JP2011014264A - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP2011014264A
JP2011014264A JP2009154964A JP2009154964A JP2011014264A JP 2011014264 A JP2011014264 A JP 2011014264A JP 2009154964 A JP2009154964 A JP 2009154964A JP 2009154964 A JP2009154964 A JP 2009154964A JP 2011014264 A JP2011014264 A JP 2011014264A
Authority
JP
Japan
Prior art keywords
lithium secondary
secondary battery
separator
battery
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009154964A
Other languages
Japanese (ja)
Inventor
Akira Kakinuma
彰 柿沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009154964A priority Critical patent/JP2011014264A/en
Publication of JP2011014264A publication Critical patent/JP2011014264A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a load characteristic in a lithium secondary battery.SOLUTION: This lithium secondary battery is constituted to seal an electric power generating element arranged oppositely with a positive electrode 4 and a negative electrode 2 capable of storing/releasing at least lithium ions via a separator 3, and a non-aqueous electrolyte, in a sealing plate 1 and a battery case 5, wherein the separator 3 is constituted of an unwoven cloth of a polyolefin resin fiber having functional groups capable of enhancing a lithium ion concentration on a surface. The lithium ion concentrations are enhanced in the vicinity of the electrode and in a bulk reaction area, by this structure, and the load characteristic is improved thereby.

Description

本発明は負荷特性の向上を図ったリチウム二次電池に関するものである。   The present invention relates to a lithium secondary battery with improved load characteristics.

移動体通信に代表されるようなコードレス化、ポータブル化された電子機器では、小型化、軽量化にともない高エネルギー密度を有するリチウム二次電池が広く使用されている。また、近年電子機器に様々な付加機能が備えられるようになり、電源への負荷特性の向上が要望されている。   In cordless and portable electronic devices typified by mobile communication, lithium secondary batteries having a high energy density are widely used as the size and weight are reduced. In recent years, various additional functions have been provided in electronic devices, and there is a demand for improvement in load characteristics to a power source.

負荷特性の向上方法は種々あるが、円筒形や角形などの形状のリチウム二次電池においては、集電体となる金属箔上に活物質を塗布し、捲回構造にすることで反応面積を大きくして、負荷特性を向上させている。しかし、コイン形形状のリチウム二次電池では、同様な手法により、反応面積を大きくして負荷特性を向上させることは非常に難しい。   There are various methods for improving the load characteristics, but in lithium secondary batteries having a cylindrical shape or a rectangular shape, the active area is applied on a metal foil as a current collector to form a wound structure to reduce the reaction area. The load characteristics are improved by increasing the size. However, in a coin-shaped lithium secondary battery, it is very difficult to increase the reaction area and improve the load characteristics by the same method.

その理由は、一般的にコイン形形状のリチウム二次電池では、電極に活物質である金属酸化物と導電性を補助する炭素粉を結着剤を混合して、加圧成型して得られたペレット状のものを用いるため、円筒形や角形のように電極を捲回して反応面積を大きくする構造にすることが難しいことによる。   The reason for this is that, in general, coin-shaped lithium secondary batteries are obtained by mixing the metal oxide, which is the active material, with the carbon powder that assists conductivity in the electrode, and then press molding the mixture. This is because it is difficult to form a structure in which the reaction area is increased by winding the electrode like a cylindrical shape or a square shape.

そのため、コイン形形状において負荷特性を向上させる手段として、従来は集電構造を検討することで改善を行ってきた。その例として、電極ペレットと組み合わせる集電用の金属リングにペレットに食い込む突起形状を設け、集電面積の向上とペレットとの密着性を改善し負荷特性を改良する方法(特許文献1参照)や、集電機能を備えた外装缶に突起形状を設ける加工を行い、電極ペレットとの接触を改善することで集電性を高めて、リチウム二次電池の負荷特性を改善する方法(特許文献2参照)がある。   For this reason, as a means for improving the load characteristics in the coin-shaped shape, improvement has conventionally been made by examining a current collecting structure. As an example, a metal ring for current collection combined with an electrode pellet is provided with a protrusion shape that bites into the pellet, and a method for improving the load characteristics by improving the current collection area and the adhesion to the pellet (see Patent Document 1) A method of improving the load characteristics of a lithium secondary battery by performing a process of providing a protruding shape on an outer can having a current collecting function and improving the contact with the electrode pellets to improve current collecting performance (Patent Document 2) See).

特開2004−311117号公報JP 2004-31117 A 特開2001−332227号公報JP 2001-332227 A

負荷特性を向上するには、どれだけ多くの電子を取り出せるかということであるが、特許文献1および特許文献2に見られるような構造は、電極ペレットと集電子との集電性を向上することはできるが、電池反応自体を改善するものではないため、負荷特性の向上に限界がある。   In order to improve the load characteristics, it is how many electrons can be taken out, but the structure as seen in Patent Document 1 and Patent Document 2 improves the current collecting property between the electrode pellet and the current collector. However, since it does not improve the battery reaction itself, there is a limit to improving the load characteristics.

円筒形状や角型形状のように、電子をたくさん取り出すために捲回した構成物を具備し、反応活性点が多い構造を構築する方法は、コイン形のリチウム二次電池においては難しい構造であり、とくに小型化が難しい。また、電池を構成するのが困難で量産性に乏しい。本発明においては、従来と同様なコイン形のリチウム二次電池の構成および量産方法で負荷特性に優れるリチウム二次電池を提供することにある。   The method of constructing a structure with many reaction active sites, such as a cylindrical shape or a square shape, that is wound to extract a lot of electrons is a difficult structure for a coin-type lithium secondary battery. Especially, miniaturization is difficult. In addition, it is difficult to construct a battery and the mass productivity is poor. An object of the present invention is to provide a lithium secondary battery having excellent load characteristics by the configuration and mass production method of a coin-type lithium secondary battery similar to the conventional one.

本発明はこのような課題を解決するために、少なくともリチウムイオンを吸蔵・放出可能な正極と負極とをセパレータを介して対向して配置した発電要素と非水電解液とを電池
ケース内に封入してなるリチウム二次電池において、上記セパレータとして表面にリチウムイオン濃度を高める官能基をもったポリオレフィン系樹脂繊維の不織布で構成したことを特徴としたものである。
In order to solve such problems, the present invention encloses a power generation element in which at least a positive and negative electrodes capable of occluding and releasing lithium ions are arranged opposite to each other with a separator interposed therebetween and a nonaqueous electrolyte solution in a battery case. In this lithium secondary battery, the separator is made of a nonwoven fabric of polyolefin resin fibers having a functional group for increasing the lithium ion concentration on the surface.

本発明によると、電池反応を起こす電極近傍およびバルク反応領域において、電池反応種となるリチウムイオン濃度を高めることができ、電池反応を促進して電子を継続して取り出せるため、負荷特性が向上したリチウム二次電池を電池形状によらずに得ることができる。   According to the present invention, in the vicinity of the electrode causing the battery reaction and in the bulk reaction region, the concentration of lithium ions as the battery reaction species can be increased, and the battery reaction is promoted and electrons can be continuously taken out, thereby improving the load characteristics. A lithium secondary battery can be obtained regardless of the battery shape.

本発明の実施例に係わるコイン形のリチウム二次電池の半断面図FIG. 2 is a half sectional view of a coin-type lithium secondary battery according to an embodiment of the present invention. 本発明と比較例におけるリチウム二次電池の放電時間を示す特性図The characteristic figure which shows the discharge time of the lithium secondary battery in this invention and a comparative example

本発明は、リチウムイオンを吸蔵・放出可能な正極と負極とをセパレータを介して対向して配置した発電要素と非水電解液とを電池ケース内に封入してなるリチウム二次電池において、上記セパレータとして表面にリチウムイオン濃度を高める官能基をもったポリオレフィン系樹脂繊維の不織布で構成したことを特徴としている。これにより、リチウム二次電池の負荷特性を向上させることができる。   The present invention provides a lithium secondary battery in which a power generation element in which a positive electrode and a negative electrode capable of inserting and extracting lithium ions are opposed to each other via a separator and a non-aqueous electrolyte are enclosed in a battery case. It is characterized by comprising a nonwoven fabric of polyolefin resin fibers having a functional group for increasing the lithium ion concentration on the surface as a separator. Thereby, the load characteristic of a lithium secondary battery can be improved.

負荷特性を向上させるためには、電池から電子をたくさん取り出せることが必要である。電池における電子の流れは、電極上で電池反応が生じ、その時発生した電子が集電子を通じて取り出される。また、電子を継続して取り出すためには電池反応が継続される必要があり、そのためには電池反応が生じる電極近傍へ電池反応種が供給され続けることが必要となる。   In order to improve the load characteristics, it is necessary to extract many electrons from the battery. In the flow of electrons in the battery, a battery reaction occurs on the electrode, and the electrons generated at that time are taken out through current collection. Further, in order to continuously extract electrons, the battery reaction needs to be continued. For this purpose, it is necessary that the battery reaction species be continuously supplied to the vicinity of the electrode where the battery reaction occurs.

よって、リチウム二次電池の負荷特性を向上させるためには、電極上でたくさん電子を発生させること、発生した電子が速やかに取り出せること、電極上で継続して電子を発生させることが重要となる。   Therefore, in order to improve the load characteristics of the lithium secondary battery, it is important to generate a large number of electrons on the electrode, to be able to quickly extract the generated electrons, and to continuously generate electrons on the electrode. .

電極上でたくさん電子を発生させるためには、電極上に電池反応を生じる活性点を多く有することで可能であり、円筒形や角形で見られる構造のように電極を捲回して電極面積を大きくすることで対応できる。また、発生した電子を速やかに取り出すためには、電極と集電子との接触抵抗を小さくすることで可能であり、集電形状を工夫することで対応できる。   In order to generate a lot of electrons on the electrode, it is possible to have many active sites that cause a battery reaction on the electrode, and the electrode area can be increased by winding the electrode as in the structure seen in a cylindrical shape or a square shape. It can respond by doing. Moreover, in order to take out the generated electrons promptly, it is possible to reduce the contact resistance between the electrode and the current collector, and this can be dealt with by devising the current collector shape.

しかし、上記の取り組みは電池反応が継続して生じなければ電池の負荷特性を向上させることはできなく、電池反応種を電極近傍へ供給し続けることは大変重要である。   However, the above-mentioned efforts cannot improve the load characteristics of the battery unless the battery reaction continues, and it is very important to continue supplying the battery reaction species to the vicinity of the electrode.

ここで、コイン形形状のリチウム二次電池の構造について図1を参照にして確認すると、ステンレスからなる封口板1側に導電層7を介して負極2を配置し、ステンレスからなる電池ケース5側に導電層7を介して正極4を配置している。負極2と正極4の間にポリプロピレンの不織布からなるセパレータ3を介在させる。封口板1と負極2および電池ケース5と正極4の間には導電層7を介して圧接により電気的な導通をとっている。封口板1と電池ケース5の間にガスケット6を配置し、電池ケース5を内方にかしめて封口されている。   Here, when the structure of the coin-shaped lithium secondary battery is confirmed with reference to FIG. 1, the negative electrode 2 is arranged on the sealing plate 1 side made of stainless steel via the conductive layer 7, and the battery case 5 side made of stainless steel. The positive electrode 4 is arranged on the conductive layer 7. A separator 3 made of a nonwoven fabric of polypropylene is interposed between the negative electrode 2 and the positive electrode 4. Electrical connection is established between the sealing plate 1 and the negative electrode 2 and between the battery case 5 and the positive electrode 4 through a conductive layer 7 by pressure contact. A gasket 6 is disposed between the sealing plate 1 and the battery case 5, and the battery case 5 is crimped inward to be sealed.

このように、コイン形形状のリチウム二次電池の構造は電極とセパレータ3が接触しており、そのセパレータ3にポリエチレンやポリプロピレンなどのポリオレフィン系樹脂を
使用するのが一般的である。
Thus, in the structure of the coin-shaped lithium secondary battery, the electrode and the separator 3 are in contact with each other, and a polyolefin-based resin such as polyethylene or polypropylene is generally used for the separator 3.

コイン形形状のリチウム二次電池が使用される一般的な環境において、電極近傍への電池反応種の供給は対流などの外部要因によって行われることはなく、濃度拡散によってのみ行われる。よって、電池反応を継続するためには、電極近傍の電池反応種が全て反応したときバルクの濃度との濃度勾配が大きいことが必要となり、電極と接触しているセパレータ3の電池反応種濃度が高いことが重要である。   In a general environment where a coin-shaped lithium secondary battery is used, the supply of the battery reactive species to the vicinity of the electrode is not performed by external factors such as convection, but only by concentration diffusion. Therefore, in order to continue the battery reaction, it is necessary that the concentration gradient with respect to the bulk concentration is large when all the battery reactive species in the vicinity of the electrode have reacted, and the concentration of the battery reactive species in the separator 3 in contact with the electrode is high. High is important.

本発明ではセパレータ3の電池反応種の濃度分布を改善することによって、電池の負荷特性を向上した。   In the present invention, the load characteristics of the battery are improved by improving the concentration distribution of the battery reactive species in the separator 3.

一般的にセパレータ3として使用されるポリオレフィン系樹脂は官能基を持たないため極性を有していない。そのため、電池反応種であるイオンとの親和性が極めて小さく、よって、セパレータ3の電池反応種となるイオン濃度が低いと共に、非水電解液の溶媒との親和性も低いためイオン移動量が小さく、電極近傍へ電池反応種が供給されにくい。   In general, the polyolefin resin used as the separator 3 does not have a polarity because it does not have a functional group. Therefore, the affinity with ions that are battery reactive species is extremely small. Therefore, the ion concentration that becomes the battery reactive species of the separator 3 is low, and the affinity with the solvent of the non-aqueous electrolyte is also low, so that the amount of ion transfer is small. Battery reaction species are unlikely to be supplied near the electrode.

しかし、物理的および化学的処理によりセパレータ3に水酸基やカルボン酸基などの極性を有した官能基を挿入することで、セパレータ3に極性を付加する事ができる。それによって、電気的な相互作用からセパレータ3表面と電池反応種であるイオンが引き合い、セパレータ3表面の電池反応種イオン濃度を高めることができる。さらには、電解液の溶媒とも電気的に引き合うことから、セパレータ3表面の電解液に対する濡れ性が向上し、イオン伝導のパスが増えることでイオン移動量を大きくすることができる。これらの結果から、電池反応種であるイオンを電極近傍へより多く供給することができ、電池の負荷特性を改善することができる。   However, polarity can be added to the separator 3 by inserting a functional group having polarity such as a hydroxyl group or a carboxylic acid group into the separator 3 by physical and chemical treatment. Thereby, the separator 3 surface and ions which are battery reactive species attract each other from the electrical interaction, and the concentration of the battery reactive species ions on the separator 3 surface can be increased. Furthermore, since it is electrically attracted to the solvent of the electrolytic solution, the wettability of the separator 3 surface with respect to the electrolytic solution is improved, and the amount of ion transfer can be increased by increasing the number of ion conduction paths. From these results, more ions that are battery reactive species can be supplied to the vicinity of the electrode, and the load characteristics of the battery can be improved.

セパレータ3に用いるポリプロピレンやポリエチレンに極性基を付加する方法としては、大気圧中でプラズマ放電処理を行うのが有効である。この方法は材料の表層のみに含酸素の置換基を付加することができる。そのため、材料強度などの物性を変化させることなく機能を付加できるため、従来と同様の工法で電池を作製することができる。また、プラズマ処理自体も真空にする必要がないため、処理を容易に行うことができ、量産性に優れている。   As a method for adding a polar group to polypropylene or polyethylene used for the separator 3, it is effective to perform plasma discharge treatment at atmospheric pressure. This method can add oxygen-containing substituents only to the surface layer of the material. Therefore, since a function can be added without changing physical properties such as material strength, a battery can be manufactured by a method similar to the conventional method. In addition, since the plasma treatment itself does not need to be evacuated, the treatment can be easily performed and the mass productivity is excellent.

本発明は、特性改善および量産性の観点から特にコイン形形状のリチウム二次電池に有効であるが、捲回構造の電極を有する円筒形および角型形状など、電池の形状によらず負荷特性の改善に有効である。   The present invention is particularly effective for a coin-shaped lithium secondary battery from the viewpoint of improvement in characteristics and mass productivity. However, load characteristics such as a cylindrical shape and a rectangular shape having a wound structure electrode are not affected. It is effective for improvement.

以下に本発明の実施例を説明する。   Examples of the present invention will be described below.

(実施例1)
図1は本発明の一実施例であるコイン形のリチウム二次電池の半断面図である。図1においてセパレータ3には繊維径1〜5ΜM、目付け量約20G/Mからなるポリプロピレン(PP)製の不織布を用いた。このセパレータ3をパール工業社製のPSC1002のプラズマ放電処理機を用いて、大気圧中で30VA、3秒間のプラズマ処理を行った。
Example 1
FIG. 1 is a half sectional view of a coin-type lithium secondary battery according to an embodiment of the present invention. In FIG. 1, a nonwoven fabric made of polypropylene (PP) having a fiber diameter of 1 to 5 mm and a basis weight of about 20 G / M 2 was used for the separator 3. This separator 3 was subjected to plasma treatment at 30 VA for 3 seconds in an atmospheric pressure using a PSC1002 plasma discharge treatment machine manufactured by Pearl Industry Co., Ltd.

正極4は、活物質としてのコバルト酸リチウム、導電剤としてケッチェンブラック、結着剤としてフッ素系樹脂のPTFE(ポリテトラフルオロエチレン)を重量比で90:5:5となるように混合した合剤を加圧成型してペレットにして用いた。   The positive electrode 4 is composed of lithium cobalt oxide as an active material, ketjen black as a conductive agent, and PTFE (polytetrafluoroethylene) as a binder, mixed in a weight ratio of 90: 5: 5. The agent was pressure-molded and used as pellets.

負極2は、活物質としてのチタン酸リチウム、導電剤としてケッチェンブラック、結着
剤としてスチレン−ブタジエン共重合体を質量比で90:5:5となるように混合し、加圧成型して直径11MM、厚み0.5MMのペレットにして用いた。
The negative electrode 2 is prepared by mixing lithium titanate as an active material, ketjen black as a conductive agent, and a styrene-butadiene copolymer as a binder at a mass ratio of 90: 5: 5, followed by pressure molding. The pellets were 11MM in diameter and 0.5MM in thickness.

非水電解液には、エチレンカーボネイト(EC)とエチルメチルカーボネイト(EMC)を容積比1:3で混合し、LIPFを1MOL/L溶解させたものを使用した。 As the non-aqueous electrolyte, a solution in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 1: 3 and LIPF 6 was dissolved at 1 MOL / L was used.

これらの電極と非水電解液および、プラズマ処理を行ったセパレータ3を電極間に配置して、図1に示すような構造を有する直径16MM、厚み1.6MMサイズのコイン形のリチウム二次電池を作製した。
(比較例1)
セパレータ3にプラズマ処理を施さなかった以外は実施例1のリチウム二次電池と同様の構成である比較例1の電池を作製した。
A coin-type lithium secondary battery having a diameter of 16 MM and a thickness of 1.6 MM having a structure as shown in FIG. 1 in which these electrodes, a non-aqueous electrolyte, and a separator 3 subjected to plasma treatment are disposed between the electrodes. Was made.
(Comparative Example 1)
A battery of Comparative Example 1 having the same configuration as the lithium secondary battery of Example 1 was produced except that the separator 3 was not subjected to plasma treatment.

これら実施例1、比較例1のリチウム二次電池に対して、2.6Vの定電圧を48時間印加する初期化を行った。初期化により電池電圧が2.6Vに達した後、抵抗値200Ωで放電を行った。図2に放電結果を示す。   The lithium secondary batteries of Example 1 and Comparative Example 1 were initialized by applying a constant voltage of 2.6 V for 48 hours. After the battery voltage reached 2.6V by initialization, discharging was performed with a resistance value of 200Ω. FIG. 2 shows the discharge result.

実施例1において、電池電圧が1.5Vに達するまでの放電時間は0.6hであったのに対して、比較例1では0.2hであった。これは比較例1においては、放電負荷が大きいにもかかわらず電極近傍に反応種が供給されないため、電極が急激に分極してリチウム二次電池の放電電圧が低下してしまったことによる。一方、実施例1においては、電極近傍へ反応種が供給されるため、電極が急激に分極することなく電池反応が行われる。よって、リチウム二次電池の放電電圧も急激に低下することがないため放電時間を長く保つことができた。   In Example 1, the discharge time until the battery voltage reached 1.5 V was 0.6 h, whereas in Comparative Example 1, it was 0.2 h. This is because, in Comparative Example 1, the reactive species is not supplied in the vicinity of the electrode even though the discharge load is large, so that the electrode is rapidly polarized and the discharge voltage of the lithium secondary battery is lowered. On the other hand, in Example 1, since the reactive species is supplied to the vicinity of the electrode, the battery reaction is performed without the electrode being rapidly polarized. Therefore, since the discharge voltage of the lithium secondary battery does not drop rapidly, the discharge time can be kept long.

本発明にかかるリチウム二次電池は、強負荷を必要とする電子機器おいて特に有用である。   The lithium secondary battery according to the present invention is particularly useful in an electronic device that requires a heavy load.

1 封口板
2 負極
3 セパレータ
4 正極
5 電池ケース
6 ガスケット
7 導電層
DESCRIPTION OF SYMBOLS 1 Sealing plate 2 Negative electrode 3 Separator 4 Positive electrode 5 Battery case 6 Gasket 7 Conductive layer

Claims (3)

少なくともリチウムイオンを吸蔵・放出可能な正極と負極とをセパレータを介して対向して配置した発電要素と非水電解液とを電池ケース内に封入してなるリチウム二次電池において、前記セパレータを表面にリチウムイオン濃度を高める官能基をもったポリオレフィン系樹脂繊維の不織布で構成したことを特徴とするリチウム二次電池。   In a lithium secondary battery in which a power generation element having at least a positive electrode and a negative electrode capable of occluding and releasing lithium ions disposed opposite to each other with a separator interposed therebetween and a non-aqueous electrolyte are enclosed in a battery case, the separator is placed on the surface. A lithium secondary battery comprising a nonwoven fabric of polyolefin resin fibers having a functional group for increasing the lithium ion concentration. 前記セパレータのリチウムイオン濃度を高める官能基を水酸基、カルボン酸基またはカルボニル基の少なくとも一つとした請求項1記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein the functional group for increasing the lithium ion concentration of the separator is at least one of a hydroxyl group, a carboxylic acid group, and a carbonyl group. 前記セパレータのリチウムイオン濃度を高める官能基をポリオレフィン系樹脂繊維の不織布にプラズマ処理することで持たせた請求項1記載のリチウム二次電池。   2. The lithium secondary battery according to claim 1, wherein a functional group for increasing a lithium ion concentration of the separator is provided on a nonwoven fabric of polyolefin resin fiber by plasma treatment.
JP2009154964A 2009-06-30 2009-06-30 Lithium secondary battery Withdrawn JP2011014264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009154964A JP2011014264A (en) 2009-06-30 2009-06-30 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009154964A JP2011014264A (en) 2009-06-30 2009-06-30 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2011014264A true JP2011014264A (en) 2011-01-20

Family

ID=43592965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009154964A Withdrawn JP2011014264A (en) 2009-06-30 2009-06-30 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2011014264A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11664485B2 (en) 2017-05-12 2023-05-30 Lg Energy Solution, Ltd. Method for manufacturing lithium secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11664485B2 (en) 2017-05-12 2023-05-30 Lg Energy Solution, Ltd. Method for manufacturing lithium secondary battery

Similar Documents

Publication Publication Date Title
CN105074968B (en) Lithium electrode and the lithium secondary battery comprising the lithium electrode
US9865872B2 (en) Lithium-ion battery and method for producing same
JP3703667B2 (en) Nonaqueous electrolyte secondary battery
CN106133993B (en) Alkaline secondary battery
KR101138594B1 (en) lithium ion capacitor
TW200524201A (en) An energy device
JP2006310033A (en) Storage battery
JP6697901B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2013200961A (en) All solid lithium ion secondary battery and manufacturing method thereof
KR20210068045A (en) Lithium ion battery manufacturing method and lithium ion battery
KR20110031374A (en) Positive electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
CN105680081A (en) Lithium flow battery discharger
WO2019116761A1 (en) Lithium-ion secondary battery and method for manufacturing same
US8822071B2 (en) Active material for rechargeable battery
JP2019175835A (en) Electrode material for secondary batteries and secondary battery
CN107230554B (en) Electrochemical device
JP5632246B2 (en) Lithium ion secondary battery
JPWO2013047379A1 (en) Lithium secondary battery and manufacturing method thereof
CN111937211A (en) Method for manufacturing battery
WO2013002055A1 (en) Current collector and electrode for use in non-aqueous secondary cell, and non-aqueous secondary cell
CN104078722A (en) Nonaqueous electrolyte air battery
JP2015115233A (en) Negative electrode for magnesium ion secondary battery and magnesium ion secondary battery
CN110800137B (en) Positive electrode for secondary battery and secondary battery
CN106229543A (en) A kind of lithium titanate battery and manufacture method
JP2011014264A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120628

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130301

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130419