JP2011012308A - High-yield-ratio type hot-rolled steel plate superior in burring property and manufacturing method therefor - Google Patents

High-yield-ratio type hot-rolled steel plate superior in burring property and manufacturing method therefor Download PDF

Info

Publication number
JP2011012308A
JP2011012308A JP2009157480A JP2009157480A JP2011012308A JP 2011012308 A JP2011012308 A JP 2011012308A JP 2009157480 A JP2009157480 A JP 2009157480A JP 2009157480 A JP2009157480 A JP 2009157480A JP 2011012308 A JP2011012308 A JP 2011012308A
Authority
JP
Japan
Prior art keywords
rolling
rolled steel
steel sheet
yield ratio
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009157480A
Other languages
Japanese (ja)
Other versions
JP5338525B2 (en
Inventor
Tatsuo Yokoi
龍雄 横井
Yusuke Iwao
雄介 岩尾
Osamu Kono
治 河野
Junji Haji
純治 土師
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009157480A priority Critical patent/JP5338525B2/en
Publication of JP2011012308A publication Critical patent/JP2011012308A/en
Application granted granted Critical
Publication of JP5338525B2 publication Critical patent/JP5338525B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-yield-ratio type hot-rolled steel plate having superior burring properties while obtaining a tensile strength of a 370-490 MPa grade by a strength grade, and to provide a manufacturing method therefor.SOLUTION: The high-yield-ratio type hot-rolled steel plate with high burring properties includes components in a predetermined range, such a Ti content (wt.%) as to satisfy mathematical expression (1), Si and Mn of which the total amount is limited according to the amount of Ti, and the balance Fe with unavoidable impurities; has a microstructure in which pro-eutectoid ferrite occupies 90% or more by an area rate, and an average crystal grain size is 5-12 μm; has an elongation rate of 1.2-3; includes precipitates of TiC or NbC in the crystal grains of the microstructure, of which the average particle diameter is 1.5-3 nm and of which the density is 1×10to 5×10pieces/cm.

Description

本発明は、熱延鋼板及びその製造方法に関するもので、特に、強度グレードで370〜490MPa級の引張強度を得るのに好適なバーリング性に優れた高降伏比型熱延鋼板及びその製造方法に関する。   The present invention relates to a hot-rolled steel sheet and a method for producing the hot-rolled steel sheet, and more particularly, to a high yield ratio hot-rolled steel sheet excellent in burring suitable for obtaining a tensile strength of 370 to 490 MPa as a strength grade and a method for producing the same. .

近年、自動車の燃費向上等のために車体軽量化を目的とした鋼板薄肉化への要求は益々高まっており、薄肉化を前提に如何にして鋼板の強度、プレス成形性等の材料特性を維持するかが課題となっている。   In recent years, there has been an increasing demand for steel plate thickness reduction for the purpose of reducing the weight of the vehicle body in order to improve the fuel efficiency of automobiles, etc., and how to maintain the material properties such as strength and press formability of the steel plate on the premise of thinning. It is a challenge to do.

このような課題を解決する鋼板薄肉化の手段として、高強度鋼板の適用が検討されている。しかし、引張強度で540MPa級の強度グレードを超えるような鋼板の高強度化は、一般的にプレス成形性(加工性)等の材料特性の劣化を招くため、金型、プレス機等の製造機械へ負担が大きく、特別な配慮が必要となることから、有効な解決手段とはいえなかった。   Application of high-strength steel sheets has been studied as a means for reducing the thickness of steel sheets to solve such problems. However, increasing the strength of a steel sheet that exceeds a strength grade of 540 MPa in terms of tensile strength generally results in deterioration of material properties such as press formability (workability). This is not an effective solution because it requires a lot of burden and special consideration.

ここで、自動車を構成するプレス部品の設計強度は、鋼板の強度グレードを決定する指標となる鋼板の引張強度ではなく鋼板の降伏強度を基準にしている。このため、上記のような課題を解決する薄肉化を達成するためには、必ずしも引張強度を増大させて鋼板の強度グレードをランクアップする必要はなく、鋼板の引張強度はそのままとしつつ降伏強度を増大させる手段、即ち、引張強度と降伏強度の比である降伏比を上げる手段が考えられる。   Here, the design strength of the press part constituting the automobile is based on the yield strength of the steel plate, not the tensile strength of the steel plate, which is an index for determining the strength grade of the steel plate. For this reason, in order to achieve the thinning that solves the above-mentioned problems, it is not always necessary to increase the tensile strength and rank up the strength grade of the steel sheet, and the yield strength is maintained while keeping the tensile strength of the steel sheet as it is. A means for increasing, that is, a means for increasing the yield ratio, which is the ratio between the tensile strength and the yield strength, can be considered.

これまで、降伏比の上昇は、一様伸びの劣化に繋がり、プレス成形性を劣化させるとされてきたが、これは、張り出し成形のような一様伸びに依存する成形方法についての見解であり、曲げ成形、絞り成形、伸びフランジ成形のような一様伸びに依存しない成形方法については当てはまらない。特に、熱延鋼板が適用される内板部材、構造部材、足廻り部材用鋼板に求められるプレス成形特性としては、伸びフランジ性(バーリング性)が重要であり、高降伏比鋼板を用いることを前提に金型やプレス工程を最適化すれば、一様伸びの劣化があったとしても問題とはならない。   Up to now, it has been said that an increase in yield ratio leads to deterioration of uniform elongation and deteriorates press formability, but this is a view on molding methods that depend on uniform elongation such as stretch forming. It does not apply to molding methods that do not depend on uniform elongation, such as bending molding, drawing molding, and stretch flange molding. In particular, as the press forming characteristics required for inner plate members, structural members, and suspension member steel plates to which hot-rolled steel plates are applied, stretch flangeability (burring properties) is important, and high yield ratio steel plates should be used. If the mold and press process are optimized based on the premise, even if there is a deterioration of uniform elongation, it does not matter.

このため、上記のような課題を解決する薄肉化の手段として、鋼板の高降伏比化は有効な解決手段であるといえる。特に、鋼板の高降伏比化は、鋼材単価を決定する指標となる鋼板の強度グレードの大きな上昇を伴わないうえ、薄肉化により鋼材使用量を削減できるため、自動車メーカーを始めとする需要家はコストアップなしに車体の軽量化を実現できることになる。   For this reason, it can be said that increasing the yield ratio of the steel sheet is an effective solution as a means for reducing the wall thickness to solve the above-described problems. In particular, increasing the yield ratio of steel sheets does not accompany a significant increase in the strength grade of steel sheets, which is an index for determining the unit price of steel materials, and can reduce the amount of steel materials used by reducing the thickness of the steel. This makes it possible to reduce the weight of the vehicle body without increasing costs.

鋼板の高降伏比化を実現するためには、(1)結晶粒の細粒化、(2)析出強化の適用の二つの手段がある。何れも金属材料の降伏現象に直接係わる転位運動の障害を導入するものである。ここでいう障害とは、前者では結晶粒界が該当し、後者では析出物が該当する。   In order to realize a high yield ratio of a steel sheet, there are two means: (1) refinement of crystal grains and (2) application of precipitation strengthening. Both introduce dislocation motion obstacles directly related to the yielding phenomenon of metallic materials. The obstacle here refers to a crystal grain boundary in the former and a precipitate in the latter.

現在、工業的に実現できる結晶粒の細粒化のための具体的手段としては、Nbの添加が知られている(例えば、非特許文献1参照。)。Nbの添加によって、熱間圧延中のオーステナイト粒の粒成長や再結晶が抑制され、更には、γ→α変態後のフェライト粒径も細粒化させることが可能となり、これによって、鋼板の降伏比を向上させることが可能となる。   At present, addition of Nb is known as a specific means for crystal grain refinement that can be industrially realized (see, for example, Non-Patent Document 1). By adding Nb, grain growth and recrystallization of austenite grains during hot rolling are suppressed, and further, the ferrite grain size after the γ → α transformation can be reduced, thereby yielding the steel sheet. The ratio can be improved.

一方、析出強化を適用した例として、熱間圧延後の熱延鋼板の鋼組織をフェライト単相の一様組織とし、更にそのフェライトをTiとMoの複合析出物で析出強化して、高バーリング性、高降伏強度かつ高強度を実現する技術が開示されている(例えば、特許文献1、2参照。)。   On the other hand, as an example of applying precipitation strengthening, the steel structure of the hot-rolled steel sheet after hot rolling is made into a uniform structure of a single phase of ferrite, and further, the ferrite is precipitation strengthened with a composite precipitate of Ti and Mo, and high burring. Technology that realizes high properties, high yield strength, and high strength is disclosed (for example, see Patent Documents 1 and 2).

因みに、従来、強度グレードで370〜490MPa級の引張強度を得るためにはTi等の析出強化元素が添加されることは一般的でなく、C−Si−Mn系成分を用いて、固溶強化若しくは組織強化により、この範囲内での所望の引張強度を得る手段が通常採られていた。   Incidentally, conventionally, it is not common to add precipitation strengthening elements such as Ti in order to obtain a tensile strength of 370 to 490 MPa as a strength grade, and solid solution strengthening using C-Si-Mn based components. Alternatively, a means for obtaining a desired tensile strength within this range is usually taken by strengthening the structure.

特開2002−322540号公報JP 2002-322540 A 特開2002−322541号公報JP 2002-322541 A

「鉄と鋼 Vol.57、No.11」1971年発行、社団法人日本鉄鋼協会出版、pp S624"Iron and Steel Vol.57, No.11" published in 1971, published by Japan Iron and Steel Institute, pp S624

しかしながら、非特許文献1のようにNbの添加により高降伏比化を図る場合、Nbによる再結晶の抑制によって面内異方性の大きい変態集合組織の形成を招くため、成形部品の板厚が圧延方向によって変動し、十分な均一性が得られない等の問題が生じてしまっていた。更に、面内異方性が大きいため、バーリング性を低下させてしまうという問題も生じていた。   However, when the yield ratio is increased by adding Nb as in Non-Patent Document 1, the formation of a transformation texture having a large in-plane anisotropy is caused by suppressing recrystallization by Nb. The problem fluctuates depending on the rolling direction, and sufficient uniformity cannot be obtained. Furthermore, since the in-plane anisotropy is large, there is a problem that the burring property is lowered.

また、特許文献1、2のようにTi等による析出強化によって高降伏比化を図る場合、析出強化による強化能を十分に発現させるために、巻き取り後のγ→α変態での相界面析出により析出物を微細分散させる必要があった。このために、この場合は、巻き取り時の熱延鋼板の温度をTi等の析出温度域である600℃前後としたうえで、この600℃前後の温度域においても熱延鋼板のミクロ組織がオーステナイトとなるよう必然的にMo、Mn等のオーステナイトフォーマー合金を多量に添加しなければならなかった。この結果、引張強度が590MPa以上となってしまい、本発明の目的とするところの強度グレードで370〜490MPa級の引張強度の熱延鋼板を得ることができなかった。   In addition, when a high yield ratio is achieved by precipitation strengthening with Ti or the like as in Patent Documents 1 and 2, in order to sufficiently develop the strengthening ability by precipitation strengthening, phase interface precipitation in the γ → α transformation after winding Therefore, it was necessary to finely disperse the precipitate. For this reason, in this case, the temperature of the hot-rolled steel sheet at the time of winding is set to around 600 ° C., which is the precipitation temperature range of Ti, etc., and the microstructure of the hot-rolled steel sheet is also in this temperature range around 600 ° C. In order to become austenite, a large amount of austenite former alloys such as Mo and Mn had to be added. As a result, the tensile strength became 590 MPa or more, and it was not possible to obtain a hot rolled steel sheet having a tensile strength of 370 to 490 MPa with the strength grade intended by the present invention.

更に、上述したような固溶強化は、その強化能が組織強化や析出強化の強化能と比較して小さいうえ、固溶強化元素であるMo、V等が高価であることからコスト面からは好ましい手段とは言えなかった。   Further, the solid solution strengthening as described above has a small strengthening ability compared with the strengthening ability of the structure strengthening and precipitation strengthening, and the solid solution strengthening elements such as Mo and V are expensive in terms of cost. It could not be said to be a preferable means.

また、上述したような組織強化(焼入れ強化)を用いる場合は、低温で変態する相を活用するため、熱間圧延後の冷却速度を速め、より低温で巻き取ることが必須となる。しかしながら、低温変態相を得るためには、巻き取り温度の狙いを局所的な温度むらの生じやすい遷移沸騰領域である400〜450℃に設定しなければならず、その的中率が悪いために材質バラツキや歩留の低下が生じることとなっていた。また、低温変態相の生成は、変態ひずみによる可動転位の導入により、むしろ降伏比を低下させてしまうので、本発明の目的とする強度グレードで370〜490MPa級の引張強度を得つつ高降伏比を得ることが困難であった。   Moreover, when using the structure strengthening (quenching strengthening) as described above, it is essential to increase the cooling rate after hot rolling and take up at a lower temperature in order to utilize a phase that transforms at a low temperature. However, in order to obtain a low-temperature transformation phase, the aim of the coiling temperature must be set to 400 to 450 ° C., which is a transition boiling region where local temperature irregularities are likely to occur, and the accuracy is poor. Material variations and yield reduction were caused. In addition, since the generation of the low temperature transformation phase lowers the yield ratio rather by introducing movable dislocation due to transformation strain, the high yield ratio while obtaining the tensile strength of 370 to 490 MPa class with the intended strength grade of the present invention. It was difficult to get.

そこで、本発明は、上述した問題点に鑑みて案出されたものであり、その目的とすることころは、強度グレードで370〜490MPa級の引張強度を得つつ、バーリング性に優れた高降伏比型熱延鋼板及びその製造方法を提供することにある。   Therefore, the present invention has been devised in view of the above-mentioned problems, and the object is to obtain a high yield with excellent burring while obtaining a tensile strength of 370 to 490 MPa class as a strength grade. It is to provide a specific hot rolled steel sheet and a method for producing the same.

本発明は、現在通常に採用されている製造設備により工業的規模で生産されている、強度グレードで370〜490MPa級の引張強度を有する鋼板の製造プロセスを念頭において、上記課題を解決するためになされたものである。本発明は、Ti等の析出強化元素を添加することにより、これまで得られなかった高降伏比を得られ、これにより強度グレードで半〜1グレード上の鋼板を適用した場合と同等の設計強度が期待でき、かつ優れたバーリング性により、厳しい伸びフランジ加工が要求される部品でも容易に成形できる、バーリング性に優れた高降伏比型熱延鋼板を提供することを第1の目的としている。また、本発明は、このような熱延鋼板を安価に安定して製造でき、製造時にはMo、Mn等のオーステナイトフォーマー合金を多量に添加することなく、さらに遷移沸騰領域である400℃前後の巻き取り温度を回避できるために歩留り、操業性等の製造容易性にも優れているバーリング性に優れた高降伏比型熱延鋼板の製造方法を提供することを第2の目的とするものである。   In order to solve the above-mentioned problems, the present invention takes into account the manufacturing process of a steel sheet having a tensile strength of 370 to 490 MPa as a strength grade, which is produced on an industrial scale by a production facility that is currently normally employed. It was made. In the present invention, by adding a precipitation strengthening element such as Ti, a high yield ratio that has not been obtained so far can be obtained, and as a result, a design strength equivalent to the case where a steel sheet of a half to one grade in strength grade is applied. The first object of the present invention is to provide a high yield ratio hot-rolled steel sheet with excellent burring properties that can be easily formed even with parts that require severe stretch flange processing due to excellent burring properties. In addition, the present invention can stably produce such a hot-rolled steel sheet at a low cost, and without adding a large amount of an austenite former alloy such as Mo and Mn at the time of production, further, the transition boiling region is around 400 ° C. The second object is to provide a method for producing a high yield ratio hot rolled steel sheet having excellent burring properties, which is excellent in yield, operability, and other manufacturability because it can avoid the coiling temperature. is there.

即ち、第1の発明に係るバーリング性に優れた高降伏比型熱延鋼板は、質量%で、C :0.03〜0.07%、Si:0.005〜1.8%、Mn:0.1〜1.9%、P ≦0.05%(0%を含まない)、S ≦0.005%(0%を含まない)、Al:0.001〜0.1%、N ≦0.005%、(0%を含まない)Nb:0.002〜0.008%、を含有するとともにS含有量(質量%)を[S]、N含有量(質量%)を[N]とした場合に、下記数式(1)で[Ti]で表される量(質量%)のTiを含有し、Si含有量(質量%)を[Si]、Mn含有量(質量%)を[Mn]とした場合に、下記数式(2)を満足し、残部がFe及び不可避的不純物からなる鋼板であって、そのミクロ組織の90体積%以上が初析フェライトであり、平均結晶粒径が5μm〜12μmであるとともに、展伸度が1.2〜3であり、上記ミクロ組織の結晶粒内におけるTiCからなる析出物の平均粒径が1.5〜3nmであるとともに、その密度が1×1016〜5×1017個/cmであることを特徴とする。

Figure 2011012308
・・・(1)
Figure 2011012308
・・・(2) That is, the high yield ratio hot rolled steel sheet having excellent burring properties according to the first invention is in mass%, C: 0.03 to 0.07%, Si: 0.005 to 1.8%, Mn: 0.1 to 1.9%, P ≦ 0.05% (not including 0%), S ≦ 0.005% (not including 0%), Al: 0.001 to 0.1%, N ≦ 0.005%, Nb (excluding 0%): 0.002 to 0.008%, S content (% by mass) [S], N content (% by mass) [N] In the following formula (1), Ti is contained in an amount (mass%) represented by [Ti], Si content (mass%) is [Si], and Mn content (mass%) is [ Mn], the following formula (2) is satisfied, the balance is a steel plate made of Fe and inevitable impurities, and 90% by volume or more of the microstructure is pro-eutectoid ferrite. Yes, the average crystal grain size is 5 μm to 12 μm, the degree of spread is 1.2 to 3, and the average grain size of the precipitate made of TiC in the crystal grains of the microstructure is 1.5 to 3 nm. In addition, the density is 1 × 10 16 to 5 × 10 17 pieces / cm 3 .
Figure 2011012308
... (1)
Figure 2011012308
... (2)

第2の発明に係るバーリング性に優れた高降伏比型熱延鋼板は、第1の発明において、更に、質量%で、Ca :0.0005〜0.005%、REM:0.0005〜0.02%の何れか一種又は二種を含有することを特徴とする。   The high yield ratio hot-rolled steel sheet having excellent burring properties according to the second invention is the same as that in the first invention, further in mass%, Ca: 0.0005-0.005%, REM: 0.0005-0. 0.02% of any one or two kinds are contained.

第3の発明に係るバーリング性に優れた高降伏比型熱延鋼板は、第1又は第2の発明において、表面に亜鉛めっきが施されていることを特徴とする。   The high yield ratio hot-rolled steel sheet having excellent burring properties according to the third invention is characterized in that, in the first or second invention, the surface is galvanized.

第4の発明に係るバーリング性に優れた高降伏比型熱延鋼板の製造方法は、第1〜第3の何れか1つに記載の成分を含有する鋼片を1000℃以上に加熱した後に粗圧延を行ない、最終段とその前段の合計圧下率が30〜45%である仕上圧延をその圧延終了温度を880℃以上の温度域として行い、仕上圧延終了後に1.5〜3.5秒空冷した後に750〜620℃の温度域まで20〜50℃/secの冷却速度で冷却し、その後に1〜5秒空冷し、更に620〜480℃の温度域まで2〜10℃/secの冷却速度で冷却した後に巻き取ることを特徴とする。   The method for producing a high yield ratio hot rolled steel sheet having excellent burring properties according to the fourth invention, after heating the steel slab containing the component according to any one of the first to third to 1000 ° C. or higher. Rough rolling is performed, and finish rolling in which the total reduction ratio of the final stage and the preceding stage is 30 to 45% is performed in a temperature range of 880 ° C. or more, and 1.5 to 3.5 seconds after finishing rolling. After air cooling, it is cooled to a temperature range of 750 to 620 ° C. at a cooling rate of 20 to 50 ° C./sec, then air cooled for 1 to 5 seconds, and further cooled to a temperature range of 620 to 480 ° C. at 2 to 10 ° C./sec. It is characterized by winding after cooling at a speed.

第5の発明に係るバーリング性に優れた高降伏比型熱延鋼板の製造方法は、第4の発明において、上記鋼片の加熱時において、C含有量(質量%)を[C]とした場合に下記数式(3)を満足する温度SRT(℃)以上に加熱することを特徴とする。

Figure 2011012308
・・・(3) The method for producing a high yield ratio hot rolled steel sheet having excellent burring properties according to the fifth invention is the fourth invention, wherein the C content (% by mass) is [C] when the steel slab is heated. In this case, heating is performed to a temperature SRT (° C.) or higher that satisfies the following formula (3).
Figure 2011012308
... (3)

第6の発明に係るバーリング性に優れた高降伏比型熱延鋼板の製造方法は、第4又は第5の発明において、上記仕上圧延を、その圧延開始温度を1050℃以上の温度域として行うことを特徴とする。   The method for producing a high yield ratio hot rolled steel sheet having excellent burring properties according to the sixth aspect of the invention is the fourth or fifth aspect, wherein the finish rolling is performed at a rolling start temperature of 1050 ° C. or higher. It is characterized by that.

第7の発明に係るバーリング性に優れた高降伏比型熱延鋼板の製造方法は、第4〜第6の何れか1つの発明において、上記鋼片を粗圧延して得られた粗バーを、当該粗圧延終了から上記仕上圧延開始までの間及び/又は上記仕上圧延中に加熱することを特徴とする。   A method for producing a high yield ratio hot rolled steel sheet having excellent burring properties according to a seventh aspect of the present invention is the method according to any one of the fourth to sixth aspects, wherein a rough bar obtained by rough rolling the steel slab is obtained. The heating is performed from the end of the rough rolling to the start of the finish rolling and / or during the finish rolling.

第8の発明に係るバーリング性に優れた高降伏比型熱延鋼板の製造方法は、第4〜第7の何れか1つの発明において、上記巻き取り後に得られた熱延鋼板を亜鉛めっき浴中に浸積させてその表面を亜鉛めっきすることを特徴とする。   According to an eighth aspect of the present invention, there is provided a method for producing a high yield ratio hot rolled steel sheet having excellent burring properties. In any one of the fourth to seventh aspects of the present invention, the hot rolled steel sheet obtained after the winding is galvanized. It is characterized by being dipped in and galvanizing the surface.

第9の発明に係るバーリング性に優れた高降伏比型熱延鋼板の製造方法は、第8の発明において、上記熱延鋼板を亜鉛めっきした後、合金化処理することを特徴とする。   The method for producing a high yield ratio hot rolled steel sheet having excellent burring properties according to the ninth invention is characterized in that, in the eighth invention, the hot rolled steel sheet is galvanized and then alloyed.

第1〜第9の発明によれば、強度グレードで370〜490MPa級の引張強度を有し、降伏比が高いうえバーリング性に優れ、更には面内異方性が小さい熱延鋼板を得ることが可能となっている。このように高い降伏比と優れたバーリング性を得つつ強度グレードで370〜490MPa級の引張強度を得ることが可能となっているので、強度グレードで半〜1グレード上の鋼板を適用した場合と同等の設計強度が期待できるとともに、優れたバーリング性により厳しい伸びフランジ加工が要求される部品でも容易に成形することが可能となる。このため、本発明は、工業的価値が高いものであるといえる。   According to the first to ninth inventions, a hot-rolled steel sheet having a tensile strength of 370 to 490 MPa as a strength grade, a high yield ratio, excellent burring properties, and a small in-plane anisotropy is obtained. Is possible. In this way, it is possible to obtain a tensile strength of 370 to 490 MPa class with a strength grade while obtaining a high yield ratio and excellent burring properties. Equivalent design strength can be expected, and excellent burring makes it possible to easily form parts that require severe stretch flange processing. For this reason, it can be said that the present invention has a high industrial value.

第4〜第9の発明によれば、Mo、Mn等のオーステナイトフォーマー合金を多量に添加していないにも関わらず、Tiによる析出強化によって高降伏比化を図りつつ、従来に得ることのできなかった強度グレードで370〜490MPa級の引張強度の熱延鋼板を得ることが可能となっている。また、巻き取り温度を遷移沸騰領域である400℃前後にする必要がないため、歩留り、操業性等の製造容易性が優れたものとなっている。   According to the fourth to ninth inventions, a high yield ratio is obtained by precipitation strengthening with Ti, although a large amount of austenite former alloy such as Mo and Mn is not added. It is possible to obtain a hot-rolled steel sheet having a tensile strength of 370 to 490 MPa with a strength grade that could not be achieved. In addition, since it is not necessary to set the winding temperature to around 400 ° C., which is the transition boiling region, the ease of manufacturing such as yield and operability is excellent.

有効Ti量(Ti*)に対する降伏比の関係を示す図である。It is a figure which shows the relationship of the yield ratio with respect to effective Ti amount (Ti *). ミクロ組織の平均結晶粒径と展伸度の関係において、降伏比とΔrの測定結果を示す図である。It is a figure which shows the measurement result of yield ratio and (DELTA) r in the relationship between the average crystal grain diameter of a microstructure, and a degree of elongation. 析出物の平均粒径及び密度に対する降伏比の関係を示す図である。It is a figure which shows the relationship of the yield ratio with respect to the average particle diameter and density of a precipitate.

以下、本発明を実施するための形態として、バーリング性に優れた高降伏比型熱延鋼板及びその製造方法について詳細に説明する。   Hereinafter, as a form for carrying out the present invention, a high yield ratio hot rolled steel sheet excellent in burring properties and a method for producing the same will be described in detail.

なお、本発明は、引張強度についての強度グレードで370〜490MPa級の範囲の鋼板を得ることを目的とするものであり、具体的には、製品公差を含めて引張強度で370MPa以上540MPa未満の範囲の鋼板を得ることを目的としている。また、本発明は、降伏比が85%以上であり、バーリング性を示す指標となる穴広げ率が120%以上であり、面内異方性を示す指標となる|Δr|が0.3以下の鋼板を得ることを目的としている。   In addition, this invention aims at obtaining the steel plate of the range of 370-490MPa grade by the strength grade about tensile strength, and specifically, it is 370MPa or more and less than 540MPa in tensile strength including a product tolerance. The aim is to obtain a range of steel sheets. Further, according to the present invention, the yield ratio is 85% or more, the hole expansion ratio which is an index indicating burring property is 120% or more, and | Δr | which is an index indicating in-plane anisotropy is 0.3 or less The purpose is to obtain a steel plate.

まず、本発明を完成するに至った基礎的研究結果について説明する。   First, the basic research results that led to the completion of the present invention will be described.

発明者らは、370MPa以上540MPa未満の範囲の引張強度で面内異方性を抑制しながら、降伏比を向上させ、さらには優れたバーリング性を有する熱延鋼板を得るために鋭意研究を重ねた結果、以下の点が重要であるとの結論に至った。   The inventors have conducted extensive research to obtain a hot-rolled steel sheet that improves the yield ratio and further has excellent burring properties while suppressing in-plane anisotropy with a tensile strength in the range of 370 MPa to less than 540 MPa. As a result, we came to the conclusion that the following points are important.

即ち、上述のような性質を持つ熱延鋼板を得る観点からは、第1に、Tiの添加による析出強化とNbの添加による細粒化で降伏比を向上させ、この一方で面内異方性を助長するNbの上限を規定すること、第2に、引張強度を370MPa以上540MPa未満の範囲に抑えるためにTi、Mn、Si等の合金元素を極力低減すること、第3に、目標とする降伏比及び|Δr|を得るためにミクロ組織の平均結晶粒径及び展伸度を規定すること、第4に、TiCによる析出強化能を十分に発揮させるためにミクロ組織の結晶粒内におけるTiCからなる析出物の平均粒径及び密度の範囲を規定すること、これらの4点が重要であると見出した。   That is, from the viewpoint of obtaining a hot-rolled steel sheet having the above-mentioned properties, first, the yield ratio is improved by precipitation strengthening by addition of Ti and refinement by addition of Nb. Defining the upper limit of Nb that promotes the property, and secondly, reducing alloy elements such as Ti, Mn, and Si as much as possible in order to keep the tensile strength in the range of 370 MPa or more and less than 540 MPa, The average grain size and elongation of the microstructure to obtain the yield ratio and | Δr | to achieve, and fourth, to sufficiently exhibit the precipitation strengthening ability by TiC, It was found that these four points are important to define the range of the average particle size and density of the precipitate made of TiC.

そこで、発明者らは、上記のような新しい知見に基づいて、引張強度、降伏比及びバーリング性を高度な次元で両立できるような化学成分、ミクロ組織及び析出物の条件について詳細な調査及び実験を実施した。   Therefore, the inventors have conducted detailed investigations and experiments on chemical components, microstructures, and precipitate conditions that can achieve a high level of tensile strength, yield ratio, and burring properties based on the above new findings. Carried out.

図1は、この結果得られた、下記数式(4)で表されるTi*の質量分率に対する降伏比の関係を示す図である。なお、Ti*とは、化学量論を考慮して得られる、Cと結合してTiCとして析出強化に寄与できる有効Ti量を意味しており、下記数式(4)における[Ti]、[N]及び[S]は、それぞれ鋼板中でのTi、N、Sについての質量%での含有量のことを意味している。

Figure 2011012308
・・・(4) FIG. 1 is a diagram showing the relationship of the yield ratio with respect to the mass fraction of Ti * expressed by the following mathematical formula (4) obtained as a result. Note that Ti * means an effective amount of Ti that can be obtained by considering stoichiometry and can contribute to precipitation strengthening as TiC by combining with C. [Ti], [N] in the following formula (4) ] And [S] mean the contents in mass% of Ti, N, and S in the steel sheet, respectively.
Figure 2011012308
... (4)

熱延鋼板の降伏比を本発明が目的とする85%以上に向上させるためには、フェライト中に十分量のTiCの析出物を析出させる必要があり、このためには、熱延鋼板の製造工
程において、比較的高温のオーステナイト域で析出するTiN、TiS若しくはTi等の粗大析出物が析出した後もCと結合する有効Ti量(Ti*)が、図1に示すように0.02%以上必要なことが判明した。
In order to improve the yield ratio of the hot-rolled steel sheet to 85% or more, which is the object of the present invention, it is necessary to deposit a sufficient amount of TiC precipitates in the ferrite. As shown in FIG. 1, the effective amount of Ti (Ti *) that binds to C even after coarse precipitates such as TiN, TiS, or Ti 4 C 2 S 2 precipitated in a relatively high-temperature austenite region are precipitated. It was found that 0.02% or more is necessary.

このことを踏まえて更なる調査及び実験を実施した結果、本発明が目的とする引張強度と降伏比とを得るうえで、Tiは、下記の数式(1)で[Ti]で表される量を鋼板中に含有していればよいことが判明した。なお、下記の数式(1)におけるTiの下限値は、上述の数式(4)を展開して得られる数値であり、降伏比を向上させるうえで満足すべき数値である。また、Tiの上限値は、引張強度を低減させて370MPa以上540MPa未満の範囲に収めるうえで満足すべき数値である。

Figure 2011012308
・・・(1) As a result of conducting further investigations and experiments based on this fact, in order to obtain the intended tensile strength and yield ratio of the present invention, Ti is an amount represented by [Ti] in the following formula (1). It has been found that it is sufficient to contain in the steel sheet. In addition, the lower limit value of Ti in the following mathematical formula (1) is a numerical value obtained by developing the above mathematical formula (4), and is a numerical value that should be satisfied in improving the yield ratio. Further, the upper limit value of Ti is a numerical value that should be satisfied when the tensile strength is reduced to fall within the range of 370 MPa to less than 540 MPa.
Figure 2011012308
... (1)

また、Ti添加を前提に引張強度を370MPa以上540MPa未満の範囲に収めるうえで、下記の数式(2)を満足するように、SiとMnとを鋼板中に含有していればよいことが判明した。下記の数式(2)における[Si]+[Mn]の下限値は、引張強度を増大させて370MPa以上540MPa未満の範囲にするうえで満足すべき数値であり、上限値は、引張強度を低減させて370MPa以上540MPa未満の範囲にするうえで満足すべき数値である。なお、下記数式(2)における[Si]及び[Mn]は、それぞれ鋼板中でのSi及びMnについての質量%での含有量のことを意味している。

Figure 2011012308
・・・(2) Moreover, it turned out that Si and Mn should be contained in the steel sheet so that the following mathematical formula (2) is satisfied when the tensile strength falls within the range of 370 MPa or more and less than 540 MPa on the assumption of Ti addition. did. The lower limit value of [Si] + [Mn] in the following formula (2) is a numerical value that should be satisfied when the tensile strength is increased to a range of 370 MPa to less than 540 MPa, and the upper limit value reduces the tensile strength. It is a numerical value that should be satisfied when the range is 370 MPa or more and less than 540 MPa. In addition, [Si] and [Mn] in the following numerical formula (2) mean the contents in mass% with respect to Si and Mn in the steel sheet, respectively.
Figure 2011012308
... (2)

また、図2は、詳細な調査及び実験の結果得られた、ミクロ組織の平均結晶粒径及び展伸度に対する降伏比及び|Δr|の関係を示す図である。この図に示すように、ミクロ組織の粒径の粗大化に伴い降伏比が低下する傾向があり、平均結晶粒径が10μm超となった辺りでその傾向が強くなり、平均結晶粒径が12μm超では降伏比が目標値である85%を割り込むことが分かった。また、図2に示すように、ミクロ組織の展伸度の増大に伴い|Δr|が低下する傾向があり、展伸度が3超では|Δr|が目標値である0.3超となることが分かった。   FIG. 2 is a graph showing the relationship between the yield ratio and | Δr | with respect to the average crystal grain size and elongation of the microstructure obtained as a result of detailed investigation and experiment. As shown in this figure, the yield ratio tends to decrease with the coarsening of the grain size of the microstructure, and the tendency becomes stronger when the average crystal grain size exceeds 10 μm, and the average crystal grain size becomes 12 μm. It has been found that the yield ratio falls below the target value of 85%. In addition, as shown in FIG. 2, | Δr | tends to decrease with an increase in the degree of extension of the microstructure, and when the degree of extension exceeds 3, | Δr | becomes more than 0.3, which is the target value. I understood that.

また、図3は、詳細な調査及び実験の結果得られた、ミクロ組織の結晶粒内におけるTiCからなる析出物の平均粒径及び密度に対する降伏比の関係を示す図である。この図に示すように、析出物が低密度化するに伴い降伏比が低下する傾向があり、密度が1×1016個/cm未満の場合に目標値である85%を割り込むことがわかった。また、降伏比を85%とするためには、析出物の平均粒径を1.5〜3nmとすることが重要であることがわかった。これは、平均粒径が1.5nmの場合、析出状態が亜時効であり十分個数の析出物が析出しておらず、その密度が1×1016個/cm未満となるためであり、平均粒径が3nmの場合、析出状態が過時効でありオストワルド成長によって析出物の個数が低減してしまい、その密度が1×1016個/cm未満となるためであると考えられる。 FIG. 3 is a diagram showing the relationship of the yield ratio to the average grain size and density of precipitates made of TiC in the crystal grains of the microstructure obtained as a result of detailed investigation and experiment. As shown in this figure, the yield ratio tends to decrease as the density of the precipitates decreases, and it is found that the target value of 85% is interrupted when the density is less than 1 × 10 16 pieces / cm 3. It was. Further, it was found that it is important that the average particle size of the precipitates is 1.5 to 3 nm in order to obtain a yield ratio of 85%. This is because when the average particle size is 1.5 nm, the precipitation state is sub-aging and a sufficient number of precipitates are not deposited, and the density is less than 1 × 10 16 pieces / cm 3 . When the average particle size is 3 nm, the precipitation state is overaging, and the number of precipitates is reduced by Ostwald growth, and the density becomes less than 1 × 10 16 particles / cm 3 .

上記思想に基づいてさらに詳細な調査及び実験を実施した結果、フェライトがTiCにより十分に析出強化され、高降伏比となるうえ面内異方性が小さく、バーリング性に優れるという特性を持つ熱延鋼板を得るためには、そのミクロ組織の90面積%以上がポリゴナルな形状の初析フェライトであり、ミクロ組織の平均結晶粒径が5μm〜12μmであるとともに、ミクロ組織の展伸度が1.2〜3であり、ミクロ組織の結晶粒内におけるTiCからなる析出物の平均粒径が1.5〜3nmであるとともに、その密度が1×1016〜5×1017個/cmであることが必要であると判明した。 As a result of further detailed investigations and experiments based on the above idea, as a result of hot rolling with the characteristics that ferrite is sufficiently precipitation strengthened by TiC, the yield ratio is high, the in-plane anisotropy is small, and the burring property is excellent. In order to obtain a steel sheet, 90% by area or more of the microstructure is polygonal pro-eutectoid ferrite, the average crystal grain size of the microstructure is 5 μm to 12 μm, and the extension of the microstructure is 1. The average particle size of precipitates made of TiC in the crystal grains of the microstructure is 1.5 to 3 nm, and the density thereof is 1 × 10 16 to 5 × 10 17 pieces / cm 3 . It turned out to be necessary.

また、発明者等は、上述のような成分範囲等からなり目標とする性質を持つ熱延鋼板の製造方法を得る観点からは、次の点が重要であることを見出した。即ち、Mn等のオーステナイトフォーマー合金の低減によりγ→α変態点温度が上昇するため、600℃前後での巻き取り後のγ→α変態とγ/α相界面での析出物の析出とを同時に促進することが不可能となり、析出物の析出状態が高密度である熱延鋼板が得られなくなってしまったので、析出物の析出状態が高密度である熱延鋼板を得ることのできる新たなプロセスを構築すること(初析フェライトの活用)が重要となる。   In addition, the inventors have found that the following points are important from the viewpoint of obtaining a method for producing a hot-rolled steel sheet having the target properties, including the above-described component ranges. That is, since the temperature of the γ → α transformation point increases due to the reduction of the austenite former alloy such as Mn, the γ → α transformation after winding at around 600 ° C. and the precipitation of precipitates at the γ / α phase interface. At the same time, it becomes impossible to promote and a hot-rolled steel sheet with a high density of precipitates cannot be obtained, so a new hot-rolled steel sheet with a high density of precipitates can be obtained. It is important to build a simple process (utilization of proeutectoid ferrite).

従来技術のようにγ→α変態の変態点温度が600℃前後であれば、巻き取り時の温度を600℃前後とした場合において、TiCのγでの溶解度積とαでの溶解度積との差を駆動力としてγ/α相界面で優先的に析出核が生成し、その後の析出核は、その温度が600℃程度であるため成長せず、析出物が粗大化することにより低密度化することはない。   If the transformation point temperature of the γ → α transformation is around 600 ° C. as in the prior art, the solubility product of TiC at γ and the solubility product at α when the winding temperature is around 600 ° C. Precipitation nuclei are preferentially generated at the γ / α phase interface using the difference as the driving force, and the subsequent precipitation nuclei do not grow because the temperature is about 600 ° C., and the density is reduced by coarsening the precipitates. Never do.

一方、本発明のように、鋼板の成分としてMn等のオーステナイトフォーマー合金の添加を抑えたことによってγ→α変態の変態点温度が高温となっている場合、熱間圧延後から巻き取りまでの間の冷却中にγ→α変態が開始してしまう。この場合に、熱間圧延後から巻き取りまで一様に冷却してしまうと、従来より高温でγ/α相界面に優先的にTiCが核生成されてしまい、析出したTiCは従来より高温で析出してしまっているため、冷却が短時間であっても析出核が成長し、析出物が粗大化することにより低密度化してしまい、析出物の析出状態が高密度の熱延鋼板を得られなくなってしまう。   On the other hand, when the transformation point temperature of the γ → α transformation is high due to the suppression of the addition of austenite former alloy such as Mn as a component of the steel plate as in the present invention, from hot rolling to winding The γ → α transformation starts during the cooling. In this case, if it is uniformly cooled from hot rolling to winding, TiC is preferentially nucleated at the γ / α phase interface at a higher temperature than before, and the precipitated TiC is higher than before. Precipitation nuclei grow even if cooling is performed for a short time, and the precipitates become coarser, resulting in a lower density, resulting in a hot-rolled steel sheet with a high density of precipitates. It will not be possible.

そこで、このような熱間圧延後から巻き取りまでの間の冷却中にγ→α変態が生じる場合であっても析出強化を有効に活用できるような冷却制御プロセスについて検討したところ、このためには、γ/αの変態界面での相界面析出を活用するのではなく、Tiを過飽和に固溶したフェライトからできる限り均質にTiCを核生成させ、さらにその析出核を成長させないことが重要であると考えるに至った。   Therefore, we investigated a cooling control process that can effectively utilize precipitation strengthening even when γ → α transformation occurs during cooling from hot rolling to winding. However, it is important not to use phase interface precipitation at the γ / α transformation interface, but to nucleate TiC as homogeneously as possible from ferrite in which Ti is dissolved in supersaturation as much as possible, and not to grow the precipitation nuclei. I came to think that there was.

具体的には、Tiを過飽和に固溶したフェライトからできる限り均質にTiCを核生成させるために、γ→α変態時にオーステナイトを拡散変態させるのではなく、マッシブ変態させるのが重要であると判明した。即ち、熱間圧延後においてγ→α変態前にマッシブ変態が促進される温度域まで速やかに冷却を行い、その温度域で所定時間空冷をすることによってオーステナイトを十分にマッシブ変態させることが重要となり、これによって、Tiを過飽和に固溶したフェライトを得ると共に、フェライト相中に均質にTiCを核生成させることが可能となることが判明した。更に、その析出核を成長させないためには、マッシブ変態が促進される温度域での空冷後に核成長が困難となる温度域まで所定の冷却速度で冷却することが重要であると判明した。これによって、TiCの析出状態が高密度の熱延鋼板を得られ、TiCによる析出強化能を十分に発揮させることが可能となる。   Specifically, in order to nucleate TiC as homogeneously as possible from ferrite in which Ti is supersaturated, it has been found that it is important not to diffusely transform austenite during the γ → α transformation but to perform a massive transformation. did. That is, after hot rolling, it is important to quickly cool to a temperature range in which massive transformation is promoted before γ → α transformation, and to sufficiently austenite to transform massively by air cooling in that temperature range for a predetermined time. As a result, it has been found that it is possible to obtain ferrite in which Ti is supersaturated and to uniformly nucleate TiC in the ferrite phase. Furthermore, in order not to grow the precipitation nuclei, it has been found that it is important to cool at a predetermined cooling rate to a temperature range in which nuclei growth becomes difficult after air cooling in a temperature range in which massive transformation is promoted. As a result, a hot-rolled steel sheet having a high TiC precipitation state can be obtained, and the precipitation strengthening ability of TiC can be sufficiently exhibited.

上述のような知見を踏まえて更なる調査及び実験をしたところ、目的とする熱延鋼板のような数値条件のミクロ組織、析出物を得るための熱間圧延及びこの後の冷却条件は、具体的には、最終段とその前段の合計圧下率が30〜45%の仕上圧延をその圧延終了温度
を880℃以上の温度域として行い、仕上圧延終了後に1.5〜3.5秒空冷した後に750〜620℃の温度域まで20〜50℃/secの冷却速度で冷却し、当該温度域で1〜5秒空冷し、更に620〜480℃の温度域まで2〜10℃/secの冷却速度で冷却した後に巻き取ることが必要であると突き止めた。
Based on the above findings, further investigations and experiments have revealed that the microstructure of the numerical conditions such as the intended hot-rolled steel sheet, hot rolling to obtain precipitates, and the subsequent cooling conditions are concrete. Specifically, finish rolling in which the total reduction ratio of the final stage and the preceding stage is 30 to 45% is performed in a temperature range of 880 ° C. or higher, and air cooling is performed for 1.5 to 3.5 seconds after finishing rolling. After cooling to a temperature range of 750 to 620 ° C. at a cooling rate of 20 to 50 ° C./sec, air cooling is performed for 1 to 5 seconds in the temperature range, and further cooling to 2 to 10 ° C./sec to a temperature range of 620 to 480 ° C. It was determined that it was necessary to wind up after cooling at speed.

本発明は、上述のような知見に基づき案出されたものであり、以下に説明するような構成要素を有するものである。以下、各構成要素の限定理由について説明する。   The present invention has been devised based on the knowledge as described above, and has constituent elements as described below. Hereinafter, the reason for limitation of each component will be described.

まず、本発明の化学成分の限定理由について詳細に説明する。なお、以下では、組成における質量分率に関する記載を単に%として記載する。   First, the reasons for limiting the chemical components of the present invention will be described in detail. In the following, the description regarding the mass fraction in the composition is simply expressed as%.

Cは、本発明において最も重要な元素の一つである。Cを0.07%超含有していると伸びフランジ割れの起点となる炭化物が増加し、バーリング性が劣化するので、C含有量は0.07%以下とする。また、C含有量が0.03%未満では、析出強化により降伏比を向上させるのに十分なTiCが得られないので、C含有量は0.03%以上とする。   C is one of the most important elements in the present invention. If the C content exceeds 0.07%, the carbide that becomes the starting point of stretch flange cracking increases and burring properties deteriorate, so the C content is set to 0.07% or less. Further, if the C content is less than 0.03%, TiC sufficient to improve the yield ratio by precipitation strengthening cannot be obtained, so the C content is set to 0.03% or more.

Siは、その含有量が0.005%未満では伸びフランジ割れの起点となる鉄炭化物の冷却中の析出が増大し、バーリング性が低下してしまうので、0.005%以上添加するものとする。また、Siは、その含有量が1.8%超であると、固溶強化により引張強度が上昇しすぎてしまい、引張強度が540MPa以上となってしまうので、1.8%以下添加するものとする。また、Siは、下記の数式(2)を満足するように添加する。   If the content of Si is less than 0.005%, precipitation during cooling of iron carbide, which becomes the starting point of stretch flange cracking, increases and burring properties deteriorate, so 0.005% or more should be added. . Further, if the content of Si exceeds 1.8%, the tensile strength increases excessively due to solid solution strengthening, and the tensile strength becomes 540 MPa or more, so 1.8% or less is added. And Si is added so as to satisfy the following formula (2).

Mnは、固溶強化元素として鋼板の引張強度に寄与するものであるので、必要な引張強度に応じて添加する。Mnは、その含有量が0.1%未満ではその効果が失われ、必要な引張強度が得られなくなるので、0.1%以上添加する。また、Mnは、その含有量が1.9%超であると、固溶強化や焼入れ強化により引張強度が上昇しすぎてしまい、引張強度が540MPa以上となってしまうので、1.9%以下添加する。また、Mnは、下記の数式(2)を満足するように添加する。なお、Mn以外にSによる熱間割れの発生を抑制する元素が十分に添加されない場合には、質量%で、[Mn]/[S]≧20となる量のMnを添加することが望ましい。   Since Mn contributes to the tensile strength of the steel sheet as a solid solution strengthening element, it is added according to the required tensile strength. If the content of Mn is less than 0.1%, the effect is lost and the necessary tensile strength cannot be obtained, so 0.1% or more is added. Further, if the content of Mn is more than 1.9%, the tensile strength increases excessively due to solid solution strengthening or quenching strengthening, and the tensile strength becomes 540 MPa or more, so 1.9% or less. Added. Mn is added so as to satisfy the following formula (2). In addition, when the element which suppresses the generation | occurrence | production of the hot crack by S other than Mn is not fully added, it is desirable to add the quantity of Mn of [Mn] / [S]> = 20 by mass%.

SiとMnは、何れも固溶強化元素であるので、上述したように370MPa以上540MPa未満の引張強度を得る観点から、下記数式(2)を満足するように添加するものとする。[Si]+[Mn]が(1.38−18.5×[Ti])%未満では、引張強度が370MPa未満となってしまい、(3.23−18.5×[Ti])%超では引張強度が540MPa以上となってしまい、本発明の目的とする引張強度が得られない。また、SiとMnとは、圧延終了後の冷却中におけるγ→α変態点温度を制御するという観点からも、下記数式(2)における上限値以下である必要がある。[Si]+[Mn]が(3.23−18.5×[Ti])%未満では、焼入れ性が上昇してAr変態点温度が低温になってしまい、この結果、圧延終了後の3段階目の冷却工程で行なう空冷保持中にTiCによる析出が起こらなくなり、析出強化の効果が得られなくなる恐れがある。これらの数値条件は、経験に基づき得られたものである。

Figure 2011012308
・・・(2) Since Si and Mn are both solid solution strengthening elements, they are added so as to satisfy the following formula (2) from the viewpoint of obtaining a tensile strength of 370 MPa or more and less than 540 MPa as described above. When [Si] + [Mn] is less than (1.38-18.5 × [Ti])%, the tensile strength is less than 370 MPa, and exceeds (3.23-18.5 × [Ti])%. In this case, the tensile strength becomes 540 MPa or more, and the intended tensile strength of the present invention cannot be obtained. Further, Si and Mn are required to be not more than the upper limit value in the following formula (2) from the viewpoint of controlling the γ → α transformation point temperature during cooling after completion of rolling. When [Si] + [Mn] is less than (3.23-18.5 × [Ti])%, the hardenability is increased and the Ar 3 transformation point temperature becomes low. As a result, after the end of rolling, Precipitation due to TiC does not occur during the air-cooled holding performed in the third-stage cooling step, and the effect of precipitation strengthening may not be obtained. These numerical conditions are obtained based on experience.
Figure 2011012308
... (2)

Pは、不純物であり低いほど望ましく、0.05%超含有するとバーリング性をはじめ
とした加工性や溶接性に悪影響を及ぼすので、その含有量を0.05%以下とする。ただし、バーリング性や溶接性を考慮すると、Pの含有量は0.02%以下であることが望ましい。なお、Pの含有量は0%となることはない。
The lower the content of P, the more desirable it is, and if it exceeds 0.05%, the workability and weldability including burring properties are adversely affected, so the content is made 0.05% or less. However, in consideration of burring properties and weldability, the P content is preferably 0.02% or less. Note that the P content is never 0%.

Sは、熱間圧延時の割れを引き起こすばかりでなく、多すぎるとバーリング性を劣化させるA系介在物を生成する。また、Sは、Cよりも高温にてTiと析出物を形成して所望のCを固定するのに有効な有効Ti量を減少させる。このため、Sは、極力低減させるべきであるが、その含有量が0.005%以下ならば許容できる範囲である。さらに高いバーリング性が要求される場合は、Sの含有量が0.003以下であることが望ましい。なお、Sの含有量は0%となることはない。   S not only causes cracking during hot rolling, but if it is too much, it produces A-based inclusions that degrade burring properties. Further, S reduces the effective Ti amount effective for fixing desired C by forming precipitates with Ti at a higher temperature than C. For this reason, S should be reduced as much as possible, but is acceptable if the content is 0.005% or less. When higher burring properties are required, the S content is preferably 0.003 or less. Note that the S content is never 0%.

Alは、溶鋼脱酸のために0.001%以上添加する必要がある。Alは、過剰に添加するとコストの上昇を招くため、その含有量を0.1%以下とする。また、Alは、その含有量が0.06%超であると非金属介在物を増大させて伸びを劣化させるので、望ましくはその含有量を0.06%以下とする。   Al needs to be added by 0.001% or more for deoxidation of molten steel. If Al is added excessively, the cost increases, so the content is made 0.1% or less. Further, if the content of Al exceeds 0.06%, nonmetallic inclusions are increased and the elongation is deteriorated, so the content is desirably 0.06% or less.

Nは、Sと同様にCよりも高温にてTiと析出物を形成して有効Ti量を減少させる。従って極力低減させるべきであるが、その含有量が0.005%以下ならば許容できる範囲である。なお、Nの含有量は0%となることはない。   N, like S, forms precipitates with Ti at a higher temperature than C and reduces the effective Ti amount. Therefore, it should be reduced as much as possible, but if the content is 0.005% or less, it is an acceptable range. Note that the N content is never 0%.

Nbは、ソリュートドラッグ現象により変態後のフェライト粒の粒成長を抑え、細粒化により降伏比を向上させる効果を有するので0.002%以上添加する。しかしながら、その含有量が0.008%超であると、熱間圧延中のオーステナイトの再結晶を抑制してしまい、その未再結晶オーステナイトから変態して得られるフェライトが集合組織を形成して製造後に得られる熱延鋼板に大きな面内異方性を生じさせるので、その含有量を0.008%以下とする。   Nb is added in an amount of 0.002% or more because Nb has the effect of suppressing the grain growth of the ferrite grains after transformation due to the solution drag phenomenon and improving the yield ratio by refining. However, if the content exceeds 0.008%, recrystallization of austenite during hot rolling is suppressed, and ferrite obtained by transformation from the unrecrystallized austenite forms a texture. Since large in-plane anisotropy is caused in the hot-rolled steel sheet obtained later, the content is made 0.008% or less.

Tiは、本発明において最も重要な元素の一つである。Tiは析出強化により鋼板の引張強度の上昇に寄与するだけでなく、降伏強度を向上させて降伏比を向上させる効果をもつ。さらにTiは、き裂の起点となるセメンタイト等の粗大な炭化物の析出を抑制し、バーリング性を向上させる効果がある。   Ti is one of the most important elements in the present invention. Ti not only contributes to the increase in the tensile strength of the steel sheet by precipitation strengthening, but also has the effect of improving the yield strength by improving the yield strength. Furthermore, Ti has the effect of suppressing the precipitation of coarse carbides such as cementite, which is the starting point of cracks, and improving the burring property.

ここで、降伏比を向上させるためには、上述したように有効Ti量であるTi*が0.02以上必要であるので、Tiの添加量は、下記数式(1)における下限値以上の数値とする必要がある。また、Tiは、0.07%以上添加すると析出強化による強化能が増大し過ぎてしまうことと、フェライト粒が微細化され過ぎてしまうこととから、引張強度が540MPaを超える可能性があるうえ、Nbと比較すると効果が小さいが、オーステナイトでの再結晶を抑制する効果があり、その未再結晶オーステナイトからの変態集合組織により面内異方性を増大させるおそれがあるので、その含有量を0.07%未満とする。

Figure 2011012308
・・・(1) Here, in order to improve the yield ratio, Ti *, which is the effective Ti amount, is required to be 0.02 or more as described above. Therefore, the addition amount of Ti is a numerical value equal to or greater than the lower limit in the following formula (1). It is necessary to. Further, when Ti is added in an amount of 0.07% or more, the strengthening ability due to precipitation strengthening is excessively increased, and the ferrite grains are excessively refined, so that the tensile strength may exceed 540 MPa. The effect is small compared with Nb, but there is an effect of suppressing recrystallization in austenite, and the in-plane anisotropy may be increased by the transformation texture from the non-recrystallized austenite. Less than 0.07%.
Figure 2011012308
... (1)

以上が、本発明の基本成分の限定理由であるが、本発明においては、必要に応じて、Ca、REM、B、Mo、V、Cr、Cu、Ni、Zr、Sn、Co、Zn、W及びMgからなる群の何れか一種又は二種以上を含有していてもよい。   The above is the reason for limiting the basic components of the present invention. In the present invention, Ca, REM, B, Mo, V, Cr, Cu, Ni, Zr, Sn, Co, Zn, W are used as necessary. And one or two or more of the group consisting of Mg may be contained.

Ca及びREMは、破壊の起点となり、加工性を劣化させる非金属介在物の形態を変化させて無害化する元素である。ただし、Ca及びREMの何れもが0.0005%未満添加してもその効果がなく、Caならば0.005%超、REMならば0.02%超添加してもその効果が飽和する。このため、Caは0.0005〜0.005%、REMは0.0005〜0.02%添加することが好ましい。   Ca and REM are elements that are detrimental by changing the form of non-metallic inclusions that become the starting point of destruction and degrade workability. However, even if Ca and REM are both added in an amount of less than 0.0005%, there is no effect, and if Ca is added in excess of 0.005% and REM in excess of 0.02%, the effect is saturated. For this reason, it is preferable to add 0.0005 to 0.005% of Ca and 0.0005 to 0.02% of REM.

B、Mo、V、Cr、Cu、Ni,Zr、Sn、Co、Zn、W及びMgについては、合計で1%以下含有しても構わないが、1%超では、強度が上昇しすぎたり、圧延後の冷却中の変態挙動に影響する可能性があるので、極力低減することが望ましい。また、Snは熱間圧延時に疵が発生する恐れがあるので0.05%以下が望ましい。また、Moは、オーステナイトフォーマー合金であり、多量の添加によって引張強度が540MPaを超える可能性があるので、0.05%未満添加することが望ましい。   B, Mo, V, Cr, Cu, Ni, Zr, Sn, Co, Zn, W and Mg may be contained in a total of 1% or less, but if over 1%, the strength may increase excessively. It is desirable to reduce as much as possible because it may affect the transformation behavior during cooling after rolling. Further, Sn is preferably 0.05% or less because wrinkles may occur during hot rolling. Further, Mo is an austenite former alloy, and its tensile strength may exceed 540 MPa when added in a large amount. Therefore, it is desirable to add less than 0.05%.

次に、本発明における鋼板のミクロ組織、析出物に関する数値条件の限定理由について詳細に説明する。   Next, the reasons for limiting the numerical conditions related to the microstructure and precipitates of the steel sheet in the present invention will be described in detail.

ミクロ組織は、面積分率で90%以上が初析フェライトである必要がある。これは、熱延鋼板の製造工程において、TiCを短時間で十分量均質に析出させて高降伏比を得るために、熱間圧延後から巻き取りまでの間の冷却中にγ→α変態を完了させる必要があり、その結果としてミクロ組織の90面積%以上がポリゴナルな形状の初析フェライトとなるためである。また、ミクロ組織の90面積%以上が初析フェライトとなっていると、優れたバーリング性が得られる。ミクロ組織中の初析フェライトが面積分率で90%未満であると、初析フェライト以外の巻き取り後の比較的低温で変態した析出強化が亜時効であるフェライトや、ベイナイト及びパーライトの面積分率が増加し、降伏比の低下とバーリング性の劣化が顕著になる。   The microstructure must be proeutectoid ferrite with an area fraction of 90% or more. This is because in the manufacturing process of hot-rolled steel sheet, in order to obtain a high yield ratio by precipitating TiC homogeneously in a sufficient amount in a short time, the γ → α transformation is performed during cooling from hot rolling to winding. This is because 90% by area or more of the microstructure becomes polygonal shaped pro-eutectoid ferrite as a result. Moreover, when 90 area% or more of the microstructure is pro-eutectoid ferrite, excellent burring properties can be obtained. When the pro-eutectoid ferrite in the microstructure is less than 90% in area fraction, the area of ferrite, bainite and pearlite, which is sub-aging of precipitation strengthening transformed at a relatively low temperature after coiling other than pro-eutectoid ferrite. The rate increases and the yield ratio decreases and the burring property deteriorates.

また、ミクロ組織は、ポリゴナルな形状の初析フェライトの他の大部分が低温で変態したフェライトとなる。また、ミクロ組織は、これらの他のものとして、ベイナイト、パーライト、残留オーステナイト(γ)、MA(martensite-austenite constituent)等が合計量で3%以下含むことは許容される。 Further, the microstructure is a ferrite in which most of the polygonal-shaped pro-eutectoid ferrite is transformed at a low temperature. In addition, the microstructure is allowed to contain 3% or less of the total amount of bainite, pearlite, retained austenite (γ r ), MA (martensite-austenite constituent), etc.

なお、初析フェライトは、粒内での結晶方位の変化が極めて小さい性質があり、初析フェライト以外の低温で変態したフェライトや他のベイナイト等のミクロ組織は、粒内での結晶方位の変化が比較的大きい性質がある。また、初析フェライトと低温で変態したフェライトとは、光学顕微鏡による観察時に判別が困難となる性質がある。このため、ミクロ組織中の初析フェライトを判別するためには、後述のKAM法を用いることが望ましく、これによって、初析フェライトと、初析フェライト以外の低温で変態したフェライトやベイナイト等との判別が容易となる。   Proeutectoid ferrite has the property that the change in crystal orientation within the grain is extremely small, and the microstructure of ferrite transformed at a low temperature other than proeutectoid ferrite and other bainite changes in crystal orientation within the grain. Is relatively large. In addition, proeutectoid ferrite and ferrite transformed at low temperature have the property of being difficult to distinguish when observed with an optical microscope. For this reason, in order to discriminate pro-eutectoid ferrite in the microstructure, it is desirable to use the KAM method described later, whereby the pro-eutectoid ferrite and ferrite or bainite transformed at a low temperature other than pro-eutectoid ferrite are used. Discrimination becomes easy.

ミクロ組織の平均結晶粒径は、5μm以上12μm以下である必要がある。ミクロ組織の平均結晶粒径が12μm超では、粒径が粗大化し過ぎていることから降伏比が低減してしまい、目的とする降伏比が得られない。また、ミクロ組織の平均結晶粒径が5μm未満では、結晶粒が微細化され過ぎてしまい、引張強度が540MPa以上となって目的とする引張強度が得られないうえ、一様伸びが低下してバーリング性をはじめとしたプレス成形性の劣化が著しくなる。   The average crystal grain size of the microstructure needs to be 5 μm or more and 12 μm or less. If the average crystal grain size of the microstructure exceeds 12 μm, the grain size is excessively coarsened, so the yield ratio is reduced and the intended yield ratio cannot be obtained. In addition, if the average crystal grain size of the microstructure is less than 5 μm, the crystal grains are excessively refined, the tensile strength becomes 540 MPa or more and the desired tensile strength cannot be obtained, and the uniform elongation is reduced. Degradation of press formability including burring properties becomes significant.

ミクロ組織の展伸度は、1.2〜3である必要がある。展伸度が3超では加工組織が残留したフェライト粒となる場合が多く、伸びが劣化するうえ、加工組織が残留していなくても面内異方性の増大が顕著になる。展伸度が大きいほど面内異方性が増大してしまうので、展伸度は、3以下とすることが望ましい。一方、本発明の成分範囲において初析フェ
ライトの変態を促進するために本発明の要件である最終段とその前段の合計圧下率が30〜45%の仕上げ圧延を施すと展伸度は1.2以上となる。これは、特に、熱間圧延後の冷却中若しくは巻き取り後のフェライトの板厚方向の粒成長が優先的にTiCのピニング効果により抑制された結果として現れたためと考えられる。
The degree of extension of the microstructure needs to be 1.2-3. If the degree of extension is more than 3, ferrite grains in which the processed structure remains are often obtained, the elongation deteriorates, and the increase in in-plane anisotropy becomes remarkable even if the processed structure does not remain. Since the in-plane anisotropy increases as the degree of extension increases, the degree of extension is preferably 3 or less. On the other hand, in order to promote the transformation of pro-eutectoid ferrite in the component range of the present invention, when the final rolling which is the requirement of the present invention and the final rolling of the preceding stage is 30 to 45%, the elongation is 1. 2 or more. This is presumably because the grain growth in the thickness direction of ferrite during cooling after hot rolling or after winding was preferentially suppressed by the pinning effect of TiC.

なお、ここでいうミクロ組織の初析フェライトの面積分率とは、測定視野における総ての初析フェライトの面積を総和したものを、測定視野の視野面積で除したものであり、後述のKAM法によって求めることができる。また、ミクロ組織の平均結晶粒径とは、測定視野における各粒の結晶粒径分布を示すヒストグラムから得られる。具体的には、測定視野における各粒の結晶粒径について区間幅を1.0μmとするヒストグラムを作成し、その区間の中心値にその区間の個数比を積算したものを各区間毎に和算して得られる。なお、ここでいう結晶粒径とは円相当径のことである。また、ここでいうミクロ組織の面積分率及び平均結晶粒径は、鋼板の圧延方向及び板厚方向に平行な断面についてのものを意味している。   The area fraction of pro-eutectoid ferrite in the microstructure here is the sum of all pro-eutectoid ferrite areas in the measurement field divided by the field area in the measurement field. It can be determined by law. The average crystal grain size of the microstructure is obtained from a histogram showing the crystal grain size distribution of each grain in the measurement visual field. Specifically, a histogram with a section width of 1.0 μm is created for the crystal grain size of each grain in the measurement field of view, and the sum of the number ratios of the sections is added to the center value of each section. Is obtained. Here, the crystal grain size is a circle-equivalent diameter. Further, the area fraction of the microstructure and the average crystal grain size referred to here mean those for a cross section parallel to the rolling direction and the thickness direction of the steel plate.

また、展伸度とは、初析フェライト結晶粒を含む鋼板中の粒が熱間圧延によって展伸された度合いを示す数値であって、下記数式(5)におけるeで表される。下記数式(5)におけるnは、鋼板の圧延方向及び板厚方向に平行な断面において、板厚方向に延びる一定長さの仮想的な線分によって切断された結晶粒の数を意味し、n2は、その断面において、nを求めた線分と同一長さで圧延方向に延びる仮想的な線分によって切断された結晶粒の数を意味している。

Figure 2011012308
・・・ (5) Further, the degree of extension is a numerical value indicating the degree to which the grains in the steel sheet containing proeutectoid ferrite crystal grains are extended by hot rolling, and is represented by e in the following formula (5). N 1 in the following mathematical formula (5) means the number of crystal grains cut by virtual lines of a certain length extending in the plate thickness direction in a cross section parallel to the rolling direction and the plate thickness direction of the steel plate, n2 is in its cross-section, which means the number of the cut grain by imaginary line extending in the rolling direction line segments of the same length was determined n 1.
Figure 2011012308
(5)

析出物は、ミクロ組織の粒内に析出しているTiCが、下記のような条件を満たす必要がある。   As for the precipitate, TiC precipitated in the grains of the microstructure needs to satisfy the following conditions.

これらの析出物は、その密度が1×1016〜5×1017個/cmである必要がある。これは、1×1016個/cm未満の密度では転位運動の障壁となる析出物間隔が大きくなりすぎてその際に生ずる析出物間隔に反比例するオロワン応力が減少し、十分な析出強化を得られず目的とする降伏比が得られないためである。また、5×1017個/cm超の密度では、析出強化に寄与し得えないほどに析出物のサイズが小さくなってしまうことによって十分な析出強化が得られず、目的とする引張強度、降伏比が得られない可能性があるためである。 These precipitates need to have a density of 1 × 10 16 to 5 × 10 17 pieces / cm 3 . This is because when the density is less than 1 × 10 16 pieces / cm 3, the precipitate interval that becomes a barrier for dislocation motion becomes too large, and the Orowan stress that is inversely proportional to the precipitate interval is reduced. This is because the desired yield ratio cannot be obtained. Further, if the density exceeds 5 × 10 17 pieces / cm 3 , the precipitate size becomes so small that it cannot contribute to precipitation strengthening, so that sufficient precipitation strengthening cannot be obtained, and the intended tensile strength is obtained. This is because the yield ratio may not be obtained.

これらの析出物は、その平均粒径が1.5〜3nmである必要がある。これは、1.5nm未満では、析出状態が亜時効であり十分個数の析出物が析出しておらず、その密度が1×1016個/cm未満となることによって目的とする降伏比が得られないためである。また、3nm超では、析出状態が過時効でありオストワルド成長によって析出物の個数が低減してしまい、その密度が1×1016個/cm未満となることによって目的とする降伏比が得られないためである。 These precipitates need to have an average particle size of 1.5 to 3 nm. This is because if the deposition state is less than 1.5 nm, the precipitation state is sub-aging and a sufficient number of precipitates are not deposited, and the density is less than 1 × 10 16 pieces / cm 3 , so that the intended yield ratio is This is because it cannot be obtained. If it exceeds 3 nm, the precipitation state is over-aged, and the number of precipitates is reduced by Ostwald growth, and the density becomes less than 1 × 10 16 / cm 3 , so that the intended yield ratio is obtained. This is because there is not.

なお、TiCからなる析出物の平均粒径及び密度は、三次元アトムプローブを用いて測定すればよい。具体的には、測定対象となる試料を切り出した後に電解研磨を行いつつ、必要に応じて集束イオンビーム加工法による加工を経て針状試料を作成する。次に、作成した針状試料の原子の二次元分布像を三次元アトムプローブによって針状試料の深さ方向に複数取得して、得られた複数の二次元分布像を再構築して実空間での原子の三次元分布
像を求める。析出物の平均粒径、密度として、ミクロ組織の粒内のものを後述のようにして得るにあたっては、三次元分布画像中にミクロ組織の粒界が観察されない箇所を測定するようにすればよい。
In addition, what is necessary is just to measure the average particle diameter and density of the precipitate which consists of TiC using a three-dimensional atom probe. Specifically, a needle-shaped sample is prepared through processing by a focused ion beam processing method as necessary while performing electropolishing after cutting out a sample to be measured. Next, a plurality of two-dimensional distribution images of the needle-shaped sample atoms are acquired in the depth direction of the needle-shaped sample using a three-dimensional atom probe, and the obtained two-dimensional distribution images are reconstructed in real space. Find the three-dimensional distribution image of atoms at. In order to obtain the average particle size and density of the precipitates in the microstructure grains as described later, it is only necessary to measure portions where the grain boundaries of the microstructure are not observed in the three-dimensional distribution image. .

析出物の平均粒径は、任意に30個以上のTiCの析出物の直径を測定したうえで、これらを算術平均することによって得られる。なお、ここでいう析出物の直径とは、三次元アトムプローブによって得られた三次元分布像において観察される各析出物の構成原子数を測定し、TiCと同一の格子定数で、かつ、測定した各析出物の構成原子数からなる球状の析出物を仮定し、その仮定した析出物の直径で定義されるものである。また、析出物の密度は、得られた三次元画像分布像において観察されるTiCの析出物の個数をその三次元画像分布像の体積で除算して得られる。なお、三次元アトムプローブによりTiC結晶を観察するに際しては、TiC結晶中にNb原子が含まれる場合もあるので、このようなNb原子はTi原子と同じものとして析出物の直径、密度を得るようにしてもよい。   The average particle size of the precipitates can be obtained by arbitrarily measuring the diameters of 30 or more TiC precipitates and then arithmetically averaging them. In addition, the diameter of a precipitate here means the number of constituent atoms of each precipitate observed in a three-dimensional distribution image obtained by a three-dimensional atom probe, and has the same lattice constant as TiC and is measured. Assuming a spherical precipitate consisting of the number of constituent atoms of each precipitate, the diameter of the assumed precipitate is defined. The density of precipitates is obtained by dividing the number of TiC precipitates observed in the obtained three-dimensional image distribution image by the volume of the three-dimensional image distribution image. When observing a TiC crystal with a three-dimensional atom probe, Nb atoms may be included in the TiC crystal, so that such Nb atoms are the same as Ti atoms so as to obtain the diameter and density of the precipitate. It may be.

次に、本発明に係る熱延鋼板の製造方法における各製造工程の限定理由について詳細に説明する。   Next, the reason for limitation of each manufacturing process in the manufacturing method of the hot rolled steel sheet according to the present invention will be described in detail.

本発明において熱間圧延の対象となる鋼片を得る上で、熱間圧延に先行する製造工程は特に限定するものではない。即ち、高炉、転炉や電炉等による溶製に引き続き、得られた溶鋼を各種の二次精練で上述のような目的の成分含有量になるように成分調整を行い、次いで通常の連続鋳造、インゴット法による鋳造の他、薄スラブ鋳造等の方法で鋳造して鋼片を得るようにすればよい。鋼片の原料にはスクラップを使用しても構わない。連続鋳造によって鋼片としてのスラブを得た場合には高温のまま熱間圧延機に直送してもよいし、室温まで冷却後に加熱炉にて再加熱した後に熱間圧延してもよい。   In obtaining the steel slab used as the object of hot rolling in this invention, the manufacturing process preceding hot rolling is not specifically limited. That is, following smelting by a blast furnace, a converter, an electric furnace, etc., the obtained molten steel is subjected to various secondary scouring to adjust the components so as to have the target component content as described above, followed by normal continuous casting, In addition to casting by the ingot method, a steel slab may be obtained by casting by a method such as thin slab casting. Scrap may be used as a raw material for the billet. When a slab as a steel slab is obtained by continuous casting, it may be sent directly to a hot rolling mill at a high temperature, or may be hot rolled after being cooled to room temperature and then reheated in a heating furnace.

鋼片を熱間圧延するに際しては、この鋼片を加熱炉内で加熱することになる。本発明において目標とする引張強度、降伏比、λ、異方性の熱延鋼板を得るうえで、この加熱温度の下限値は特に限定するものではなく、例えば、1000℃以上の温度域で加熱すればよい。しかし、安定してこのような特性をもつ熱延鋼板を得るうえでは、この加熱時において、下記の数式(3)におけるスラブ再加熱温度SRT(℃)を満足する温度以上に加熱することが好ましい。下記数式(3)は、オーステナイト中のTiCの溶解度積の式(K.J.Irvine、F.B.Pickering and T.Gladman:JISI、205、(1967)、p161)を適用して得られるもので、TiCの溶解度積でTiCの溶体化温度を示すものである。このスラブ再加熱温度未満であるとスラブ製造時に生成したTiの粗大な炭化物が十分に溶解せず、後の冷却工程においてTiCによる析出強化の効果が得られない可能性がある。なお、Tiの粗大な炭化物の十分な溶解を促進させる意味で、スラブ再加熱温度以上での保持時間は20分以上が望ましい。また、スラブ再加熱温度が1400℃以上であると、スケールオフ量が多量になり歩留まりが低下するので、スラブ再加熱温度は1400℃未満が望ましい。また、スラブ再加熱温度が1100℃未満の加熱ではスケールオフ量が少なくスラブ表層の介在物をスケールと共に後のデスケーリングによって除去できなくなる可能性があるので、スラブ再加熱温度は1100℃以上が望ましい。

Figure 2011012308
・・・(3) When hot-rolling a steel slab, this steel slab is heated in a heating furnace. In obtaining the target tensile strength, yield ratio, λ, and anisotropic hot-rolled steel sheet in the present invention, the lower limit value of the heating temperature is not particularly limited. For example, heating is performed in a temperature range of 1000 ° C. or higher. do it. However, in order to obtain a hot-rolled steel sheet having such characteristics stably, it is preferable to heat at a temperature that satisfies the slab reheating temperature SRT (° C.) in the following formula (3) during this heating. . The following formula (3) is obtained by applying the solubility product formula of TiC in austenite (KJ Irvine, FB Pickering and T. Gladman: JISI, 205, (1967), p161). The solution temperature of TiC is indicated by the solubility product of TiC. If the temperature is lower than the slab reheating temperature, the coarse carbide of Ti generated during the slab production is not sufficiently dissolved, and the effect of precipitation strengthening by TiC may not be obtained in the subsequent cooling step. In addition, the retention time above the slab reheating temperature is preferably 20 minutes or more in order to promote sufficient dissolution of the coarse carbide of Ti. In addition, when the slab reheating temperature is 1400 ° C. or higher, the scale-off amount increases and the yield decreases, so the slab reheating temperature is preferably less than 1400 ° C. In addition, when the slab reheating temperature is less than 1100 ° C., the scale-off amount is small, and inclusions on the slab surface layer may not be removed together with the scale by subsequent descaling. Therefore, the slab reheating temperature is preferably 1100 ° C. or higher. .
Figure 2011012308
... (3)

鋼片を加熱した後は、加熱炉より抽出した鋼片に対して熱間圧延を行う。熱間圧延時に
おいては、加熱した鋼片を粗圧延した後に仕上圧延を行なう。粗圧延の圧延開始温度や圧延終了温度については、特に限定するものではない。
After heating the steel slab, hot rolling is performed on the steel slab extracted from the heating furnace. At the time of hot rolling, finish rolling is performed after roughly rolling the heated steel slab. There are no particular limitations on the rolling start temperature or rolling end temperature of rough rolling.

粗圧延の終了後は、得られた粗バーを複数の圧延機によって連続圧延する仕上圧延を行う。仕上圧延では、その圧延終了温度(FT)とともに圧延開始温度をできるだけ高温にすることが好ましい。これは、仕上圧延中に加工誘起析出によりオーステナイト中でTiCが粗大に析出してしまうと、後の冷却工程においてTiCによる析出強化の効果をえることが出来なくなる恐れがあるためである。特に、仕上圧延の圧延開始温度が1050℃未満では、再結晶が十分に進行しにくくなり、未再結晶オーステナイト粒からγ→α変態した変態集合組織により面内異方性を増大させる恐れがある。また、仕上圧延の圧延開始温度が1050℃未満では、オーステナイト域でのTiCの析出ノーズに合致し、その温度域での圧延時間を過度に短くしなければTiCが容易に粗大化してしまい、設備制約を厳しくすることが要求されてしまうので、仕上圧延の圧延開始温度は1050℃以上とすることが望ましい。さらにエッジ部の温度低下による幅方向の材質劣化を回避するためには、仕上圧延の圧延開始温度を1100℃以上とすることが望ましい。一方、仕上圧延の圧延開始温度が1150℃超では、スケールが生成し、ウロコ、紡錘スケールといったスケール系欠陥が生じる恐れがあるので、1150℃以下とすることが好ましい。   After the completion of the rough rolling, finish rolling is performed in which the obtained rough bar is continuously rolled by a plurality of rolling mills. In finish rolling, it is preferable to make the rolling start temperature as high as possible together with the rolling end temperature (FT). This is because if TiC coarsely precipitates in austenite due to work-induced precipitation during finish rolling, the effect of precipitation strengthening by TiC may not be obtained in the subsequent cooling step. In particular, when the rolling start temperature of finish rolling is less than 1050 ° C., recrystallization does not proceed sufficiently, and there is a risk of increasing in-plane anisotropy due to a transformation texture that is γ → α transformed from unrecrystallized austenite grains. . Further, if the rolling start temperature of finish rolling is less than 1050 ° C., it matches the precipitation nose of TiC in the austenite region, and TiC is easily coarsened unless the rolling time in that temperature region is excessively shortened. Since it is required to tighten the restrictions, it is desirable that the rolling start temperature of finish rolling is 1050 ° C. or higher. Furthermore, in order to avoid the material deterioration in the width direction due to the temperature drop of the edge portion, it is desirable that the rolling start temperature of finish rolling is 1100 ° C. or higher. On the other hand, when the rolling start temperature of finish rolling exceeds 1150 ° C., scale is generated, and scale system defects such as scales and spindle scales may occur.

仕上圧延では、上述したような成分系にて本発明の目的とするミクロ組織を得るために、熱間圧延終了後の冷却工程で初析フェライトの析出を促進する必要があるので、最終段とその前段の合計圧下率が30〜45%の圧延を行う必要がある。この合計圧下率が30%未満では、冷却中に十分な初析フェライトが得られず、従って、冷却中の析出強化も十分に進行しないので高降伏比が得られない。一方、合計圧下率が45%超の大圧下では通板性や板形状の制御が難しく、板厚精度や平坦度が劣化する恐れがあるとともに、圧延により伸長したオーステナイト粒からγ→α変態したフェライト粒も伸長していることから展伸度が増加し、面内異方性が顕著になる。従って、最終段とその前段の合計圧下率は30〜45%とする。   In finish rolling, since it is necessary to promote precipitation of pro-eutectoid ferrite in the cooling step after completion of hot rolling in order to obtain the target microstructure of the present invention in the component system as described above, the final stage and It is necessary to perform rolling at a total rolling reduction of 30 to 45% in the preceding stage. If the total rolling reduction is less than 30%, sufficient pro-eutectoid ferrite cannot be obtained during cooling, and therefore precipitation strengthening during cooling does not proceed sufficiently, so that a high yield ratio cannot be obtained. On the other hand, when the total rolling reduction is greater than 45%, it is difficult to control the sheet passability and the plate shape, the plate thickness accuracy and the flatness may be deteriorated, and the austenite grains elongated by rolling undergo γ → α transformation. Since the ferrite grains are also elongated, the degree of elongation is increased and the in-plane anisotropy becomes remarkable. Therefore, the total reduction ratio of the last stage and the preceding stage is set to 30 to 45%.

仕上圧延での圧延終了温度(FT)は、880℃以上とする。仕上圧延での圧延終了温度(FT)が880℃未満であるとNbが事実上無添加であっても、Tiが有する弱い再結晶抑制効果により再結晶が十分に進行せず、未再結晶オーステナイトからのγ→α変態による集合組織が形成され、圧延により伸長したオーステナイト粒から変態したフェライト粒も伸長していることから展伸度が増加し、製品板に面内異方性が現れる恐れがある。仕上圧延の圧延終了温度(FT)の上限は特に設けないが、980℃超になると、フェライトの析出核となる転位の回復が促進され、初析フェライトの面積分率が減少する恐れがあるので、仕上圧延の圧延終了温度(FT)は980℃以下が望ましい。   The finishing temperature (FT) in finish rolling is 880 ° C. or higher. When the rolling finish temperature (FT) in finish rolling is less than 880 ° C., even if Nb is virtually not added, recrystallization does not proceed sufficiently due to the weak recrystallization suppressing effect of Ti, and unrecrystallized austenite The texture formed by the γ → α transformation from the austenite is formed, and the ferrite grains transformed from the austenite grains elongated by rolling are also elongated, so that the degree of elongation increases and in-plane anisotropy may appear in the product plate. is there. There is no particular upper limit for the finish rolling temperature (FT) of finish rolling, but if it exceeds 980 ° C, recovery of dislocations that become ferrite nuclei is promoted, and the area fraction of proeutectoid ferrite may decrease. The finish rolling temperature (FT) of finish rolling is desirably 980 ° C. or lower.

なお、仕上圧延での圧延開始温度と圧延終了温度とをできるだけ高温にするためには、必要に応じて粗圧延終了から仕上圧延開始までの間、及び/又は仕上圧延中に粗バー又は圧延材を加熱することが好ましい。これによって、仕上圧延の圧延終了温度を安定して上述の範囲内とすることができる。この場合の加熱装置はどのような方式でも構わないが、トランスバース型誘導加熱であれば板厚方向に均熱できるのでトランスバース型誘導加熱が望ましい。   In order to make the rolling start temperature and the rolling end temperature in finish rolling as high as possible, a rough bar or rolled material is used between the end of rough rolling and the start of finish rolling and / or during finish rolling as necessary. Is preferably heated. Thereby, the finish temperature of finish rolling can be stably kept within the above-mentioned range. Any heating apparatus may be used in this case, but transverse induction heating is desirable because transverse induction heating can equalize the thickness in the thickness direction.

また、熱間圧延時においては、粗圧延して得られた先行する粗バーに後行する粗バーを接合し、連続的に仕上圧延をしてもよい。その際に粗バーを一旦コイル状に巻き、必要に応じて保温機能を有するカバーに格納し、再度巻き戻してから接合を行ってもよい。   Further, at the time of hot rolling, a subsequent rough bar may be joined to a preceding rough bar obtained by rough rolling, and finish rolling may be performed continuously. At that time, the coarse bar may be wound once in a coil shape, stored in a cover having a heat retaining function as necessary, and rewound again before joining.

仕上圧延終了後には冷却工程を行う。本発明に係る製造方法における冷却工程は以下のように4段階の工程を有している。1段階目の冷却工程では、仕上圧延終了後に得られた
粗バーを1.5〜3.5秒間空冷する。この空冷時間が1.5秒未満であると再結晶が十分に進行せず、圧延により伸長したオーステナイト粒からγ→α変態したフェライト粒も伸長していることから展伸度が増加し、未再結晶オーステナイトからの変態による集合組織が形成され、製品板に面内異方性が現れる恐れがある。一方、空冷時間が3.5秒超では、オーステナイトでの粗大なTiCの析出が進行して、後の3段階目の冷却工程中でのフェライトの析出強化能が減少するとともに、初析フェライトの結晶粒が粗大化し高降伏比が得られない。
A cooling process is performed after finishing rolling. The cooling process in the manufacturing method according to the present invention has four stages as follows. In the first cooling step, the coarse bar obtained after finishing rolling is air-cooled for 1.5 to 3.5 seconds. If this air cooling time is less than 1.5 seconds, recrystallization does not proceed sufficiently, and the ferrite grains that have undergone γ → α transformation from the austenite grains that have been elongated by rolling are also elongated, resulting in an increase in the degree of spreading. A texture due to transformation from recrystallized austenite is formed, and in-plane anisotropy may appear in the product plate. On the other hand, when the air cooling time exceeds 3.5 seconds, the precipitation of coarse TiC in austenite progresses, and the precipitation strengthening ability of ferrite in the subsequent third cooling step decreases, and Crystal grains become coarse and a high yield ratio cannot be obtained.

1段階目の冷却工程の後に行なう2段階目の冷却工程では、冷却速度を20〜50℃/secとして冷却を行なう。冷却速度が20℃/sec未満であると、γ→α変態時に拡散変態が進行し、TiCがγ/α相界面において不均質に核生成してしまううえ、TiCが粗大化して低密度化してしまい、更には初析フェライトの結晶粒も粗大化してしまい、高降伏比が得られない。冷却速度が50℃/sec超では、その冷却制御上、次の3段階目の冷却工程で空冷しようとする空冷温度域に冷却を停止することが難しく、オーバーシュートして620℃以下となるとベイナイト変態が起こり、初析フェライトが得られず、更にはTiCが十分に析出しないので高降伏比が得られない。   In the second-stage cooling process performed after the first-stage cooling process, cooling is performed at a cooling rate of 20 to 50 ° C./sec. When the cooling rate is less than 20 ° C./sec, diffusion transformation proceeds during the γ → α transformation, and TiC is heterogeneously nucleated at the γ / α phase interface, and TiC is coarsened and reduced in density. In addition, the crystal grains of pro-eutectoid ferrite are also coarsened, and a high yield ratio cannot be obtained. When the cooling rate exceeds 50 ° C./sec, it is difficult to stop the cooling to the air cooling temperature range to be air-cooled in the next third-stage cooling process because of the cooling control. Transformation occurs, proeutectoid ferrite cannot be obtained, and furthermore, TiC does not precipitate sufficiently, so that a high yield ratio cannot be obtained.

2段階目の冷却工程では、γ→α変態時にマッシブ変態を促進することのできる750〜620℃の温度域まで冷却する。この温度が750℃超であると、次の3段階目の冷却工程において初析フェライトの変態が十分に促進されず、パーライトが生成してバーリング性が低下するとともに、TiCがγ/α相界面において不均質に核生成して低密度化してしまい高降伏比が得られない。また、この温度が750℃超であると、初析フェライトの粒成長が進むことによって結晶粒径も粗大化してしまい、降伏比の低下を招く。また、この温度が620℃未満では、ベイナイト変態が起こり、初析フェライトが得られず、更にはTiCが十分に析出しないので高降伏比が得られない。   In the second-stage cooling process, cooling is performed to a temperature range of 750 to 620 ° C. that can promote massive transformation during the γ → α transformation. When this temperature is higher than 750 ° C., the transformation of pro-eutectoid ferrite is not sufficiently promoted in the cooling process of the next third stage, pearlite is generated and the burring property is lowered, and TiC has a γ / α phase interface. In this case, nucleation is inhomogeneously and the density is lowered, so that a high yield ratio cannot be obtained. On the other hand, if the temperature is higher than 750 ° C., the grain size of the pro-eutectoid ferrite advances and the crystal grain size becomes coarse, resulting in a decrease in yield ratio. Moreover, if this temperature is less than 620 ° C., bainite transformation occurs, proeutectoid ferrite cannot be obtained, and furthermore, TiC is not sufficiently precipitated, so that a high yield ratio cannot be obtained.

2段階目の冷却工程の後に行なう3段階目の冷却工程では、先ほどの2段階目の冷却工程で冷却した後の750〜620℃の温度域を空冷開始温度として1〜5秒間の空冷を行なう。この工程は、初析フェライトを得るためのマッシブ変態によるγ→α変態の促進と、TiCのオーステナイトとフェライトでの大きな溶解度積の差を析出駆動力とする析出強化に有効な微細で均質なTiCの析出とを促す重要な工程である。この工程での空冷時間が1秒未満であると、初析フェライトの変態が十分に促進されず、更にはTiCが十分に析出しないので高降伏比が得られない。また、空冷時間が5秒超では、パーライトが生成し、バーリング性が劣化する恐れがあるばかりでなく、析出が過時効となり、析出強化能が低下し高降伏比が得られない。   In the third-stage cooling process performed after the second-stage cooling process, air cooling is performed for 1 to 5 seconds using the temperature range of 750 to 620 ° C. after the cooling in the previous second-stage cooling process as the air cooling start temperature. . This process is a fine and homogeneous TiC effective for the promotion of γ → α transformation by massive transformation to obtain proeutectoid ferrite and precipitation strengthening with the difference in solubility product between austenite and ferrite of TiC as precipitation driving force. It is an important process that promotes the precipitation of If the air cooling time in this step is less than 1 second, the transformation of pro-eutectoid ferrite is not sufficiently promoted, and furthermore, TiC is not sufficiently precipitated, so that a high yield ratio cannot be obtained. On the other hand, if the air cooling time exceeds 5 seconds, not only pearlite is generated and the burring property may be deteriorated, but also precipitation is overaged, the precipitation strengthening ability is lowered, and a high yield ratio cannot be obtained.

3段階目の冷却工程の後に行なう4段階目の冷却工程では、この4段階目の冷却工程が終了した後に巻き取りを行なう際の温度域である620〜480℃の温度域まで冷却する。巻き取り温度が620℃超であると、3段階目の冷却工程中に微細で均質に析出したTiCが過時効となり、オストワルド成長で低密度化して析出強化能が減少し、高降伏比が得られない。一方、巻き取り温度が480℃未満は、低温変態相の増加による可動転位の導入が作用し、降伏比が低下する。また、480℃未満の温度域は局所的な温度むらの生じやすいいわゆる遷移沸騰領域であり、巻き取り温度の的中率が悪く、狙い温度に対して公差が大きくなり、材質バラツキの増大や歩留りの低下を招く懸念がある。   In the fourth-stage cooling process performed after the third-stage cooling process, the cooling is performed to a temperature range of 620 to 480 ° C. that is a temperature range when winding is performed after the completion of the fourth-stage cooling process. When the coiling temperature is over 620 ° C., TiC that is finely and uniformly precipitated during the cooling process in the third stage becomes over-aged, the density is lowered by Ostwald growth, the precipitation strengthening ability is reduced, and a high yield ratio is obtained. I can't. On the other hand, when the coiling temperature is less than 480 ° C., the introduction of movable dislocations due to the increase in the low temperature transformation phase acts, and the yield ratio decreases. The temperature range below 480 ° C is a so-called transition boiling region in which local temperature unevenness is likely to occur, the winding rate is poor, the tolerance with respect to the target temperature is increased, the material variation is increased and the yield is increased. There is a concern that will lead to a decline.

4段階目の冷却工程では、巻き取りを行なう上述の温度域まで2〜10℃/secの冷却速度で冷却する。この冷却速度が2℃/sec未満では、やはり、パーライトが生成し、バーリング性が劣化する恐れがあるばかりでなく、析出したTiCが粒成長し、粗大化して、析出強化に寄与しなくなる恐れがある。この冷却速度が10℃/sec超では、巻き取り温度の狙い温度に対して公差が大きくなり、材質バラツキが大きくなる懸念がある
In the cooling process at the fourth stage, cooling is performed at a cooling rate of 2 to 10 ° C./sec to the above-described temperature range where winding is performed. If the cooling rate is less than 2 ° C./sec, pearlite may be generated and the burring property may deteriorate, and the precipitated TiC may grow and become coarse, which may not contribute to precipitation strengthening. is there. If the cooling rate exceeds 10 ° C./sec, there is a concern that the tolerance becomes large with respect to the target temperature of the winding temperature, and the material variation becomes large.

巻き取り工程終了後は、必要に応じて酸洗し、その後にインライン又はオフラインで圧下率10%以下のスキンパス圧延又は圧下率40%程度までの冷間圧延を施しても構わない。なお、鋼板形状の矯正や可動転位導入による延性の向上のためには0.1%以上2%以下のスキンパス圧延を施すことが望ましい。   After completion of the winding process, pickling may be performed as necessary, and then, in-line or off-line, skin pass rolling with a reduction rate of 10% or less or cold rolling to a reduction rate of about 40% may be performed. In order to improve the ductility by correcting the shape of the steel sheet or introducing movable dislocations, it is desirable to perform skin pass rolling of 0.1% or more and 2% or less.

また、本発明を適用した熱延鋼板は、鋳造後、熱間圧延後、冷却後の何れかの場合において、溶融めっきラインにて熱処理を施してもよく、更にこれらの熱延鋼板に対して別途表面処理を施すようにしてもよい。溶融めっきラインにてめっきを施すことにより、熱延鋼板の耐食性が向上する。   Moreover, the hot-rolled steel sheet to which the present invention is applied may be subjected to a heat treatment in a hot dipping line in any case after casting, after hot rolling, and after cooling. You may make it perform a surface treatment separately. By applying the plating in the hot dipping line, the corrosion resistance of the hot rolled steel sheet is improved.

また、酸洗後の熱延鋼板に亜鉛めっきを施す場合は、得られた鋼板を亜鉛めっき浴中に浸積し、必要に応じて合金化処理してもよい。合金化処理を施すことにより、熱延鋼板は、耐食性の向上に加えて、スポット溶接等の各種溶接に対する溶接性が向上する。   Moreover, when galvanizing the hot-rolled steel sheet after pickling, the obtained steel sheet may be immersed in a galvanizing bath and alloyed as necessary. By applying the alloying treatment, the hot-rolled steel sheet has improved weldability with respect to various types of welding such as spot welding in addition to the improvement in corrosion resistance.

なお、本発明における熱延鋼板は、上述のようにして得られた熱間圧延後冷却ままのものでもよいし、上述のように溶融めっきラインにて熱処理を施したままのものでもよいし、上述のように表面処理を施したままのものでもよい。   In addition, the hot-rolled steel sheet in the present invention may be cooled after hot rolling obtained as described above, or may be subjected to heat treatment in a hot dipping line as described above, The surface treatment may be performed as described above.

次に、実施例により本発明を更に説明する。   Next, the present invention will be further described with reference to examples.

まず、表1に示す化学成分を有するA〜Nの鋼片を得ることとした。これらの鋼片は、転炉での溶製により得られた溶鋼について二次精錬を行った後、連続鋳造することによって得た。得られた鋼片は、連続鋳造後に、直送若しくは再加熱し、粗圧延に続く仕上圧延で1.2〜5.5mmの板厚にした後に冷却してこれを巻き取ることとした。なお、表1中の化学組成についての表示は質量%である。また、表1に示す化学組成における残部は、Fe及び不可避的不純物である。また、表1における下線は、本発明の範囲外であることを示す。   First, A to N steel slabs having chemical components shown in Table 1 were obtained. These steel slabs were obtained by continuous casting after secondary refining of molten steel obtained by melting in a converter. The obtained steel slab was directly fed or reheated after continuous casting, and was cooled to a sheet thickness of 1.2 to 5.5 mm by finish rolling following rough rolling, and then cooled and wound up. In addition, the display about the chemical composition in Table 1 is the mass%. The balance in the chemical composition shown in Table 1 is Fe and inevitable impurities. Moreover, the underline in Table 1 shows that it is outside the scope of the present invention.

Figure 2011012308
Figure 2011012308

表2は、鋼片の加熱から巻き取りまでの製造条件の詳細を示している。ここで、表2における「加熱温度」はスラブ再加熱温度を、「保持時間」はスラブ再加熱温度での保持時間を、「粗バー加熱」は粗圧延終了から仕上圧延開始までの間及び/又は仕上圧延中に行なう粗バー又は圧延材の加熱の有無を、「仕上圧延開始温度」は仕上圧延の圧延開始温度を、「合計圧下率」は仕上圧延での最終段とその前段の合計圧下率を、「仕上圧延終了温度」は仕上圧延終了温度を、「冷却開始までの時間」とは1段階目の冷却工程においての仕上圧延終了から2段階目の冷却工程を開始するまでの時間を、「空冷帯までの冷却速度」とは2段階目の冷却工程での平均冷却速度を、「空冷帯温度」とは、3段階目の冷却工程で空冷する温度を、「空冷時間」とは3段階目の冷却工程で空冷する時間を、「巻き取りまでの冷却速度」とは4段階目の冷却工程での平均冷却速度を、「巻き取り温度」とは巻き取り温度を示している。また、鋼番18については、亜鉛めっきを施した。さらに、鋼番23については亜鉛めっき後に合金化処理を施した。この際、亜鉛めっき槽へ浸漬する温度は400〜500℃で、合金化温度は500〜650℃とした。また、表2における下線は、本発明の範囲外又は好ましい範囲外であることを示す。   Table 2 shows details of manufacturing conditions from heating to winding of the steel slab. Here, “heating temperature” in Table 2 is the slab reheating temperature, “holding time” is the holding time at the slab reheating temperature, “rough bar heating” is from the end of rough rolling to the start of finish rolling and / or Or, whether or not the rough bar or rolled material is heated during finish rolling, “finish rolling start temperature” is the rolling start temperature of finish rolling, and “total rolling reduction” is the total rolling of the final stage and the preceding stage in finish rolling "Finish rolling finish temperature" is the finish rolling finish temperature, and "Time to start cooling" is the time from the finish rolling finish in the first stage cooling process to the start of the second stage cooling process. , “Cooling rate to air cooling zone” means the average cooling rate in the second stage cooling process, “Air cooling zone temperature” means the temperature at which air cooling is performed in the third stage cooling process, “Air cooling time” The cooling time in the third stage cooling process is defined as “cooling up to winding”. The degree "the average cooling rate at 4-stage cooling process, the" coiling temperature "indicates the coiling temperature. Steel No. 18 was galvanized. Furthermore, about the steel number 23, the alloying process was performed after galvanization. Under the present circumstances, the temperature immersed in a galvanization tank was 400-500 degreeC, and the alloying temperature was 500-650 degreeC. Moreover, the underline in Table 2 shows that it is out of the scope of the present invention or out of the preferred range.

Figure 2011012308
Figure 2011012308

このようにして得られた鋼板のミクロ組織、材料特性は、下記のように測定、評価することとした。   The microstructure and material properties of the steel sheet thus obtained were measured and evaluated as follows.

ミクロ組織の調査は、鋼板板幅Wの1/4W若しくは3/4W位置において圧延方向及び板厚方向に平行な断面が得られるように切出した試料を研磨し、ナイタール試薬を用いてエッチングし、光学顕微鏡を用いて200〜500倍の倍率で観察された表層下0.2mm、板厚tの1/4t若しくは1/2t位置における視野の写真にて行った。   The microstructure was investigated by polishing a sample cut out so that a cross section parallel to the rolling direction and the plate thickness direction was obtained at a position of 1/4 W or 3/4 W of the steel plate width W, and etched using a Nital reagent. The observation was carried out with a photograph of the visual field at a position of 1/4 t or 1/2 t below the surface layer 0.2 mm and the plate thickness t observed at a magnification of 200 to 500 times using an optical microscope.

平均結晶粒径、展伸度及び初析フェライトの面積分率の測定については、上記で切出した試料から得られるミクロサンプルよりEBSP−OIM(Electron Back
Scatter Diffraction Pattern−Orientation
Image Microscopy)法を用いて測定することとした。サンプルはコロイダルシリカ研磨剤で30〜60分研磨し、倍率400倍、160μm×256μmエリア、測定ステップ0.5μmの測定条件でEBSP測定を実施した。
For the measurement of the average crystal grain size, the degree of elongation, and the area fraction of pro-eutectoid ferrite, EBSP-OIM (Electron Back) was obtained from the microsample obtained from the sample cut above.
Scatter Diffraction Pattern-Orientation
Measurement was performed using an Image Microscopy method. The sample was polished with a colloidal silica abrasive for 30 to 60 minutes, and EBSP measurement was performed under the measurement conditions of 400 times magnification, 160 μm × 256 μm area, and measurement step of 0.5 μm.

EBSP−OIM法は、走査型電子顕微鏡(SEM:Scanning Electron Microscope)内で高傾斜した試料に電子線を照射し、後方散乱して形成された菊池パターンを高感度カメラで撮影し、コンピュータ画像処理する事により照射点の結晶方位を短待間で測定する装置及びソフトウエアで構成されている。EBSP法ではバルク試料表面の微細構造並びに結晶方位の定量的解析ができ、分析エリアはSEMで観察できる領域で、SEMの分解能にもよるが、最小20nmの分解能で分析できる。解析は数時間かけて、分析したい領域を等間隔のグリッド状に数万点マッピングして行う。多結晶材料では試料内の結晶方位分布や結晶粒の大きさを見ることができる。   The EBSP-OIM method irradiates a highly inclined sample with a scanning electron microscope (SEM: Scanning Electron Microscope), irradiates an electron beam, takes a back-scattered Kikuchi pattern formed with a high-sensitivity camera, and performs computer image processing. By doing so, it is composed of a device and software for measuring the crystal orientation of the irradiation point in a short waiting time. The EBSP method can quantitatively analyze the microstructure and crystal orientation of the surface of the bulk sample, and the analysis area is an area that can be observed with an SEM. Depending on the resolution of the SEM, analysis can be performed with a minimum resolution of 20 nm. The analysis takes several hours and is performed by mapping tens of thousands of points to be analyzed in a grid at equal intervals. With polycrystalline materials, the crystal orientation distribution and crystal grain size in the sample can be seen.

本実施例においては、ミクロ組織の面積分率、平均結晶粒径及び展伸度を求める際に、EBSP−OIM法において結晶粒の方位差を、一般的に結晶粒界として認識されている大傾角粒界の閾値である15°と定義して、粒を可視化可能にマッピングした画像に基づいて求めた。   In this example, when determining the area fraction of the microstructure, the average crystal grain size and the elongation, the orientation difference of the crystal grains is generally recognized as a grain boundary in the EBSP-OIM method. The angle was defined as 15 °, which is a threshold value of the tilt grain boundary, and obtained based on an image in which grains were mapped so as to be visible.

また、初析フェライトの面積分率については、EBSP−OIM法とともに一般に用いられているKernel Average Misorientation(KAM)法にて求めた。KAM法は、EBSP−OIM法により測定されたピクセル間の方位揺らぎや歪み量を評価するために使われる手法である。   Further, the area fraction of pro-eutectoid ferrite was determined by a Kernel Average Misoration (KAM) method generally used together with the EBSP-OIM method. The KAM method is a method used to evaluate the azimuth fluctuation and distortion amount between pixels measured by the EBSP-OIM method.

KAM法では、測定データのうちのある正六角形状の互いに隣り合う6個のピクセル(第一近似)、若しくはその6個のピクセルのさらに外側の12個のピクセル(第二近似)、若しくはその12個のピクセルのさらに外側の18個のピクセル(第三近似)のピクセル間の方位差を算術平均し、得られた平均値をその中心のピクセルの値とする計算を各ピクセルに行う。KAM法では、隣接するピクセル間での方位差が所定値以上であった場合にこの方位差を粒界と判断して、上述の計算を粒界を越えないように繰り返し実行するものであり、これにより粒内の方位変化を表現するマップを作成できる。この作成されたマップは、粒内の局所的な方位変化に基づくひずみの分布を表している。   In the KAM method, six pixels adjacent to each other in a regular hexagon shape (first approximation) in measurement data, or 12 pixels (second approximation) further outside the six pixels, or the 12 Arithmetic average of the azimuth differences between the pixels of the 18 pixels (third approximation) further outside the pixels is arithmetically averaged, and a calculation is performed on each pixel with the obtained average value as the value of the center pixel. In the KAM method, when the azimuth difference between adjacent pixels is greater than or equal to a predetermined value, this azimuth difference is determined as a grain boundary, and the above calculation is repeatedly performed so as not to exceed the grain boundary. This makes it possible to create a map that represents the orientation change within the grain. This created map represents a strain distribution based on local orientation changes in the grains.

本実施例においての解析条件では、EBSP−OIM法において測定された測定データに基づき各ピクセルにつき第三近似での平均値を得ることとして、この平均値での方位差が5°以下となるものを表示させた。そして、この平均値での方位差が1°以下と算出されたピクセルの集合を一つの初析フェライトと判断したうえで、測定視野で得られた総ての初析フェライトの面積を総和したものを、測定視野の視野面積で除したものを初析フェライトの面積分率と定義した。   In the analysis conditions in the present embodiment, the average value in the third approximation is obtained for each pixel based on the measurement data measured by the EBSP-OIM method, and the azimuth difference at this average value is 5 ° or less. Was displayed. Then, after determining that the set of pixels whose azimuth difference in the average value is 1 ° or less is one pro-eutectoid ferrite, the total area of all pro-eutectoid ferrite obtained in the measurement field of view is summed Divided by the visual field area of the measurement visual field was defined as the area fraction of pro-eutectoid ferrite.

引張強度及び降伏比は、上述のようにして得られた熱延鋼板をJIS Z 2201記載の5号試験片に加工し、得られた試験片をJIS Z 2241記載の試験方法に従って引張試験を行って得られたデータに基づき得ることとした。   Tensile strength and yield ratio were obtained by processing the hot-rolled steel sheet obtained as described above into No. 5 test piece described in JIS Z 2201, and conducting the tensile test according to the test method described in JIS Z 2241. Based on the data obtained in this way.

バーリング性は、日本鉄鋼連盟規格JFS T 1001−1996記載の穴拡げ試験方法に従って得られる穴拡げ値にて評価することとした。   The burring property was evaluated by the hole expansion value obtained according to the hole expansion test method described in the Japan Iron and Steel Federation Standard JFS T 1001-1996.

面内異方性は、この面内異方性の指標である|Δr|を算出することによって評価することとした。|Δr|はJIS Z2254に基づいて得られるものであり、下記数式(6)に示すように、各方向についてのランクフォード値r、r45、r90から算出される。なお、rは圧延方向に対して0°方向のランクフォード値であり、r45は圧延方向に対して45°方向のランクフォード値であり、r90は圧延方向に対して90°方向のランクフォード値である。各方向についてのランクフォード値を得るうえでは、上述の引張試験において用いた試験片を使用して得ることとした。

Figure 2011012308
・・・ (6) The in-plane anisotropy was evaluated by calculating | Δr |, which is an index of the in-plane anisotropy. | Δr | is obtained based on JIS Z2254, and is calculated from the Rankford values r 0 , r 45 , and r 90 for each direction as shown in the following formula (6). R 0 is a Rankford value in the 0 ° direction relative to the rolling direction, r 45 is a Rankford value in the 45 ° direction relative to the rolling direction, and r 90 is a 90 ° direction relative to the rolling direction. Rankford value. In order to obtain the Rankford value in each direction, the test piece used in the above-described tensile test was used.
Figure 2011012308
(6)

これらの測定方法等によって得られた鋼材のミクロ組織、材料特性の詳細を表3に示す。ここで、表3の「ミクロ組織」で「F」とのみ記載された鋼番での初析フェライト以外のミクロ組織は比較的低温で生成したフェライトである。また、表3の「ミクロ組織」での「F+P」、「F+B」はそれぞれ、加工CCT図(連続冷却変態線図)においてパーライト又はベイナイトの領域を冷却中に履歴が通ったもののことである。「初析α分率」、「平均結晶粒径」及び「展伸度」とは上述のEBSP−OIM法にて得られた値である。「YP」、「TS」、「El」及び「YR」は、それぞれ上述の引張試験より得られた降伏強度、引張強度、全伸び、降伏比である。「λ」は上述の穴拡げ試験より得られた穴広げ値である。「|Δr|」は、上述の引張試験より得られたものである。また、表3における下線は、本発明の範囲外又は好ましい範囲外であることを示す。   Table 3 shows details of the microstructure and material properties of the steel materials obtained by these measuring methods. Here, the microstructure other than the pro-eutectoid ferrite in the steel number described only as “F” in “Microstructure” of Table 3 is ferrite formed at a relatively low temperature. In addition, “F + P” and “F + B” in “Microstructure” in Table 3 indicate that the history passed through cooling the pearlite or bainite region in the processed CCT diagram (continuous cooling transformation diagram). The “proeutectic α fraction”, “average crystal grain size”, and “extensibility” are values obtained by the EBSP-OIM method described above. “YP”, “TS”, “El”, and “YR” are the yield strength, tensile strength, total elongation, and yield ratio obtained from the above-described tensile test, respectively. “Λ” is a hole expansion value obtained from the above-described hole expansion test. “| Δr |” is obtained from the tensile test described above. Moreover, the underline in Table 3 shows that it is outside the range of this invention or a preferable range.

Figure 2011012308
Figure 2011012308

本発明に沿うものは、鋼番1、2、3、4、19,20,21,22,23、24の10鋼であり、何れも本発明が満足すべき所定の量の鋼成分を含有し、そのミクロ組織の90面積%以上が初析フェライトであり、平均結晶粒径が5μm〜12μmであるとともに、展伸度が1.2〜3であり、ミクロ組織の結晶粒内におけるTiCからなる析出物の平均結晶粒径が1.5〜3nmであるとともに、その密度が1×1016〜5×1017個/cmであることを特徴とするバーリング性に優れた高降伏比型熱延鋼板が得られている。従って、これら鋼番の鋼は、本発明における鋼板の目的とする引張強度、降伏比、穴
拡げ値及び面内異方性の指標である|Δr|がそれぞれ370〜540MPa、85%以上、120%以上及び0.3以下を満たしている。
In accordance with the present invention are steel Nos. 1, 2, 3, 4, 19, 20, 21, 22, 23, 24, all containing a predetermined amount of steel components that the present invention should satisfy. 90% by area or more of the microstructure is pro-eutectoid ferrite, the average crystal grain size is 5 μm to 12 μm, the elongation is 1.2 to 3, and from the TiC in the crystal grains of the microstructure A high yield ratio type excellent in burring characteristics, characterized in that the average crystal grain size of the resulting precipitate is 1.5 to 3 nm and the density thereof is 1 × 10 16 to 5 × 10 17 pieces / cm 3. A hot-rolled steel sheet is obtained. Therefore, the steels of these steel numbers have an objective tensile strength, yield ratio, hole expansion value and in-plane anisotropy index | Δr | of 370 to 540 MPa, 85% or more, 120 respectively. % Or more and 0.3 or less.

上記以外の鋼は、以下の理由によって本発明の範囲外である。即ち、鋼番5は、最終段とその前段の合計圧下率が低すぎるため、初析フェライトの面積分率が低くなりすぎ、目標とする降伏比が得られていない。鋼番6は、仕上圧延終了温度が低すぎるため、展伸度が大きくなりすぎ、目標とする降伏比、λが得られておらず、面内異方性の上限を超えている。鋼番7は、1段階目の冷却工程の時間が短すぎるため、展伸度が大きくなりすぎ、目標とするλが得られておらず、異方性の上限を超えている。鋼番8は、1段階目の冷却工程の時間が長すぎるため、平均結晶粒径が大きくなりすぎ、目標とする降伏比が得られていない。鋼番9は、2段階目の冷却工程での冷却速度が遅すぎるため、平均結晶粒径が大きくなりすぎ、目標とする降伏比が得られていない。鋼番10は、2段階目の冷却工程での冷却速度が速すぎるため、初析フェライトの面積分率が低すぎ、目標とする降伏比が得られていない。鋼番11は、3段階目の冷却工程での温度が高温すぎるため、パーライトが生成し、更に、初析フェライトの面積分率が低くなりすぎ、平均結晶粒径が大きくなりすぎ、目標とする降伏比、λが得られていない。鋼番12は、3段階目の冷却工程での温度が低温すぎるため、初析フェライトの面積分率が低くなりすぎ、目標とする降伏比が得られていない。鋼番13は、3段階目の冷却工程での温度が高温すぎるため、析出物が低密度化してしまい、その平均粒径や密度が範囲外となり、目標とする降伏比が得られていない。鋼番14は、3段階目の冷却工程での空冷時間が無いため、初析フェライトの面積分率が低くなりすぎ、目標とする降伏比が得られていない。鋼番15は、3段階目の冷却工程での空冷時間が長すぎるため、パーライトが生成し、更に、初析フェライトの面積分率が低くなりすぎ、目標とする降伏比、λが得られていない。鋼番16は、4段階目の冷却工程での冷却速度が遅すぎるため、パーライトが生成し、更に、初析フェライトの面積分率が低くなりすぎ、目標とする降伏比、λが得られていない。鋼番17は、巻き取り温度が高温すぎるため、平均結晶粒径が大きくなりすぎ、目標とする降伏比が得られていない。鋼番18は、巻き取り温度が低温すぎるため、初析フェライトの面積分率が低くなりすぎ、目標とする降伏比が得られていない。鋼番25は、Nbの含有量が本発明範囲を超えているので、展伸度が大きくなりすぎ、目的とする異方性の上限を超えている。鋼番26は、Cの含有量が本発明範囲の上限を超えているため、パーライトが生成し、初析フェライトの面積分率が小さくなりすぎ、目標とするλが得られていない。鋼番27は、Cの含有量が本発明の範囲の下限を下回っているため、平均結晶粒径が大きくなりすぎ、目標とする降伏比が得られておらず、Cの含有量が少ないことからTiCの析出が減少してピニング効果が抑制され、展伸度が本発明範囲を下回っている。鋼番28は、Tiの含有量が本発明の範囲の下限を下回っているため、析出強化の寄与が少なく目標とする降伏比が得られていない。鋼番29は、Tiの含有量が本発明範囲の上限を超えているため、平均結晶粒径が小さくなりすぎ、引張強度が540MPaを超えている。鋼番30は、[Si]+[Mn]の含有量が本発明範囲の上限を超えているため、引張強度が540MPaを超えており、目標とするλも得られていない。鋼番31は、[Si]+[Mn]の含有量が本発明の範囲の下限を下回っているため、引張強度が370MPaを下回っている。   Steels other than the above are outside the scope of the present invention for the following reasons. That is, in Steel No. 5, since the total reduction ratio of the final stage and the preceding stage is too low, the area fraction of pro-eutectoid ferrite becomes too low, and the target yield ratio is not obtained. Steel No. 6 has a finish rolling temperature that is too low, so that the degree of elongation becomes too large, and the target yield ratio and λ are not obtained, which exceeds the upper limit of in-plane anisotropy. In Steel No. 7, the time for the first cooling step is too short, so the degree of elongation becomes too large, the target λ is not obtained, and exceeds the upper limit of anisotropy. In Steel No. 8, the time for the first stage cooling process is too long, so the average crystal grain size becomes too large, and the target yield ratio is not obtained. In Steel No. 9, the cooling rate in the second stage cooling process is too slow, so the average crystal grain size becomes too large, and the target yield ratio is not obtained. In Steel No. 10, the cooling rate in the second-stage cooling process is too fast, so the area fraction of pro-eutectoid ferrite is too low, and the target yield ratio is not obtained. In steel No. 11, the temperature in the third stage cooling process is too high, so that pearlite is generated, and further, the area fraction of pro-eutectoid ferrite becomes too low, the average crystal grain size becomes too large, and is targeted. Yield ratio, λ is not obtained. In Steel No. 12, since the temperature in the third-stage cooling process is too low, the area fraction of pro-eutectoid ferrite becomes too low, and the target yield ratio is not obtained. In Steel No. 13, the temperature in the third-stage cooling process is too high, so the precipitates are reduced in density, and the average grain size and density are out of range, and the target yield ratio is not obtained. In Steel No. 14, since there is no air cooling time in the third stage cooling process, the area fraction of pro-eutectoid ferrite becomes too low, and the target yield ratio is not obtained. In Steel No. 15, the air cooling time in the third stage cooling process is too long, so pearlite is generated, and the area fraction of proeutectoid ferrite is too low, and the target yield ratio, λ, is obtained. Absent. In steel No. 16, the cooling rate in the fourth stage cooling process is too slow, so pearlite is generated, and the area fraction of proeutectoid ferrite is too low, and the target yield ratio, λ, is obtained. Absent. Steel No. 17 has a winding temperature that is too high, so the average crystal grain size becomes too large, and the target yield ratio is not obtained. In Steel No. 18, since the coiling temperature is too low, the area fraction of pro-eutectoid ferrite becomes too low, and the target yield ratio is not obtained. In Steel No. 25, the Nb content exceeds the range of the present invention, so that the degree of expansion becomes too large and exceeds the target upper limit of anisotropy. In Steel No. 26, since the C content exceeds the upper limit of the range of the present invention, pearlite is generated, the area fraction of pro-eutectoid ferrite becomes too small, and the target λ is not obtained. In Steel No. 27, since the C content is below the lower limit of the range of the present invention, the average crystal grain size becomes too large, the target yield ratio is not obtained, and the C content is low. From this, the precipitation of TiC is reduced, the pinning effect is suppressed, and the degree of expansion is below the range of the present invention. In Steel No. 28, since the Ti content is below the lower limit of the range of the present invention, the target yield ratio is not obtained with little contribution of precipitation strengthening. In Steel No. 29, since the Ti content exceeds the upper limit of the range of the present invention, the average crystal grain size becomes too small, and the tensile strength exceeds 540 MPa. In Steel No. 30, the content of [Si] + [Mn] exceeds the upper limit of the range of the present invention, so the tensile strength exceeds 540 MPa, and the target λ is not obtained. In Steel No. 31, the content of [Si] + [Mn] is below the lower limit of the range of the present invention, so the tensile strength is below 370 MPa.

Claims (9)

質量%で、
C :0.03〜0.07%、
Si:0.005〜1.8%
Mn:0.1〜1.9%
P ≦0.05%(0%を含まない)、
S ≦0.005%(0%を含まない)、
Al:0.001〜0.1%、
N ≦0.005%(0%を含まない)、
Nb:0.002〜0.008%
を含有するとともに、S含有量(質量%)を[S]、N含有量(質量%)を[N]とした場合に、下記数式(1)で[Ti]で表される量(質量%)のTiを含有し、
Si含有量(質量%)を[Si]、Mn含有量(質量%)を[Mn]とした場合に、下記数式(2)を満足し、
残部がFe及び不可避的不純物からなる鋼板であって、
そのミクロ組織の90面積%以上が初析フェライトであり、平均結晶粒径が5μm〜12μmであるとともに、展伸度が1.2〜3であり、
上記ミクロ組織の結晶粒内におけるTiCからなる析出物の平均粒径が1.5〜3nmであるとともに、その密度が1×1016〜5×1017個/cmであること
を特徴とするバーリング性に優れた高降伏比型熱延鋼板。
Figure 2011012308
・・・(1)
Figure 2011012308
・・・(2)
% By mass
C: 0.03-0.07%,
Si: 0.005 to 1.8%
Mn: 0.1 to 1.9%
P ≦ 0.05% (excluding 0%),
S ≦ 0.005% (excluding 0%),
Al: 0.001 to 0.1%,
N ≦ 0.005% (excluding 0%),
Nb: 0.002 to 0.008%
When the S content (% by mass) is [S] and the N content (% by mass) is [N], the amount (% by mass) represented by [Ti] in the following formula (1) ) Ti,
When the Si content (% by mass) is [Si] and the Mn content (% by mass) is [Mn], the following formula (2) is satisfied:
The balance is a steel plate made of Fe and inevitable impurities,
90% by area or more of the microstructure is pro-eutectoid ferrite, the average crystal grain size is 5 μm to 12 μm, and the elongation is 1.2 to 3,
The average grain size of the precipitate made of TiC in the crystal grains of the microstructure is 1.5 to 3 nm, and the density thereof is 1 × 10 16 to 5 × 10 17 pieces / cm 3. High yield ratio hot rolled steel sheet with excellent burring properties.
Figure 2011012308
... (1)
Figure 2011012308
... (2)
更に、質量%で、
Ca :0.0005〜0.005%、
REM:0.0005〜0.02%、
の何れか一種又は二種を含有すること
を特徴とする請求項1記載のバーリング性に優れた高降伏比型熱延鋼板。
Furthermore, in mass%,
Ca: 0.0005 to 0.005%,
REM: 0.0005 to 0.02%,
The high yield ratio hot-rolled steel sheet having excellent burring properties according to claim 1, wherein one or two of these are contained.
表面に亜鉛めっきが施されていること
を特徴とする請求項1又は2記載のバーリング性に優れた高降伏比型熱延鋼板。
The high yield ratio hot rolled steel sheet having excellent burring properties according to claim 1 or 2, wherein the surface is galvanized.
請求項1〜3の何れか1項に記載の成分を含有する鋼片を1000℃以上に加熱した後に粗圧延を行い、最終段とその前段の合計圧下率が30〜45%である仕上圧延をその圧延終了温度を880℃以上の温度域として行い、仕上圧延終了後1.5〜3.5秒空冷した後に750〜620℃の温度域まで20〜50℃/secの冷却速度で冷却し、その後に1〜5秒空冷し、更に620〜480℃の温度域まで2〜10℃/secの冷却速度で冷却した後に巻き取ること
を特徴とするバーリング性に優れた高降伏比型熱延鋼板の製造方法。
After the steel slab containing the component according to any one of claims 1 to 3 is heated to 1000 ° C or higher, rough rolling is performed, and finish rolling in which the total rolling reduction of the final stage and the preceding stage is 30 to 45% The rolling end temperature is set to a temperature range of 880 ° C. or higher, air cooled for 1.5 to 3.5 seconds after finishing rolling, and then cooled to a temperature range of 750 to 620 ° C. at a cooling rate of 20 to 50 ° C./sec. After that, it is air-cooled for 1 to 5 seconds, and further cooled to a temperature range of 620 to 480 ° C. at a cooling rate of 2 to 10 ° C./sec. A method of manufacturing a steel sheet.
上記鋼片の加熱時において、C含有量(質量%)を[C]とした場合に下記数式(3)を満足する温度SRT(℃)以上に加熱すること
を特徴とする請求項4記載のバーリング性に優れた高降伏比型熱延鋼板の製造方法。
Figure 2011012308
・・・(3)
The heating of the steel slab is performed at a temperature SRT (° C) or more that satisfies the following formula (3) when the C content (% by mass) is [C]. A method for producing a high yield ratio hot rolled steel sheet with excellent burring properties.
Figure 2011012308
... (3)
上記仕上圧延を、その圧延開始温度を1050℃以上の温度域として行なうこと
を特徴とする請求項4又は5記載のバーリング性に優れた高降伏比型熱延鋼板の製造方法。
6. The method for producing a high yield ratio hot rolled steel sheet having excellent burring properties according to claim 4, wherein the finish rolling is performed at a rolling start temperature of 1050 ° C. or higher.
上記鋼片を粗圧延して得られた粗バーを、当該粗圧延終了から上記仕上圧延開始までの間及び/又は上記仕上圧延中に加熱すること
を特徴とする請求項4〜6の何れか1項記載のバーリング性に優れた高降伏比型熱延鋼板の製造方法。
The rough bar obtained by rough rolling the steel slab is heated from the end of the rough rolling to the start of the finish rolling and / or during the finish rolling. The manufacturing method of the high yield ratio type | mold hot-rolled steel plate excellent in burring property of 1 item | term.
上記巻き取り後に得られた熱延鋼板を亜鉛めっき浴中に浸積させてその表面を亜鉛めっきすること
を特徴とする請求項4〜7の何れか1項記載のバーリング性に優れた高降伏比型熱延鋼板の製造方法。
The high yield yielding excellent burring property according to any one of claims 4 to 7, wherein the hot-rolled steel sheet obtained after the winding is immersed in a galvanizing bath and the surface thereof is galvanized. A method for producing a specific hot-rolled steel sheet.
上記熱延鋼板を亜鉛めっきした後、合金化処理すること
を特徴とする請求項8記載のバーリング性に優れた高降伏比型熱延鋼板の製造方法。
9. The method for producing a high yield ratio hot rolled steel sheet with excellent burring properties according to claim 8, wherein the hot rolled steel sheet is galvanized and then alloyed.
JP2009157480A 2009-07-02 2009-07-02 High yield ratio hot-rolled steel sheet excellent in burring and method for producing the same Active JP5338525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009157480A JP5338525B2 (en) 2009-07-02 2009-07-02 High yield ratio hot-rolled steel sheet excellent in burring and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009157480A JP5338525B2 (en) 2009-07-02 2009-07-02 High yield ratio hot-rolled steel sheet excellent in burring and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011012308A true JP2011012308A (en) 2011-01-20
JP5338525B2 JP5338525B2 (en) 2013-11-13

Family

ID=43591491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009157480A Active JP5338525B2 (en) 2009-07-02 2009-07-02 High yield ratio hot-rolled steel sheet excellent in burring and method for producing the same

Country Status (1)

Country Link
JP (1) JP5338525B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012001776A (en) * 2010-06-17 2012-01-05 Nippon Steel Corp High-strength hot rolled steel sheet excelling in burring property, and method of manufacturing the same
JP2012001775A (en) * 2010-06-17 2012-01-05 Nippon Steel Corp High-strength hot-rolled steel sheet excelling in burring property, and method for manufacturing the same
WO2012128206A1 (en) * 2011-03-18 2012-09-27 新日本製鐵株式会社 Hot-rolled steel sheet exhibiting exceptional press-molding properties and method for manufacturing same
WO2012141290A1 (en) * 2011-04-13 2012-10-18 新日本製鐵株式会社 Hot-rolled steel sheet and manufacturing method thereof
EP2698443A1 (en) * 2011-04-13 2014-02-19 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel for gaseous nitrocarburizing and manufacturing method thereof
WO2014051005A1 (en) * 2012-09-26 2014-04-03 新日鐵住金株式会社 Composite-structure steel sheet and process for producing same
EP2792763A1 (en) * 2011-12-12 2014-10-22 JFE Steel Corporation Steel sheet with excellent aging resistance, and method for producing same
EP2682492A4 (en) * 2011-03-04 2015-03-04 Nippon Steel & Sumitomo Metal Corp Hot rolled steel sheet and method for producing same
EP2799578A4 (en) * 2011-12-27 2016-01-27 Jfe Steel Corp High-strength hot-rolled steel sheet and manufacturing method therefor
WO2016194342A1 (en) * 2015-05-29 2016-12-08 Jfeスチール株式会社 High strength steel sheet and method for producing same
JP2017504724A (en) * 2013-12-26 2017-02-09 ポスコPosco Hot-rolled steel sheet excellent in weldability and burring property and method for producing the same
KR20170118868A (en) 2015-03-06 2017-10-25 제이에프이 스틸 가부시키가이샤 High strength steel sheet and manufacturing method therefor
JP6332570B1 (en) * 2017-03-31 2018-05-30 新日鐵住金株式会社 Hot-rolled steel sheet, steel forged parts and method for producing them
WO2018110853A1 (en) * 2016-12-13 2018-06-21 주식회사 포스코 High strength dual phase steel having excellent low temperature range burring properties, and method for producing same
KR101899674B1 (en) * 2016-12-19 2018-09-17 주식회사 포스코 High strength steel sheet having excellent burring property in low-temperature region and manufacturing method for same
WO2022103044A1 (en) * 2020-11-13 2022-05-19 주식회사 포스코 High yield ratio and high strength steel sheet having excellent thermal stability, and manufacturing method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10287949A (en) * 1997-04-15 1998-10-27 Nippon Steel Corp (400 to 800) n/mm2 class high strength hot rolled steel plate, excellent in toughness and workability, and its production
JPH11189842A (en) * 1997-10-24 1999-07-13 Kawasaki Steel Corp High-strength and high-workability hot rolled steel plate excellent in impact resistance, balance between strength and elongation, fatigue resistance, and bore-expandability, and its production
JP2000328186A (en) * 1999-05-13 2000-11-28 Kobe Steel Ltd High strength hot rolled steel sheet with hyperfine ferritic structure excellent in stretch-flanging property and its production
JP2002322540A (en) * 2000-10-31 2002-11-08 Nkk Corp High tensile hot rolled steel sheet having excellent elongation and stretch-flanging property, production method therefor and working method therefor
JP2007247049A (en) * 2006-03-20 2007-09-27 Nippon Steel Corp High strength hot rolled steel sheet having excellent stretch-flanging property
WO2008123366A1 (en) * 2007-03-27 2008-10-16 Nippon Steel Corporation High-strength hot rolled steel sheet being free from peeling and excelling in surface and burring properties and process for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10287949A (en) * 1997-04-15 1998-10-27 Nippon Steel Corp (400 to 800) n/mm2 class high strength hot rolled steel plate, excellent in toughness and workability, and its production
JPH11189842A (en) * 1997-10-24 1999-07-13 Kawasaki Steel Corp High-strength and high-workability hot rolled steel plate excellent in impact resistance, balance between strength and elongation, fatigue resistance, and bore-expandability, and its production
JP2000328186A (en) * 1999-05-13 2000-11-28 Kobe Steel Ltd High strength hot rolled steel sheet with hyperfine ferritic structure excellent in stretch-flanging property and its production
JP2002322540A (en) * 2000-10-31 2002-11-08 Nkk Corp High tensile hot rolled steel sheet having excellent elongation and stretch-flanging property, production method therefor and working method therefor
JP2007247049A (en) * 2006-03-20 2007-09-27 Nippon Steel Corp High strength hot rolled steel sheet having excellent stretch-flanging property
WO2008123366A1 (en) * 2007-03-27 2008-10-16 Nippon Steel Corporation High-strength hot rolled steel sheet being free from peeling and excelling in surface and burring properties and process for manufacturing the same

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012001775A (en) * 2010-06-17 2012-01-05 Nippon Steel Corp High-strength hot-rolled steel sheet excelling in burring property, and method for manufacturing the same
JP2012001776A (en) * 2010-06-17 2012-01-05 Nippon Steel Corp High-strength hot rolled steel sheet excelling in burring property, and method of manufacturing the same
US9267196B2 (en) 2011-03-04 2016-02-23 Nippon Steel & Sumitomo Metal Corporation Method of producing a hot rolled steel sheet
EP2682492A4 (en) * 2011-03-04 2015-03-04 Nippon Steel & Sumitomo Metal Corp Hot rolled steel sheet and method for producing same
US10428409B2 (en) 2011-03-18 2019-10-01 Nippon Steel Corporation Hot-rolled steel sheet with excellent press formability and production method thereof
WO2012128206A1 (en) * 2011-03-18 2012-09-27 新日本製鐵株式会社 Hot-rolled steel sheet exhibiting exceptional press-molding properties and method for manufacturing same
KR101540877B1 (en) * 2011-04-13 2015-07-30 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel for gaseous nitrocarburizing and manufacturing method thereof
KR101555418B1 (en) 2011-04-13 2015-09-23 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet and manufacturing method thereof
US9453269B2 (en) 2011-04-13 2016-09-27 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet for gas nitrocarburizing and manufacturing method thereof
WO2012141290A1 (en) * 2011-04-13 2012-10-18 新日本製鐵株式会社 Hot-rolled steel sheet and manufacturing method thereof
US9752217B2 (en) 2011-04-13 2017-09-05 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and method of producing the same
EP2698444A4 (en) * 2011-04-13 2015-02-25 Nippon Steel & Sumitomo Metal Corp Hot-rolled steel sheet and manufacturing method thereof
EP2698443A1 (en) * 2011-04-13 2014-02-19 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel for gaseous nitrocarburizing and manufacturing method thereof
EP2698443A4 (en) * 2011-04-13 2015-03-11 Nippon Steel & Sumitomo Metal Corp Hot-rolled steel for gaseous nitrocarburizing and manufacturing method thereof
US9797024B2 (en) 2011-04-13 2017-10-24 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet for gas nitrocarburizing and manufacturing method thereof
CN103459648A (en) * 2011-04-13 2013-12-18 新日铁住金株式会社 Hot-rolled steel sheet and manufacturing method thereof
JP5459441B2 (en) * 2011-04-13 2014-04-02 新日鐵住金株式会社 Hot rolled steel sheet and manufacturing method thereof
EP2792763A4 (en) * 2011-12-12 2014-11-19 Jfe Steel Corp Steel sheet with excellent aging resistance, and method for producing same
US9828648B2 (en) 2011-12-12 2017-11-28 Jfe Steel Corporation Steel sheet with excellent aging resistance property and method for producing the same
EP2792763A1 (en) * 2011-12-12 2014-10-22 JFE Steel Corporation Steel sheet with excellent aging resistance, and method for producing same
US9657382B2 (en) 2011-12-27 2017-05-23 Jfe Steel Corporation High-strength hot rolled steel sheet
EP2799578A4 (en) * 2011-12-27 2016-01-27 Jfe Steel Corp High-strength hot-rolled steel sheet and manufacturing method therefor
US10533236B2 (en) 2011-12-27 2020-01-14 Jfe Steel Corporation High-strength hot rolled steel sheet and method for manufacturing the same
JP5610103B2 (en) * 2012-09-26 2014-10-22 新日鐵住金株式会社 Composite structure steel plate and manufacturing method thereof
TWI480389B (en) * 2012-09-26 2015-04-11 Nippon Steel & Sumitomo Metal Corp Composite composite steel sheet and manufacturing method thereof
US9863026B2 (en) 2012-09-26 2018-01-09 Nippon Steel & Sumitomo Metal Corporation Dual phase steel sheet and manufacturing method thereof
WO2014051005A1 (en) * 2012-09-26 2014-04-03 新日鐵住金株式会社 Composite-structure steel sheet and process for producing same
JP2017504724A (en) * 2013-12-26 2017-02-09 ポスコPosco Hot-rolled steel sheet excellent in weldability and burring property and method for producing the same
KR20170118868A (en) 2015-03-06 2017-10-25 제이에프이 스틸 가부시키가이샤 High strength steel sheet and manufacturing method therefor
CN107406937A (en) * 2015-03-06 2017-11-28 杰富意钢铁株式会社 High-strength steel sheet and its manufacture method
KR101986033B1 (en) 2015-03-06 2019-06-04 제이에프이 스틸 가부시키가이샤 High strength steel sheet and manufacturing method therefor
EP3266897A4 (en) * 2015-03-06 2018-03-28 JFE Steel Corporation High strength steel sheet and manufacturing method therefor
US10815547B2 (en) 2015-03-06 2020-10-27 Jfe Steel Corporation High strength steel sheet and manufacturing method therefor
WO2016194342A1 (en) * 2015-05-29 2016-12-08 Jfeスチール株式会社 High strength steel sheet and method for producing same
WO2018110853A1 (en) * 2016-12-13 2018-06-21 주식회사 포스코 High strength dual phase steel having excellent low temperature range burring properties, and method for producing same
KR101899670B1 (en) 2016-12-13 2018-09-17 주식회사 포스코 High strength multi-phase steel having excellent burring property at low temperature and method for manufacturing same
CN110050083A (en) * 2016-12-19 2019-07-23 Posco公司 Low temperature region rushes the high-strength steel sheet and its manufacturing method of edge excellent in workability
KR101899674B1 (en) * 2016-12-19 2018-09-17 주식회사 포스코 High strength steel sheet having excellent burring property in low-temperature region and manufacturing method for same
US11466336B2 (en) 2016-12-19 2022-10-11 Posco High-strength steel sheet having excellent burring workability in low temperature range and manufacturing method therefor
WO2018179389A1 (en) * 2017-03-31 2018-10-04 新日鐵住金株式会社 Hot-rolled steel sheet, forged steel part and production methods therefor
JP6332570B1 (en) * 2017-03-31 2018-05-30 新日鐵住金株式会社 Hot-rolled steel sheet, steel forged parts and method for producing them
WO2022103044A1 (en) * 2020-11-13 2022-05-19 주식회사 포스코 High yield ratio and high strength steel sheet having excellent thermal stability, and manufacturing method therefor
KR20220065930A (en) * 2020-11-13 2022-05-23 주식회사 포스코 High strength steel sheet having excellent thermal stability and high yield ratio and method for manufacturing thereof
KR102468035B1 (en) 2020-11-13 2022-11-18 주식회사 포스코 High strength steel sheet having excellent thermal stability and high yield ratio and method for manufacturing thereof

Also Published As

Publication number Publication date
JP5338525B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP5338525B2 (en) High yield ratio hot-rolled steel sheet excellent in burring and method for producing the same
US9797024B2 (en) Hot-rolled steel sheet for gas nitrocarburizing and manufacturing method thereof
KR101555418B1 (en) Hot-rolled steel sheet and manufacturing method thereof
TWI460289B (en) High strength hot rolled steel sheet with variable toughness type and excellent manufacturing process
US9988697B2 (en) High-strength hot-rolled steel sheet having excellent local deformability and manufacturing method thereof
JP6358406B2 (en) Steel plate and plated steel plate
TWI598450B (en) Hot rolled steel sheet
JP5527051B2 (en) Bake-hardening hot-rolled steel sheet excellent in burring properties and method for producing the same
KR20130135348A (en) High-strength cold-rolled steel sheet with highly even stretchabilty and excellent hole expansibility, and process for producing same
KR20190015539A (en) Steel plate and coated steel plate
WO2014188966A1 (en) Hot-rolled steel sheet and method for manufacturing same
JPWO2012161241A1 (en) Cold-rolled steel sheet and manufacturing method thereof
JPWO2012014926A1 (en) Hot-rolled steel sheet, cold-rolled steel sheet, galvanized steel sheet, and production methods thereof
JP2010285657A (en) Precipitation strengthening type dual phase cold rolled steel sheet, and method for producing the same
TW201812045A (en) Steel sheet and plated steel sheet
WO2020145259A1 (en) Steel plate and manufacturing method thereof
JP5533765B2 (en) High-strength cold-rolled steel sheet with excellent local deformability and its manufacturing method
JP5454488B2 (en) High-strength cold-rolled steel sheet with excellent uniform and local deformability
JP2004136321A (en) Hot-rolled steel sheet manufacturing method
WO2023063350A1 (en) Hot-rolled steel plate
WO2023063347A1 (en) Hot-rolled steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110816

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130722

R151 Written notification of patent or utility model registration

Ref document number: 5338525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350