JP2011012242A - Manufacturing method of drawn resin porous membrane - Google Patents

Manufacturing method of drawn resin porous membrane Download PDF

Info

Publication number
JP2011012242A
JP2011012242A JP2009237025A JP2009237025A JP2011012242A JP 2011012242 A JP2011012242 A JP 2011012242A JP 2009237025 A JP2009237025 A JP 2009237025A JP 2009237025 A JP2009237025 A JP 2009237025A JP 2011012242 A JP2011012242 A JP 2011012242A
Authority
JP
Japan
Prior art keywords
porous membrane
resin
membrane
stretching
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009237025A
Other languages
Japanese (ja)
Other versions
JP5620665B2 (en
Inventor
Yasuhiro Tada
靖浩 多田
Takeo Takahashi
健夫 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP2009237025A priority Critical patent/JP5620665B2/en
Priority to US13/393,628 priority patent/US20120160764A1/en
Priority to PCT/JP2010/065205 priority patent/WO2011027878A1/en
Priority to CN201080039112.8A priority patent/CN102548647B/en
Priority to KR1020127005700A priority patent/KR101372056B1/en
Publication of JP2011012242A publication Critical patent/JP2011012242A/en
Application granted granted Critical
Publication of JP5620665B2 publication Critical patent/JP5620665B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin porous membrane useful as a separation membrane such as a liquid filtrating membrane and a battery separator while maintaining a high liquid permeability by preventing decline of porosity in a dense layer in the vicinity of the surface layer controlling the separation performance at the time of a drawing operation for reinforcement of the mechanical strength, increase of the porosity, and the like.SOLUTION: The manufacturing method of a drawn resin porous membrane comprises a step of drawing a resin porous film in a state selectively wetted with a wetting liquid by 5 μm or more from its outer surface and 1/2 of the membrane thickness or less.

Description

本発明は、精密ろ過膜あるいは電池、電気二重層キャパシタ等の電気化学素子用セパレータ等の分離多孔膜を初めとする各種用途に用いられる樹脂多孔膜であって、延伸により機械的強度、空孔率等を向上した延伸樹脂多孔膜、の製造方法の改良に関する。   The present invention relates to a porous resin membrane used for various applications including a microfiltration membrane or a separator porous membrane such as a separator for an electrochemical element such as a battery or an electric double layer capacitor. The present invention relates to improvement of a method for producing a stretched resin porous membrane having improved rate and the like.

従来より、各種樹脂製多孔膜、特に合成樹脂系多孔膜は、気体隔膜分離、気液分離、固液分離等の分離膜として、あるいは絶縁材、保温材、遮音材、断熱材などとして多方面に利用されている。これらの内、特に分離膜として使用される場合には分離機能に影響を与える以下の特性が要求される。まず、多孔質膜の分離効率を目的とする適度な空孔率を有すること、分離精度の向上を目的とした均一な孔径分布を有すること、加えて分離対象物に最適な孔径を有することが求められる。また、膜構成素材の性質としては、分離対象物の特性に対する耐薬品性、耐候性、耐熱性、強度等が要求される。さらに、多孔質膜使用時における機械的強度として充分な破断点伸度、破断点応力などが要求される。   Conventionally, various resin porous membranes, especially synthetic resin-based porous membranes, are widely used as separation membranes for gas diaphragm separation, gas-liquid separation, solid-liquid separation, etc., or as insulating materials, heat insulating materials, sound insulation materials, heat insulating materials, etc. Has been used. Among these, particularly when used as a separation membrane, the following characteristics that affect the separation function are required. First, it must have an appropriate porosity for separation efficiency of the porous membrane, have a uniform pore size distribution for the purpose of improving separation accuracy, and have an optimum pore size for the separation object Desired. Further, as the properties of the membrane constituent material, chemical resistance, weather resistance, heat resistance, strength and the like with respect to the characteristics of the separation object are required. Furthermore, sufficient elongation at break and stress at break are required as mechanical strength when using the porous membrane.

多孔膜材料樹脂としては、ポリオレフィン樹脂が多く用いられている(たとえば特許文献1および2)ほか、近年はより耐薬品性、耐候性、耐熱性に優れるフッ化ビニリデン系樹脂も広く用いられている(特許文献3〜10)。これら樹脂多孔膜の製造方法においては、その後半において、機械的強度あるいは空孔率の増大を目的とする延伸工程が含まれることが多い(例えば、特許文献1,2および7〜10)。   As the porous membrane material resin, a polyolefin resin is often used (for example, Patent Documents 1 and 2), and in recent years, a vinylidene fluoride resin that is more excellent in chemical resistance, weather resistance, and heat resistance is also widely used. (Patent Documents 3 to 10). These methods for producing a porous resin membrane often include a stretching step for the purpose of increasing mechanical strength or porosity in the latter half (for example, Patent Documents 1, 2, and 7 to 10).

延伸工程を含む樹脂多孔膜の製造方法には各種の態様があり、例えば、樹脂と孔形成剤との混合物を膜状に成形した後、この膜状成形体を、(a)孔形成剤を含んだ状態で延伸する(特許文献9)、(b)孔形成剤を抽出溶媒あるいは凝固溶媒で置換した後、溶媒を含んだ状態で延伸する(特許文献10)、(c)孔形成剤を抽出溶媒あるいは凝固溶媒で置換し、次いで溶媒を除去した後、乾燥状態で延伸する(特許文献7、8、9)、等の方法が提案されている。上記(a)および(b)の場合は、延伸に際して、膜状成形体が延伸方向以外の方向には比較的大なる寸法収縮を生じて概ね等積変形に近い延伸挙動を示すため、空孔率の増大効果が小さいのに対して、上記(c)の場合は、延伸に際して、膜状成形体が延伸方向以外の方向には比較的小なる寸法収縮を示して概ね膨張変形に近い延伸挙動を示すため、空孔率の増大効果が大きい。また上記(b)の場合には、その後の寸法安定化のために通常行われる緩和工程の熱入力が溶媒の気化熱により困難となる問題もある。一般には空孔率を増大させるために上記(c)の乾式延伸が有利である。しかしながら、本発明者らの研究によれば、この乾式延伸において、多孔膜全体の平均の空孔率は増大するものの、多孔膜の表層における空孔率が所望の程度に増大しないという不都合が見出された。   There are various aspects of the method for producing a porous resin membrane including a stretching step. For example, after molding a mixture of a resin and a pore-forming agent into a membrane, this membrane-like molded product is obtained by (a) pore-forming agent. Stretching in a state of containing (Patent Document 9), (b) Substituting the pore-forming agent with an extraction solvent or a coagulation solvent, and then stretching in a state of containing the solvent (Patent Document 10), (c) There have been proposed methods such as substitution with an extraction solvent or a coagulation solvent, then removing the solvent, and then stretching in a dry state (Patent Documents 7, 8, and 9). In the case of the above (a) and (b), during stretching, the film-shaped molded body undergoes a relatively large dimensional shrinkage in a direction other than the stretching direction and exhibits a stretching behavior that is almost similar to an equal volume deformation. While the effect of increasing the rate is small, in the case of the above (c), the stretching behavior of the film-shaped molded body shows a relatively small dimensional shrinkage in the direction other than the stretching direction and is almost close to expansion deformation. Therefore, the effect of increasing the porosity is large. In the case of (b), there is also a problem that the heat input of the relaxation process usually performed for subsequent dimensional stabilization becomes difficult due to the heat of vaporization of the solvent. In general, the dry stretching (c) is advantageous in order to increase the porosity. However, according to the study by the present inventors, in this dry stretching, although the average porosity of the entire porous membrane increases, there is a disadvantage that the porosity in the surface layer of the porous membrane does not increase to a desired level. It was issued.

特公昭46−40119号公報Japanese Patent Publication No.46-40119 特公昭50−2176号公報Japanese Patent Publication No. 50-2176 特開昭63−296940号公報JP-A 63-296940 特開平3−215535号公報JP-A-3-215535 WO99/47593AWO99 / 47593A WO03/031038AWO03 / 031038A WO2004/081109AWO2004 / 081109A WO2005/099879AWO2005 / 099879A 特開2001−179062号公報JP 2001-179062 A 特開2003−210954号公報Japanese Patent Laid-Open No. 2003-210954

本発明は、上述した樹脂多孔膜の製造方法、特にその延伸工程、の改良を与えることを目的とする。   An object of this invention is to give the improvement of the manufacturing method of the resin porous membrane mentioned above, especially the extending process.

本発明者等の研究によれば、特に乾式延伸において、既に形成された空孔を有する樹脂多孔膜に作用する延伸応力が、表層においては空孔の拡大につながらず、却って厚さ減少等を通じて空孔を縮小する方向の応力として作用することが判明した。このような表層空孔率の低下は、樹脂多孔膜を分離膜として用いる際の表層目詰まりあるいは膜全体としての透液性の低下の原因となり、極力抑制すべきである。本発明者等の更なる研究によれば、概ね乾式延伸の範疇に属するが、既に形成された樹脂多孔膜表層部を選択的に湿潤させた状態で延伸することにより、上述の問題に対する本質的な改善が得られることが見出された。すなわち、本発明の樹脂多孔膜の製造方法は、樹脂多孔膜を、その外表面から5μm以上、且つ膜厚さの1/2以下の深さまで選択的に湿潤液により湿潤させた状態で延伸することを特徴とするものである。   According to the study by the present inventors, particularly in dry stretching, the stretching stress acting on the resin porous film having pores already formed does not lead to the expansion of the pores in the surface layer, but through the thickness reduction, etc. It was found that it acts as a stress in the direction of shrinking the vacancies. Such a decrease in the surface layer porosity causes clogging of the surface layer when the resin porous membrane is used as a separation membrane or a decrease in liquid permeability of the entire membrane, and should be suppressed as much as possible. According to further studies by the present inventors, it belongs to the category of dry stretching in general, but by stretching the surface layer portion of the resin porous membrane that has already been formed in a wet state, it is essential for the above problem. It has been found that significant improvements can be obtained. That is, in the method for producing a resin porous membrane of the present invention, the resin porous membrane is stretched while being selectively wetted with a wetting liquid from the outer surface to a depth of 5 μm or more and 1/2 or less of the film thickness. It is characterized by this.

実施例および比較例で得られた中空糸多孔膜の透水量を評価するために用いた装置の概略説明図。The schematic explanatory drawing of the apparatus used in order to evaluate the water permeability of the hollow fiber porous membrane obtained by the Example and the comparative example.

(樹脂多孔膜)
本発明の樹脂多孔膜の製造方法は、基本的に、既に形成された乾燥状態にある樹脂多孔膜に施す延伸工程を主たる特徴とし、その樹脂多孔膜の種類ならびに形成方法には、本質的な制約は受けない。多孔膜が、平膜であると、中空糸膜であるとに拘わらず適用可能である。又、多孔膜を形成する樹脂も、親水性樹脂と疎水性樹脂のいずれも可能であり、天然樹脂と合成樹脂のいずれも用いることができる。但し、分離膜として用いる際の被処理液が水性液である場合等の耐久性を考慮すれば、水に不溶な樹脂であることが好ましいであろう。このような水に不溶な樹脂の代表例として、ポリオレフィン系樹脂(例えば特許文献1および2)、ポリフッ化ビニリデン系樹脂(例えば特許文献3〜10)、ポリ4フッ化エチレン系樹脂、ポリスルホン系樹脂、ポリエーテルスルホン系樹脂(WO02/058828A1)、ポリ塩化ビニル系樹脂、ポリアリーレンスルフィド系樹脂、ポリアクリロニトリル系樹脂、酢酸セルロース樹脂(特開2003−311133号公報)、等が本発明でも好ましい樹脂材料として用いられる。
(Resin porous membrane)
The method for producing a resin porous membrane according to the present invention is basically characterized by a stretching process applied to a resin porous membrane that has already been formed in a dry state. There are no restrictions. The porous membrane is applicable regardless of whether it is a flat membrane or a hollow fiber membrane. The resin forming the porous film can be either a hydrophilic resin or a hydrophobic resin, and either a natural resin or a synthetic resin can be used. However, considering durability such as when the liquid to be treated when used as a separation membrane is an aqueous liquid, it is preferable that the resin be insoluble in water. Typical examples of such water-insoluble resins include polyolefin resins (for example, Patent Documents 1 and 2), polyvinylidene fluoride resins (for example, Patent Documents 3 to 10), polytetrafluoroethylene resins, and polysulfone resins. , Polyethersulfone resin (WO02 / 058828A1), polyvinyl chloride resin, polyarylene sulfide resin, polyacrylonitrile resin, cellulose acetate resin (Japanese Patent Laid-Open No. 2003-31133), etc. Used as

中でも、耐薬品性、耐候性、耐熱性を兼ね備えたフッ化ビニリデン系樹脂製多孔膜への適用が最も好ましい。フッ化ビニリデン系樹脂多孔膜は、一般に、(A)フッ化ビニリデン系樹脂と、これと少なくとも上昇温度においては相溶性である有機液状体との混合物を冷却することにより、有機液状体とフッ化ビニリデン系樹脂との相分離を起こし、相分離した有機液状体を含むフッ化ビニリデン系樹脂の膜状成形体から有機液状体を抽出等により除去して多孔膜を得る方法(熱誘起相分離法;特許文献5〜9)、あるいは(B)前記フッ化ビニリデン系樹脂と有機液状体の混合物の膜状成形体を前記有機液状体と相溶性であるフッ化ビニリデン系樹脂の非溶媒と接触させ、非溶媒により前記有機液状体を置換しつつ有機液状体とフッ化ビニリデン系樹脂との相分離を起させて、非溶媒を含むフッ化ビニリデン系樹脂の膜状成形体を形成する方法(非溶媒誘起相分離法;特許文献3および10)、あるいは(C)フッ化ビニリデン系樹脂、これとは非相溶である有機液状体、無機微粉体との機械的混練物を膜状に成形した後、この膜状成形体から有機液状体および無機微粉体を抽出除去して多孔膜を得る方法(特許文献4)、により製造される場合が多いが、本発明法は上記方法のいずれを経て得られた多孔膜にも適用可能である。   Among these, application to a porous film made of vinylidene fluoride resin having both chemical resistance, weather resistance, and heat resistance is most preferable. Generally, a vinylidene fluoride resin porous membrane is obtained by cooling a mixture of (A) a vinylidene fluoride resin and an organic liquid material that is compatible at least at an elevated temperature, and thereby fluorinating the organic liquid material. A method of obtaining a porous film by causing phase separation from vinylidene resin and removing the organic liquid from the film-like molded body of vinylidene fluoride resin containing the organic liquid separated by phase extraction (thermally induced phase separation method) Patent Documents 5 to 9), or (B) A film-like molded body of a mixture of the vinylidene fluoride resin and the organic liquid is brought into contact with a non-solvent of the vinylidene fluoride resin that is compatible with the organic liquid. A method of forming a film-like molded body of a vinylidene fluoride resin containing a non-solvent by causing phase separation between the organic liquid and the vinylidene fluoride resin while replacing the organic liquid with a non-solvent (non-solvent) Melting Induced phase separation method; Patent Documents 3 and 10), or (C) After molding a mechanically kneaded product of vinylidene fluoride resin, organic liquid material and inorganic fine powder which are incompatible with this into a film In many cases, the method is obtained by extracting and removing an organic liquid and inorganic fine powder from the film-like molded body to obtain a porous film (Patent Document 4). The method of the present invention can be obtained through any of the above methods. The present invention can also be applied to the prepared porous membrane.

前述したように、本発明法は、平膜および中空糸膜のいずれにも形成可能であるが、一般に、ろ水処理においては、ろ過装置当りの膜面積を大きくすることが容易な中空糸膜として形成されることが好ましく、電池をはじめとする電気化学素子セパレータ用には平膜形状が好ましい。以下、主として中空糸形態を有するフッ化ビニリデン系樹脂多孔膜を熱誘起相分離法により形成し、それに、本発明の延伸法を適用する態様について、順次説明するが、当業者には、わずかな条件変更によって従来法に従って形成された平膜を含む各種形態および素材の樹脂多孔膜に適用可能であることは容易に理解できよう。   As described above, the method of the present invention can be formed on both flat membranes and hollow fiber membranes. In general, in filtered water treatment, it is easy to increase the membrane area per filtration device. It is preferably formed as a flat film shape for an electrochemical element separator including a battery. Hereinafter, embodiments in which a vinylidene fluoride resin porous membrane mainly having a hollow fiber form is formed by a thermally induced phase separation method and the stretching method of the present invention is applied thereto will be sequentially described. It can be easily understood that the present invention can be applied to various forms and materials of porous resin membranes including a flat membrane formed according to the conventional method by changing the conditions.

(フッ化ビニリデン系樹脂)
主たる膜原料であるフッ化ビニリデン系樹脂としては、フッ化ビニリデンの単独重合体、すなわちポリフッ化ビニリデン、フッ化ビニリデンと共重合可能な他のモノマーとの共重合体あるいはこれらの混合物で、重量平均分子量が60万〜120万、より好ましくは65万〜100万、特に好ましくは70万〜90万のものが好ましく用いられる。重量平均分子量が60万未満であると、高い空孔率を得るために有機液状体の割合を増加した場合に、粘度低下して膜状に成形することが難しくなり、120万超過であるとフッ化ビニリデン系樹脂と有機液状体を均一に混合するのに長い時間を要する。
(Vinylidene fluoride resin)
The vinylidene fluoride resin that is the main film material is a vinylidene fluoride homopolymer, that is, a polyvinylidene fluoride, a copolymer with other monomers copolymerizable with vinylidene fluoride, or a mixture thereof, and a weight average Those having a molecular weight of 600,000 to 1,200,000, more preferably 650,000 to 1,000,000, particularly preferably 700,000 to 900,000 are preferably used. When the weight average molecular weight is less than 600,000, when the proportion of the organic liquid is increased in order to obtain a high porosity, it becomes difficult to form a film by decreasing the viscosity, and is over 1.2 million It takes a long time to uniformly mix the vinylidene fluoride resin and the organic liquid.

フッ化ビニリデンと共重合可能なモノマーとしては、四フッ化エチレン、六フッ化プロピレン、三フッ化エチレン、三フッ化塩化エチレン、フッ化ビニル等の一種又は二種以上を用いることができる。フッ化ビニリデン系樹脂は、構成単位としてフッ化ビニリデンを70モル%以上含有することが好ましい。   As the monomer copolymerizable with vinylidene fluoride, one or more of ethylene tetrafluoride, hexafluoropropylene, ethylene trifluoride, ethylene trifluoride chloride, vinyl fluoride and the like can be used. The vinylidene fluoride resin preferably contains 70 mol% or more of vinylidene fluoride as a structural unit.

多孔膜製造過程においてフッ化ビニリデン系樹脂と有機液状体との溶融混合物の膜状成形体を冷却することにより相分離を生じさせる方法(すなわち熱誘起相分離法)を用いる場合には、フッ化ビニリデン系樹脂の結晶化によって相分離が生じるため、結晶性の高いフッ化ビニリデン系樹脂を用いることで空孔率が高い多孔膜が得られる傾向にある。このため熱誘起相分離法ではフッ化ビニリデン100モル%からなる単独重合体を用いることが好ましい。   When using a method in which a phase separation is caused by cooling a film-like molded body of a molten mixture of a vinylidene fluoride resin and an organic liquid in the process of producing a porous membrane (that is, a thermally induced phase separation method) Since phase separation occurs due to the crystallization of the vinylidene resin, a porous film having a high porosity tends to be obtained by using a highly crystalline vinylidene fluoride resin. For this reason, it is preferable to use a homopolymer composed of 100 mol% of vinylidene fluoride in the thermally induced phase separation method.

熱誘起相分離法においては球晶の生成を抑制する目的で、重量平均分子量(Mw)が45万〜100万、好ましくは49万〜90万、さらに好ましくは、60万〜80万の中高分子量のマトリクス用フッ化ビニリデン系樹脂(PVDF−I)25〜98重量%、好ましくは50〜95重量%、さらに好ましくは60〜90重量%に対して、重量平均分子量(Mw)が中高分子量フッ化ビニリデン系樹脂の1.4倍以上、且つ150万以下、好ましくは140万以下、更に好ましくは130万以下、である超高分子量の結晶特性改質用フッ化ビニリデン系樹脂(PVDF−II)2〜75重量%、好ましくは5〜50重量%、さらに好ましくは10〜40重量%を添加することも好ましい。超高分子量フッ化ビニリデン系樹脂(PVDF−II)のMwが中高分子量樹脂(PVDF−I)のMwの1.4倍未満であると球晶の形成を十分には抑制し難く、一方、150万を超えるとマトリックス樹脂中に均一に分散させることが困難である。また、超高分子量フッ化ビニリデン系樹脂の添加量が2重量%未満では球晶抑制効果が十分でなく、一方、75重量%を超えると、紡糸時のメルトフラクチャー発生により安定した膜形成が困難になる傾向がある。   For the purpose of suppressing the formation of spherulites in the thermally induced phase separation method, the weight average molecular weight (Mw) is 450,000 to 1,000,000, preferably 490,000 to 900,000, more preferably 600,000 to 800,000. The vinylidene fluoride resin for matrix (PVDF-I) is 25 to 98% by weight, preferably 50 to 95% by weight, more preferably 60 to 90% by weight, and the weight average molecular weight (Mw) is a medium high molecular weight fluoride. Ultrahigh molecular weight vinylidene fluoride resin (PVDF-II) 2 for crystal property modification, which is 1.4 times or more of vinylidene resin and 1.5 million or less, preferably 1.4 million or less, more preferably 1.3 million or less. It is also preferable to add ˜75 wt%, preferably 5 to 50 wt%, more preferably 10 to 40 wt%. When the Mw of the ultra-high molecular weight vinylidene fluoride resin (PVDF-II) is less than 1.4 times the Mw of the medium high molecular weight resin (PVDF-I), it is difficult to sufficiently suppress the formation of spherulites. If it exceeds 10,000, it is difficult to uniformly disperse in the matrix resin. In addition, if the amount of the ultrahigh molecular weight vinylidene fluoride resin is less than 2% by weight, the effect of suppressing spherulite is not sufficient. On the other hand, if it exceeds 75% by weight, stable film formation is difficult due to the occurrence of melt fracture during spinning. Tend to be.

得られる多孔膜の性能の観点からは、多くの用途において、耐薬品性と機械的強度の高さからフッ化ビニリデン100モル%からなる単独重合体を用いることが好ましい。   From the viewpoint of the performance of the obtained porous membrane, in many applications, it is preferable to use a homopolymer composed of 100 mol% of vinylidene fluoride because of its high chemical resistance and mechanical strength.

他方、得られる多孔膜の性能として柔軟性や伸縮性が求められる場合、あるいは電池セパレータ用途において過熱時に膜が軟化することによって自動的に孔が閉塞して電流を遮断する温度、すなわちシャットダウン温度を低下させたい場合には、共重合によってこれらの特性を調整することが可能であり、フッ化ビニリデン系樹脂として共重合体を用いることが好ましい。   On the other hand, when the performance of the obtained porous membrane is required to be flexible or stretchable, or in battery separator applications, the temperature at which pores are automatically closed due to softening of the membrane upon overheating, that is, the shutdown temperature is set. When it is desired to reduce the above, it is possible to adjust these characteristics by copolymerization, and it is preferable to use a copolymer as the vinylidene fluoride resin.

上記したような比較的高分子量のフッ化ビニリデン系樹脂は、好ましくは乳化重合あるいは懸濁重合、特に好ましくは懸濁重合により得ることができる。   The relatively high molecular weight vinylidene fluoride resin as described above can be obtained by emulsion polymerization or suspension polymerization, particularly preferably suspension polymerization.

熱誘起相分離法による樹脂多孔膜の製造のためには、上記のフッ化ビニリデン系樹脂に、有機液状体を加えて膜形成用の原料組成物を形成する。   In order to produce a porous resin membrane by a thermally induced phase separation method, an organic liquid is added to the above-mentioned vinylidene fluoride resin to form a raw material composition for film formation.

(有機液状体)
フッ化ビニリデン系樹脂多孔膜は、主として上記したフッ化ビニリデン系樹脂により形成されるが、その製造のためには、フッ化ビニリデン系樹脂に加えて、孔形成剤としての有機液状体を用いる。有機液状体としては、少なくとも上昇温度において、フッ化ビニリデン系樹脂と相溶性を有し、冷却によりあるいは非溶媒との接触により、フッ化ビニリデン系樹脂と相分離を起す任意の有機液状体(室温において固体であり、上昇温度において始めて液状化するものを含む)が用いられる。熱誘起相分離法による多孔膜の製造のためには上述したフッ化ビニリデン系樹脂に加えて、好ましくはその可塑剤からなる有機液状体を孔形成剤として用いる。このような有機液状体としては、フッ化ビニリデン系樹脂に対するモノメリック可塑剤およびポリメリック可塑剤が好ましく用いられ、溶融混練温度において、フッ化ビニリデン系樹脂と相溶性を有するとともに、下記(i)〜(iii)の特性を有するものが特に好ましく用いられる。これにより、全層空孔率(A0)を高く且つ冷却側表面に近接する緻密層の厚さを薄く空孔率(A1)を高く維持することが可能になる。
(Organic liquid)
The vinylidene fluoride-based resin porous film is mainly formed of the above-mentioned vinylidene fluoride-based resin. For the production thereof, an organic liquid as a pore forming agent is used in addition to the vinylidene fluoride-based resin. The organic liquid is any organic liquid (room temperature) that is compatible with the vinylidene fluoride resin at least at an elevated temperature and causes phase separation from the vinylidene fluoride resin by cooling or contact with a non-solvent. And those that are liquefied only at an elevated temperature). For the production of the porous membrane by the thermally induced phase separation method, in addition to the above-mentioned vinylidene fluoride resin, an organic liquid composed of a plasticizer is preferably used as the pore forming agent. As such an organic liquid, a monomeric plasticizer and a polymeric plasticizer for a vinylidene fluoride resin are preferably used, and have compatibility with the vinylidene fluoride resin at a melt kneading temperature. Those having the characteristics of (iii) are particularly preferably used. As a result, it is possible to maintain the porosity (A1) high while reducing the thickness of the dense layer close to the cooling side surface with a high total layer porosity (A0).

(i)フッ化ビニリデン系樹脂との溶融混練物に、フッ化ビニリデン系樹脂単独の結晶化温度Tc(℃)より6℃以上低い、好ましくは9℃以上低い、更に好ましくは12℃以上低い、結晶化温度Tc′(℃)を与え、
(ii)その溶融混練物を冷却して固化した膜状成形体に、示差走査熱量計(DSC)で測定したときのフッ化ビニリデン系樹脂質量基準での結晶融解エンタルピーΔH’(J/g)として、5J/g以上、好ましくは10J/g以上、更に好ましくは25J/g以上、最も好ましくは50J/g以上を与え、且つ
(iii)JIS K7117−2(円すい−平板型回転粘度計使用)に準拠して温度25℃で測定した粘度が200mPa・s〜1000Pa・s、より好ましくは400mPa・s〜100Pa・s、更に好ましくは500mPa・s〜50Pa・s。
有機液状体の粘度が高いほど、形成される多孔膜中の空孔径が小さくなる傾向がある。
(I) The melt-kneaded product with the vinylidene fluoride resin is 6 ° C. or more lower than the crystallization temperature Tc (° C.) of the vinylidene fluoride resin alone, preferably 9 ° C. or more, more preferably 12 ° C. or more lower. Giving a crystallization temperature Tc ′ (° C.),
(Ii) Crystal melting enthalpy ΔH ′ (J / g) on the basis of vinylidene fluoride resin mass as measured with a differential scanning calorimeter (DSC) on a film-like molded body obtained by cooling and solidifying the melt-kneaded product As 5 J / g or more, preferably 10 J / g or more, more preferably 25 J / g or more, most preferably 50 J / g or more, and (iii) JIS K7117-2 (cone-plate type rotational viscometer used) The viscosity measured at a temperature of 25 ° C. according to the standard is 200 mPa · s to 1000 Pa · s, more preferably 400 mPa · s to 100 Pa · s, still more preferably 500 mPa · s to 50 Pa · s.
The higher the viscosity of the organic liquid, the smaller the pore diameter in the formed porous film.

上記の特性を有する有機液状体の好ましい例として、脂肪族二塩基酸とグリコールとからなる(ポリ)エステル、すなわちポリエステルまたはエステル(脂肪族二塩基酸のモノまたはジグリコールエステル)の少なくとも一方、好ましくは双方の末端を一価の芳香族カルボン酸で封止したポリエステル系可塑剤が用いられる。   As a preferable example of the organic liquid having the above-mentioned properties, a (poly) ester composed of an aliphatic dibasic acid and a glycol, that is, at least one of polyester or ester (mono- or diglycol ester of an aliphatic dibasic acid), preferably Is a polyester plasticizer having both ends sealed with a monovalent aromatic carboxylic acid.

上記のポリエステル系可塑剤の中央部の(ポリ)エステルを構成する脂肪族二塩基酸成分としては、炭素数4〜12、特に6〜10の脂肪族二塩基酸が好ましい。このような脂肪族二塩基酸成分としては、例えばコハク酸、マレイン酸、フマル酸、グルタミン酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等が挙げられ、なかでも工業的な入手の容易性からアジピン酸が最も好ましい。これら脂肪族二塩基酸は、単独使用でも、二種以上を併用してもよい。   The aliphatic dibasic acid component constituting the (poly) ester at the center of the polyester plasticizer is preferably an aliphatic dibasic acid having 4 to 12 carbon atoms, particularly 6 to 10 carbon atoms. Examples of such an aliphatic dibasic acid component include succinic acid, maleic acid, fumaric acid, glutamic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid and the like, and industrial easy availability. To adipic acid is most preferred. These aliphatic dibasic acids may be used alone or in combination of two or more.

上記のポリエステル系可塑剤の中央部の(ポリ)エステルを構成するグリコール成分としては、炭素数2〜18、特に3〜10のグリコール類が好ましく、例えば脂肪族二価アルコール、あるいはポリアルキレングリコール等が用いられる。これらグリコール類は、単独使用でも、2種以上を併用してもよい。   The glycol component constituting the (poly) ester at the center of the polyester plasticizer is preferably a glycol having 2 to 18 carbon atoms, particularly 3 to 10 carbon atoms, such as aliphatic dihydric alcohol or polyalkylene glycol. Is used. These glycols may be used alone or in combination of two or more.

上記のポリエステル系可塑剤は、その分子鎖末端が芳香族一価カルボン酸によって封止されていることが好ましい。芳香族一価カルボン酸は、2種以上を併用してもよいが、特に工業的な入手の容易性から安息香酸が好ましい。   The above-mentioned polyester plasticizer is preferably sealed at its molecular chain end with an aromatic monovalent carboxylic acid. Two or more aromatic monovalent carboxylic acids may be used in combination, but benzoic acid is particularly preferred from the viewpoint of industrial availability.

本発明においては、有機液状体全体として、上記特性を満たす限り、上記ポリエステル系可塑剤に加えて、モノメリック系可塑剤あるいは非水溶性の溶媒を併用することもできる。     In the present invention, a monomeric plasticizer or a water-insoluble solvent can be used in combination with the polyester plasticizer as long as the entire organic liquid satisfies the above characteristics.

このような好ましい有機液状体の選択により、前記したような好ましい分子量特性を有するフッ化ビニリデン系樹脂への有機液状体の多量添加が可能になり、かつ溶融押出後の冷却により固化した成形物がフッ化ビニリデン樹脂相と有機液状体相に分離して、後の抽出工程において有機液状体相を除去した後に、全層空孔率および緻密層空孔率(測定法は後述)がともに高い多孔膜が得られる。   By selecting such a preferable organic liquid, a large amount of the organic liquid can be added to the vinylidene fluoride resin having the preferable molecular weight characteristics as described above, and a molded product solidified by cooling after melt extrusion can be obtained. After separation into a vinylidene fluoride resin phase and an organic liquid phase and removal of the organic liquid phase in a later extraction step, the porosity of both the total layer porosity and the dense layer porosity (the measurement method will be described later) is high. A membrane is obtained.

(組成物)
熱誘起相分離法による多孔膜形成用の原料組成物は、フッ化ビニリデン系樹脂100容量部に対して、有機液状体を、少なくとも200容量部以上、より好ましくは300容量部以上、更に好ましくは400容量部以上、上限は1000容量部以下、より好ましくは700容量部以下、を混合して形成するのが良い。有機液状体として上記ポリエステル系可塑剤を用いる場合にも、これに加えて、原料組成物の溶融混練下での溶融粘度等を考慮して、必要に応じてモノメリックエステル系可塑剤、非水溶性の溶媒等を添加することができる。
(Composition)
The raw material composition for forming a porous film by the heat-induced phase separation method has an organic liquid content of at least 200 parts by volume, more preferably 300 parts by volume, and still more preferably 100 parts by volume of vinylidene fluoride resin. It is preferable to form a mixture of 400 parts by volume or more and an upper limit of 1000 parts by volume or less, more preferably 700 parts by volume or less. When using the above-mentioned polyester plasticizer as the organic liquid, in addition to this, a monomeric ester plasticizer, water-insoluble Can be added.

有機液状体量が少な過ぎると本発明の目的とする空孔率の上昇を得難くなり、多過ぎると溶融粘度が過度に低下し、中空糸の場合は糸つぶれが発生し易くなり、また得られる多孔膜の機械的強度が低下するおそれがある。   If the amount of the organic liquid is too small, it is difficult to obtain the object porosity of the present invention, and if it is too large, the melt viscosity is excessively decreased. There is a possibility that the mechanical strength of the porous film to be produced is lowered.

有機液状体の添加量は、上記範囲内でフッ化ビニリデン系樹脂との溶融混練物のTc′が120〜140℃、より好ましくは125〜139℃、更に好ましくは130〜138℃になるように調整することが好ましい。   The addition amount of the organic liquid is within the above range so that the Tc ′ of the melt-kneaded product with the vinylidene fluoride resin is 120 to 140 ° C., more preferably 125 to 139 ° C., and further preferably 130 to 138 ° C. It is preferable to adjust.

(混合・溶融押出し)
一例として熱誘起相分離法により膜状成形体を形成する場合、バレル温度180〜250℃、好ましくは200〜240℃で溶融混練された溶融押出組成物は、一般に150〜270℃、好ましくは170〜240℃、の温度で、Tダイあるいは中空ノズルから押出されて膜状化される。従って、最終的に、上記温度範囲の均質組成物が得られる限りにおいて、フッ化ビニリデン系樹脂と、有機液状体の混合並びに溶融形態は任意である。このような組成物を得るための好ましい態様の一つによれば、二軸混練押出機が用いられ、(好ましくは主体樹脂と結晶特性改質用樹脂の混合物からなる)フッ化ビニリデン系樹脂は、該押出機の上流側から供給され、有機液状体が、下流で供給され、押出機を通過して吐出されるまでに均質混合物とされる。この二軸押出機は、その長手軸方向に沿って、複数のブロックに分けて独立の温度制御が可能であり、それぞれの部位の通過物の内容により適切な温度調節がなされる。
(Mixing / melt extrusion)
As an example, when forming a film-shaped molded article by a thermally induced phase separation method, the melt-extruded composition melt-kneaded at a barrel temperature of 180 to 250 ° C, preferably 200 to 240 ° C is generally 150 to 270 ° C, preferably 170. The film is extruded from a T die or a hollow nozzle at a temperature of ˜240 ° C. Therefore, as long as a homogeneous composition in the above temperature range is finally obtained, the mixing and melting form of the vinylidene fluoride resin and the organic liquid are arbitrary. According to one preferred embodiment for obtaining such a composition, a biaxial kneading extruder is used, and the vinylidene fluoride resin (preferably comprising a mixture of a main resin and a crystal characteristic modifying resin) is The organic liquid is supplied from the upstream side of the extruder, supplied downstream, and made into a homogeneous mixture before being discharged through the extruder. This twin-screw extruder can be controlled independently by dividing it into a plurality of blocks along its longitudinal axis direction, and appropriate temperature adjustment is made according to the contents of the passing material at each site.

(冷却)
熱誘起相分離法による場合、次いで溶融押出された中空糸膜状物を、フッ化ビニリデン系樹脂に対して不活性(すなわち非溶媒且つ非反応性)な液体(好ましくは水)からなり、熱誘起相分離を起すに十分に低い温度Tqの冷却浴中に導入して、好ましくはその外側面から優先的に冷却して固化成膜させる。平膜形成のためには、冷却液のシャワーの外、チルロールによる片側面からの冷却も用いられる。冷却温度Tqが低いほど、形成される空孔径が小さくなる傾向がある。
(cooling)
In the case of the thermally induced phase separation method, the melt-extruded hollow fiber membrane is then made of a liquid (preferably water) that is inert (that is, non-solvent and non-reactive) with respect to the vinylidene fluoride resin. It introduce | transduces in the cooling bath of temperature Tq low enough to raise | generate induced phase separation, Preferably it cools preferentially from the outer surface, and solidifies and forms a film. In order to form a flat film, cooling from one side by a chill roll is also used in addition to the cooling liquid shower. The lower the cooling temperature Tq, the smaller the hole diameter formed.

(抽出)
冷却・固化された膜状物は、次いで抽出液浴中に導入され、有機液状体の抽出除去を受ける。抽出液としては、ポリフッ化ビニリデン系樹脂を溶解せず、可塑剤等を溶解できるものであれば特に限定されない。例えばアルコール類ではメタノール、イソプロピルアルコールなど、ハロゲン化溶媒ではジクロロメタン、1,1,1−トリクロロエタンなど、の沸点が30〜100℃程度の極性溶媒が適当である。長尺の中空糸膜の抽出は、これをボビンに巻き取って行うことが効率的である。
(Extraction)
The cooled and solidified film-like material is then introduced into the extract bath and subjected to extraction and removal of the organic liquid. The extraction liquid is not particularly limited as long as it does not dissolve the polyvinylidene fluoride resin and can dissolve the plasticizer and the like. For example, polar solvents having a boiling point of about 30 to 100 ° C. such as methanol and isopropyl alcohol are suitable for alcohols, and dichloromethane and 1,1,1-trichloroethane are suitable for halogenated solvents. It is efficient to extract the long hollow fiber membrane by winding it around a bobbin.

なかでもハロゲン化溶媒は、フッ化ビニリデン系樹脂に対する膨潤性(下記の方法により測定した膨潤率が2〜20重量%、特に5〜10重量%のものが好ましい)が高く、有機液状体の抽出効果が大である。しかし、その膨潤性の故に、抽出等によりハロゲン化溶媒を含むフッ化ビニリデン系樹脂の膜状物をそのまま乾燥工程に移行すると、形成された空孔が収縮する傾向が見られる。この傾向は、孔径が小さい膜ほど顕著になる。従って、一旦、ハロゲン化溶媒抽出により形成された孔中にハロゲン化溶媒を含むフッ化ビニリデン系樹脂多孔膜を、好ましくはハロゲン化溶媒と相溶性を有し、フッ化ビニリデン系樹脂に対して膨潤性を有さない溶媒(下記方法により測定した膨潤率が1重量%未満のものが好ましい)からなるリンス液に浸漬する等によりハロゲン化溶媒を置換した後、乾燥することが好ましい。非膨潤性であり且つハロゲン化溶媒と相溶性を有する溶媒の具体例としては、例えばイソプロピルアルコール、エタノール、ヘキサン等が挙げられる。なお、イソプロピルアルコールやエタノールのように水とも相溶性を有する溶媒を用いた場合には、引き続いて水等のフッ化ビニリデン系樹脂に対して非膨潤性であり且つ不燃性の溶媒に置換してから、乾燥あるいは熱処理を行うことも好ましい。   Among them, the halogenated solvent has a high swellability with respect to vinylidene fluoride resin (a swelling rate measured by the following method is preferably 2 to 20% by weight, particularly preferably 5 to 10% by weight), and extraction of an organic liquid material. The effect is great. However, due to its swelling property, when the film-like product of vinylidene fluoride resin containing a halogenated solvent is transferred to the drying process as it is by extraction or the like, the formed pores tend to shrink. This tendency becomes more prominent as the membrane has a smaller pore size. Accordingly, a vinylidene fluoride resin porous membrane containing a halogenated solvent in the pores formed by halogenated solvent extraction is preferably compatible with the halogenated solvent and swells with respect to the vinylidene fluoride resin. It is preferable to dry after replacing the halogenated solvent by immersing it in a rinse solution made of a solvent having no property (preferably having a swelling ratio of less than 1% by weight measured by the following method). Specific examples of the solvent that is non-swelling and compatible with the halogenated solvent include isopropyl alcohol, ethanol, hexane, and the like. When a solvent that is compatible with water, such as isopropyl alcohol or ethanol, is used, the solvent is subsequently replaced with a non-swellable and non-flammable solvent such as water. Therefore, it is also preferable to perform drying or heat treatment.

<膨潤率測定>
フッ化ビニリデン系樹脂を温度230℃で5分間加熱プレスした後、温度20℃の冷却プレスで冷却固化して厚さ0.5mmのプレスシートを作製する。このプレスシートを50mm四方に裁断して試験片とする。この試験片の重量W1を測定した後、室温で溶媒に120時間浸漬する。その後に試験片を取り出して表面に付着した溶媒をろ紙で拭き取り、試験片の重量W2を測定する。下式により膨潤率(%)を測定する。
<Swelling ratio measurement>
A vinylidene fluoride resin is heated and pressed at a temperature of 230 ° C. for 5 minutes, and then cooled and solidified by a cooling press at a temperature of 20 ° C. to produce a press sheet having a thickness of 0.5 mm. This press sheet is cut into 50 mm squares to form test pieces. After measuring the weight W1 of this test piece, it is immersed in a solvent at room temperature for 120 hours. Thereafter, the test piece is taken out, the solvent adhering to the surface is wiped off with a filter paper, and the weight W2 of the test piece is measured. The swelling rate (%) is measured by the following formula.

膨潤率(%)=(W2−W1)/W1×100。                   Swell rate (%) = (W2-W1) / W1 × 100.

(延伸)
一例として上記のようにして得られたフッ化ビニリデン系樹脂多孔膜を含む、好ましくは空孔率が50%以上、より好ましくは60%以上、上限は90%以下の各種樹脂多孔膜については、一般に空孔率および孔径の増大並びに強伸度の改善を目的として延伸を行うが、本発明においては、延伸に先立って、樹脂多孔膜の外表面から一定の深さまで選択的に湿潤させ、この状態で延伸する(以下、「部分湿潤延伸」と称する)。これにより湿潤させた表層の空孔率(表面から深さ5μmまでの部分の空孔率を緻密層空孔率A1と称する)を増大させる。一般に分離膜として使用される樹脂多孔膜は厚さ方向に均一な空孔率分布を有するものではなく、表層に孔径の小さい緻密層が形成され、これが分離性能を支配する場合が多い。また、例えば熱誘起相分離法により形成された樹脂多孔膜はその傾向が強く、主たる二表面のうち直接冷却媒体と接触した一方の表面孔径が他方の表面孔径に比べて小さい傾斜多孔膜が得られる。本発明による部分湿潤延伸は、この緻密層空孔率A1を増大させ、良好な分離性と透液性の調和を与える上で極めて効果的である。
(Stretching)
As an example, including the vinylidene fluoride resin porous membrane obtained as described above, preferably the porosity is 50% or more, more preferably 60% or more, the upper limit is 90% or less for various resin porous membranes, In general, stretching is performed for the purpose of increasing the porosity and pore diameter and improving the strength and elongation. In the present invention, prior to stretching, the resin is selectively wetted from the outer surface of the porous resin membrane to a certain depth. Stretching in a state (hereinafter referred to as “partial wet stretching”). This increases the porosity of the wet surface layer (the porosity of the portion from the surface to a depth of 5 μm is referred to as dense layer porosity A1). In general, a resin porous membrane used as a separation membrane does not have a uniform porosity distribution in the thickness direction, and a dense layer having a small pore diameter is formed on the surface layer, and this often dominates the separation performance. In addition, for example, a porous resin membrane formed by a thermally induced phase separation method has a strong tendency to obtain an inclined porous membrane in which one surface pore diameter in direct contact with the cooling medium is smaller than the other surface pore diameter. It is done. Partially wet stretching according to the present invention is extremely effective in increasing the dense layer porosity A1 and giving a good balance between good separation and liquid permeability.

より詳しくは、延伸に先立って多孔膜の外表面から5μm以上、好ましくは7μm以上、更に好ましくは10μm以上、かつ膜厚さの1/2以下、好ましくは1/3以下、更に好ましくは1/4以下の深さを選択的に湿潤させる。湿潤させる深さが5μm未満では緻密層空孔率A1の増大が十分でなく、1/2を超えると延伸後に乾熱緩和する場合に、湿潤液の乾燥が不均一になり、熱処理あるいは緩和処理が不均一になる恐れがある。   More specifically, prior to stretching, 5 μm or more from the outer surface of the porous membrane, preferably 7 μm or more, more preferably 10 μm or more, and ½ or less, preferably 1 / or less, more preferably 1 / 1 / of the film thickness. A depth of 4 or less is selectively wetted. If the depth of wetting is less than 5 μm, the increase in the dense layer porosity A1 is not sufficient, and if it exceeds 1/2, the drying of the wetting liquid becomes uneven when the dry heat is relaxed after stretching, and the heat treatment or the relaxation treatment May become uneven.

上記部分湿潤延伸によると、何故、緻密層空孔率A1が向上するのか、その理由は明らかになっていないが本発明者らは次のように推定している。すなわち、長手方向に延伸する際に膜厚さ方向には圧縮応力が働くと考えられるが、外表面から一定の深さを湿潤することによって、(イ)加熱雰囲気中での熱伝達が改善され、特に緻密層の温度勾配が緩和されて膜厚さ方向への圧縮応力が低減すること、(ロ)空隙内に液体が充満した状態であるため、延伸によって膜厚さ方向への圧縮応力が働いても孔がつぶれにくくなること、が推定される。   Although the reason why the dense layer porosity A1 is improved by the partial wet stretching is not clear, the present inventors presume as follows. That is, it is thought that compressive stress acts in the film thickness direction when stretching in the longitudinal direction, but by wetting a certain depth from the outer surface, (a) heat transfer in a heated atmosphere is improved. In particular, the temperature gradient of the dense layer is relaxed and the compressive stress in the film thickness direction is reduced. (B) Since the liquid is filled in the voids, the compressive stress in the film thickness direction is increased by stretching. It is presumed that the hole is less likely to collapse even if it works.

樹脂多孔膜の外表面から所定の深さのみを湿潤させる操作は、樹脂多孔膜の外表面に表面張力を調整した部分湿潤液を接液させることにより行うことが好ましい。部分湿潤液としては、樹脂多孔膜をぬらす溶媒あるいはその水溶液を使用することも可能であるが、延伸後の洗浄除去が容易、あるいは特別な除去操作が不要である点で界面活性剤水溶液(エマルジョン溶液も含む)が好ましい。   The operation of wetting only a predetermined depth from the outer surface of the resin porous membrane is preferably performed by bringing a partial wetting liquid adjusted in surface tension into contact with the outer surface of the resin porous membrane. As the partial wetting liquid, it is possible to use a solvent that wets the porous resin membrane or an aqueous solution thereof, but an aqueous surfactant solution (emulsion) because it is easy to wash and remove after stretching or no special removal operation is required. Including solutions).

部分湿潤液の表面張力は、ポリオレフィン系樹脂やフッ化ビニリデン系樹脂等の臨界表面張力γcが72mN/m未満(多くは60mN/m未満)である疎水性樹脂多孔膜の場合には、多孔膜の臨界表面張力γc(mN/m)(測定方法は後述する)に応じて、界面活性剤水溶液の表面張力を(γc−10)〜(γc+5)(mN/m)、好ましくは(γc−8)〜(γc+3)(mN/m)、の範囲で選択し、接液時間を5秒〜10000秒で制御することにより樹脂多孔膜の表面から所定の深さのみを界面活性剤水溶液で湿潤することが出来る。   The surface tension of the partial wetting liquid is a porous membrane in the case of a hydrophobic resin porous membrane having a critical surface tension γc of less than 72 mN / m (mostly less than 60 mN / m) such as polyolefin resin or vinylidene fluoride resin. The surface tension of the surfactant aqueous solution is (γc-10) to (γc + 5) (mN / m), preferably (γc-8), depending on the critical surface tension γc (mN / m) (measurement method will be described later). ) To (γc + 3) (mN / m), and by controlling the liquid contact time from 5 seconds to 10000 seconds, only a predetermined depth from the surface of the porous resin membrane is wetted with the surfactant aqueous solution. I can do it.

一方、酢酸セルロース系樹脂等の臨界表面張力γcが72mN/m以上である親水性樹脂多孔膜の場合には、界面活性剤水溶液の表面張力で湿潤深さを制御することは困難である。この場合は、添加する界面活性剤のHLB(親水性疎水性バランス)が3.5〜10の界面活性剤を選択し、接液時間を5秒〜600秒に制御することにより、樹脂多孔膜の表面から所定の深さのみを界面活性剤水溶液で湿潤することが出来る。このようにHLBを選択すると、界面活性剤水溶液中に分散するエマルジョン粒子径が膜の表面孔径と近接するため、エマルジョン粒子の目詰まり効果により湿潤深さが制御されると考えられる。   On the other hand, in the case of a hydrophilic resin porous membrane having a critical surface tension γc of 72 mN / m or more such as cellulose acetate-based resin, it is difficult to control the wet depth with the surface tension of the surfactant aqueous solution. In this case, by selecting a surfactant having an HLB (hydrophilic hydrophobic balance) of 3.5 to 10 as the surfactant to be added and controlling the liquid contact time from 5 seconds to 600 seconds, the resin porous membrane is obtained. Only a predetermined depth from the surface can be wetted with an aqueous surfactant solution. When HLB is selected in this manner, the emulsion particle size dispersed in the surfactant aqueous solution is close to the surface pore size of the membrane, and therefore the wet depth is considered to be controlled by the clogging effect of the emulsion particles.

なお、このようなエマルジョン粒子の目詰まり効果による湿潤深さの制御は、疎水性樹脂の場合にも利用することが出来る。ただし、疎水性樹脂の場合には、部分湿潤液の表面張力を低下させることとの兼ね合いでHLBは8〜20とすることが好ましい。   Such control of the wet depth by the clogging effect of the emulsion particles can also be used in the case of a hydrophobic resin. However, in the case of a hydrophobic resin, the HLB is preferably 8-20 in view of reducing the surface tension of the partial wetting liquid.

疎水性樹脂と親水性樹脂のいずれも場合も、部分湿潤液の粘度に特に制約はないが、部分湿潤液の塗布方法に応じて、部分湿潤液を高粘度にすることにより浸透速度を適度に遅くすること、あるいは低粘度にして浸透速度を速くすることが可能である。また部分湿潤液の温度も、特に制約はないが、部分湿潤液の塗布方法に応じて、部分湿潤液を低温度にすることにより浸透速度を適度に遅くすること、あるいは高温度にして浸透速度を速くすることが可能である。このように部分湿潤液の粘度と温度は互いに逆方向に作用するものであり、部分湿潤液の浸透速度の調整のために補完的に制御することができる。   In both cases of the hydrophobic resin and the hydrophilic resin, there is no particular restriction on the viscosity of the partial wetting liquid, but depending on the application method of the partial wetting liquid, the penetration rate can be appropriately adjusted by making the partial wetting liquid high in viscosity. It is possible to slow down or increase the penetration rate by lowering the viscosity. Also, the temperature of the partial wetting liquid is not particularly limited, but depending on the application method of the partial wetting liquid, the permeation rate can be lowered moderately by lowering the partial wetting liquid, or the permeation rate can be increased to a higher temperature. Can be made faster. Thus, the viscosity and temperature of the partial wetting liquid act in opposite directions, and can be complementarily controlled to adjust the penetration rate of the partial wetting liquid.

たとえば浸透速度を抑制したい場合は、部分湿潤液の温度は好ましくは0〜25℃、より好ましくは3〜15℃、更に好ましくは5〜10℃が例示できる。   For example, when it is desired to suppress the permeation rate, the temperature of the partial wetting liquid is preferably 0 to 25 ° C, more preferably 3 to 15 ° C, and still more preferably 5 to 10 ° C.

一例として、フッ化ビニリデン系樹脂(PVDF)からなる多孔膜(PVDFホモポリマーからなる多孔膜の臨界表面張力γcは35〜40mN/m)に外表面から一定の深さまでを選択的に湿潤させるためには、多孔膜の外表面にメタノール、エタノール等のフッ化ビニリデン系樹脂を濡らす溶媒あるいはその水溶液を塗布することも可能であるが、一定の深さまでを確実に湿潤させるためには、表面張力が25〜45mN/mである部分湿潤液の塗布(浸漬による場合を含む)が好ましい。表面張力が25mN/m未満であるとPVDF多孔膜への浸透速度が速すぎるため外表面に選択的に部分湿潤液を塗布することが難しい場合があり、表面張力が45mN/mを越えると外表面ではじかれてしまう(PVDF多孔膜への濡れ性あるいは浸透性が不十分である)ために外表面に均一に部分湿潤液を塗布することが難しい場合がある。特に部分湿潤液として、界面活性剤を水に添加して得られる界面活性剤水溶液(すなわち界面活性剤の水溶液ないしエマルジョン水溶液)の使用が好ましい。界面活性剤の種類は特に限定されず、アニオン系界面活性剤では、脂肪族モノカルボン酸塩などのカルボン酸塩型、アルキルベンゼンスルホン酸塩などのスルホン酸型、硫酸アルキル塩などの硫酸エステル型、リン酸アルキル塩などのリン酸エステル型;カチオン系界面活性剤では、アルキルアミン塩などのアミン塩型、アルキルトリメチルアンモニウム塩などの第四級アンモニウム塩型;非イオン系界面活性剤では、グリセリン脂肪酸エステルなどのエステル型、ポリオキシエチレンアルキルフェニルエーテルなどのエーテル型、ポリエチレングリコール脂肪酸エステルなどのエステルエーテル型;両性界面活性剤では、N,N−ジメチル−N−アルキルアミノ酢酸ベタインなどのカルボキシベタイン型、2−アルキル−1−ヒドロキシエチル−カルボキシメチルイミダゾリニウムベタインなどのグリシン型などが挙げられる。特に、ポリグリセリン脂肪酸エステルが、最終的に多孔膜に残留しても衛生上問題のない部分湿潤液として好ましく使用される。     As an example, in order to selectively wet a porous membrane made of vinylidene fluoride resin (PVDF) (the critical surface tension γc of a porous membrane made of PVDF homopolymer is 35 to 40 mN / m) from the outer surface to a certain depth. It is possible to apply a solvent that wets vinylidene fluoride resin such as methanol or ethanol or its aqueous solution to the outer surface of the porous membrane, but in order to wet it to a certain depth, surface tension Application of a partial wetting liquid having a viscosity of 25 to 45 mN / m (including the case of immersion) is preferred. If the surface tension is less than 25 mN / m, it may be difficult to selectively apply the partial wetting liquid to the outer surface because the penetration rate into the PVDF porous membrane is too fast. It may be difficult to apply the partial wetting liquid uniformly on the outer surface because it is repelled on the surface (insufficient wettability or permeability to the PVDF porous membrane). In particular, the use of an aqueous surfactant solution obtained by adding a surfactant to water (that is, an aqueous surfactant solution or an aqueous emulsion solution) is preferred as the partial wetting liquid. The type of the surfactant is not particularly limited. In the anionic surfactant, a carboxylate type such as an aliphatic monocarboxylate, a sulfonate type such as an alkylbenzene sulfonate, a sulfate ester type such as an alkyl sulfate, Phosphate ester type such as alkyl phosphate salt; amine salt type such as alkylamine salt for cationic surfactant, quaternary ammonium salt type such as alkyltrimethylammonium salt; glycerin fatty acid for nonionic surfactant Ester type such as ester, ether type such as polyoxyethylene alkylphenyl ether, ester ether type such as polyethylene glycol fatty acid ester; in amphoteric surfactant, carboxybetaine type such as N, N-dimethyl-N-alkylaminoacetic acid betaine 2-alkyl-1-hydroxyl Le - such as glycine type and the like, such as carboxymethyl imidazolinium betaine. In particular, polyglycerin fatty acid ester is preferably used as a partial wetting liquid that does not cause sanitary problems even if it finally remains in the porous membrane.

界面活性剤はHLB(親水性親油性バランス)が8以上のものが好ましい。HLBが8未満であると、界面活性剤が水に細かく分散せず、結果的に均一な湿潤性改善が困難になる。特に好ましく用いられる界面活性剤として、HLBが8〜20、さらには10〜18の非イオン系界面活性剤あるいはイオン系(アニオン系、カチオン系および両性)界面活性剤が挙げられ、なかでも非イオン系界面活性剤が好ましい。   The surfactant preferably has an HLB (hydrophilic / lipophilic balance) of 8 or more. When the HLB is less than 8, the surfactant is not finely dispersed in water, and as a result, uniform wettability improvement becomes difficult. Particularly preferably used surfactants include nonionic surfactants having an HLB of 8 to 20, and further 10 to 18, or ionic (anionic, cationic and amphoteric) surfactants. A surfactant is preferred.

多くの場合において、多孔膜外表面への部分湿潤液の塗布は、多孔膜のバッチ的あるいは連続的な浸漬によることが好ましい。この浸漬処理は、平膜に対しては両面塗布処理、中空糸膜に対しては片面塗布処理になる。平膜のバッチ浸漬処理は適当な大きさに裁断したものを重ねて浸漬することにより、中空糸膜のバッチ浸漬処理は、ボビン巻きあるいはカセ巻きにより束ねられた中空糸膜の浸漬により行われる。バッチ処理の場合、上記範囲内で比較的低いHLB、より具体的には8〜13のHLBを有する界面活性剤を用いて、比較的大きなエマルジョン粒子を形成することが好ましい。連続処理は、平膜の場合も、中空糸膜の場合も、長尺の多孔膜を連続的に処理液中に送通浸漬することにより行われる。平膜の片面のみに選択的に塗布する場合には、処理液の散布も好ましく用いられる。連続処理の場合、上記範囲内で比較的高いHLB、より具体的には8〜20、より好ましくは10〜18のHLBを有する界面活性剤を用いて、比較的小さなエマルジョン粒子を形成することが好ましい。   In many cases, application of the partial wetting liquid to the outer surface of the porous membrane is preferably performed by batch or continuous immersion of the porous membrane. This dipping process is a double-sided coating process for flat membranes and a single-sided coating process for hollow fiber membranes. The flat membrane batch dipping treatment is carried out by dipping the hollow fiber membranes bundled by bobbin winding or casserole winding by dipping the layers cut into appropriate sizes. In the case of batch processing, it is preferred to form relatively large emulsion particles using a surfactant having a relatively low HLB within the above range, more specifically 8-13. In the case of a flat membrane and a hollow fiber membrane, the continuous treatment is performed by continuously immersing a long porous membrane in the treatment liquid. When selectively applying only to one side of the flat film, spraying of the treatment liquid is also preferably used. In the case of continuous processing, a relatively small emulsion particle may be formed using a surfactant having a relatively high HLB within the above range, more specifically 8-20, more preferably 10-18. preferable.

部分湿潤させた樹脂多孔膜の延伸は、樹脂多孔膜に対し非湿潤性の雰囲気(あるいは媒体)中で行う。非湿潤性の雰囲気としては、室温付近で多孔膜の臨界表面張力γcより10mN/m以上大きな表面張力(JIS K6768)を有する非湿潤性の液体、あるいは空気を初めとするほぼすべての気体が用いられる。疎水性樹脂多孔膜(多くはγcが60mN/m未満)の場合には好ましくは水あるいは空気、より好ましくは水が用いられる。一方、親水性樹脂多孔膜である場合には、水は湿潤性であるため使用できないが、空気を初めとするほぼすべての気体が好ましく用いられる。   The partially porous resin porous membrane is stretched in an atmosphere (or medium) that is non-wetting with respect to the resin porous membrane. As the non-wetting atmosphere, a non-wetting liquid having a surface tension (JIS K6768) larger than the critical surface tension γc of the porous film by about 10 mN / m or almost all gases including air is used near room temperature. It is done. In the case of a hydrophobic resin porous membrane (many γc is less than 60 mN / m), preferably water or air is used, more preferably water. On the other hand, in the case of a hydrophilic resin porous membrane, water cannot be used because it is wettable, but almost all gases including air are preferably used.

延伸方法自体は、それぞれの樹脂の中空糸膜および平膜について、それぞれ公知の方法で実施すればよい。例えばフッ化ビニリデン系樹脂中空糸膜の延伸は、一般に、周速度の異なるローラ対等による中空糸膜の長手方向への一軸延伸として行うことが好ましい。延伸倍率は、1.5倍以上、好ましくは1.7倍以上、上限は4倍以下が適当である。延伸倍率を過大にすると、中空糸膜の破断の傾向が大となる。延伸温度は25〜90℃、特に45〜80℃、が好ましい。延伸温度が低過ぎると延伸が不均一になり、中空糸膜の破断が生じ易くなる。他方、延伸温度が高過ぎると、延伸倍率を上げても空孔率の増大が得難い。平膜の場合には、一軸あるいは逐次又は同時の二軸延伸が可能であり、延伸倍率は、面積倍率として1.5〜20倍、好ましくは2.0〜10倍程度が適当である。延伸操作性の向上のために、予め80〜160℃、好ましくは100〜140℃の範囲の温度で1秒〜18000秒、好ましくは3秒〜3600秒、熱処理して、結晶化度を増大させ、それから本発明の部分湿潤延伸を適用することも好ましい。   The stretching method itself may be carried out by a known method for each hollow fiber membrane and flat membrane of the resin. For example, the stretching of the vinylidene fluoride resin hollow fiber membrane is generally preferably performed as uniaxial stretching in the longitudinal direction of the hollow fiber membrane by a pair of rollers having different peripheral speeds. The stretching ratio is 1.5 times or more, preferably 1.7 times or more, and the upper limit is suitably 4 times or less. When the draw ratio is excessive, the tendency of the hollow fiber membrane to break becomes large. The stretching temperature is preferably 25 to 90 ° C, particularly 45 to 80 ° C. If the stretching temperature is too low, the stretching becomes non-uniform and the hollow fiber membrane is easily broken. On the other hand, if the stretching temperature is too high, it is difficult to increase the porosity even if the stretching ratio is increased. In the case of a flat membrane, uniaxial or sequential or simultaneous biaxial stretching is possible, and the stretching ratio is 1.5 to 20 times, preferably about 2.0 to 10 times as the area magnification. In order to improve the drawing operability, the crystallinity is increased by heat treatment at a temperature in the range of 80 to 160 ° C., preferably 100 to 140 ° C., for 1 second to 18000 seconds, preferably 3 seconds to 3600 seconds. Then, it is also preferable to apply the partial wet stretching of the present invention.

(熱処理)
上記のようにして得られた延伸多孔膜については、一般に緩和または定長条件下での熱処理を行い、延伸後の多孔膜の寸法安定性を向上することが好ましい。疎水性樹脂からなる延伸多孔膜の熱処理は、樹脂多孔膜に対する非湿潤性の雰囲気中、上昇温度、例えば 結晶性樹脂については50℃〜(融点Tm1−5℃)の範囲、非晶性樹脂、すなわち融点Tm1が検出されない樹脂については、50℃〜(ガラス転移温度−5℃)の範囲、で一段階または二段階の処理をすることが好ましい。例えばフッ化ビニリデン系樹脂等の疎水性樹脂に対する非湿潤性の雰囲気は、室温付近で当該疎水性樹脂の濡れ張力よりも大きな表面張力(JIS K6768)を有する非湿潤性の液体、代表的には水、あるいは空気をはじめとするほぼ全ての気体が用いられる。
(Heat treatment)
The stretched porous membrane obtained as described above is preferably subjected to heat treatment under relaxation or constant length conditions to improve the dimensional stability of the stretched porous membrane. The heat treatment of the stretched porous membrane made of a hydrophobic resin is carried out in a non-wetting atmosphere with respect to the resin porous membrane, for example, in the range of 50 ° C. to (melting point Tm 1-5 ° C.) for the crystalline resin, That is, with respect to the resin whose melting point Tm1 is not detected, it is preferable to perform one-step or two-step treatment in the range of 50 ° C. to (glass transition temperature−5 ° C.). For example, a non-wetting atmosphere with respect to a hydrophobic resin such as a vinylidene fluoride resin is a non-wetting liquid having a surface tension (JIS K6768) larger than the wetting tension of the hydrophobic resin near room temperature, typically Almost all gases including water or air are used.

一例として、フッ化ビニリデン系樹脂についての緩和条件を述べると、中空糸のように一軸延伸された多孔膜の緩和処理は、周速が次第に低減する上流ローラと下流ローラの間に配置された上記した非湿潤性の好ましくは加熱された雰囲気中を、先に得られた延伸された多孔膜を送通することにより得られる。(1−(下流ローラ周速/上流ローラ周速))×100(%)で定まる緩和率は、合計で0%(定長熱処理)〜50%の範囲とすることが好ましく、特に1〜20%の範囲の緩和熱処理とすることが好ましい。20%を超える緩和率は、前工程での延伸倍率にもよるが、実現し難いか、あるいは実現しても延伸効果が飽和するか、あるいは却って低下するため好ましくない。平膜の場合の一軸または二軸緩和率は、面積緩和率として1〜30%程度が適当である。二段階処理をする場合、初段の定長または緩和熱処理温度は、50〜100℃、特に80〜100℃が好ましい。処理時間は、所望の熱固定効果、緩和率が得られる限り、短時間でも、長時間でもよい。一般には5秒〜1分程度であるが、この範囲内である必要はない。後段の定長または緩和熱処理温度は、80〜170℃、特に120〜160℃で、初段との合計で所望の緩和率が得られる程度が好ましい。   As an example, the relaxation conditions for the vinylidene fluoride resin will be described. The relaxation treatment of the uniaxially stretched porous membrane like the hollow fiber is arranged between the upstream roller and the downstream roller where the peripheral speed is gradually reduced. It is obtained by passing the previously obtained stretched porous membrane through a non-wetting, preferably heated atmosphere. The relaxation rate determined by (1− (downstream roller peripheral speed / upstream roller peripheral speed)) × 100 (%) is preferably in the range of 0% (constant-length heat treatment) to 50%, particularly 1 to 20 % Relaxation heat treatment is preferable. A relaxation rate exceeding 20% is not preferable because it depends on the stretching ratio in the previous step, but is difficult to realize or even if realized, the stretching effect is saturated or decreases. In the case of a flat membrane, the uniaxial or biaxial relaxation rate is suitably about 1 to 30% as the area relaxation rate. When the two-stage treatment is performed, the first-stage constant length or relaxation heat treatment temperature is preferably 50 to 100 ° C., particularly preferably 80 to 100 ° C. The treatment time may be short or long as long as the desired heat setting effect and relaxation rate are obtained. Generally, it is about 5 seconds to 1 minute, but it is not necessary to be within this range. The post-stage constant length or relaxation heat treatment temperature is 80 to 170 ° C., particularly 120 to 160 ° C., and it is preferable that a desired relaxation rate is obtained in total with the first stage.

(延伸多孔膜)
上記延伸(および熱処理)等の工程を経て得られる多孔膜は、樹脂によっても異なるが、好ましい態様によれば、小孔径側表面の平均孔径およびハーフドライ法平均孔径が、それぞれ好ましくは0.5μm以下、より好ましくは0.3μm以下、更に好ましくは0.2μm以下(、下限は0.01μm)を維持した範囲内で、小孔径側表面に近接する緻密層の空孔率ならびに膜全体としての透液性を高く維持できるという特徴が与えられる。
(Stretched porous membrane)
Although the porous film obtained through the steps of stretching (and heat treatment) varies depending on the resin, according to a preferred embodiment, the average pore diameter on the small pore diameter side surface and the half-dry method average pore diameter are each preferably 0.5 μm. Hereinafter, the porosity of the dense layer adjacent to the surface on the small pore diameter side as well as the entire membrane is maintained within the range where 0.3 μm or less, more preferably 0.2 μm or less (the lower limit is 0.01 μm) is maintained. The feature of maintaining high liquid permeability is given.

以下、熱誘起相分離法によるフッ化ビニリデン系樹脂中空糸多孔膜に本発明の部分湿潤延伸工程を適用する実施例、比較例により、本発明の延伸樹脂多孔膜の製造方法を更に具体的に説明するが、本発明の範囲内でより多様な樹脂の平膜あるいは中空糸多孔膜の製造にも本発明の方法が適用可能であることは当業者に容易に理解可能であろう。以下の記載を含め、本明細書に記載の特性値は、以下の方法による測定値に基くものである。   Hereinafter, the method for applying the partially wet stretching step of the present invention to the vinylidene fluoride resin hollow fiber porous membrane by the heat-induced phase separation method will be described in more detail with reference to the production method of the stretched resin porous membrane of the present invention. As will be described, it will be readily understood by those skilled in the art that the method of the present invention can be applied to the production of more various flat resin membranes or hollow fiber porous membranes within the scope of the present invention. The characteristic values described in this specification, including the following description, are based on measured values by the following method.

(結晶融点Tm1,Tm2および結晶化温度Tc、Tc′)
パーキンエルマー社製の示差走査熱量計「DSC7」を用いて、試料樹脂10mgを測定セルにセットし、窒素ガス雰囲気中で、温度30℃から10℃/分の昇温速度で250℃まで一旦昇温し、ついで250℃で1分間保持した後、250℃から10℃/分の降温速度で30℃まで降温してDSC曲線を求めた。このDSC曲線における昇温過程における吸熱ピーク速度を融点Tm1(℃)とし、降温過程における発熱ピーク温度を結晶化温度Tc(℃)とした。引き続いて、温度30℃で1分間保持した後、再び30℃から10℃/分の昇温速度で250℃まで昇温してDSC曲線を測定した。この再昇温DSC曲線における吸熱ピーク温度を本発明のフッ化ビニリデン系樹脂の結晶特性を規定する本来の樹脂融点Tm2(℃)とした。
(Crystal melting point Tm1, Tm2 and crystallization temperature Tc, Tc ′)
Using a differential scanning calorimeter “DSC7” manufactured by PerkinElmer Co., Ltd., 10 mg of sample resin was set in a measurement cell, and the temperature was increased from 30 ° C. to 250 ° C. at a rate of 10 ° C./min in a nitrogen gas atmosphere. The temperature was then maintained at 250 ° C. for 1 minute, and then the temperature was decreased from 250 ° C. to 30 ° C. at a rate of 10 ° C./min to obtain a DSC curve. In the DSC curve, the endothermic peak speed in the temperature rising process was the melting point Tm1 (° C.), and the exothermic peak temperature in the temperature lowering process was the crystallization temperature Tc (° C.). Subsequently, after maintaining at a temperature of 30 ° C. for 1 minute, the temperature was raised again from 30 ° C. to 250 ° C. at a rate of 10 ° C./min, and the DSC curve was measured. The endothermic peak temperature in this reheated DSC curve was the original resin melting point Tm2 (° C.) that defines the crystal characteristics of the vinylidene fluoride resin of the present invention.

また膜原料としてのフッ化ビニリデン系樹脂と可塑剤等との混合物の結晶化温度Tc′(℃)とは、押出機で溶融混練した後、ノズルから押出され冷却固化された第1中間成形体の10mgを試料として上記と同様の昇降温サイクルにかけてDSC曲線を得、降温過程において検出した発熱ピーク温度をいう。   The crystallization temperature Tc ′ (° C.) of the mixture of vinylidene fluoride resin as a film raw material and a plasticizer is the first intermediate molded body that is melt-kneaded by an extruder and then extruded from a nozzle and cooled and solidified. The exothermic peak temperature detected in the temperature lowering process is obtained by obtaining a DSC curve through the same heating and cooling cycle as described above using 10 mg of the sample.

(相溶性)
ポリエステル系可塑剤およびモノメリックエステル系可塑剤からなる有機液状体(以下、本項で単に「可塑剤」と称する)のフッ化ビニリデン系樹脂に対する相溶性は、次の方法により判定した:
フッ化ビニリデン系樹脂23.73gと、可塑剤46.27gとを、室温で混ぜ合わせてスラリー状混合物を得る。次に、東洋精機(株)製「ラボプラストミル」(ミキサータイプ:「R−60」)のバレルをフッ化ビニリデン系樹脂の融点より10℃以上高い(例えば約17〜37℃高い)所定の温度に調整しておいて,上記スラリー状混合物を投入して3分間予熱し、続いてミキサー回転数50rpmで溶融混練する。混練開始後、10分以内に清澄な(すなわち目視で濁りの原因となる分散物のない程度に透明な)溶融混練物が得られる場合には、その可塑剤はフッ化ビニリデン系樹脂に対して相溶性であると判定する。なお、溶融混練物の粘度が高い場合などには気泡の抱きこみにより白濁して見えることがあるので、そのときは、適宜、熱プレスするなどの方法により脱気して判定する。一旦、冷却固化した場合には、再度加熱して溶融状態にしてから清澄か否かを判定する。
(Compatibility)
The compatibility of an organic liquid material (hereinafter simply referred to as “plasticizer” in this section) composed of a polyester plasticizer and a monomeric ester plasticizer with respect to a vinylidene fluoride resin was determined by the following method:
A slurry-like mixture is obtained by mixing 23.73 g of vinylidene fluoride resin and 46.27 g of a plasticizer at room temperature. Next, the barrel of “Lab Plast Mill” (mixer type: “R-60”) manufactured by Toyo Seiki Co., Ltd. is 10 ° C. or higher (for example, about 17 to 37 ° C. higher) than the melting point of the vinylidene fluoride resin. The temperature is adjusted, and the slurry mixture is charged and preheated for 3 minutes, and then melt-kneaded at a mixer rotation speed of 50 rpm. When a melted and kneaded product that is clear (that is, transparent to the extent that there is no visible turbidity) is obtained within 10 minutes after the start of kneading, the plasticizer is based on vinylidene fluoride resin. Determined to be compatible. In addition, when the viscosity of the melt-kneaded material is high, it may appear cloudy due to entrapment of bubbles, and in that case, it is determined by deaeration appropriately by a method such as hot pressing. Once it has cooled and solidified, it is heated again to be in a molten state, and then it is determined whether or not it is clarified.

(重量平均分子量(Mw))
日本分光社製のGPC装置「GPC−900」を用い、カラムに昭和電工社製の「Shodex KD−806M」、プレカラムに「Shodex KD−G」、溶媒にNMPを使用し、温度40℃、流量10mL/分にて、ゲルパーミエーションクロマトグラフィー(GPC)法によりポリスチレン換算分子量として測定した。
(Weight average molecular weight (Mw))
Using a GPC device “GPC-900” manufactured by JASCO Corporation, using “Shodex KD-806M” manufactured by Showa Denko Co., Ltd. as a column, “Shodex KD-G” used as a precolumn, NMP as a solvent, temperature 40 ° C., flow rate The molecular weight was measured in terms of polystyrene by gel permeation chromatography (GPC) at 10 mL / min.

(全層空孔率A2)
平膜および中空糸膜を含む多孔膜の見掛け体積V(cm)を算出し、更に多孔膜の重量W(g)を測定して次式より全層空孔率A2を求めた:
[数1]
全層空孔率A2(%)=(1−W/(V×ρ))×100
ρ:PVDFの比重(=1.78g/cm)。
(All layer porosity A2)
The apparent volume V (cm 3 ) of the porous membrane including the flat membrane and the hollow fiber membrane was calculated, and the weight W (g) of the porous membrane was measured to determine the total-layer porosity A2 from the following formula:
[Equation 1]
Total layer porosity A2 (%) = (1−W / (V × ρ)) × 100
ρ: Specific gravity of PVDF (= 1.78 g / cm 3 ).

(平均孔径)
ASTM F316−86およびASTM E1294−89に準拠し、Porous Materials, Inc.社製「パームポロメータCFP−200AEX」を用いてハーフドライ法により平均孔径Pm(μm)を測定した。試液はパーフルオロポリエステル(商品名「Galwick」)を用いた。
(Average pore diameter)
Based on ASTM F316-86 and ASTM E1294-89, average pore diameter Pm (μm) was measured by a half dry method using “Palm Porometer CFP-200AEX” manufactured by Porous Materials, Inc. Perfluoropolyester (trade name “Galwick”) was used as a test solution.

(最大孔径)
ASTM F316−86およびASTM E1294−89に準拠し、Porous Materials, Inc.社製「パームポロメータCFP−200AEX」を用いてバブルポイント法により最大孔径Pmax(μm)を測定した。試液はパーフルオロポリエステル(商品名「Galwick」)を用いた。
(Maximum hole diameter)
Based on ASTM F316-86 and ASTM E1294-89, the maximum pore size Pmax (μm) was measured by a bubble point method using “Palm Porometer CFP-200AEX” manufactured by Porous Materials, Inc. Perfluoropolyester (trade name “Galwick”) was used as a test solution.

(被処理水側表面孔径P1および透過水側表面孔径P2)
平膜または中空糸状の多孔膜試料について、被処理水側表面(中空糸においては外表面)の平均孔径P1および透過水側表面(中空糸においては内表面)の平均孔径P2を、SEM法により測定した(SEM平均孔径)。以下、中空糸多孔膜試料を例にとって、測定法を説明する。中空糸膜試料の外表面および内表面について、それぞれ観察倍率1万5千倍でSEM写真撮影を行う。次に、それぞれのSEM写真について、孔と認識できるすべてのものについて孔径を測定する。孔径は各孔の長径と短径を測定し、孔径=(長径+短径)/2として求める。測定した孔径の算術平均を求め、外表面平均孔径P1および内表面平均孔径P2とする。なお写真内に観察される孔数が多すぎる場合には、写真画像を4等分して、その1つの区域(1/4画面)について、上記の孔径測定を行うことで簡略化してもよい。本発明の中空糸膜の外表面について1/4画面で測定する場合には、測定孔数は概ね200〜300個となる。
(Treatment water side surface hole diameter P1 and permeate water side surface hole diameter P2)
For a flat membrane or hollow fiber-like porous membrane sample, the average pore diameter P1 of the treated water side surface (outer surface in hollow fiber) and the average pore diameter P2 of the permeated water side surface (inner surface in hollow fiber) were determined by SEM method. Measured (SEM average pore diameter). Hereinafter, the measurement method will be described using a hollow fiber porous membrane sample as an example. SEM photography is performed on the outer surface and inner surface of the hollow fiber membrane sample at an observation magnification of 15,000 times, respectively. Next, for each SEM photograph, the hole diameter is measured for everything that can be recognized as a hole. The hole diameter is obtained by measuring the long and short diameters of each hole and determining the hole diameter = (long diameter + short diameter) / 2. The arithmetic average of the measured pore diameters is obtained and set as the outer surface average pore diameter P1 and the inner surface average pore diameter P2. In addition, when there are too many holes observed in the photograph, the photograph image may be divided into four equal parts, and the above-mentioned hole diameter measurement may be performed for one area (¼ screen). . When the outer surface of the hollow fiber membrane of the present invention is measured on a ¼ screen, the number of measurement holes is approximately 200 to 300.

(緻密層空孔率)
平膜または中空糸状の多孔膜試料について、小孔径側表面(中空糸膜については外表面)に接する厚さ5μmの部分の空孔率A1(%)(以下、「緻密層空孔率A1」と称する)を含浸法により測定する。以下、中空糸多孔膜試料を例にとって、測定法を説明する。まず中空糸多孔膜試料を、長さL=約300mmに切り出し、加熱圧着もしくは接着剤により中空部の両端を封じ、重さW0(g)を測定する。次に、この両端を封じた中空糸膜試料を、染料(紀和化学工業(株)製「Cation Red」)0.05重量%と、脂肪酸グリセリンエステル(阪本薬品化学工業(株)製「MO−7S」;HLB値=12.9)約1.0重量%とを溶解したグリセリン(ライオン(株)製「精製グリセリンD」)からなる試験液に浸漬した後、取り出して表面の試験液をふき取り、再び重さW(mg)を測定する。ついで計量後の試料を剃刀で輪切りにし、光学顕微鏡(KEYENS社製「VQ−Z50」を使用して、試験液が含浸した部分(=染色部分)の厚さt(μm)を測定する。含浸厚さtは、試験液への浸漬時間および試験液中の脂肪族グリセリンエステル濃度を調整することで、t=5±1(μm)に調整する。上記試料の外径OD(mm)、長さL(mm)および含浸厚さt(μm)から試験液が含浸した試料の部分の体積V(ml)を、次式により算出する:
V=π×((OD/2)−(OD/2−t/1000))×L/1000
浸漬前の試料の重さW0(g)と浸漬後の試料の重さW(g)の差から次式により含浸した試験液の体積VL(ml)を算出する:
VL=(W−W0)/(ρs×1000)
ここでρsは試験液の比重であり、1.261(g/ml)とする。
(Dense layer porosity)
For a flat membrane or hollow fiber-like porous membrane sample, the porosity A1 (%) of the portion having a thickness of 5 μm in contact with the surface on the small pore diameter side (the outer surface for the hollow fiber membrane) (hereinafter referred to as “dense layer porosity A1”) Is measured by the impregnation method. Hereinafter, the measurement method will be described by taking a hollow fiber porous membrane sample as an example. First, a hollow fiber porous membrane sample is cut into a length L = about 300 mm, both ends of the hollow portion are sealed with thermocompression bonding or an adhesive, and the weight W0 (g) is measured. Next, a hollow fiber membrane sample sealed at both ends was prepared by adding 0.05% by weight of a dye ("Cation Red" manufactured by Kiwa Chemical Industry Co., Ltd.) and "MO-" produced by a fatty acid glycerin ester (Sakamoto Pharmaceutical Co., Ltd.). 7S "; HLB value = 12.9) After immersion in a test solution made of glycerin dissolved in approximately 1.0% by weight (" Purified Glycerin D "manufactured by Lion Corporation), the surface test solution was taken out and wiped off. The weight W (mg) is measured again. Next, the sample after the measurement is cut with a razor, and the thickness t (μm) of the portion impregnated with the test solution (= stained portion) is measured using an optical microscope (“VQ-Z50” manufactured by KEYENS). The thickness t is adjusted to t = 5 ± 1 (μm) by adjusting the immersion time in the test solution and the concentration of the aliphatic glycerin ester in the test solution. From the thickness L (mm) and the impregnation thickness t (μm), the volume V (ml) of the portion of the sample impregnated with the test liquid is calculated by the following formula:
V = π × ((OD / 2) 2 − (OD / 2−t / 1000) 2 ) × L / 1000
From the difference between the weight W0 (g) of the sample before immersion and the weight W (g) of the sample after immersion, the volume VL (ml) of the test solution impregnated is calculated by the following formula:
VL = (W−W0) / (ρs × 1000)
Here, ρs is the specific gravity of the test solution and is 1.261 (g / ml).

次式により、緻密層空孔率A1(%)を算出する。   The dense layer porosity A1 (%) is calculated by the following formula.

A1=VL/V×100。        A1 = VL / V × 100.

(透水量)
試長L(図1参照)=200mmの試料中空糸多孔膜をエタノールに15分間浸漬し、次いで純水に15分間浸漬して湿潤化した後、水温25℃、差圧100kPaで測定した1日当りの透水量(m/day)を、中空糸多孔膜の膜面積(m)(=外径×π×試長Lとして計算)で除して得た。測定値は、F(100kPa,L=200mm)と表記し、単位はm/day(=m/m・day)で表わす。
(Water permeability)
Sample length L (see FIG. 1) = 200 mm of sample hollow fiber porous membrane was immersed in ethanol for 15 minutes, then immersed in pure water for 15 minutes, wetted, and then measured at a water temperature of 25 ° C. and a differential pressure of 100 kPa per day. The water permeation amount (m 3 / day) was divided by the membrane area (m 2 ) of the hollow fiber porous membrane (= calculated as outer diameter × π × test length L). The measured value is expressed as F (100 kPa, L = 200 mm), and the unit is represented by m / day (= m 3 / m 2 · day).

(表面張力)
デュヌイ表面張力試験器を用いてJIS−K3362に従って輪環法により、温度25℃での湿潤処理液の表面張力を測定した。
(surface tension)
The surface tension of the wet treatment liquid at a temperature of 25 ° C. was measured by a ring method according to JIS-K3362 using a Dunui surface tension tester.

(臨界表面張力)
水とエタノールの比率を変えて混合し、表面張力の異なる水溶液を用意した。エタノール濃度と表面張力の関係は化学工学便覧(丸善株式会社、改定第5版)の記載を参照した。前記透水量の測定において、エタノールによる多孔膜の湿潤に代えて、上記水溶液を使用して、純水透水量F’(m/day)(=m/m/day)を測定した。エタノール単独を用いて湿潤して測定した純水透水量Fとの比F’/Fが0.9以上となる最大の表面張力を、多孔膜の臨界表面張力と定義する。因みに、後記実施例1〜5で形成したフッ化ビニリデン系樹脂中空糸多孔膜の臨界表面張力γcは38mN/mと測定された。
(Critical surface tension)
Water and ethanol were mixed at different ratios to prepare aqueous solutions with different surface tensions. The relationship between the ethanol concentration and the surface tension was referred to the description in the Chemical Engineering Handbook (Maruzen Co., Ltd., revised fifth edition). In the measurement of the water permeability, pure water permeability F ′ (m / day) (= m 3 / m 2 / day) was measured using the above aqueous solution instead of wetting the porous membrane with ethanol. The maximum surface tension at which the ratio F ′ / F to the pure water permeation amount F measured by wetting with ethanol alone is 0.9 or more is defined as the critical surface tension of the porous membrane. Incidentally, the critical surface tension γc of the vinylidene fluoride resin hollow fiber porous membrane formed in Examples 1 to 5 described later was measured to be 38 mN / m.

(引っ張り試験)
引っ張り試験機(東洋ボールドウィン社製「RTM−100」)を使用して、温度23℃、相対湿度50%の雰囲気中で初期試料長100mm、クロスヘッド速度200mm/分の条件下で測定した。
(Tensile test)
Using a tensile tester (“RTM-100” manufactured by Toyo Baldwin Co., Ltd.), the measurement was performed under the conditions of an initial sample length of 100 mm and a crosshead speed of 200 mm / min in an atmosphere at a temperature of 23 ° C. and a relative humidity of 50%.

(実施例1)
重量平均分子量(Mw)が4.9×10のマトリクス用ポリフッ化ビニリデン(PVDF−I)(粉体)とMwが9.7×10の結晶特性改質用ポリフッ化ビニリデン(PVDF−II)(粉体)を、それぞれ75重量%および25重量%となる割合で、ヘンシェルミキサーを用いて混合して、Mwが6.1×10であるPVDF混合物を得た。
Example 1
Polyvinylidene fluoride for matrix (PVDF-I) (powder) having a weight average molecular weight (Mw) of 4.9 × 10 5 and polyvinylidene fluoride for modifying crystal properties (PVDF-II) having a Mw of 9.7 × 10 5 ) (Powder) at a ratio of 75 wt% and 25 wt%, respectively, was mixed using a Henschel mixer to obtain a PVDF mixture having an Mw of 6.1 × 10 5 .

有機液状体として、ポリエステル系可塑剤(末端をイソノニルアルコールで封止したアジピン酸と1,2−ブタンジオールのポリエステル;株式会社ジェイ・プラス製「D623N」、数平均分子量約1800、JIS K7117−2(円すい−平板型回転粘度計)による25℃での測定粘度3000mPa・s、比重1.090g/ml)と、モノメリックエステル系可塑剤であるアジピン酸ジイソノニル(株式会社ジェイ・プラス製「DINA」)とを、88重量%/12重量%の割合で、常温にて攪拌混合した可塑剤混合物を用いた。   As an organic liquid, a polyester plasticizer (polyester of adipic acid and 1,2-butanediol whose ends are sealed with isononyl alcohol; “D623N” manufactured by J Plus Co., Ltd., number average molecular weight of about 1800, JIS K7117- 2 (cone-flat-plate rotational viscometer) measured viscosity at 25 ° C. 3000 mPa · s, specific gravity 1.090 g / ml), and diisononyl adipate which is a monomeric ester plasticizer (“DINA” manufactured by J. Plus) And a plasticizer mixture obtained by stirring and mixing at a normal temperature of 88% / 12% by weight.

同方向回転噛み合い型二軸押出機(東芝機械株式会社製「TEM−26SS」、スクリュー直径26mm、L/D=60)を使用し、粉体供給部から混合物Aを供給し、バレル温度220℃で溶融混練して、続いて押出機シリンダの粉体供給部より下流に設けられた液体供給部から可塑剤を、混合物A/可塑剤=27.9重量%/72.1重量%の割合で供給して、バレル温度220℃で混練し、混合物を外径6mm、内径4mmの円形スリットを有するノズル(190℃)から中空糸状に押し出した。この際、ノズル中心部に設けた通気口から空気を中空糸の空洞部に注入して内径を調節した。   Using a co-rotating meshing twin screw extruder (“TEM-26SS” manufactured by Toshiba Machine Co., Ltd., screw diameter 26 mm, L / D = 60), the mixture A is supplied from the powder supply unit, and the barrel temperature is 220 ° C. Then, the plasticizer is mixed at a ratio of mixture A / plasticizer = 27.9 wt% / 72.1 wt% from the liquid supply section provided downstream from the powder supply section of the extruder cylinder. The mixture was fed and kneaded at a barrel temperature of 220 ° C., and the mixture was extruded into a hollow fiber shape from a nozzle (190 ° C.) having a circular slit having an outer diameter of 6 mm and an inner diameter of 4 mm. At this time, the inner diameter was adjusted by injecting air into the hollow portion of the hollow fiber from the vent provided in the center of the nozzle.

押し出された混合物を溶融状態のまま、温度45℃に維持されかつノズルから280mm離れた位置に水面を有する(すなわちエアギャップが280mmの)温度Tq=45℃の水冷却浴中に導き冷却固化させ(冷却浴中の滞留時間:約6秒)、3.8m/分の引取速度で引き取った後、これをボビンに長さ500m巻き取って、外径1.80mm、内径1.20mmの第1中間成形体を得た。   The extruded mixture is kept in a molten state, maintained at a temperature of 45 ° C., and has a water surface at a position 280 mm away from the nozzle (ie, the air gap is 280 mm) and is cooled and solidified in a water cooling bath at a temperature Tq = 45 ° C. (Retention time in the cooling bath: about 6 seconds) After taking up at a take-up speed of 3.8 m / min, this is wound around a bobbin with a length of 500 m, and the first having an outer diameter of 1.80 mm and an inner diameter of 1.20 mm. An intermediate molded body was obtained.

次に、この第1中間成形体をボビンに巻いた状態で、ジクロロメタン中に室温で30分間浸漬して可塑剤を抽出した。この際ジクロロメタンが糸に満遍なく行き渡るようにボビンを回転させながら抽出を行った。次いでジクロロメタンを新しいものに取り替えて再び同条件にて抽出する操作を繰り返し、合計3回の抽出を行った。   Next, the plasticizer was extracted by immersing the first intermediate molded body in dichloromethane at room temperature for 30 minutes. At this time, the extraction was performed while rotating the bobbin so that the dichloromethane was evenly distributed over the yarn. Next, the operation of replacing the dichloromethane with a new one and extracting again under the same conditions was repeated, and extraction was performed three times in total.

次に、ジクロロメタンを含有した第1中間成形体を実質的に乾燥させることなく(すなわち目視で第1中間成形体に白化が認められることなく)、イソプロピルアルコール(IPA)に室温で30分間浸漬して第1中間成形体に含浸したジクロロメタンをIPAに置換した。この際IPAが糸に満遍なく行き渡るようにボビンを回転させながら置換を行った。次いでIPAを新しいものに取り替えて再び同条件にて置換する操作を繰り返し、合計2回の置換を行った。   Next, the first intermediate molded body containing dichloromethane is immersed in isopropyl alcohol (IPA) at room temperature for 30 minutes without substantially drying (that is, no whitening is visually recognized in the first intermediate molded body). The dichloromethane impregnated in the first intermediate molded body was replaced with IPA. At this time, the replacement was performed while rotating the bobbin so that the IPA was evenly distributed over the yarn. Subsequently, the operation of replacing the IPA with a new one and replacing the same under the same conditions was repeated, and the replacement was performed twice in total.

次に室温で24時間風乾してIPAを除去し、続いて温度120℃のオーブン中で1時間加熱してIPAを除去するとともに熱処理を行い、第2中間成形体を得た。この際、ボビンの直径が自由に収縮するようにして、糸の収縮を拘束することなく乾燥と、熱処理を行った。   Next, it was air-dried at room temperature for 24 hours to remove IPA, followed by heating in an oven at a temperature of 120 ° C. for 1 hour to remove IPA and heat treatment to obtain a second intermediate molded body. At this time, the bobbin diameter was freely contracted, and drying and heat treatment were performed without restricting the contraction of the yarn.

次にこの第2中間成形体をボビンに巻いた状態で、界面活性剤としてポリグリセリン脂肪酸エステル(阪本薬品工業株式会社製「SYグリスター ML−310」、HLB=1
0.3)を濃度0.05重量%で純水に溶解したエマルジョン水溶液(表面張力=32.4mN/m)に常温で30分間浸漬して部分湿潤を行った。
Next, in a state where the second intermediate molded body is wound around a bobbin, a polyglycerin fatty acid ester (“SY Glyster ML-310” manufactured by Sakamoto Pharmaceutical Co., Ltd., HLB = 1) is used as a surfactant.
0.3) was dissolved in pure water at a concentration of 0.05% by weight (surface tension = 32.4 mN / m) and immersed for 30 minutes at room temperature to perform partial wetting.

更にボビンをエマルジョン水溶液に浸漬したまま、ボビンを回転しつつ第2中間成形体を引き出し、第1のロール速度を20.0m/分にして、60℃の水浴中を通過させ、第2のロール速度を35.0m/分にすることで長手方向に1.75倍に延伸した。次いで温度90℃に制御した温水浴中を通過させ第1段緩和率を8%で緩和を行い、さらに空間温度140℃に制御した乾熱槽を通過させ第2段緩和率を1.5%で緩和を行った。これを巻き取ってフッ化ビニリデン系樹脂中空糸多孔膜を得た。   Further, while the bobbin is immersed in the emulsion aqueous solution, the second intermediate molded body is pulled out while rotating the bobbin, the first roll speed is set to 20.0 m / min, and the second roll is passed through a 60 ° C. water bath. The film was stretched 1.75 times in the longitudinal direction by setting the speed to 35.0 m / min. Next, it is passed through a hot water bath controlled at a temperature of 90 ° C., the first stage relaxation rate is relaxed at 8%, and further passed through a dry heat tank controlled at a spatial temperature of 140 ° C., and the second stage relaxation rate is 1.5%. And relaxed. This was wound up to obtain a vinylidene fluoride resin hollow fiber porous membrane.

(実施例2)
溶融押出後の冷却水浴温度Tqを30℃に変更したこと;延伸倍率を1.85倍に変更したこと以外は実施例1と同様にしてフッ化ビニリデン系樹脂多孔膜を得た。
(Example 2)
A vinylidene fluoride resin porous membrane was obtained in the same manner as in Example 1 except that the cooling water bath temperature Tq after the melt extrusion was changed to 30 ° C .; and the draw ratio was changed to 1.85 times.

(実施例3)
有機液状体として、ポリエステル系可塑剤(末端を安息香酸で封止した二塩基酸とグリコールとのポリエステル;株式会社DIC製「W−83」、数平均分子量約500、JIS K7117−2(円すい−平板型回転粘度計)による25℃での測定粘度750mPa・s、比重1.155g/ml)を用いたこと;フッ化ビニリデン系樹脂/可塑剤=26.9重量%/73.1重量%の割合で供給したこと;溶融押出後の冷却水浴温度Tqを50℃に変更したこと以外は実施例1と同様にしてフッ化ビニリデン系樹脂多孔膜を得た。
(Example 3)
Polyester plasticizer (polyester of dibasic acid and glycol whose ends are sealed with benzoic acid; “W-83” manufactured by DIC Corporation, number average molecular weight of about 500, JIS K7117-2 (cone- A viscosity measured at 25 ° C. by a flat plate type viscometer (750 mPa · s, specific gravity 1.155 g / ml); vinylidene fluoride resin / plasticizer = 26.9 wt% / 73.1 wt% A vinylidene fluoride resin porous membrane was obtained in the same manner as in Example 1 except that the cooling water bath temperature Tq after melt extrusion was changed to 50 ° C.

(実施例4)
有機液状体として、モノメリックエステル可塑剤であるアルキレングリコールジベンゾエート(株式会社DIC製「PB−10」、数平均分子量約300、JIS K7117−2(円すい−平板型回転粘度計)による25℃での測定粘度81mPa・s、比重1.147g/ml)を用いたこと;フッ化ビニリデン系樹脂/可塑剤=26.9重量%/73.1重量%の割合で供給したこと;溶融押出後の冷却水浴温度Tqを60℃に変更したこと第2段緩和率を1.5%に変更したこと以外は実施例1と同様にしてフッ化ビニリデン系樹脂多孔膜を得た。
Example 4
As an organic liquid material, an alkylene glycol dibenzoate which is a monomeric ester plasticizer (“PB-10” manufactured by DIC Corporation, number average molecular weight of about 300, at 25 ° C. by JIS K7117-2 (cone-plate type rotary viscometer)). Measured viscosity of 81 mPa · s, specific gravity 1.147 g / ml); vinylidene fluoride resin / plasticizer = 26.9 wt% / 73.1 wt% supplied; after melt extrusion A vinylidene fluoride resin porous membrane was obtained in the same manner as in Example 1 except that the cooling water bath temperature Tq was changed to 60 ° C. and the second-stage relaxation rate was changed to 1.5%.

(実施例5)
本質的に特許文献4に開示される方法に従って未延伸のフッ化ビニリデン系樹脂多孔膜を得て、次いでこの未延伸糸を部分湿潤した後に延伸を行った。
(Example 5)
Essentially, an unstretched vinylidene fluoride resin porous membrane was obtained according to the method disclosed in Patent Document 4, and then the unstretched yarn was partially wetted and then stretched.

すなわち、疎水性シリカ(日本アエロジル株式会社製「アエロジルR−972」、一次粒子の平均径16ナノメートル、比表面積110m/g)14.8容量%、フタル酸ジオクチル(DOP)48.5容量%、フタル酸ジブチル(DBP)4.4容量%を、ヘンシェルミキサーで混合し、これに重量平均分子量(Mw)が2.4×10のポリフッ化ビニリデン(粉体)32.3容量%を添加し、再度ヘンシェルミキサーで混合した。 That is, hydrophobic silica ("Aerosil R-972" manufactured by Nippon Aerosil Co., Ltd., primary particle average diameter 16 nanometer, specific surface area 110 m < 2 > / g) 14.8 vol%, dioctyl phthalate (DOP) 48.5 vol% %, Dibutyl phthalate (DBP) 4.4% by volume is mixed with a Henschel mixer, and 32.3% by volume of polyvinylidene fluoride (powder) having a weight average molecular weight (Mw) of 2.4 × 10 5 is mixed therewith. Added and mixed again with a Henschel mixer.

この混合物を同方向回転噛み合い型二軸押出機(東芝機械株式会社製「TEM−26SS」、スクリュー直径26mm、L/D=60)に供給して、バレル温度240℃で混練し、混合物を外径6mm、内径4mmの円形スリットを有するノズル(温度240℃)から中空糸状に押し出した。この際、ノズル中心部に設けた通気口から空気を中空糸の空洞部に注入して内径を調節した。   This mixture was supplied to a co-rotating meshing twin screw extruder (“TEM-26SS” manufactured by Toshiba Machine Co., Ltd., screw diameter 26 mm, L / D = 60), kneaded at a barrel temperature of 240 ° C., and the mixture was removed. A hollow fiber was extruded from a nozzle (temperature 240 ° C.) having a circular slit with a diameter of 6 mm and an inner diameter of 4 mm. At this time, the inner diameter was adjusted by injecting air into the hollow portion of the hollow fiber from the vent provided in the center of the nozzle.

押し出された混合物を溶融状態のまま、温度70℃に維持されかつノズルから140mm離れた位置に水面を有する(すなわちエアギャップが140mmの)温度Tq=70℃の水冷却浴中に導き冷却固化させ(冷却浴中の滞留時間:約9秒)、2.5m/分の引取速度で引き取って、外径2.87mm、内径1.90mmの第1中間成形体を得た。   The extruded mixture is kept in a molten state, maintained at a temperature of 70 ° C., and has a water surface at a position 140 mm away from the nozzle (ie, the air gap is 140 mm). (Residence time in the cooling bath: about 9 seconds) was taken at a take-up speed of 2.5 m / min to obtain a first intermediate molded body having an outer diameter of 2.87 mm and an inner diameter of 1.90 mm.

次に、この第1中間成形体をジクロロメタン中に室温で30分間浸漬して可塑剤を抽出した。次いでジクロロメタンを新しいものに取り替えて再び同条件にて抽出する操作を繰り返し、合計4回の抽出を行った。次に温度30℃の真空乾燥機で24時間乾燥してジクロロメタンを除去した。   Next, the plasticizer was extracted by immersing the first intermediate molded body in dichloromethane at room temperature for 30 minutes. Next, the operation of replacing the dichloromethane with a new one and extracting again under the same conditions was repeated, and extraction was performed four times in total. Next, it was dried in a vacuum dryer at a temperature of 30 ° C. for 24 hours to remove dichloromethane.

次に、50%エタノール水溶液に30分間浸漬し、更に純水に30分間浸漬して、中空糸を湿潤した。更に70℃、20%水酸化ナトリウム水溶液に1時間浸漬して疎水性シリカを除去した後、水洗して水酸化ナトリウムを除去し、温度30℃の真空乾燥機で24時間乾燥して第2中間成形体を得た。なお、抽出から乾燥まで一連の操作の間、中空糸の両端は固定しないで自由に収縮するようにして行った。   Next, it was immersed in 50% ethanol aqueous solution for 30 minutes, and further immersed in pure water for 30 minutes to wet the hollow fiber. Further, after removing the hydrophobic silica by immersing in a 20% aqueous sodium hydroxide solution at 70 ° C. for 1 hour, it is washed with water to remove the sodium hydroxide, and then dried in a vacuum dryer at a temperature of 30 ° C. for 24 hours. A molded body was obtained. In addition, during a series of operations from extraction to drying, both ends of the hollow fiber were not contracted and were freely contracted.

次に、この第2中間成形体の両端部を目止めした後、界面活性剤としてポリグリセリン脂肪酸エステル(阪本薬品工業株式会社製「SYグリスター ML−310」、HLB=10.3)を濃度0.05重量%で純水に溶解したエマルジョン水溶液(表面張力=32.4mN/m)に常温で60分間浸漬して部分湿潤を行った。次いで室温雰囲気下で長手方向に1.5倍に手で延伸した後、長さを固定した状態で温度140℃の熱風オーブン中で5分間熱処理を行ってフッ化ビニリデン系樹脂中空糸多孔膜を得た。   Next, after sealing both ends of the second intermediate molded body, a polyglycerol fatty acid ester (“SY Glyster ML-310”, HLB = 10.3, manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.) is used as a surfactant. Partial wetting was performed by immersing in an aqueous emulsion (surface tension = 32.4 mN / m) dissolved in pure water at 0.05% by weight at room temperature for 60 minutes. Next, after stretching by hand 1.5 times in the longitudinal direction in a room temperature atmosphere, heat treatment was carried out for 5 minutes in a hot air oven at a temperature of 140 ° C. with the length fixed, thereby forming a vinylidene fluoride resin hollow fiber porous membrane. Obtained.

(比較例1)
延伸に先立って部分湿潤を行わなかった以外は実施例1と同様にしてフッ化ビニリデン系樹脂中空糸多孔膜を得た。
(Comparative Example 1)
A vinylidene fluoride resin hollow fiber porous membrane was obtained in the same manner as in Example 1 except that partial wetting was not performed prior to stretching.

(比較例2)
延伸に先立って部分湿潤を行わなかった以外は実施例2と同様にしてフッ化ビニリデン系樹脂中空糸多孔膜を得た。
(Comparative Example 2)
A vinylidene fluoride resin hollow fiber porous membrane was obtained in the same manner as in Example 2 except that partial wetting was not performed prior to stretching.

(比較例3)
部分湿潤液としてアルキルエーテル硫酸エステルナトリウムを濃度0.05重量%で純水に溶解した水溶液(表面張力=28.9mN/m)を用いた以外は実施例2と同様にしてフッ化ビニリデン系樹脂中空糸多孔膜を得た。
(Comparative Example 3)
Vinylidene fluoride resin in the same manner as in Example 2 except that an aqueous solution (surface tension = 28.9 mN / m) of sodium alkyl ether sulfate dissolved in pure water at a concentration of 0.05% by weight was used as the partial wetting liquid. A hollow fiber porous membrane was obtained.

(比較例4)
延伸に先立って部分湿潤を行わなかった以外は実施例3と同様にしてフッ化ビニリデン系樹脂中空糸多孔膜を得た。
(Comparative Example 4)
A vinylidene fluoride resin hollow fiber porous membrane was obtained in the same manner as in Example 3 except that partial wetting was not performed prior to stretching.

(比較例5)
延伸に先立って部分湿潤を行わなかった以外は実施例4と同様にしてフッ化ビニリデン系樹脂中空糸多孔膜を得た。
(Comparative Example 5)
A vinylidene fluoride resin hollow fiber porous membrane was obtained in the same manner as in Example 4 except that partial wetting was not performed prior to stretching.

(比較例6)
延伸に先立って部分湿潤を行わなかった以外は実施例5と同様にしてフッ化ビニリデン系樹脂中空糸多孔膜を得た。
(Comparative Example 6)
A vinylidene fluoride resin hollow fiber porous membrane was obtained in the same manner as in Example 5 except that partial wetting was not performed prior to stretching.

上記実施例および比較例の製造条件の概容および得られたポリフッ化ビニリデン系中空糸多孔膜の物性を、まとめて下記表1〜2に記す。   The outline of the production conditions of the above Examples and Comparative Examples and the physical properties of the obtained polyvinylidene fluoride hollow fiber porous membrane are summarized in Tables 1 and 2 below.

Figure 2011012242
Figure 2011012242

Figure 2011012242
Figure 2011012242

上記表1〜2に示す実施例および比較例の結果を対比すれば理解されるように、本発明の方法によれば、一旦形成された樹脂多孔膜について、表層近傍を選択的に部分湿潤してから延伸することにより、延伸中での表層近傍での空孔率の低下を防止し、結果的に分離性能を支配する表層近傍の緻密層の空孔率A1を高く且つ膜全体としての透液性を高く維持した樹脂多孔膜が得られる。特に、この結果は、分離性能を支配する小孔径側表面孔径P1が1μm程度と比較的大きい場合(実施例5、比較例6)に比べて、小孔径側表面孔径P1が0.2μm以下と小さい場合(実施例1〜4、比較例1〜5)において、特に顕著に認められる。   As will be understood by comparing the results of Examples and Comparative Examples shown in Tables 1 and 2 above, according to the method of the present invention, the surface of the porous resin membrane once formed is selectively partially wetted. By stretching the film, the porosity in the vicinity of the surface layer during stretching is prevented, and as a result, the porosity A1 of the dense layer in the vicinity of the surface layer that controls the separation performance is increased and the permeability of the entire membrane is increased. A porous resin membrane having high liquidity can be obtained. In particular, this result shows that the small-pore-diameter side surface pore diameter P1 is 0.2 μm or less compared to the case where the small-pore-diameter-side surface pore diameter P1 that governs the separation performance is relatively large as about 1 μm (Example 5, Comparative Example 6). In the case where it is small (Examples 1 to 4, Comparative Examples 1 to 5), this is particularly noticeable.

Claims (14)

樹脂多孔膜を、その外表面から5μm以上、且つ膜厚さの1/2以下の深さまで選択的に湿潤液により湿潤させた状態で延伸することを特徴とする、延伸樹脂多孔膜の製造方法。   A method for producing a stretched resin porous membrane, comprising stretching a resin porous membrane in a state of being selectively wetted with a wetting liquid to a depth of 5 μm or more and 1/2 or less of the film thickness from the outer surface thereof . 外表面から7μm以上、且つ膜厚さの1/2以下の深さまで選択的に湿潤させた状態で延伸する、請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein stretching is performed in a state of being selectively wetted from the outer surface to a depth of 7 μm or more and ½ or less of the film thickness. 空孔率が50%以上である樹脂多孔膜を延伸する、請求項1または2に記載の製造方法。   The manufacturing method of Claim 1 or 2 which extends | stretches the resin porous membrane whose porosity is 50% or more. 樹脂多孔膜が、その主たる二表面の孔径が異なる非対称構造膜であって、孔径が小さい側の表面のみを湿潤させる、請求項1〜3のいずれかに記載の製造方法。   The production method according to any one of claims 1 to 3, wherein the resin porous membrane is an asymmetric structure membrane having different pore diameters on two main surfaces, and wets only the surface having the smaller pore diameter. 延伸倍率が1.5倍以上である、請求項1〜4のいずれかに記載の製造方法。   The manufacturing method in any one of Claims 1-4 whose draw ratio is 1.5 times or more. 樹脂多孔膜が疎水性樹脂からなる、請求項1〜5のいずれかに記載の製造方法。 The manufacturing method in any one of Claims 1-5 in which a resin porous film consists of hydrophobic resin. 樹脂多孔膜がフッ化ビニリデン系樹脂からなる、請求項1〜5のいずれかに記載の製造方法。 The manufacturing method in any one of Claims 1-5 in which a resin porous film consists of vinylidene fluoride resin. 湿潤液が水溶液である、請求項6または7に記載の製造方法。 The production method according to claim 6 or 7, wherein the wetting liquid is an aqueous solution. 湿潤液が界面活性剤水溶液である、請求項8に記載の製造方法。 The manufacturing method of Claim 8 whose wetting liquid is surfactant aqueous solution. 湿潤液がポリグリセリン脂肪酸エステルの水溶液である、請求項8に記載の製造方法。 The manufacturing method of Claim 8 whose wetting liquid is the aqueous solution of polyglyceryl fatty acid ester. 延伸後の樹脂多孔膜の孔径が小さい側の表面孔径が0.5μm以下である請求項1〜0のいずれかに記載の製造方法。   The manufacturing method according to any one of claims 1 to 0, wherein the pore diameter of the resin porous membrane after stretching has a surface pore diameter of 0.5 µm or less. 延伸後の樹脂多孔膜のハーフドライ法平均孔径が0.5μm以下である請求項1〜11のいずれかに記載の製造方法。   The method according to any one of claims 1 to 11, wherein the stretched resin porous membrane has a half-dry method average pore size of 0.5 µm or less. 延伸温度が25〜90℃である、請求項1〜12のいずれかに記載の製造方法。   The manufacturing method in any one of Claims 1-12 whose extending | stretching temperature is 25-90 degreeC. 延伸後に樹脂多孔膜を湿潤させない液体または気体中での緩和工程を含む請求項1〜13のいずれかに記載の製造方法。   The manufacturing method in any one of Claims 1-13 including the relaxation process in the liquid or gas which does not wet the resin porous membrane after extending | stretching.
JP2009237025A 2009-06-01 2009-10-14 Method for producing stretched resin porous membrane Expired - Fee Related JP5620665B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009237025A JP5620665B2 (en) 2009-06-01 2009-10-14 Method for producing stretched resin porous membrane
US13/393,628 US20120160764A1 (en) 2009-09-04 2010-09-06 Porous vinylidene fluoride resin membrane and process for producing same
PCT/JP2010/065205 WO2011027878A1 (en) 2009-09-04 2010-09-06 Porous vinylidene fluoride resin membrane and process for producing same
CN201080039112.8A CN102548647B (en) 2009-09-04 2010-09-06 Porous vinylidene fluoride resin membrane and process for producing same
KR1020127005700A KR101372056B1 (en) 2009-09-04 2010-09-06 Porous vinylidene fluoride resin membrane and process for producing same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009132273 2009-06-01
JP2009132273 2009-06-01
JP2009237025A JP5620665B2 (en) 2009-06-01 2009-10-14 Method for producing stretched resin porous membrane

Publications (2)

Publication Number Publication Date
JP2011012242A true JP2011012242A (en) 2011-01-20
JP5620665B2 JP5620665B2 (en) 2014-11-05

Family

ID=43591445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009237025A Expired - Fee Related JP5620665B2 (en) 2009-06-01 2009-10-14 Method for producing stretched resin porous membrane

Country Status (1)

Country Link
JP (1) JP5620665B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101364845B1 (en) * 2012-04-30 2014-02-20 웅진케미칼 주식회사 Manufacturing method of PVDF hollow fiber membrane
JP2017059769A (en) * 2015-09-18 2017-03-23 ニッポン高度紙工業株式会社 Separator for aluminum electrolytic capacitor, and aluminum electrolytic capacitor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01186752A (en) * 1988-01-18 1989-07-26 Toray Ind Inc Hydrophilic polyolefin microporous membrane and cell separator
JPH0594812A (en) * 1991-10-03 1993-04-16 Tonen Corp Polyolefine microporous membrane and its manufacture, and separator using such membrane
JPH0668864A (en) * 1984-05-31 1994-03-11 Mitsubishi Kasei Corp Separator for battery
JP2004331944A (en) * 2002-12-06 2004-11-25 Mitsui Chemicals Inc Porous film and its production method
WO2010090183A1 (en) * 2009-02-05 2010-08-12 株式会社クレハ Vinylidene fluoride resin porous film and manufacturing method therefor
JP2010215704A (en) * 2009-03-13 2010-09-30 Toyota Motor Corp Method for manufacturing porous membrane, and electrolyte membrane for fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668864A (en) * 1984-05-31 1994-03-11 Mitsubishi Kasei Corp Separator for battery
JPH01186752A (en) * 1988-01-18 1989-07-26 Toray Ind Inc Hydrophilic polyolefin microporous membrane and cell separator
JPH0594812A (en) * 1991-10-03 1993-04-16 Tonen Corp Polyolefine microporous membrane and its manufacture, and separator using such membrane
JP2004331944A (en) * 2002-12-06 2004-11-25 Mitsui Chemicals Inc Porous film and its production method
WO2010090183A1 (en) * 2009-02-05 2010-08-12 株式会社クレハ Vinylidene fluoride resin porous film and manufacturing method therefor
JP2010215704A (en) * 2009-03-13 2010-09-30 Toyota Motor Corp Method for manufacturing porous membrane, and electrolyte membrane for fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101364845B1 (en) * 2012-04-30 2014-02-20 웅진케미칼 주식회사 Manufacturing method of PVDF hollow fiber membrane
JP2017059769A (en) * 2015-09-18 2017-03-23 ニッポン高度紙工業株式会社 Separator for aluminum electrolytic capacitor, and aluminum electrolytic capacitor

Also Published As

Publication number Publication date
JP5620665B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5552289B2 (en) Method for producing vinylidene fluoride resin porous membrane
JP5603781B2 (en) Vinylidene fluoride resin porous membrane and method for producing the same
JP5068168B2 (en) Vinylidene fluoride resin hollow fiber porous membrane
US9283525B2 (en) Porous polymer film and production method for porous polymer film
WO2005123234A1 (en) Hollow-fiber porous water filtration membrane of vinylidene fluoride resin and process for producing the same
WO2004081109A1 (en) Porous membrane of vinylidene fluoride resin and process for producing the same
WO2005099879A1 (en) Porous water filtration membrane of vinylidene fluoride resin hollow fiber and process for production thereof
JP4835221B2 (en) Hollow fiber membrane and method for producing the same
JPWO2008117740A1 (en) Vinylidene fluoride resin hollow fiber porous membrane and method for producing the same
JP2009226338A (en) Vinylidene fluoride type resin hollow filament porous membrane and method for manufacruring the same
CN110548411A (en) Preparation method of asymmetric polyolefin film
WO2010082437A1 (en) Vinylidene fluoride resin hollow fiber porous membrane and process for producing same
JP2007313491A (en) Low stain resistance vinylidene fluoride family resin porosity water treatment membrane and its manufacturing method
JPWO2007032331A1 (en) Vinylidene fluoride resin hollow fiber porous membrane and method for producing the same
JP4781691B2 (en) Porous membrane and method for producing the same
WO2007123004A1 (en) Porous hollow-fiber membrane of vinylidene fluoride resin and process for producing the same
JP5620665B2 (en) Method for producing stretched resin porous membrane
WO2011027878A1 (en) Porous vinylidene fluoride resin membrane and process for producing same
JP4832739B2 (en) Method for producing vinylidene fluoride resin porous membrane
KR20160079354A (en) Composition of PVDF porous hollow fiber membrane improved with hydrophilicity and PVDF porous hollow fiber membrane having asymmetry sandwich structure using the same
JPH11106533A (en) Polyolefin porous membrane
KR20160079325A (en) Composition of PVDF porous hollow fiber membrane and PVDF porous hollow fiber membrane having asymmetry sandwich structure using the same
JP2022059805A (en) Hollow fiber membrane and production method of hollow fiber membrane

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140919

R150 Certificate of patent or registration of utility model

Ref document number: 5620665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees