optical member 3, a cylindrical lens portion 22 is integrally formed of the same light transmissive material as that of the light guide portion 20 on the emission side of the light guide portion 20 facing the entrance surface 21. As shown in FIGS. 1 and 3, the cylindrical lens portion 22 is, for example, a lens curved surface having a substantially arc shape along the short direction of the optical member 3 (that is, the direction orthogonal to the extending direction of the light guide portion 20). 22a. As shown in FIG. 4A, the cylindrical lens unit 22 mainly includes a narrow angle in which the radiation angle in the short direction of the light guide unit 20 is less than a predetermined angle out of the light incident on the light guide unit 20. The light radiated at is condensed at the focal point F by refraction to form linear illumination light.

ここで、図3に示すように、シリンドリカルレンズ部22の頂部は、光学部材3の最凸部となっており、本実施形態において、導光部20の入射面21からシリンドリカルレンズ部22の頂部までの高さTは、例えば、T=7mm程度となっている。また、シリンドリカルレンズ部22の頂部から焦点Fまでの距離は、線状照明装置1から照射対象100までの照射距離Dと略一致するよう設定されている。換言すれば、シリンドリカルレンズ部22のレンズ曲面22aの形状は、照射距離Dに基づいて設計されている。   Here, as shown in FIG. 3, the top portion of the cylindrical lens portion 22 is the most convex portion of the optical member 3, and in this embodiment, the top portion of the cylindrical lens portion 22 extends from the incident surface 21 of the light guide portion 20. For example, the height T is about T = 7 mm. Further, the distance from the top of the cylindrical lens unit 22 to the focal point F is set so as to substantially match the irradiation distance D from the linear illumination device 1 to the irradiation object 100. In other words, the shape of the lens curved surface 22a of the cylindrical lens portion 22 is designed based on the irradiation distance D.

また、光学部材3において、導光部20の短手方向の両側には、当該導光部20と同一の光透過性材料によって、反射光学部23が一体形成されている。これら反射光学部23は、例えば、図3に示すように、光学部材3の基部側から前端部側にかけて拡開する側面24と、当該側面24の前端部とシリンドリカルレンズ部22のレンズ曲面22aの基部とに連続する前端面25と、を有する。本実施形態において、側面24は、例えば、高次の多項式近似曲線で規定される曲面で構成されるもので、導光部20側から反射光学部23内に導かれた光を全反射して前端面25側に導く反射面としての機能を有する。また、前端面25は、側面24で全反射された光を外部に出射する出射面としての機能を有する。ここで、側面24を反射面として有効に機能させるため、当該側面24の形状を規定する多項式近似曲線は、実験やシミュレーション等に基づいて最適化されている。そして、このように側面24の形状が最適化されることにより、例えば、図4(b)に示すように、反射光学部23は、入射面21を介して導光部20に入射された光のうち、シリンドリカルレンズ部22への光路外に放射された所定の光を、側面24で全反射して前端面25へと導き、当該前端面25から焦点Fに向けて出射する。   Further, in the optical member 3, the reflective optical parts 23 are integrally formed on both sides of the light guide part 20 in the short direction by the same light transmissive material as the light guide part 20. For example, as shown in FIG. 3, the reflecting optical unit 23 includes a side surface 24 that widens from the base side to the front end side of the optical member 3, a front end portion of the side surface 24, and a lens curved surface 22 a of the cylindrical lens unit 22. And a front end face 25 continuous with the base. In the present embodiment, the side surface 24 is constituted by a curved surface defined by, for example, a high-order polynomial approximation curve, and totally reflects light guided into the reflective optical unit 23 from the light guide unit 20 side. It functions as a reflecting surface that leads to the front end face 25 side. Further, the front end face 25 has a function as an emission face for emitting the light totally reflected by the side face 24 to the outside. Here, in order to effectively function the side surface 24 as a reflecting surface, the polynomial approximate curve that defines the shape of the side surface 24 is optimized based on experiments, simulations, and the like. Then, by optimizing the shape of the side surface 24 in this way, for example, as shown in FIG. 4B, the reflection optical unit 23 is incident on the light guide unit 20 through the incident surface 21. Among them, predetermined light emitted outside the optical path to the cylindrical lens portion 22 is totally reflected by the side surface 24 and guided to the front end surface 25, and is emitted from the front end surface 25 toward the focal point F.

図1に示すように、枠体4は、光学部材3の長手方向に延在する一対の壁部30と、光学部材3の短手方向に延在する一対の壁部31とが一体に接合された略角筒状の部材で構成されている。この枠体4は、ガラス基板10上に配設され、光学部材3の周囲を各壁部30,31によって囲繞する。   As shown in FIG. 1, in the frame body 4, a pair of wall portions 30 extending in the longitudinal direction of the optical member 3 and a pair of wall portions 31 extending in the short direction of the optical member 3 are integrally joined. It is comprised with the substantially square tube-shaped member made. The frame body 4 is disposed on the glass substrate 10 and surrounds the periphery of the optical member 3 by the wall portions 30 and 31.

ここで、図3に示すように、各壁部30,31の前端部は、反射光学部23の前端面25よりも前方に突出されている。より具体的には、本実施形態において、各壁部30,31の高さは、光学部材3の高さTと同等の高さに設定されており、これにより、各壁部30,31の前端部はシリンドリカルレンズ部22の頂部と同等の位置まで突出されている。また、枠体4を構成する各壁部30,31のうち、少なくとも長手方向に延在する各壁部30は、内面側が鏡面加工等された反射部材で構成されている。これにより、枠体4(壁部30)は、側面24に連続して延在する反射面32を反射光学部23の出射側に形成する。そして、反射面32は、例えば、図4(b)に示すように、入射面21を介して導光部20に入射された光のうち、シリンドリカルレンズ部22への光路外に放射された光であって、且つ、反射光学部23の側面24で反射されることなく前端面25から出射された光の一部を、反射によって焦点Fへと導く。   Here, as shown in FIG. 3, the front end portions of the wall portions 30 and 31 protrude forward from the front end surface 25 of the reflective optical portion 23. More specifically, in the present embodiment, the height of each wall 30, 31 is set to a height equivalent to the height T of the optical member 3. The front end portion protrudes to a position equivalent to the top portion of the cylindrical lens portion 22. In addition, among the wall portions 30 and 31 constituting the frame body 4, at least the wall portions 30 extending in the longitudinal direction are made of a reflecting member whose inner surface is mirror-finished. Thereby, the frame 4 (wall part 30) forms the reflective surface 32 continuously extended to the side surface 24 on the output side of the reflective optical part 23. And the reflective surface 32 is light radiated | emitted out of the optical path to the cylindrical lens part 22 among the light which injected into the light guide part 20 via the incident surface 21, for example, as shown in FIG.4 (b). In addition, a part of the light emitted from the front end face 25 without being reflected by the side face 24 of the reflection optical unit 23 is guided to the focal point F by reflection.

このような実施形態によれば、光源11の発光部12を直線状に延在する帯状に形成すると共に、この発光部12からの放射光を線状光に変換する光学部材3を、発光部12に対向して入射面21が延在する導光部20と、入射面21の反対側において導光部20に一体形成されたシリンドリカルレンズ部22と、導光部20の短手方向両側に一体形成された反射光学部23とを具備して構成し、さらに、この光学部材3を囲繞する枠体4により、側面24に連続して延在する反射面32を反射光学部23の出射側に形成することにより、光源11から放射される光を効率よく利用して輝度ムラのない高い照度の線状光を形成することができる。   According to such an embodiment, the light emitting unit 12 of the light source 11 is formed in a strip shape extending linearly, and the optical member 3 that converts the emitted light from the light emitting unit 12 into linear light is used as the light emitting unit. 12 on the opposite side of the incident surface 21, a cylindrical lens unit 22 formed integrally with the light guide 20 on the opposite side of the incident surface 21, and both sides of the light guide 20 in the short direction. And a reflection optical part 23 formed integrally, and further, a reflection surface 32 extending continuously from the side surface 24 is provided on the output side of the reflection optical part 23 by the frame 4 surrounding the optical member 3. Thus, it is possible to efficiently use the light emitted from the light source 11 to form linear light with high illuminance without luminance unevenness.

すなわち、光源11を有機EL等のような面光源を用いて構成することにより、光学部材3に対して連続的な光を供給することができ、輝度ムラを好適に低減することができる。この場合において、光源11の発光部12から放射されて導光部20に入射した光のうち主として短手方向の放射角が所定角度未満の狭角に放射する光をシリンドリカルレンズ部22によって線状に集光させると共に、主として短手方向の放射角が所定角度以上の広角に放射する光を反射光学部23の側面24での全反射によってシリンドリカルレンズ部22の焦点Fに集光させることにより、発光部12から放射される光を線状照明光として効率よく利用することができる。さらに、主として短手方向の放射角が所定角度以上の広角に放射する光であって反射光学部23の側面24で反射されることなく前端面25から放射された光の一部を反射面32で反射して焦点Fに導くことにより、発光部12から放射される光の更なる利用効率の向上を図ることができる。これらにより、発光部12から放射される光を線状照明光として無駄なく利用して高い照度の線状照明光を実現することができる(図5中の実線参照)。なお、図5中において、2点鎖線は、光学部材3及び枠体4(反射面32)を用いない場合の照明光の照度分布を示す。   That is, by configuring the light source 11 using a surface light source such as an organic EL, continuous light can be supplied to the optical member 3, and luminance unevenness can be suitably reduced. In this case, among the light emitted from the light emitting unit 12 of the light source 11 and incident on the light guide unit 20, light that radiates mainly at a narrow angle with a short-side radiation angle less than a predetermined angle is linearly formed by the cylindrical lens unit 22. And condensing mainly the light radiated at a wide angle with a short-angle radiation angle of a predetermined angle or more at the focal point F of the cylindrical lens unit 22 by total reflection at the side surface 24 of the reflection optical unit 23, Light emitted from the light emitting unit 12 can be efficiently used as linear illumination light. Further, a part of the light emitted from the front end face 25 without being reflected by the side face 24 of the reflection optical unit 23, which is mainly emitted in a wide angle whose emission angle in the short direction is a predetermined angle or more, is reflected on the reflection surface 32. By reflecting the light and guiding it to the focal point F, it is possible to further improve the utilization efficiency of the light emitted from the light emitting unit 12. Accordingly, it is possible to realize linear illumination light with high illuminance by using light emitted from the light emitting unit 12 without waste as linear illumination light (see a solid line in FIG. 5). In FIG. 5, the two-dot chain line indicates the illuminance distribution of the illumination light when the optical member 3 and the frame body 4 (reflection surface 32) are not used.

この場合において、枠体4の高さを光学部材3の高さTと略同等の高さに設定し、シリンドリカルレンズ部22の頂部を限度として反射面32の突出量を制限することにより、線状照明装置1を大型化させることなく、発光部12からの放射光の有効利用を図ることができる。また、反射面32の突出量を制限することにより、シリンドリカルレンズ部22を介して焦点Fに集光される光の割合が相対的に高まるため、シリンドリカルレンズ部22による配光制御およびそのための光学設計を容易にすることができる。   In this case, the height of the frame 4 is set to a height substantially equal to the height T of the optical member 3, and the projection amount of the reflecting surface 32 is limited with the top of the cylindrical lens portion 22 as a limit. The radiated light from the light emitting unit 12 can be effectively used without increasing the size of the illumination device 1. Further, by limiting the amount of protrusion of the reflecting surface 32, the ratio of the light collected at the focal point F via the cylindrical lens unit 22 is relatively increased, so that the light distribution control by the cylindrical lens unit 22 and the optical system therefor are controlled. Design can be made easy.

次に、図6乃至図11を参照して本発明の第2の実施形態について説明する。なお、本実施形態において、上述の第1の実施形態と同様の構成については、同符号を付して説明を省略する。   Next, a second embodiment of the present invention will be described with reference to FIGS. In the present embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.

図6に示すように、本実施形態の線状照明装置1において、枠体4の先端部は、光学部材3の最凸部であるシリンドリカルレンズ部22の頂部よりも前方まで延出され、これにより、反射光学部23の側面24に連続する反射面32の有効面積が前方に拡大されている。   As shown in FIG. 6, in the linear illumination device 1 of the present embodiment, the distal end portion of the frame body 4 extends forward from the top portion of the cylindrical lens portion 22 that is the most convex portion of the optical member 3. Thus, the effective area of the reflecting surface 32 continuous with the side surface 24 of the reflecting optical unit 23 is enlarged forward.

また、枠体4の先端部がシリンドリカルレンズ部22の頂部よりも前方に延出されたことに伴い、複写機等に実装した際の線状照明装置1際の照射距離Dは、枠体4の先端部を基準として設定されている。   Further, as the front end of the frame 4 extends forward from the top of the cylindrical lens portion 22, the irradiation distance D of the linear illumination device 1 when mounted on a copying machine or the like is the frame 4 It is set with reference to the tip part.

加えて、枠体4の延出によって相対的に後退したシリンドリカルレンズ部22の焦点Fを照射対象100の近傍に配置するため、本実施形態のシリンドリカルレンズ部22は、合焦距離が照射距離Dよりも長くなるよう、レンズ曲面22a等の最適化が行われている(図6、図7(a)参照)。さらに、反射光学部23の側面24による反射光を焦点Fに導くべく、当該側面24の形状を規定する多項式近似曲線が実験やシミュレーション等に基づいて最適化されている(図6、図7(b)参照)。   In addition, in order to arrange the focal point F of the cylindrical lens unit 22 that is relatively retracted by the extension of the frame 4 in the vicinity of the irradiation target 100, the cylindrical lens unit 22 of the present embodiment has an in-focus distance of the irradiation distance D. The lens curved surface 22a and the like are optimized so as to be longer (see FIGS. 6 and 7A). Furthermore, in order to guide the reflected light from the side surface 24 of the reflecting optical unit 23 to the focal point F, a polynomial approximation curve that defines the shape of the side surface 24 is optimized based on experiments, simulations, and the like (FIGS. 6 and 7 ( b)).

このような構成によれば、反射面32を延長したことにより、例えば、図7(b)に示すように、入射面21を介して導光部20に入射された光のうち、シリンドリカルレンズ部22への光路外に放射された光であって、且つ、反射光学部23の側面24で反射されることなく前端面25から出射された光を、反射によって焦点Fへと効率よく導くことができる。これにより、発光部12から放射される光を線状照明光として無駄なく利用して高い照度の線状照明光を実現することができる(図8中の実線参照)。なお、図8中において、1点鎖線は枠体4(反射面32)を用いない場合の照明光の照度分布を示し、2点鎖線は光学部材3及び枠体4(反射面32)を用いない場合の照明光の照度分布を示す。   According to such a configuration, by extending the reflecting surface 32, for example, as shown in FIG. 7B, the cylindrical lens unit out of the light incident on the light guide unit 20 through the incident surface 21. The light emitted from the front end face 25 without being reflected by the side face 24 of the reflection optical unit 23 is efficiently guided to the focal point F by reflection. it can. Accordingly, it is possible to realize linear illumination light with high illuminance by using light emitted from the light emitting unit 12 without waste as linear illumination light (see a solid line in FIG. 8). In FIG. 8, the alternate long and short dash line indicates the illuminance distribution of the illumination light when the frame 4 (reflecting surface 32) is not used, and the two-dot chain line uses the optical member 3 and the frame 4 (reflecting surface 32). The illuminance distribution of the illumination light when not present is shown.

ここで、本実施形態のように枠体4を前方に突出させた場合、反射光学部23の前端面25よりも前方に十分な長さの反射面32を確保できるため、当該反射面32を所定の曲面で構成して反射光の焦点Fへの集光度の向上を図ることも可能である。   Here, when the frame body 4 is projected forward as in the present embodiment, a sufficiently long reflecting surface 32 can be secured in front of the front end surface 25 of the reflecting optical unit 23. It is also possible to improve the degree of concentration of the reflected light at the focal point F by configuring it with a predetermined curved surface.

この場合、例えば、図9に示すように、反射光学部23の側面24を規定する多項式近似曲線に従って反射面32の形状を規定し、側面24と一体的な反射面32を形成することが可能である。   In this case, for example, as shown in FIG. 9, the shape of the reflecting surface 32 can be defined according to a polynomial approximation curve that defines the side surface 24 of the reflecting optical unit 23, and the reflecting surface 32 integral with the side surface 24 can be formed. It is.

また、反射光学部23の前端面25における放射光の屈折も考慮し、焦点Fへの更なる集光度の向上を図るべく、例えば、図10に示すように、所定の楕円円弧に従って反射面32の形状を規定することも可能である。この場合、例えば、楕円を定義する2つの焦点f1,f2のうち、一方の焦点f1をシリンドリカルレンズ部22の焦点Fと一致させると共に、前端面25における屈折を考慮して、他方の焦点f2を発光部12よりも前方にオフセットした位置に設定することにより、反射面32による焦点Fへの集光度を向上させることができる(図11参照)。   Further, in consideration of the refraction of the radiated light at the front end face 25 of the reflection optical unit 23, in order to further improve the degree of condensing light at the focal point F, for example, as shown in FIG. It is also possible to define the shape of In this case, for example, of the two focal points f1 and f2 defining the ellipse, one focal point f1 coincides with the focal point F of the cylindrical lens unit 22, and the other focal point f2 is set in consideration of refraction at the front end face 25. By setting the position offset forward of the light emitting unit 12, the degree of light collection at the focal point F by the reflecting surface 32 can be improved (see FIG. 11).

1…線状照明装置、2…光源ユニット、3…光学部材、4…枠体、5…透明接着剤、10…ガラス基板、11…光源(面光源)、12…発光部、15…正電極、15a…端子部、16…負電極、16a…端子部、20…導光部、21…入射面、22…シリンドリカルレンズ部、22a…レンズ曲面、23…反射光学部、24…側面、25…前端面、30…壁部(反射部材)、31…壁部、32…反射面、100…照射対象   DESCRIPTION OF SYMBOLS 1 ... Linear illuminating device, 2 ... Light source unit, 3 ... Optical member, 4 ... Frame, 5 ... Transparent adhesive, 10 ... Glass substrate, 11 ... Light source (surface light source), 12 ... Light emission part, 15 ... Positive electrode , 15a ... terminal part, 16 ... negative electrode, 16a ... terminal part, 20 ... light guide part, 21 ... incident surface, 22 ... cylindrical lens part, 22a ... curved lens surface, 23 ... reflective optical part, 24 ... side face, 25 ... Front end face, 30 ... wall part (reflective member), 31 ... wall part, 32 ... reflective surface, 100 ... irradiation target

Claims (3)

発光部が帯状に形成された面光源と、
前記発光部に対向して入射面が延在する導光部と、
前記入射面の反対側において前記導光部に一体形成され、前記導光部に入射された光を屈折によって線状に集光するシリンドリカルレンズ部と、
前記導光部の短手方向両側に一体形成され、前記導光部に入射された光のうち前記シリンドリカルレンズ部への光路外に放射された光を側面で全反射して前記シリンドリカルレンズ部の焦点に向けて出射する反射光学部と、
前記側面に連続して延在する反射面を前記反射光学部の出射側に形成する反射部材と、を備えたことを特徴とする線状照明装置。
A surface light source in which the light emitting part is formed in a strip shape;
A light guide portion having an incident surface extending opposite the light emitting portion;
A cylindrical lens unit that is integrally formed with the light guide unit on the opposite side of the incident surface, and that condenses light incident on the light guide unit into a linear shape by refraction;
The light guide unit is integrally formed on both sides in the short-side direction, and the light emitted from the light path to the cylindrical lens unit out of the light incident on the light guide unit is totally reflected on the side surface of the cylindrical lens unit. A reflective optical unit that emits toward the focal point;
A linear illumination device comprising: a reflection member that forms a reflection surface continuously extending on the side surface on an emission side of the reflection optical unit.
前記反射面の突出量を、前記シリンドリカルレンズ部の頂部を限度として設定したことを特徴とする請求項1記載の線状照明装置。   The linear illumination device according to claim 1, wherein the amount of protrusion of the reflecting surface is set with the top of the cylindrical lens portion as a limit. 前記反射面を、前記シリンドリカルレンズ部よりも前方に突出する曲面で構成したことを特徴とする請求項1記載の線状照明装置。   The linear illumination device according to claim 1, wherein the reflection surface is configured by a curved surface protruding forward from the cylindrical lens portion.
JP2009155835A 2009-06-30 2009-06-30 Linear lighting device Pending JP2011014301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009155835A JP2011014301A (en) 2009-06-30 2009-06-30 Linear lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009155835A JP2011014301A (en) 2009-06-30 2009-06-30 Linear lighting device

Publications (1)

Publication Number Publication Date
JP2011014301A true JP2011014301A (en) 2011-01-20

Family

ID=43593000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009155835A Pending JP2011014301A (en) 2009-06-30 2009-06-30 Linear lighting device

Country Status (1)

Country Link
JP (1) JP2011014301A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014195234A (en) * 2013-03-29 2014-10-09 Konica Minolta Inc Light guide device, light source device and image reader
JP2020065227A (en) * 2018-10-19 2020-04-23 グローリー株式会社 Illumination device for image sensor and image sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014195234A (en) * 2013-03-29 2014-10-09 Konica Minolta Inc Light guide device, light source device and image reader
JP2020065227A (en) * 2018-10-19 2020-04-23 グローリー株式会社 Illumination device for image sensor and image sensor
JP7154937B2 (en) 2018-10-19 2022-10-18 グローリー株式会社 Image sensor illumination device and image sensor

Similar Documents

Publication Publication Date Title
JP5353556B2 (en) Light source device
JP4093990B2 (en) Light guide, line illumination device, and image reading device
JPH11284803A (en) Linear light source unit
JP2007060653A (en) Linear light source for enhancing beaming light's effective focal range
JP5385081B2 (en) Document reader
JP5216431B2 (en) Strobe reflector for camera
JP5507190B2 (en) LIGHTING LENS AND LIGHTING DEVICE
WO2019003480A1 (en) Light guide body and image reading apparatus
JP2007163876A (en) Lighting device and photographing device
JP2012220821A (en) Light guide, lighting device, and electronic apparatus
JP2011199576A (en) Linear illuminator and image reading apparatus
JP2011014301A (en) Linear lighting device
JP6129602B2 (en) Document reading light source device
JP2010282869A (en) Line lighting device
JP4207521B2 (en) Surface light source device
JP2015002138A (en) Luminaire, task light and wall surface mounting luminaire
JP2010020920A (en) Linear light source device and image reading device
JP5762372B2 (en) Lighting lamp
JP2010114044A (en) Linear lighting device
JP5668980B2 (en) Light emitting device
JP2010217881A (en) Device for illuminating document, method for illuminating document, and device for reading image
JP2011018480A (en) Linear lighting device
JP5546905B2 (en) Light source unit and image reading apparatus using the same
JP2006073250A (en) Lighting system
JP6186816B2 (en) Vehicle lighting