JP2017504724A - Hot-rolled steel sheet excellent in weldability and burring property and method for producing the same - Google Patents
Hot-rolled steel sheet excellent in weldability and burring property and method for producing the same Download PDFInfo
- Publication number
- JP2017504724A JP2017504724A JP2016543061A JP2016543061A JP2017504724A JP 2017504724 A JP2017504724 A JP 2017504724A JP 2016543061 A JP2016543061 A JP 2016543061A JP 2016543061 A JP2016543061 A JP 2016543061A JP 2017504724 A JP2017504724 A JP 2017504724A
- Authority
- JP
- Japan
- Prior art keywords
- hot
- steel sheet
- weight
- weldability
- rolled steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 95
- 239000010959 steel Substances 0.000 title claims abstract description 95
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 238000003466 welding Methods 0.000 claims abstract description 11
- 238000001816 cooling Methods 0.000 claims description 43
- 229910052782 aluminium Inorganic materials 0.000 claims description 21
- 229910000859 α-Fe Inorganic materials 0.000 claims description 21
- 229910052710 silicon Inorganic materials 0.000 claims description 20
- 229910052750 molybdenum Inorganic materials 0.000 claims description 17
- 229910052804 chromium Inorganic materials 0.000 claims description 16
- 229910052748 manganese Inorganic materials 0.000 claims description 16
- 229910052799 carbon Inorganic materials 0.000 claims description 15
- 238000005098 hot rolling Methods 0.000 claims description 15
- 229910052758 niobium Inorganic materials 0.000 claims description 14
- 229910052719 titanium Inorganic materials 0.000 claims description 14
- 229910052720 vanadium Inorganic materials 0.000 claims description 13
- 229910001563 bainite Inorganic materials 0.000 claims description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims description 12
- 229910052717 sulfur Inorganic materials 0.000 claims description 11
- 239000012535 impurity Substances 0.000 claims description 10
- 229910052698 phosphorus Inorganic materials 0.000 claims description 9
- 238000005096 rolling process Methods 0.000 claims description 9
- 238000003303 reheating Methods 0.000 claims description 6
- 238000005554 pickling Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 11
- 239000011572 manganese Substances 0.000 description 23
- 239000011651 chromium Substances 0.000 description 20
- 230000000694 effects Effects 0.000 description 16
- 239000010936 titanium Substances 0.000 description 16
- 239000010955 niobium Substances 0.000 description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 238000005728 strengthening Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 229910000734 martensite Inorganic materials 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 239000006104 solid solution Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 239000011593 sulfur Substances 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 150000001247 metal acetylides Chemical class 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 241000219307 Atriplex rosea Species 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
本発明の一側面は、電気抵抗溶接性に優れるため溶接作業が容易である熱延高バーリング鋼及びその製造方法を提供する。【選択図】図1One aspect of the present invention provides a hot-rolled high burring steel that is excellent in electric resistance weldability and easy in welding work, and a method for manufacturing the same. [Selection] Figure 1
Description
本発明は、溶接性及びバーリング性に優れた熱延鋼板及びその製造方法に関する。 The present invention relates to a hot-rolled steel sheet excellent in weldability and burring properties and a method for producing the same.
最近、自動車業界ではCO2排出量の低減のための軽量化、及び衝突安定性を向上させるための車体の強化を両立させるために、自動車車体への高強度鋼板(High Tensile Strength Steel)の適用が広がっている。高強度鋼板は、このような相反する要請を実現する費用に対する効果に優れた材料であり、今後さらに厳しくなる規制に対応すべく、その適用量が次第に増大すると思われる。特に、衝突安定性に対する関心が高まるにつれて、その役割が次第に大きくなっている。 Recently, in the automotive industry, in order to achieve both weight reduction for reducing CO 2 emissions and strengthening of the vehicle body to improve collision stability, application of high strength steel plate to the vehicle body Is spreading. A high-strength steel sheet is an excellent material for the cost of realizing such conflicting demands, and its application amount is expected to increase gradually in order to comply with regulations that will become stricter in the future. In particular, as the interest in crash stability increases, its role is becoming increasingly important.
一般的に、材料は高強度になるほど成形性が悪くなる。鉄鋼材料においても例外ではなく今まで高強度と高延性の両立に対する試みが行われている。また、自動車部品に使用される材料に求められる特性としては、延性の他にバーリング加工性がある。しかし、バーリング加工性も高強度化に伴って低下する傾向を示すため、バーリング加工性の向上も高強度鋼板の自動車部品への適用に関する課題となっている。一方、自動車部品は、プレス成形等によって加工された部材がスポット、アーク、プラズマ、レーザー等の溶接によって組み立てられる。また、最近は、鋼板をこれら溶接によって接合してからプレス成形する場合もある。成形時に、または部品として組み立て付着されて使用されたときの溶接部の強度は、成形限界及び安定性の側面で非常に重要である。したがって、自動車部品等への高強度鋼板の適用においては、そのバーリング加工性とともに溶接部の強度も重要な検討課題となる。 In general, the higher the strength of a material, the worse the moldability. There are no exceptions in steel materials, and attempts have been made to achieve both high strength and high ductility. In addition to ductility, the properties required for materials used in automobile parts include burring workability. However, since burring workability tends to decrease with increasing strength, improvement of burring workability is also a problem regarding application of high-strength steel sheets to automobile parts. On the other hand, automotive parts are assembled by welding such as spots, arcs, plasmas, lasers, etc., with members processed by press molding or the like. Recently, there are also cases where the steel plates are joined by welding and then press-formed. The strength of the weld during molding or when assembled and used as a part is very important in terms of molding limits and stability. Therefore, in the application of high-strength steel sheets to automobile parts and the like, the strength of the welded portion as well as its burring workability becomes an important examination subject.
特許文献1では、熱間圧延後に、700℃前後の温度まで冷却させた後、一定の時間空冷し、再び冷却して巻取する3段冷却を用いることにより、フェライト−ベイナイト組織を形成して伸びフランジ性を向上させる技術を提案している。また、特許文献2では、フェライト−ベイナイト組織で制御し、このとき、フェライト比率が80%以上になるようにするとともに、結晶粒子の短い直径(ds)と長い直径(dl)の比が0.1である結晶粒子が80%以上になるようにして、69kg/cm2以上の強度を有し、延伸率及び伸びフランジ性にともに優れた熱延鋼板を製造する技術を提案している。 In Patent Document 1, after the hot rolling, the ferrite-bainite structure is formed by using three-stage cooling that is cooled to a temperature of around 700 ° C., then air-cooled for a certain time, and then cooled and wound again. A technology to improve stretch flangeability is proposed. Further, in Patent Document 2, the ferrite-bainite structure is controlled. At this time, the ferrite ratio is set to 80% or more, and the ratio of the short diameter (ds) to the long diameter (dl) of the crystal grains is 0. A technique for producing a hot-rolled steel sheet having a strength of 69 kg / cm 2 or more and excellent stretch ratio and stretch flangeability is proposed so that the number of crystal grains 1 is 80% or more.
しかし、上述のような技術は、Si、Mn、Al、Mo等の合金成分を主に活用してフェライト−ベイナイトの二相複合組織鋼を製造する。しかし、このような合金成分は、電気抵抗溶接時に電気抵抗を増加させて抵抗発熱が激しくなるか、または入力電流値を低くして作業する場合に冷接が生じるという問題がある。また、Si、Mn、Al等は溶接時に酸化物を形成して溶接部の健全性を低下させるという問題がある。 However, the technique as described above produces ferrite-bainite dual-phase composite steel by mainly utilizing alloy components such as Si, Mn, Al, and Mo. However, such an alloy component has a problem that resistance heating is increased by increasing the electrical resistance during electrical resistance welding, or cold welding occurs when working with a lower input current value. Moreover, Si, Mn, Al, etc. have the problem of forming an oxide at the time of welding and reducing the soundness of a welded part.
本発明の一側面は、電気抵抗溶接性に優れるため溶接作業が容易であり、バーリング性に優れた熱延鋼板及びその製造方法を提供することである。 One aspect of the present invention is to provide a hot-rolled steel sheet having excellent electrical resistance weldability, which facilitates welding work and excellent burring properties, and a method for manufacturing the hot-rolled steel sheet.
本発明の一側面は、重量%で、C:0.03〜0.1%、Si:0.01〜1.2%、Mn:1.2〜1.9%、Al:0.01〜0.08%、Cr:0.005〜0.8%、Mo:0.01〜0.12%、P:0.01〜0.05%、S:0.001〜0.005%、N:0.001〜0.01%、残部Fe及びその他の不可避不純物を含み、上記各成分は下記数式1を満たし、引張強さと伸びフランジ性の積が48000以上である溶接性及びバーリング性に優れた熱延鋼板を提供する。 One aspect of the present invention is, by weight, C: 0.03-0.1%, Si: 0.01-1.2%, Mn: 1.2-1.9%, Al: 0.01- 0.08%, Cr: 0.005-0.8%, Mo: 0.01-0.12%, P: 0.01-0.05%, S: 0.001-0.005%, N : 0.001 to 0.01%, balance Fe and other inevitable impurities are included, each of the above components satisfies the following formula 1, and the product of tensile strength and stretch flangeability is 48000 or more, and is excellent in weldability and burring properties Provide hot rolled steel sheet.
10.646+0.2[C]+0.25[Si]+0.3[Mn]−0.1[Cr]+0.55[Al]+0.2[Mo]−4.23[Ti]−2.5[Nb]−2.9[V]≦11.1 [数式(1)]
但し、上記数式1においてC、Si、Mn、Cr、Al、Mo、Ti、Nb、及びVはそれぞれ該当元素の含量(重量%)を示す。
10.646 + 0.2 [C] +0.25 [Si] +0.3 [Mn] −0.1 [Cr] +0.55 [Al] +0.2 [Mo] −4.23 [Ti] −2.5 [Nb] -2.9 [V] ≦ 11.1 [Formula (1)]
However, in the said Numerical formula 1, C, Si, Mn, Cr, Al, Mo, Ti, Nb, and V show the content (weight%) of an applicable element, respectively.
本発明の他の一側面である溶接性及びバーリング性に優れた熱延鋼板の製造方法は、重量%で、C:0.03〜0.1%、Si:0.01〜1.2%、Mn:1.2〜1.9%、Al:0.01〜0.08%、Cr:0.005〜0.8%、Mo:0.01〜0.12%、P:0.01〜0.05%、S:0.001〜0.005%、N:0.001〜0.01%、残部Fe及びその他の不可避不純物を含み、上記各成分が下記数式1を満たす鋼スラブを設ける段階と、上記鋼スラブを1200〜1300℃で再加熱する段階と、上記再加熱された鋼スラブを850〜1000℃の仕上げ圧延温度で熱間圧延して鋼板を得る段階と、上記熱間圧延された鋼板を500〜750℃の温度まで10〜100℃/秒の冷却速度で1次冷却する段階と、上記冷却された鋼板を4〜10秒間空冷する段階と、上記空冷された鋼板を300〜500℃の温度まで10〜100℃/秒の冷却速度で2次冷却する段階と、を含む。 The method for producing a hot-rolled steel sheet excellent in weldability and burring properties, which is another aspect of the present invention, is C: 0.03 to 0.1%, Si: 0.01 to 1.2% by weight%. , Mn: 1.2 to 1.9%, Al: 0.01 to 0.08%, Cr: 0.005 to 0.8%, Mo: 0.01 to 0.12%, P: 0.01 A steel slab containing -0.05%, S: 0.001-0.005%, N: 0.001-0.01%, the balance Fe and other inevitable impurities, each of the above components satisfying the following formula 1. A step of re-heating the steel slab at 1200 to 1300 ° C., a step of hot rolling the re-heated steel slab at a finish rolling temperature of 850 to 1000 ° C. to obtain a steel plate, and the hot A step of primarily cooling the rolled steel sheet to a temperature of 500 to 750 ° C. at a cooling rate of 10 to 100 ° C./second; The including chilled steel sheet comprising the steps of cooling 4-10 seconds, the steps of the secondary cooling at a cooling rate of the air-cooled steel sheet to a temperature of 300 to 500 ° C. 10 to 100 ° C. / sec, the.
10.646+0.2[C]+0.25[Si]+0.3[Mn]−0.1[Cr]+0.55[Al]+0.2[Mo]−4.23[Ti]−2.5[Nb]−2.9[V]≦11.1 [数式(1)]
但し、上記数式1においてC、Si、Mn、Cr、Al、Mo、Ti、Nb、及びVはそれぞれ該当元素の含量(重量%)を示す。
10.646 + 0.2 [C] +0.25 [Si] +0.3 [Mn] −0.1 [Cr] +0.55 [Al] +0.2 [Mo] −4.23 [Ti] −2.5 [Nb] -2.9 [V] ≦ 11.1 [Formula (1)]
However, in the said Numerical formula 1, C, Si, Mn, Cr, Al, Mo, Ti, Nb, and V show the content (weight%) of an applicable element, respectively.
さらに、上述の課題の解決手段は本発明の特徴をすべて列挙したものではない。本発明の多様な特徴とそれによる長所及び効果は以下の具体的な実施形態を参照してより詳細に理解されることができる。 Furthermore, the means for solving the problems described above do not enumerate all the features of the present invention. The various features of the present invention and the advantages and effects thereof can be understood in more detail with reference to the following specific embodiments.
本発明によれば、鋼の成分及び熱延組織を最適化することにより、引張強さと伸びフランジ性の積が48000以上であり、溶接時の溶接部の健全性が向上して溶接性及びバーリング性に優れた熱延鋼板を確保することができる。 According to the present invention, by optimizing the steel composition and the hot-rolled structure, the product of tensile strength and stretch flangeability is 48000 or more, and the soundness of the welded part during welding is improved, so that the weldability and burring are improved. A hot-rolled steel sheet having excellent properties can be secured.
本発明者らは、上記した技術が解決できなかった問題点を克服することができる熱延鋼板を開発するために研究した結果、鋼の組成成分、微細組織、及び工程条件を制御することにより、溶接性及びバーリング性に優れた熱延鋼板を生産することができることを確認し本発明に至った。 The present inventors have studied to develop a hot-rolled steel sheet that can overcome the problems that the above-described techniques could not solve, and as a result, by controlling the steel composition components, microstructure, and process conditions. The present inventors have confirmed that a hot-rolled steel sheet having excellent weldability and burring properties can be produced, and have reached the present invention.
以下、本発明の一側面である溶接性及びバーリング性に優れた熱延鋼板について詳細に説明する。 Hereinafter, the hot-rolled steel sheet excellent in weldability and burring properties, which is one aspect of the present invention, will be described in detail.
本発明の一側面は、重量%で、C:0.03〜0.1%、Si:0.01〜1.2%、Mn:1.2〜1.9%、Al:0.01〜0.08%、Cr:0.005〜0.8%、Mo:0.01〜0.12%、P:0.01〜0.05%、S:0.001〜0.005%、N:0.001〜0.01%、残部Fe及びその他の不可避不純物を含み、上記各成分は下記数式1を満たし、引張強さと伸びフランジ性の積が48000以上である溶接性及びバーリング性に優れた熱延鋼板を提供する。 One aspect of the present invention is, by weight, C: 0.03-0.1%, Si: 0.01-1.2%, Mn: 1.2-1.9%, Al: 0.01- 0.08%, Cr: 0.005-0.8%, Mo: 0.01-0.12%, P: 0.01-0.05%, S: 0.001-0.005%, N : 0.001 to 0.01%, balance Fe and other inevitable impurities are included, each of the above components satisfies the following formula 1, and the product of tensile strength and stretch flangeability is 48000 or more, and is excellent in weldability and burring properties Provide hot rolled steel sheet.
10.646+0.2[C]+0.25[Si]+0.3[Mn]−0.1[Cr]+0.55[Al]+0.2[Mo]−4.23[Ti]−2.5[Nb]−2.9[V]≦11.1 [数式(1)]
但し、上記数式1においてC、Si、Mn、Cr、Al、Mo、Ti、Nb、及びVはそれぞれ該当元素の含量(重量%)を示す。
10.646 + 0.2 [C] +0.25 [Si] +0.3 [Mn] −0.1 [Cr] +0.55 [Al] +0.2 [Mo] −4.23 [Ti] −2.5 [Nb] -2.9 [V] ≦ 11.1 [Formula (1)]
However, in the said Numerical formula 1, C, Si, Mn, Cr, Al, Mo, Ti, Nb, and V show the content (weight%) of an applicable element, respectively.
炭素C:0.03〜0.1重量%
Cは、鋼を強化させるのに最も経済的且つ効果的な元素である。上記炭素の添加量が増加すると、フェライト−マルテンサイト複合組織鋼のマルテンサイト分率が増加して引張強さが増加するようになる。上記炭素の含量が0.03重量%未満である場合は、熱延後の冷却中におけるマルテンサイト相の形成が容易ではない。これに対し、上記炭素の含量が0.1重量%を超過すると、強度が上昇しすぎるようになり、溶接性、成形性及び靭性が低下するという問題点がある。したがって、上記Cの含量は0.03〜0.1重量%含まれることが好ましい。
Carbon C: 0.03 to 0.1% by weight
C is the most economical and effective element for strengthening steel. As the amount of carbon added increases, the martensite fraction of the ferrite-martensite composite structure steel increases and the tensile strength increases. When the carbon content is less than 0.03% by weight, it is not easy to form a martensite phase during cooling after hot rolling. On the other hand, when the carbon content exceeds 0.1% by weight, the strength is excessively increased, and there is a problem that weldability, formability and toughness are deteriorated. Accordingly, the C content is preferably 0.03 to 0.1% by weight.
シリコン(Si):0.01〜1.2重量%
Siは、溶鋼を脱酸させ、固溶強化の効果があり、フェライト安定化元素として熱延後の冷却中におけるフェライト変態を促進するという効果があるため、フェライトマルテンサイト複合組織鋼の基地を構成するフェライト分率の増大に効果的な元素である。上記シリコンの含量が0.01重量%未満である場合は、フェライト安定化の効果が少ないため基地組織をフェライト組織に製造することが難しい。これに対し、上記シリコンの含量が1.2重量%を超過すると、熱間圧延時の鋼板表面にSiによる赤スケールが形成されて鋼板表面品質が非常に悪くなるだけでなく、延性及び溶接性も低下するという問題がある。したがって、上記シリコンの含量は0.01〜1.2重量%含まれることが好ましい。
Silicon (Si): 0.01 to 1.2% by weight
Si has the effect of deoxidizing molten steel, strengthening solid solution, and promoting ferrite transformation during cooling after hot rolling as a ferrite stabilizing element, so it constitutes the base of ferritic martensitic composite structure steel It is an effective element for increasing the ferrite fraction. When the silicon content is less than 0.01% by weight, it is difficult to produce the base structure into a ferrite structure because the effect of stabilizing the ferrite is small. On the other hand, when the silicon content exceeds 1.2% by weight, not only the red scale is formed on the steel plate surface during hot rolling and the surface quality of the steel plate becomes very poor, but also ductility and weldability. There is also a problem of lowering. Therefore, the silicon content is preferably 0.01 to 1.2% by weight.
マンガン(Mn):1.2〜1.9重量%
Mnは、Siと同様に鋼を固溶強化させるのに効果的な元素であり、鋼の硬化能を増加させて熱延後の冷却中におけるベイナイト相の形成を容易にするという効果がある。本発明では、このような効果を示すために1.2重量%以上含まれることが好ましい。しかし、上記マンガンの含量が1.9重量%を超過すると、フェライト変態を大きく遅らせて基地組織であるフェライトの適正分率を確保することが難しい。また、連鋳工程におけるスラブの鋳造時に厚さ中心部で偏析部が大きく発達して最終製品の溶接性を損なうという問題点がある。したがって、上記Mnの含量は1.2〜1.9重量%含まれることが好ましい。
Manganese (Mn): 1.2 to 1.9% by weight
Mn is an element effective for solid solution strengthening of steel, similar to Si, and has the effect of facilitating the formation of a bainite phase during cooling after hot rolling by increasing the hardenability of the steel. In this invention, in order to show such an effect, it is preferable to contain 1.2 weight% or more. However, if the manganese content exceeds 1.9% by weight, it is difficult to ensure a proper fraction of ferrite as a base structure by greatly delaying ferrite transformation. In addition, there is a problem in that a segregation part is greatly developed at the center of the thickness during casting of the slab in the continuous casting process, thereby impairing the weldability of the final product. Accordingly, the Mn content is preferably 1.2 to 1.9% by weight.
アルミニウム(Sol.Al):0.01〜0.08重量%
Alは、主に脱酸のために添加する成分であり、フェライト安定化元素として熱間圧延後の冷却中に鋼にフェライト相を形成するのに役立つ効果がある。上記アルミニウムの含量が0.01重量%未満である場合は、本発明で意図しようとする効果を十分に確保することができない。これに対し、上記アルミニウムの含量が0.08重量%を超過すると、連続鋳造時のスラブにコーナークラックのような欠陥が発生しやすくなり、熱延後に表面欠陥が発生して表面品質が低下するという問題がある。したがって、上記アルミニウムの含量は0.01〜0.08重量%含まれることが好ましい。
Aluminum (Sol. Al): 0.01 to 0.08% by weight
Al is a component added mainly for deoxidation, and has an effect of helping to form a ferrite phase in steel during cooling after hot rolling as a ferrite stabilizing element. When the aluminum content is less than 0.01% by weight, the effect intended by the present invention cannot be sufficiently ensured. On the other hand, if the aluminum content exceeds 0.08% by weight, defects such as corner cracks are likely to occur in the slab during continuous casting, and surface defects are generated after hot rolling to deteriorate the surface quality. There is a problem. Therefore, the aluminum content is preferably 0.01 to 0.08% by weight.
クロム(Cr):0.005〜0.8重量%
Crは、鋼を固溶強化させ、冷却時におけるフェライト相の変態を遅らせてベイナイトの形成に役立てる役割をする。本発明で意図しようとする効果を確保するためには0.005重量%以上含まれることが好ましい。これに対し、上記クロムの含量が0.8重量%を超過すると、フェライト変態を大きく遅らせて必要以上のマルテンサイト分率の増加により延伸率が減少するようになる。したがって、上記Crの含量は0.005〜0.8重量%含まれることが好ましい。
Chromium (Cr): 0.005 to 0.8% by weight
Cr plays a role of strengthening the solid solution of the steel and delaying the transformation of the ferrite phase during cooling to help the formation of bainite. In order to secure the effect intended by the present invention, it is preferably contained in an amount of 0.005% by weight or more. On the other hand, if the chromium content exceeds 0.8% by weight, the ferrite transformation is greatly delayed, and the stretch ratio decreases due to an increase in the martensite fraction more than necessary. Therefore, the Cr content is preferably 0.005 to 0.8% by weight.
モリブデン(Mo):0.01〜0.12重量%
Moは、鋼の硬化能を増加させてベイナイト組織の形成を容易にするという効果がある。本発明のこのような効果を示すためには0.01重量%以上含まれることが好ましい。これに対し、上記モリブデンの含量が0.12重量%を超過すると、焼入性が増加しすぎて溶接性を悪化させ、経済的にも不利である。したがって、上記Moの含量は0.01〜0.12重量%含まれることが好ましい。
Molybdenum (Mo): 0.01 to 0.12% by weight
Mo has an effect of increasing the hardenability of steel and facilitating the formation of a bainite structure. In order to show such an effect of the present invention, it is preferably contained in an amount of 0.01% by weight or more. On the other hand, if the molybdenum content exceeds 0.12% by weight, the hardenability increases too much, which deteriorates the weldability, which is economically disadvantageous. Therefore, the Mo content is preferably 0.01 to 0.12% by weight.
リン(P):0.01〜0.05重量%
Pは、Siと同様に固溶強化及びフェライト変態の促進効果がある。上記リンの含量が0.01重量%未満である場合は、本発明が確保しようとする強度を得るのに十分ではない。これに対し、上記リンの含量が0.05重量%を超過すると、ミクロ偏析によるバンド組織化によって延性が低下することがある。したがって、上記Pは0.01〜0.05重量%含まれることが好ましい。
Phosphorus (P): 0.01 to 0.05% by weight
P, like Si, has an effect of promoting solid solution strengthening and ferrite transformation. When the phosphorus content is less than 0.01% by weight, it is not sufficient to obtain the strength to be secured by the present invention. On the other hand, if the phosphorus content exceeds 0.05% by weight, the ductility may decrease due to band organization by microsegregation. Therefore, it is preferable that the P is contained in an amount of 0.01 to 0.05% by weight.
窒素(N):0.001〜0.01重量%
Nは、Cとともに代表的な固溶強化元素であり、Ti、Al等とともに粗大な析出物を形成する。一般的に、Nの固溶強化効果は炭素より優れるが、鋼中にNの量が増加するほど靭性が大きく低下するという問題点がある。上記窒素の含量が0.001重量%未満である場合は、製鋼操業時に時間が多くかかり生産性が低下するようになる。これに対し、上記窒素の含量が0.01重量%を超過すると、脆性が発生するおそれが大きく増加する。したがって、上記窒素は0.001〜0.01重量%含まれることが好ましい。
Nitrogen (N): 0.001 to 0.01% by weight
N is a typical solid solution strengthening element together with C, and forms coarse precipitates together with Ti, Al and the like. In general, the solid solution strengthening effect of N is superior to that of carbon, but there is a problem that as the amount of N in the steel increases, the toughness greatly decreases. When the nitrogen content is less than 0.001% by weight, it takes a lot of time during the steelmaking operation and the productivity is lowered. On the other hand, if the nitrogen content exceeds 0.01% by weight, the risk of brittleness greatly increases. Therefore, the nitrogen is preferably contained in an amount of 0.001 to 0.01% by weight.
本発明の残りの成分は鉄(Fe)である。但し、通常の製造過程では、原料または周囲環境から意図されない不純物が不可避に混入される可能性があるためこれを排除することはできない。これら不純物は、通常の製造過程における技術者であれば誰でも分かるものであるため、そのすべての内容を特に本明細書で言及しない。 The remaining component of the present invention is iron (Fe). However, in a normal manufacturing process, impurities that are not intended from the raw material or the surrounding environment may be inevitably mixed, and thus cannot be excluded. Since these impurities can be understood by any engineer in the normal manufacturing process, the entire contents thereof are not specifically mentioned herein.
但し、そのうちの硫黄は一般的に多く言及される不純物である。これについて簡略に説明すると以下の通りである。 However, sulfur is an impurity that is generally mentioned. This will be briefly described as follows.
硫黄(S):0.001〜0.005%
上記硫黄は、不可避に含有される不純物として、Mn等と結合して非金属介在物を形成し、その結果、鋼の伸びフランジ性を大きく低下させるためその含量を最大限に抑制することが好ましい。理論上硫黄の含量は0重量%に制限することが有利であるが、製造工程上必然的に含有されるしかない。したがって、上限を管理することが重要であり、本発明において上記硫黄の含量の上限は0.01重量%に限定することが好ましい。
Sulfur (S): 0.001 to 0.005%
The sulfur is inevitably contained as an impurity and forms a non-metallic inclusion by combining with Mn and the like, and as a result, the stretch flangeability of the steel is greatly reduced. . Theoretically, the sulfur content is advantageously limited to 0% by weight, but is inevitably contained in the production process. Therefore, it is important to manage the upper limit, and in the present invention, the upper limit of the sulfur content is preferably limited to 0.01% by weight.
さらに、本発明の鋼材は、後述するニオビウム(Nb)、チタン(Ti)、及びバナジウム(V)からなる群より選択された1種以上の元素を追加的に添加する場合、本発明の効果をさらに向上させることができる。より好ましくは、上記群より選択された1種以上の元素を合わせて0.001〜0.15重量%含む。 Furthermore, when the steel material of the present invention additionally adds one or more elements selected from the group consisting of niobium (Nb), titanium (Ti), and vanadium (V) described later, the effects of the present invention are achieved. Further improvement can be achieved. More preferably, it contains 0.001 to 0.15% by weight of one or more elements selected from the above group.
Tiは、鋼中にTiNとして存在して熱間圧延のための加熱過程で結晶粒が成長することを抑制するという効果がある。また、窒素と反応して残ったTiが鋼中に固溶されて炭素と結合することにより、TiC析出物が形成されて鋼の強度を向上させるのに有用な成分である。 Ti is present as TiN in steel and has an effect of suppressing the growth of crystal grains in the heating process for hot rolling. In addition, Ti remaining after reacting with nitrogen is dissolved in the steel and bonded to carbon, so that TiC precipitates are formed, which is a useful component for improving the strength of the steel.
Nb及びVは、鋼中炭化物を形成して結晶粒微細化に効果的であり、微細な析出物を形成して鋼の強度及び靱性を向上させることができる。電気比抵抗を増加させるC、N等の固溶元素を安定化させるため電気抵抗溶接時に局部的な火花が発生する現像を緩和させ、溶接部の軟化を抑制するという効果もある。 Nb and V are effective for forming fine grains by forming carbides in the steel, and can form fine precipitates to improve the strength and toughness of the steel. In order to stabilize solid solution elements such as C and N that increase the electrical specific resistance, there is also an effect that the development of local sparks during electrical resistance welding is alleviated and softening of the weld is suppressed.
さらに、溶接性を向上させるために、上記C、Si、Mn、Cr、Al、Mo、Ti、Nb、及びVは下記数式1を満たすことが好ましい。数式1で境界として設定した11.1を超過すると、高温における電気比抵抗が高くなって溶接性が顕著に低くなることがある。下限は特に限定される必要はないが、伸びフランジ性及び延伸率を考慮してその下限は10.5に制限されることができる。それ以下で添加される場合は、強度または延伸率が急激に劣るという問題がある。 Furthermore, in order to improve weldability, it is preferable that the C, Si, Mn, Cr, Al, Mo, Ti, Nb, and V satisfy the following formula 1. If 11.1 set as the boundary in Formula 1 is exceeded, the electrical resistivity at high temperatures may be high and weldability may be significantly reduced. The lower limit is not particularly limited, but the lower limit can be limited to 10.5 in consideration of stretch flangeability and stretch ratio. When added below, there is a problem that the strength or the stretch ratio is rapidly inferior.
10.646+0.2[C]+0.25[Si]+0.3[Mn]−0.1[Cr]+0.55[Al]+0.2[Mo]−4.23[Ti]−2.5[Nb]−2.9[V]≦11.1 [数式(1)]
但し、上記数式1においてC、Si、Mn、Cr、Al、Mo、Ti、Nb、及びVはそれぞれ該当元素の含量(重量%)を示す。
10.646 + 0.2 [C] +0.25 [Si] +0.3 [Mn] −0.1 [Cr] +0.55 [Al] +0.2 [Mo] −4.23 [Ti] −2.5 [Nb] -2.9 [V] ≦ 11.1 [Formula (1)]
However, in the said Numerical formula 1, C, Si, Mn, Cr, Al, Mo, Ti, Nb, and V show the content (weight%) of an applicable element, respectively.
また、上記熱延高バーリング性鋼は、引張強さと伸びフランジ性の積が48000以上であることが好ましい。 The hot rolled high burring steel preferably has a product of tensile strength and stretch flangeability of 48000 or more.
また、上記熱延鋼板は、フェライト組織内にベイナイト相を含む微細組織を含むことが好ましい。このような微細組織を含むことにより、粗大な炭化物の形成を抑制して塑性変形中に上記界面における破壊を防止するという効果がある。さらに、フェライト組織内にベイナイト相の分率は5〜20%含まれることがより好ましい。含まれるベイナイト相の分率が5%未満である場合は、本発明が確保しようとする強度を確保することができない。これに対し、20%を超過すると延伸率が劣るようになる。 Moreover, it is preferable that the said hot-rolled steel plate contains the fine structure containing a bainite phase in a ferrite structure. By including such a fine structure, there is an effect of preventing the formation of coarse carbides and preventing the breakage at the interface during plastic deformation. Furthermore, it is more preferable that the bainite phase fraction is contained in the ferrite structure in an amount of 5 to 20%. When the fraction of the bainite phase contained is less than 5%, the strength that the present invention intends to secure cannot be ensured. On the other hand, if it exceeds 20%, the stretch ratio becomes inferior.
以下、本発明の他の一側面である溶接性及びバーリング性に優れた熱延鋼板の製造方法について詳細に説明する。 Hereinafter, a method for producing a hot-rolled steel sheet excellent in weldability and burring properties, which is another aspect of the present invention, will be described in detail.
本発明の他の一側面である溶接性及びバーリング性に優れた熱延鋼板の製造方法は、重量%で、C:0.03〜0.1%、Si:0.01〜1.2%、Mn:1.2〜1.9%、Al:0.01〜0.08%、Cr:0.005〜0.8%、Mo:0.01〜0.12%、P:0.01〜0.05%、S:0.001〜0.005%、N:0.001〜0.01%、残部Fe及びその他の不可避不純物を含み、上記各成分が下記数式1を満たす鋼スラブを設ける段階と、上記鋼スラブを1200〜1300℃で再加熱する段階と、上記再加熱された鋼スラブを850〜1000℃の仕上げ圧延温度で熱間圧延して鋼板を得る段階と、上記熱間圧延された鋼板を500〜750℃の温度まで10〜100℃/秒の冷却速度で1次冷却する段階と、上記冷却された鋼板を4〜10秒間空冷する段階と、上記空冷された鋼板を300〜500℃の温度まで10〜100℃/秒の冷却速度で2次冷却する段階と、を含む。 The method for producing a hot-rolled steel sheet excellent in weldability and burring properties, which is another aspect of the present invention, is C: 0.03 to 0.1%, Si: 0.01 to 1.2% by weight%. , Mn: 1.2 to 1.9%, Al: 0.01 to 0.08%, Cr: 0.005 to 0.8%, Mo: 0.01 to 0.12%, P: 0.01 A steel slab containing -0.05%, S: 0.001-0.005%, N: 0.001-0.01%, the balance Fe and other inevitable impurities, each of the above components satisfying the following formula 1. A step of re-heating the steel slab at 1200 to 1300 ° C., a step of hot rolling the re-heated steel slab at a finish rolling temperature of 850 to 1000 ° C. to obtain a steel plate, and the hot A step of primarily cooling the rolled steel sheet to a temperature of 500 to 750 ° C. at a cooling rate of 10 to 100 ° C./second; The including chilled steel sheet comprising the steps of cooling 4-10 seconds, the steps of the secondary cooling at a cooling rate of the air-cooled steel sheet to a temperature of 300 to 500 ° C. 10 to 100 ° C. / sec, the.
10.646+0.2[C]+0.25[Si]+0.3[Mn]−0.1[Cr]+0.55[Al]+0.2[Mo]−4.23[Ti]−2.5[Nb]−2.9[V]≦11.1 [数式(1)]
但し、上記数式1においてC、Si、Mn、Cr、Al、Mo、Ti、Nb、及びVはそれぞれ該当元素の含量(重量%)を示す。
10.646 + 0.2 [C] +0.25 [Si] +0.3 [Mn] −0.1 [Cr] +0.55 [Al] +0.2 [Mo] −4.23 [Ti] −2.5 [Nb] -2.9 [V] ≦ 11.1 [Formula (1)]
However, in the said Numerical formula 1, C, Si, Mn, Cr, Al, Mo, Ti, Nb, and V show the content (weight%) of an applicable element, respectively.
(再加熱段階)
上述の成分系を満たすスラブを1200〜1300℃で再加熱することが好ましい。上記再加熱温度が1200℃未満である場合は、析出物が十分に再固溶されないため熱間圧延後の工程でNbC、TiC等の析出物が減少することがある。これに対し、1300℃を超過すると、オーステナイト結晶粒の異常粒成長によって強度が低下することがある。したがって、スラブの再加熱温度は1200〜1300℃に限定することが好ましい。
(Reheating stage)
It is preferable to reheat the slab satisfying the above component system at 1200 to 1300 ° C. When the reheating temperature is lower than 1200 ° C., the precipitates are not sufficiently re-dissolved, and thus precipitates such as NbC and TiC may decrease in the step after hot rolling. On the other hand, when the temperature exceeds 1300 ° C., the strength may decrease due to abnormal grain growth of austenite crystal grains. Therefore, the reheating temperature of the slab is preferably limited to 1200 to 1300 ° C.
(熱間圧延段階)
上記のように再加熱されたスラブに熱間圧延を行うことができる。このとき、仕上げ圧延は850〜1000℃で行うことが好ましい。上記熱間仕上げ圧延温度が850℃未満である場合は圧延荷重が大きく増加することがある。これに対し、上記熱間仕上げ圧延温度が1000℃を超過すると、鋼板の組織が粗大化して鋼材が脆弱となり、スケールが厚くなり、高温圧延性スケール欠陥等の表面品質が低下することがある。したがって、上記熱間仕上げ圧延は850〜1000℃に限定することが好ましい。
(Hot rolling stage)
Hot rolling can be performed on the slab reheated as described above. At this time, the finish rolling is preferably performed at 850 to 1000 ° C. When the hot finish rolling temperature is less than 850 ° C., the rolling load may be greatly increased. On the other hand, when the hot finish rolling temperature exceeds 1000 ° C., the structure of the steel sheet becomes coarse, the steel material becomes brittle, the scale becomes thick, and the surface quality such as high-temperature rollability scale defects may deteriorate. Therefore, the hot finish rolling is preferably limited to 850 to 1000 ° C.
(1次冷却段階)
上記のように熱間圧延された鋼板を1次冷却することが好ましい。また、上記熱間圧延された鋼板の上記仕上げ熱間圧延温度から500〜750℃に達するまで1次冷却することが好ましい。1次冷却が終了する温度が500℃未満である場合は、鋼中の微細組織が大部分ベイナイトを有することにより、本発明が確保しようとする微細組織を十分に確保することができない。これに対し、750℃を超過すると、粗大なフェライト及びパーライト組織が形成されて鋼の強度が減少することがある。また、10〜100℃/秒の冷却速度で1次冷却することが好ましい。10℃/秒未満である場合は、フェライト結晶粒の粗大化が行われ、析出も粗大化して本発明が得ようとする強度を確保するのに問題がある。また、100℃/秒を超過すると熱延板の形状が不良となることがある。
(Primary cooling stage)
It is preferable to primarily cool the steel sheet that has been hot-rolled as described above. Moreover, it is preferable to perform primary cooling until it reaches 500-750 degreeC from the said finish hot rolling temperature of the said hot-rolled steel plate. When the temperature at which the primary cooling is completed is less than 500 ° C., the microstructure in the steel has mostly bainite, so that the microstructure to be secured by the present invention cannot be secured sufficiently. On the other hand, when it exceeds 750 ° C., coarse ferrite and pearlite structures are formed, and the strength of the steel may be reduced. Moreover, it is preferable to perform primary cooling at a cooling rate of 10 to 100 ° C./second. When the temperature is less than 10 ° C./second, the ferrite crystal grains are coarsened, and the precipitation is also coarsened, so that there is a problem in securing the strength to be obtained by the present invention. Moreover, when it exceeds 100 degreeC / second, the shape of a hot-rolled sheet may become inferior.
(空冷段階)
上記のように冷却された鋼板を空冷することが好ましい。上記冷却された鋼板を4〜10秒間空冷することが好ましい。4秒未満で空冷を行う場合は、フェライト組織を十分に形成させることができないため延性が大きく低下するという問題がある。これに対し、10秒超過して空冷を行う場合は、フェライト分率が増加してマルテンサイト分率が減少するため、本発明が確保しようとする強度及び延伸率を十分に確保することができない。
(Air cooling stage)
It is preferable to air-cool the steel plate cooled as described above. The cooled steel sheet is preferably air-cooled for 4 to 10 seconds. When air cooling is performed in less than 4 seconds, there is a problem that the ductility is greatly lowered because a ferrite structure cannot be sufficiently formed. On the other hand, when air cooling is performed after exceeding 10 seconds, the ferrite fraction increases and the martensite fraction decreases, so that the strength and the stretch ratio to be secured by the present invention cannot be sufficiently secured. .
(2次冷却段階)
上記のように空冷された鋼板を2次冷却することが好ましい。また、上記空冷された鋼板の温度から300〜500℃に達するまで10〜100℃/秒の冷却速度で2次冷却することが好ましい。2次冷却が終了する温度が300℃未満である場合は、マルテンサイト相が形成されて伸びフランジ性が劣ることがある。これに対し、500℃を超過すると、粗大な炭化物が形成されるため伸びフランジ性が劣ることがある。また、10〜100℃/秒の冷却速度で1次冷却することが好ましい。10℃/秒未満である場合は、粗大な炭化物が形成されて本発明が確保しようとする伸びフランジ性を確保するのに問題がある。また、100℃/秒を超過すると、熱延板の形成が不良となるという問題がある。
(Secondary cooling stage)
It is preferable to secondarily cool the steel sheet that has been air-cooled as described above. Moreover, it is preferable to perform secondary cooling at a cooling rate of 10 to 100 ° C./second until reaching 300 to 500 ° C. from the temperature of the air-cooled steel sheet. When the temperature at which the secondary cooling is finished is less than 300 ° C., a martensite phase is formed, and stretch flangeability may be inferior. On the other hand, when it exceeds 500 ° C., coarse carbides are formed, and the stretch flangeability may be inferior. Moreover, it is preferable to perform primary cooling at a cooling rate of 10 to 100 ° C./second. When it is less than 10 ° C./second, there is a problem in securing the stretch flangeability that the present invention intends to secure by forming coarse carbides. Moreover, when it exceeds 100 degreeC / second, there exists a problem that formation of a hot-rolled board will become defect.
上記冷却段階後には、冷却された鋼板の保管及び移動を容易にするために巻取する段階をさらに含むことができる。 After the cooling step, the method may further include winding the cooled steel sheet to facilitate storage and movement.
上記のような方法によって製造された鋼板を自然冷却した後、酸洗して表層部のスケールを除去し塗油する段階をさらに含むことにより酸洗鋼板を製造することができる。 After naturally cooling the steel plate produced by the method as described above, the pickled steel plate can be produced by further including a step of pickling, removing the scale of the surface layer portion, and applying oil.
また、上記酸洗鋼板を450〜480℃で再加熱した後、溶融亜鉛めっき浴を通過させる段階をさらに含むことにより、溶融亜鉛めっき鋼板を製造することができる。 Moreover, after reheating the said pickled steel plate at 450-480 degreeC, the hot dip galvanized steel plate can be manufactured by further including the step which lets a hot dip galvanizing bath pass.
以下、実施例を通じて本発明をより具体的に説明する。但し、下記実施例は本発明を例示してより詳細に説明するためだけのものであり、本発明の権利範囲を限定するためのものではない点に留意する必要がある。本発明の権利範囲は、特許請求の範囲に記載された事項とそこから合理的に類推される事項によって決定されるためである。 Hereinafter, the present invention will be described in more detail through examples. However, it should be noted that the following examples are only for illustrating the present invention in more detail and are not intended to limit the scope of rights of the present invention. This is because the scope of rights of the present invention is determined by matters described in the claims and matters reasonably inferred therefrom.
下記表1に示す成分系を満たす鋼スラブを1250℃で加熱し、下記表2に示す温度で熱間仕上げ圧延を行った。その後、680℃の温度まで70℃/秒の冷却速度で1次冷却し、6秒間空冷した後、450℃の温度まで70℃/秒の冷却速度で2次冷却を行ってから、下記表2に示す温度で巻取した。 A steel slab satisfying the component system shown in Table 1 below was heated at 1250 ° C., and hot finish rolling was performed at the temperature shown in Table 2 below. Thereafter, primary cooling is performed at a cooling rate of 70 ° C./second to a temperature of 680 ° C., air cooling is performed for 6 seconds, and then secondary cooling is performed at a cooling rate of 70 ° C./second to a temperature of 450 ° C. Winding was performed at the temperature shown in FIG.
巻取工程を完了して得られた最終の熱延鋼板の降伏強度(YS)、引張強さ(TS)、破壊延伸率(T−El)、伸びフランジ性(Hole Expanding Ratio、HER)を評価した。下記表2に示す。 Evaluate the yield strength (YS), tensile strength (TS), fracture elongation (T-El), stretch flangeability (Hole Expanding Ratio, HER) of the final hot-rolled steel sheet obtained by completing the winding process. did. It is shown in Table 2 below.
また、フェライト組織内のベイナイト分率は、最終の熱延鋼板をエッチングした後、光学顕微鏡を用いて500倍率で観察してからイメージ分析器で分析した。下記表2に相分率を示す。 The bainite fraction in the ferrite structure was analyzed by an image analyzer after observing the final hot-rolled steel sheet at 500 magnifications using an optical microscope. Table 2 below shows the phase fraction.
さらに、上記最終の熱延鋼板の溶接性も下記表2に示す。上記溶接性は、表3に示す条件で溶接を行った後、鋼板の溶接部の強度を一軸引張試験法で測定した。このとき、溶接部が破断される場合、溶接性が劣ると評価した。 Furthermore, the weldability of the final hot-rolled steel sheet is also shown in Table 2 below. Regarding the weldability, after welding was performed under the conditions shown in Table 3, the strength of the welded portion of the steel sheet was measured by a uniaxial tensile test method. At this time, when the welded portion was broken, it was evaluated that the weldability was poor.
上記表2に示されているように、発明例1〜6は本発明が提案した成分範囲及び製造条件を満たすことにより、引張強さと伸びフランジ性の積の値が高く溶接性に優れた熱延鋼板を確保することが確認できる。 As shown in Table 2 above, Invention Examples 1 to 6 are heats having high product values of tensile strength and stretch flangeability and excellent weldability by satisfying the component ranges and manufacturing conditions proposed by the present invention. It can be confirmed that a rolled steel sheet is secured.
これに対し、比較例1、4、5、6及び7は、数式1を満たさなかったため溶接性が劣ることが確認できる。 On the other hand, since Comparative Examples 1, 4, 5, 6, and 7 did not satisfy Formula 1, it can be confirmed that the weldability is inferior.
また、比較例2、3及び8は、引張強さと伸びフランジ性の積の値が本発明が提案する範囲の値を満たすが、数式1を満たさないため、溶接性が劣ることが確認できる。 In Comparative Examples 2, 3 and 8, the product of the tensile strength and the stretch flangeability satisfies the value of the range proposed by the present invention, but since Formula 1 is not satisfied, it can be confirmed that the weldability is inferior.
Claims (7)
10.646+0.2[C]+0.25[Si]+0.3[Mn]−0.1[Cr]+0.55[Al]+0.2[Mo]−4.23[Ti]−2.5[Nb]−2.9[V]≦11.1 [数式(1)]
(但し、前記数式1においてC、Si、Mn、Cr、Al、Mo、Ti、Nb、及びVはそれぞれ該当元素の含量(重量%)である) By weight, C: 0.03-0.1%, Si: 0.01-1.2%, Mn: 1.2-1.9%, Al: 0.01-0.08%, Cr: 0.005-0.8%, Mo: 0.01-0.12%, P: 0.01-0.05%, S: 0.001-0.005%, N: 0.001-0. A hot-rolled steel sheet excellent in weldability and burring properties, containing 01%, the remainder Fe and other inevitable impurities, each of the above components satisfying the following formula 1 and the product of tensile strength and stretch flangeability is 48000 or more.
10.646 + 0.2 [C] +0.25 [Si] +0.3 [Mn] −0.1 [Cr] +0.55 [Al] +0.2 [Mo] −4.23 [Ti] −2.5 [Nb] -2.9 [V] ≦ 11.1 [Formula (1)]
(However, in Formula 1, C, Si, Mn, Cr, Al, Mo, Ti, Nb, and V are the contents (% by weight) of the corresponding elements, respectively)
前記鋼スラブを1200〜1300℃で再加熱する段階と、
前記再加熱された鋼スラブを850〜1000℃の仕上げ圧延温度で熱間圧延して鋼板を得る段階と、
前記熱間圧延された鋼板を500〜750℃の温度まで10〜100℃/秒の冷却速度で1次冷却する段階と、
前記冷却された鋼板を4〜10秒間空冷する段階と、
前記空冷された鋼板を300〜500℃の温度まで10〜100℃/秒の冷却速度で2次冷却する段階と、を含む、溶接性及びバーリング性に優れた熱延鋼板の製造方法。
10.646+0.2[C]+0.25[Si]+0.3[Mn]−0.1[Cr]+0.55[Al]+0.2[Mo]−4.23[Ti]−2.5[Nb]−2.9[V]≦11.1 [数式(1)]
(但し、前記数式1においてC、Si、Mn、Cr、Al、Mo、Ti、Nb、及びVはそれぞれ該当元素の含量(重量%)である) By weight, C: 0.03-0.1%, Si: 0.01-1.2%, Mn: 1.2-1.9%, Al: 0.01-0.08%, Cr: 0.005-0.8%, Mo: 0.01-0.12%, P: 0.01-0.05%, S: 0.001-0.005%, N: 0.001-0. Providing a steel slab containing 01%, the balance Fe and other inevitable impurities, each of the above components satisfying the following formula 1.
Reheating the steel slab at 1200-1300 ° C .;
Hot rolling the reheated steel slab at a finish rolling temperature of 850 to 1000 ° C. to obtain a steel plate;
Primary cooling the hot-rolled steel sheet to a temperature of 500 to 750 ° C. at a cooling rate of 10 to 100 ° C./second;
Air-cooling the cooled steel sheet for 4 to 10 seconds;
Secondary cooling the air-cooled steel plate to a temperature of 300 to 500 ° C. at a cooling rate of 10 to 100 ° C./second, and a method for producing a hot-rolled steel plate having excellent weldability and burring properties.
10.646 + 0.2 [C] +0.25 [Si] +0.3 [Mn] −0.1 [Cr] +0.55 [Al] +0.2 [Mo] −4.23 [Ti] −2.5 [Nb] -2.9 [V] ≦ 11.1 [Formula (1)]
(However, in Formula 1, C, Si, Mn, Cr, Al, Mo, Ti, Nb, and V are the contents (% by weight) of the corresponding elements, respectively)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2013/012166 WO2015099222A1 (en) | 2013-12-26 | 2013-12-26 | Hot-rolled steel plate having excellent welding property and burring property and method for manufacturing same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017504724A true JP2017504724A (en) | 2017-02-09 |
JP6368785B2 JP6368785B2 (en) | 2018-08-01 |
Family
ID=53479053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016543061A Active JP6368785B2 (en) | 2013-12-26 | 2013-12-26 | Hot-rolled steel sheet excellent in weldability and burring property and method for producing the same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6368785B2 (en) |
CN (1) | CN105849295B (en) |
WO (1) | WO2015099222A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021179414A (en) * | 2020-05-14 | 2021-11-18 | Jfeスチール株式会社 | Hot rolled steel strip meandering rate measuring apparatus and hot rolled steel strip meandering rate measuring method |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101899670B1 (en) * | 2016-12-13 | 2018-09-17 | 주식회사 포스코 | High strength multi-phase steel having excellent burring property at low temperature and method for manufacturing same |
CN109202028B (en) * | 2018-09-10 | 2020-03-10 | 武汉科技大学 | High-elongation flange steel plate and preparation method thereof |
KR102164078B1 (en) * | 2018-12-18 | 2020-10-13 | 주식회사 포스코 | High strength hot-rolled steel sheet having excellentworkability, and method for manufacturing the same |
KR102209552B1 (en) * | 2018-12-19 | 2021-01-28 | 주식회사 포스코 | High strength hot-rolled steel sheet having excellent hole expansion ratio and manufacturing method for the same |
CN112575267A (en) * | 2019-09-27 | 2021-03-30 | 宝山钢铁股份有限公司 | High-hole-expansion complex phase steel and manufacturing method thereof |
WO2023218229A1 (en) * | 2022-05-13 | 2023-11-16 | Arcelormittal | Hot rolled and steel sheet and a method of manufacturing thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009263715A (en) * | 2008-04-24 | 2009-11-12 | Nippon Steel Corp | Hot-rolled steel plate superior in hole expandability and manufacturing method therefor |
JP2009263718A (en) * | 2008-04-24 | 2009-11-12 | Nippon Steel Corp | Hot-rolled steel plate superior in hole expandability and manufacturing method therefor |
JP2010189738A (en) * | 2009-02-20 | 2010-09-02 | Jfe Steel Corp | High strength hot rolled steel sheet having excellent workability, and method for producing the same |
JP2011012308A (en) * | 2009-07-02 | 2011-01-20 | Nippon Steel Corp | High-yield-ratio type hot-rolled steel plate superior in burring property and manufacturing method therefor |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4066905B2 (en) * | 2003-07-31 | 2008-03-26 | Jfeスチール株式会社 | Manufacturing method of low yield ratio high strength high toughness steel sheet with excellent weld heat affected zone toughness |
ES2391164T3 (en) * | 2003-09-30 | 2012-11-22 | Nippon Steel Corporation | Thin sheet of cold rolled steel, high strength, with high limit of elasticity, and superior ductility and weldability, thin sheet of hot dipped galvanized steel, high strength, with high limit of elasticity, thin sheet of galvanized steel and hot dipped annealing, high strength, with high limit of eleasticity, and methods for their production |
JP4887818B2 (en) * | 2006-02-15 | 2012-02-29 | Jfeスチール株式会社 | Manufacturing method of continuous cast slab and manufacturing method of high-tensile hot-rolled steel sheet, high-tensile cold-rolled steel sheet, and high-tensile galvanized steel sheet |
JP4605100B2 (en) * | 2006-06-07 | 2011-01-05 | 住友金属工業株式会社 | High strength hot rolled steel sheet and method for producing the same |
JP5200653B2 (en) * | 2008-05-09 | 2013-06-05 | 新日鐵住金株式会社 | Hot rolled steel sheet and method for producing the same |
JP5776398B2 (en) * | 2011-02-24 | 2015-09-09 | Jfeスチール株式会社 | Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same |
ES2589640T3 (en) * | 2011-08-09 | 2016-11-15 | Nippon Steel & Sumitomo Metal Corporation | Hot rolled steel sheet with high elasticity limit and excellent impact energy absorption at low temperature and resistance to softening of the ZAC and method to produce it |
-
2013
- 2013-12-26 CN CN201380081907.9A patent/CN105849295B/en active Active
- 2013-12-26 JP JP2016543061A patent/JP6368785B2/en active Active
- 2013-12-26 WO PCT/KR2013/012166 patent/WO2015099222A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009263715A (en) * | 2008-04-24 | 2009-11-12 | Nippon Steel Corp | Hot-rolled steel plate superior in hole expandability and manufacturing method therefor |
JP2009263718A (en) * | 2008-04-24 | 2009-11-12 | Nippon Steel Corp | Hot-rolled steel plate superior in hole expandability and manufacturing method therefor |
JP2010189738A (en) * | 2009-02-20 | 2010-09-02 | Jfe Steel Corp | High strength hot rolled steel sheet having excellent workability, and method for producing the same |
JP2011012308A (en) * | 2009-07-02 | 2011-01-20 | Nippon Steel Corp | High-yield-ratio type hot-rolled steel plate superior in burring property and manufacturing method therefor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021179414A (en) * | 2020-05-14 | 2021-11-18 | Jfeスチール株式会社 | Hot rolled steel strip meandering rate measuring apparatus and hot rolled steel strip meandering rate measuring method |
JP2022000314A (en) * | 2020-05-14 | 2022-01-04 | Jfeスチール株式会社 | Apparatus for measuring meandering amount of hot rolled steel strip and method for measuring meandering amount of hot rolled steel strip |
JP7222415B2 (en) | 2020-05-14 | 2023-02-15 | Jfeスチール株式会社 | Device for measuring meandering amount of hot-rolled steel strip and method for measuring meandering amount of hot-rolled steel strip |
Also Published As
Publication number | Publication date |
---|---|
CN105849295A (en) | 2016-08-10 |
JP6368785B2 (en) | 2018-08-01 |
CN105849295B (en) | 2019-02-19 |
WO2015099222A1 (en) | 2015-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6368785B2 (en) | Hot-rolled steel sheet excellent in weldability and burring property and method for producing the same | |
JP5865516B2 (en) | Ultra-high-strength cold-rolled steel sheet excellent in weldability and bending workability and manufacturing method thereof | |
JP6700398B2 (en) | High yield ratio type high strength cold rolled steel sheet and method for producing the same | |
JP6857244B2 (en) | Thick steel sheet with excellent cryogenic impact toughness and its manufacturing method | |
JP4696570B2 (en) | Manufacturing method of high-tensile steel material with excellent hydrogen embrittlement resistance | |
JP2019502819A (en) | Ultra-high-strength steel sheet excellent in chemical conversion property and hole expansibility and method for producing the same | |
JP2019504195A (en) | Ultra-high-strength steel sheet excellent in chemical conversion treatment and bending workability and method for producing the same | |
CN110088331B (en) | Hot-rolled steel sheet for electric resistance welded steel pipe having excellent weldability and method for producing same | |
KR101482342B1 (en) | High-strength hot-rolled steel plate having execellent weldability and bending workbility and method for manufacturing tereof | |
JP4772431B2 (en) | Manufacturing method of hot-dip galvanized high-strength steel sheet with excellent elongation and hole expansion | |
KR101778404B1 (en) | Clad steel sheet having excellent strength and formability, and method for manufacturing the same | |
KR101439610B1 (en) | Low yield hot-rolled steel plate having excellent weldability and method for manufacturing thereof | |
JP7357691B2 (en) | Ultra-high strength cold-rolled steel sheet and its manufacturing method | |
KR101543838B1 (en) | Low yield ratio high-strength hot rolled steel sheet having excellent impact resistance and method for manufacturing the same | |
KR20130046968A (en) | High strength steel sheet and method of manufacturing the steel sheet | |
JP6921198B2 (en) | High-strength hot-rolled steel sheet with excellent weldability and ductility and its manufacturing method | |
JP2018502992A (en) | Composite steel sheet with excellent formability and method for producing the same | |
KR101449137B1 (en) | High strength hot-rolled steel having excellent weldability and hydroforming workability and method for manufacturing thereof | |
KR101767706B1 (en) | High yield ratio ultra high strength steel cold rolled steel sheet having excellent bendability and method for producing the same | |
KR101586923B1 (en) | Method of manufacturing hot-rolled steel sheet and method of manufacturing steel pipe | |
KR101543836B1 (en) | High strength hot rolled steel sheet having excellent impact resistance and formability and method for manufacturing the same | |
JP2018538441A (en) | High-strength cold-rolled steel sheet excellent in shear workability and manufacturing method thereof | |
KR101543837B1 (en) | High yield ratio high-strength hot rolled steel sheet having excellent impact resistance and method for manufacturing the same | |
KR101412262B1 (en) | High strength cold-rolled steel sheet for automobile with excellent bendability and formability and method of manufacturing the same | |
KR101439611B1 (en) | Hot rolled steel having excellent weldability and burring and method for manufacturing thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170816 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170822 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180424 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180604 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180619 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180709 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6368785 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |