JP2011011938A - Heat insulating material - Google Patents

Heat insulating material Download PDF

Info

Publication number
JP2011011938A
JP2011011938A JP2009156938A JP2009156938A JP2011011938A JP 2011011938 A JP2011011938 A JP 2011011938A JP 2009156938 A JP2009156938 A JP 2009156938A JP 2009156938 A JP2009156938 A JP 2009156938A JP 2011011938 A JP2011011938 A JP 2011011938A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
mass
parts
expanded polystyrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009156938A
Other languages
Japanese (ja)
Other versions
JP5513789B2 (en
Inventor
Maria Oshima
まりあ 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kikusui Kagaku Kogyo KK
Original Assignee
Kikusui Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kikusui Kagaku Kogyo KK filed Critical Kikusui Kagaku Kogyo KK
Priority to JP2009156938A priority Critical patent/JP5513789B2/en
Publication of JP2011011938A publication Critical patent/JP2011011938A/en
Application granted granted Critical
Publication of JP5513789B2 publication Critical patent/JP5513789B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Building Environments (AREA)
  • Thermal Insulation (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat insulating material which contains an inorganic binder and foamed polystyrene, is lightweight, and has high bending strength.SOLUTION: The heat insulating material contains an inorganic binder, foamed polystyrene, and a surfactant, wherein the surfactant is a styrene derivative of polyoxyethylene. By using the styrene derivative of polyoxyethylene as the surfactant, the adhesiveness between the inorganic binder and the foamed polystyrene is enhanced, and the bending strength of the heat insulating material is improved. It is preferable to use granular foamed polystyrene having an average particle diameter of 0.5-15 mm as the foamed polystyrene.

Description

本発明は、無機結合材と発泡ポリスチレンとを含有する断熱材に関する。   The present invention relates to a heat insulating material containing an inorganic binder and expanded polystyrene.

本明細書においては、「セメントスラリー」とは、セメントと水とを混練したものに限らず、セメント以外の無機結合材と水とを混練して得られるスラリーも、セメントスラリーに含むこととする。また、断熱材の原材料及び水を混練した混合物においては、原材料のうち充填材を除く成分は、セメントスラリーの一部として扱う。 In the present specification, the “cement slurry” is not limited to a mixture obtained by kneading cement and water, and a slurry obtained by kneading an inorganic binder other than cement and water is also included in the cement slurry. . Moreover, in the mixture which knead | mixed the raw material of a heat insulating material and water, the component except a filler among raw materials is handled as a part of cement slurry.

また、本明細書においては、断熱材、発泡ポリスチレン、中空樹脂粒子の「比重」とは、「嵩比重」をさす。   In the present specification, the “specific gravity” of the heat insulating material, expanded polystyrene, and hollow resin particles refers to “bulk specific gravity”.

従来、発泡ポリスチレン及びセメント等の無機結合材を含有する断熱材として、特許文献1や特許文献2が開示されている。   Conventionally, patent documents 1 and patent documents 2 are indicated as a heat insulating material containing inorganic binders, such as expanded polystyrene and cement.

特許文献1には、無機水硬材、樹脂粒子体、有機高分子体、水より得られる水硬性硬化体が開示されており、該水硬性硬化体が断熱性を有することが記載されている。また、樹脂粒子として発泡ポリスチレンを用いることが記載されている。   Patent Document 1 discloses an inorganic cured material, a resin particle body, an organic polymer body, a hydraulic cured body obtained from water, and describes that the hydraulic cured body has a heat insulating property. . Further, it is described that expanded polystyrene is used as the resin particles.

また、特許文献2には、(i)セメント、(ii)シラスバルーン、及び(iii)発泡ウレタン又は発泡ポリスチレンからなる混合物を、(iv)連続繊維、布帛または連続繊維強化樹脂材とともに硬化させてなる断熱材が開示されている。   Further, in Patent Document 2, a mixture of (i) cement, (ii) shirasu balloon, and (iii) foamed urethane or polystyrene is cured together with (iv) continuous fiber, fabric or continuous fiber reinforced resin material. An insulating material is disclosed.

しかし、これらの断熱材は、無機結合材と発泡ポリスチレンとを含む断熱材の原材料を水と混練する際に、セメントスラリーと発泡ポリスチレンとの界面における親和性が十分でないために、無機結合材と発泡ポリスチレンとの密着性が十分でなく、曲げ強度に優れた断熱材を成形又は成型することが困難であった。また、断熱材の結合材中に、断熱性の向上に有効な気泡を形成する技術は検討されていなかった。   However, since these heat insulating materials have insufficient affinity at the interface between the cement slurry and the expanded polystyrene when kneading the heat insulating material containing the inorganic binding material and the expanded polystyrene with water, Adhesiveness with expanded polystyrene is not sufficient, and it has been difficult to mold or mold a heat insulating material excellent in bending strength. In addition, a technique for forming bubbles that are effective in improving heat insulation in the binder of heat insulating material has not been studied.

特開2000−16882号公報JP 2000-16882 A 特開2005−281051号公報Japanese Patent Laid-Open No. 2005-281051

本発明は、無機結合材と発泡ポリスチレンとを含有し、軽量で、曲げ強度に優れる断熱材を提供することを目的とする。   An object of this invention is to provide the heat insulating material which contains an inorganic binder and a polystyrene foam, is lightweight, and is excellent in bending strength.

本発明者らは、無機結合材と発泡ポリスチレンとを含有する断熱材を製造するにあたり、界面活性剤としてポリオキシエチレンのスチレン誘導体を用いることにより、より断熱性に優れた断熱材を得ることができることを見出し、本発明に完成するに至った。   In producing a heat insulating material containing an inorganic binder and expanded polystyrene, the present inventors can obtain a heat insulating material with better heat insulating properties by using a styrene derivative of polyoxyethylene as a surfactant. The inventors have found that this can be done and have completed the present invention.

本発明の断熱材は、無機結合材と、発泡ポリスチレンと、界面活性剤とを含有し、前記界面活性剤がポリオキシエチレンのスチレン誘導体であることを特徴としている。   The heat insulating material of the present invention contains an inorganic binder, expanded polystyrene, and a surfactant, and the surfactant is a styrene derivative of polyoxyethylene.

また、前記発泡ポリスチレンは、平均粒子径0.5〜15mmの粒子状物であることが好ましい。   Moreover, it is preferable that the said polystyrene foam is a particulate matter with an average particle diameter of 0.5-15 mm.

また、前記断熱材は、上記した成分以外に、平均粒子径10〜200μmの中空樹脂粒子を含有することが好ましい。
Moreover, it is preferable that the said heat insulating material contains the hollow resin particle of an average particle diameter of 10-200 micrometers besides the above-mentioned component.

上記手段によれば、無機結合材と発泡ポリスチレンとを含有し、軽量で、曲げ強度に優れる断熱材を提供することができる。   According to the said means, the heat insulating material which contains an inorganic binder and a polystyrene foam, is lightweight, and is excellent in bending strength can be provided.

本発明の断熱材は、無機結合材と発泡ポリスチレンと界面活性剤とを含有する断熱材であって、界面活性剤としてポリオキシエチレンのスチレン誘導体を利用したものである。   The heat insulating material of the present invention is a heat insulating material containing an inorganic binder, expanded polystyrene, and a surfactant, and uses a styrene derivative of polyoxyethylene as a surfactant.

この断熱材は、充填材として、断熱性に優れる発泡ポリスチレンを含有すると共に、断熱材内部の無機結合材が硬化した部分、即ちセメントスラリーが硬化した部分に微小な気泡を含有させて比重を小さくしたことによって、断熱性に優れる。また、セメントスラリーが硬化した部分と発泡ポリスチレンとの密着がよいことによって、曲げ強度に優れる。
また、この断熱材は、前記の微小な気泡を含有させることで比重を小さくできることによって、火災の際に燃焼する発泡ポリスチレン等の含有量を抑えることができ、不燃性に優れた断熱材を得ることができる。
This heat insulating material contains, as a filler, expanded polystyrene having excellent heat insulating properties, and the specific gravity is reduced by containing minute bubbles in the portion where the inorganic binder inside the heat insulating material is hardened, that is, the portion where the cement slurry is hardened. By doing so, it is excellent in heat insulation. Moreover, it is excellent in bending strength by the close_contact | adherence with the part which the cement slurry hardened | cured, and expanded polystyrene.
Moreover, this heat insulating material can suppress content, such as a polystyrene foam which burns in the case of a fire, by making specific gravity small by containing the said micro bubble, and obtains the heat insulating material excellent in nonflammability. be able to.

前記気泡の大きさは、平均直径が0.02 〜2.0mmの範囲にあることが好ましく、0.5〜1.0mmの範囲にあることがより好ましく、0.1〜0.8mmの範囲にあることが特に好ましい。気泡の平均直径がこの範囲にあることによって、より断熱性に優れ、十分な曲げ強度や圧縮強度を有する断熱材を得ることができる。前記平均直径が小さすぎると、十分な断熱性が得られない場合がある。逆に、前記平均直径が大きすぎると、断熱材の曲げ強度や圧縮強度が不足し、断熱材が脆くなってしまう場合がある。   As for the size of the bubbles, the average diameter is preferably in the range of 0.02 to 2.0 mm, more preferably in the range of 0.5 to 1.0 mm, and in the range of 0.1 to 0.8 mm. It is particularly preferable that When the average diameter of the bubbles is in this range, it is possible to obtain a heat insulating material that is more excellent in heat insulating properties and has sufficient bending strength and compressive strength. If the average diameter is too small, sufficient heat insulation may not be obtained. On the contrary, if the average diameter is too large, the heat insulating material may be insufficient in bending strength or compressive strength, and the heat insulating material may become brittle.

また、前記断熱材の比重は、0.1〜1.0であることが好ましく、0.15〜0.7であることがより好ましく、0.2〜0.4であることが特に好ましい。比重がこの範囲にあることによって、より断熱性に優れ、十分な曲げ強度や圧縮強度を有する断熱材を得ることができる。前記比重が小さすぎると、断熱材の曲げ強度や圧縮強度が不足し、断熱材が脆くなってしまう場合がある。逆に、前記比重が大きすぎると、十分な断熱性が得られない場合がある。   Moreover, it is preferable that the specific gravity of the said heat insulating material is 0.1-1.0, It is more preferable that it is 0.15-0.7, It is especially preferable that it is 0.2-0.4. When the specific gravity is within this range, it is possible to obtain a heat insulating material that is more excellent in heat insulating properties and has sufficient bending strength and compressive strength. When the specific gravity is too small, the bending strength and compressive strength of the heat insulating material may be insufficient, and the heat insulating material may become brittle. On the other hand, if the specific gravity is too large, sufficient heat insulation may not be obtained.

前記断熱材の製造方法は特に限定はされないが、例えば、無機結合材、水、ポリオキシエチレンのスチレン誘導体等を含むセメントスラリー中に、発泡ポリスチレン等の充填材を混入して分散させた混合物を、硬化させて任意の形状に成形又は成型することによって製造することができる。混合物を任意の形状に成形又は成型する方法としては、例えば、混合物を型に流し込んで硬化させる方法や、混合物を硬化させたものを任意の形状に切断する方法などがある。   The method for producing the heat insulating material is not particularly limited. For example, a mixture in which a filler such as expanded polystyrene is mixed and dispersed in a cement slurry containing an inorganic binder, water, a styrene derivative of polyoxyethylene, and the like. , And can be produced by molding or molding into an arbitrary shape. Examples of a method for molding or molding the mixture into an arbitrary shape include a method in which the mixture is poured into a mold and cured, and a method in which the cured mixture is cut into an arbitrary shape.

また、前記混合物を硬化させる方法は特に限定されない。例えば、常温環境下で養生して硬化させてもよく、高温養生、蒸気養生等によって硬化させてもよい。   Moreover, the method of hardening the said mixture is not specifically limited. For example, it may be cured by curing in a room temperature environment, or may be cured by high temperature curing, steam curing, or the like.

次に、前記断熱材が含有する成分について以下に述べる。   Next, the components contained in the heat insulating material will be described below.

前記無機結合材としては、水と水和反応をして硬化する水硬性物質、及び水分が抜けて乾燥することによって硬化した後に空気中の二酸化炭素と反応して硬化する気硬性物質等を使用することができる。
水硬性物質としては、例えば、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、耐硫酸塩ポルトランドセメント、高炉セメント、フライアッシュセメント、白色ポルトランドセメント、超微粒子セメント、高ビーライト系セメント、超速硬セメント、アルミナセメント、エコセメント等の各種セメントが挙げられる。また、アルカリ性雰囲気で水硬性を呈するものや、アルカリ性物質と反応して水和物を生成する潜在水硬性物質である、高炉水砕スラグ、フライアッシュ、シリカフューム、珪藻土、シリカダスト、及び籾殻灰等を使用することもできる。
また、気硬性物質としては、石膏、消石灰、ドロマイトプラスター、マグネシアセメント等が挙げられる。
これらの無機結合材は1種類を単独で用いてもよく、2種類以上を混合して用いてもよい。
As the inorganic binder, use is made of a hydraulic substance that cures by hydration reaction with water, and a pneumatic substance that cures by reacting with carbon dioxide in the air after curing by drying out moisture. can do.
Examples of hydraulic materials include ordinary Portland cement, early strength Portland cement, super early strength Portland cement, medium heat Portland cement, low heat Portland cement, sulfate resistant Portland cement, blast furnace cement, fly ash cement, white Portland cement, Various types of cement such as fine particle cement, high belite cement, super-hard cement, alumina cement, and eco-cement can be used. Also, those that exhibit hydraulic properties in an alkaline atmosphere, and latent hydraulic materials that react with alkaline substances to produce hydrates, such as blast furnace granulated slag, fly ash, silica fume, diatomaceous earth, silica dust, and rice husk ash, etc. Can also be used.
Examples of the air-hard substance include gypsum, slaked lime, dolomite plaster, and magnesia cement.
These inorganic binders may be used alone or in combination of two or more.

なお、本発明の断熱材においては、無機結合材がセメント、若しくはセメントを含む混合物であることが好ましい。無機結合材として無機結合材がセメント若しくはセメントを含む混合物を用いることで、断熱材中に微小な気泡を形成しやすくなる。   In the heat insulating material of the present invention, the inorganic binder is preferably cement or a mixture containing cement. By using cement or a mixture containing cement as the inorganic binder, it becomes easy to form minute bubbles in the heat insulating material.

前記発泡ポリスチレンは、発泡させたポリスチレンであれば、発泡手段、成形方法等は特に限定されない。例えば、ビーズ法発泡ポリスチレン(EPS) 、押出発泡ポリスチレン(XPS)等を用いることができる。これらは所定の粒子径にするために、成型体を破砕して用いても良いし、成型前の予備発泡ビーズを用いても良い。また、発泡倍率5倍以下の低発泡のものや発泡倍率10〜70倍の高発泡のものを用いることができる。   The foaming polystyrene and the molding method are not particularly limited as long as the expanded polystyrene is expanded polystyrene. For example, bead method expanded polystyrene (EPS), extruded expanded polystyrene (XPS), etc. can be used. In order to obtain a predetermined particle diameter, these may be used by crushing the molded body, or pre-expanded beads before molding may be used. Moreover, the thing of the low foaming of foaming magnification 5 times or less and the high foaming thing of the foaming magnification 10-70 times can be used.

なお、前記断熱材には、高発泡の発泡ポリスチレンを用いることが好ましい。高発泡の発泡ポリスチレンは断熱性に特に優れており、高発泡のものを利用することで、断熱材の断熱性を向上させることができる。そして、高発泡の発泡ポリスチレンのなかでも、比重0.015〜0.1のものを用いることが好ましく、比重0.02〜0.08のものを用いることが特に好ましく、比重0.025〜0.05のものを用いることが特に好ましい。比重が小さすぎるものを用いると、発泡ポリスチレンが脆くなり、それによって断熱材の曲げ強度や圧縮強度が不足して断熱材が脆くなってしまう場合がある。逆に比重が大きすぎると発泡ポリスチレンの断熱性が十分ではない。   In addition, it is preferable to use highly expanded foamed polystyrene for the heat insulating material. Highly foamed polystyrene is particularly excellent in heat insulating properties, and the heat insulating properties of the heat insulating material can be improved by using highly foamed ones. Of the highly expanded polystyrene, those having a specific gravity of 0.015 to 0.1 are preferably used, those having a specific gravity of 0.02 to 0.08 are particularly preferable, and specific gravity of 0.025 to 0 is preferred. .05 is particularly preferred. If the specific gravity is too small, the expanded polystyrene becomes brittle, which may cause the heat insulating material to become brittle due to insufficient bending strength or compressive strength of the heat insulating material. On the other hand, if the specific gravity is too large, the heat insulating property of the expanded polystyrene is not sufficient.

発泡ポリスチレンは、粒子状のものであることが好ましく、その平均粒子径が0.5〜15mmの範囲にあることが好ましく、1〜10mmの範囲にあることがより好ましく、2〜8mmの範囲にあることが特に好ましい。平均粒子径が小さすぎると、発泡ポリスチレン粒子がセメントスラリーから受ける圧力で収縮することによって、断熱材の断熱性を効率よく十分に向上させることができない場合がある。また、平均粒子径が小さすぎると、発泡ポリスチレン粒子の比表面積が大きくなり、セメントスラリーが発泡ポリスチレン粒子表層の気泡内に侵入することによる気泡の消失が大きくなることによって、断熱材の断熱性を効率よく十分に向上させることができない場合がある。逆に、平均粒子径が大きすぎると、セメントスラリー中での浮力が大きすぎるために、セメントスラリー中に発泡ポリスチレン等を混入して分散させた混合物をつくった場合に、発泡ポリスチレンが浮き上がり易く、セメントスラリー中に発泡ポリスチレンを均等に分散させることが困難になる。発泡ポリスチレンを均等に分散さされないと、断熱材の曲げ強度や圧縮強度のばらつきが大きくなってしまう。また発泡ポリスチレンの比表面積が小さくなることで、発泡ポリスチレンと無機結合材の密着が低下し、十分な曲げ強度が得られない場合がある。   The expanded polystyrene is preferably in the form of particles, the average particle diameter is preferably in the range of 0.5 to 15 mm, more preferably in the range of 1 to 10 mm, and in the range of 2 to 8 mm. It is particularly preferred. If the average particle diameter is too small, the heat-insulating properties of the heat insulating material may not be efficiently and sufficiently improved due to shrinkage of the expanded polystyrene particles by the pressure received from the cement slurry. If the average particle size is too small, the specific surface area of the expanded polystyrene particles increases, and the disappearance of bubbles due to the cement slurry entering the bubbles on the surface of the expanded polystyrene particles increases. In some cases, it cannot be improved sufficiently efficiently. On the other hand, if the average particle size is too large, the buoyancy in the cement slurry is too large, so when making a mixture in which the foamed polystyrene or the like is mixed and dispersed in the cement slurry, the expanded polystyrene tends to float, It becomes difficult to uniformly disperse the expanded polystyrene in the cement slurry. If the expanded polystyrene is not evenly dispersed, the bending strength and compressive strength of the heat insulating material will vary greatly. In addition, since the specific surface area of the expanded polystyrene is reduced, the adhesion between the expanded polystyrene and the inorganic binder is reduced, and sufficient bending strength may not be obtained.

また、前記断熱材にはビーズ法発泡ポリスチレン(EPS)を用いることが好ましい。ビーズ法発泡で成形することで、発泡ポリスチレンの大きさや形状にばらつきが少ない発泡ポリスチレン粒子を得ることができる。また、ビーズ法発泡ポリスチレンは、ビーズを発泡させて略球形の粒子を容易に得ることができ、粒子が略球形であることによって、発泡ポリスチレンを断熱材中に細密に充填させやすくなる。更に、発泡ポリスチレン粒子が略球形であることによって、断熱材の製造時に、セメントスラリー中に発泡ポリスチレン粒子を混入させやすくなり、発泡ポリスチレン粒子をセメントスラリー中に容易に分散させることができる。また、発泡ポリスチレン粒子が略球形であれば、セメントスラリーに発泡ポリスチレン粒子等を分散させた混合物の流動性がよくなるため、断熱材の製造時において、前記混合物を型に流し込む工程等が容易に行える。   Moreover, it is preferable to use bead method expanded polystyrene (EPS) for the heat insulating material. By forming by foaming with the bead method, expanded polystyrene particles with little variation in the size and shape of the expanded polystyrene can be obtained. In addition, the beaded polystyrene can easily obtain substantially spherical particles by foaming the beads. When the particles are substantially spherical, it becomes easy to finely fill the expanded polystyrene into the heat insulating material. Further, since the expanded polystyrene particles are substantially spherical, the expanded polystyrene particles can be easily mixed into the cement slurry during the production of the heat insulating material, and the expanded polystyrene particles can be easily dispersed in the cement slurry. In addition, if the expanded polystyrene particles are substantially spherical, the fluidity of the mixture in which the expanded polystyrene particles are dispersed in the cement slurry is improved, so that the process of pouring the mixture into a mold can be easily performed at the time of manufacturing the heat insulating material. .

ただし、前記断熱材の曲げ強度が要求される場合には、一旦成型した発泡ポリスチレンをカッター等で破砕して得た発泡ポリスチレン粒子を使用することが好ましい。破砕して得た発泡ポリスチレン粒子を使用することにより、発泡ポリスチレン粒子の形状がランダムになって絡み合わせることができるため、断熱材の曲げ強度に優れる。   However, when the bending strength of the heat insulating material is required, it is preferable to use expanded polystyrene particles obtained by crushing once molded expanded polystyrene with a cutter or the like. By using the expanded polystyrene particles obtained by crushing, the shape of the expanded polystyrene particles can be entangled with each other at random, and therefore the bending strength of the heat insulating material is excellent.

なお、前記断熱材における発泡ポリスチレンの含有量は、無機結合材100質量部に対して、1〜30質量部であることが好ましく、2〜20質量部であることがより好ましく、3〜15質量部であることが特に好ましい。含有量がこの範囲にあれば、断熱性に優れ、十分な強度を持った断熱材を得ることができる。発泡ポリスチレンの含有量が少なすぎると断熱材が十分な断熱性を得られない場合がある。逆に、発泡ポリスチレンの含有量が多すぎると、断熱材の曲げ強度や圧縮強度が不足して断熱材が脆くなってしまう場合がある。   In addition, it is preferable that it is 1-30 mass parts with respect to 100 mass parts of inorganic binders, and, as for content of the expanded polystyrene in the said heat insulating material, it is more preferable that it is 2-20 mass parts, and 3-15 masses. Part is particularly preferred. When the content is in this range, a heat insulating material having excellent heat insulation and sufficient strength can be obtained. If the content of the expanded polystyrene is too small, the heat insulating material may not obtain sufficient heat insulating properties. Conversely, if the content of expanded polystyrene is too large, the heat insulating material may become brittle due to insufficient bending strength or compressive strength of the heat insulating material.

前記ポリオキシエチレンのスチレン誘導体とは、発泡ポリスチレンをセメントスラリー中に分散させ、且つセメントスラリー中に微小な気泡を形成させるために用いる界面活性剤であって、ポリオキシエチレンモノスチレン化フェニルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレントリスチレン化フェニルエーテル、ポリオキシエチレンモノスチレン化メチルフェニルエーテル、ポリオキシエチレンジスチレン化メチルフェニルエーテル等のポリオキシエチレンスチレン化フェニルエーテル類などが挙げられる。これらは、1種類を単独で用いてもよく又は2種類以上を併用してもよい。   The styrene derivative of polyoxyethylene is a surfactant used to disperse expanded polystyrene in a cement slurry and form fine bubbles in the cement slurry, polyoxyethylene monostyrenated phenyl ether, Polyoxyethylene distyrenated phenyl ether, polyoxyethylene tristyrenated phenyl ether, polyoxyethylene monostyrenated methyl phenyl ether, polyoxyethylene distyrenated methyl phenyl ether, and other polyoxyethylene styrenated phenyl ethers It is done. These may be used alone or in combination of two or more.

前記断熱材に、ポリオキシエチレンのスチレン誘導体を界面活性剤として用いることによって、セメントスラリーに発泡ポリスチレン粒子等の充填材を分散させた混合物を混練する際に、セメントスラリー中に平均直径が0.02 〜2.0mmの範囲にある微小な気泡を形成し易くなり。また、前記界面活性剤を用いると、セメントスラリー中に形成された微小な気泡をセメントスラリーが硬化するまでの維持することができ、それのため断熱材内部のセメントスラリーが硬化した部分に微小な気泡を多数有する断熱材を容易に得ることができる。前記微小な気泡を容易に形成できることよって、発泡ポリスチレン等の有機物を増やすことなく断熱材の比重を小さくでき、軽量で断熱性に優れた断熱材を容易に得ることができる。また、前記平均直径の気泡を容易に形成できることによって、曲げ強度に優れた断熱材を容易に得ることができる。   By using a styrene derivative of polyoxyethylene as a surfactant in the heat insulating material, when the mixture in which filler such as expanded polystyrene particles is dispersed in the cement slurry is kneaded, the average diameter in the cement slurry is 0.00. It becomes easy to form minute bubbles in the range of 02 to 2.0 mm. In addition, when the surfactant is used, minute bubbles formed in the cement slurry can be maintained until the cement slurry is hardened. Therefore, a minute amount is formed in the hardened portion of the cement slurry inside the heat insulating material. A heat insulating material having a large number of bubbles can be easily obtained. Since the minute bubbles can be easily formed, the specific gravity of the heat insulating material can be reduced without increasing the organic matter such as expanded polystyrene, and a light heat insulating material having excellent heat insulating properties can be easily obtained. Moreover, since the air bubbles having the average diameter can be easily formed, a heat insulating material having excellent bending strength can be easily obtained.

また、前記界面活性剤として用いることによって、セメントスラリーと発泡ポリスチレンとの親和性を向上させることができ、発泡ポリスチレンをセメントスラリー中に容易に分散させることができる。また、セメントスラリーと発泡ポリスチレンの親和性が向上することによって、発泡ポリスチレンの周囲にセメントスラリーを介さず直接気泡が形成されることを抑制することができることによって、発泡ポリスチレンとセメントスラリーとの接触面積が増すため、硬化後の断熱材においてはセメントスラリーの硬化した部分と発泡ポリスチレンとの密着力が向上して、断熱材の曲げ強度が向上する。   Moreover, by using as said surfactant, the affinity of a cement slurry and a polystyrene foam can be improved, and a polystyrene foam can be easily disperse | distributed in a cement slurry. In addition, by improving the affinity between the cement slurry and the expanded polystyrene, it is possible to suppress the formation of bubbles directly around the expanded polystyrene without using the cement slurry, and thereby the contact area between the expanded polystyrene and the cement slurry. Therefore, in the heat insulating material after curing, the adhesion between the cured portion of the cement slurry and the expanded polystyrene is improved, and the bending strength of the heat insulating material is improved.

本発明に用いるポリオキシエチレンのスチレン誘導体としては、HLB値が13〜20ものもが好ましく、HLB値が16〜19ものもがより好ましい。HLB値が13未満であると、セメントスラリー中に微小な気泡を形成しにくくなる。HLB値が13以上であれば、セメントスラリー中に微小な気泡を容易に形成することができ、HLB値が16〜19である場合は、特に、微小な気泡を形成し易くなる。   As a styrene derivative of polyoxyethylene used in the present invention, those having an HLB value of 13 to 20 are preferred, and those having an HLB value of 16 to 19 are more preferred. When the HLB value is less than 13, it is difficult to form fine bubbles in the cement slurry. If the HLB value is 13 or more, minute bubbles can be easily formed in the cement slurry, and if the HLB value is 16 to 19, it is particularly easy to form minute bubbles.

なお、前記断熱材におけるポリオキシエチレンのスチレン誘導体の含有量は、無機結合材100質量部に対して、0.001〜0.05質量部であることが好ましく、0.003〜0.03質量部であることがより好ましく、0.005〜0.015質量部であることが特に好ましい。含有量がこの範囲にあれば、セメントスラリー中に微小な気泡を形成しやすく、また、セメントスラリー中に発泡ポリスチレンを分散させやすい。ポリオキシエチレンのスチレン誘導体の含有量が少なすぎると、セメントスラリーと発泡ポリスチレンの親和性が十分でなく、発泡ポリスチレンをセメントスラリー中に分散させ難い、セメントスラリーの硬化した部分と発泡ポリスチレンとの密着力が低下する等の不具合が生じる場合がある。また、セメントスラリーの泡立ちが悪く、セメントスラリー中に微小な気泡を形成しにくくなる。逆に、ポリオキシエチレンのスチレン誘導体の含有量が多すぎると、セメントスラリー中に形成される泡が大きくなってしまうことで、断熱材の曲げ強度や圧縮強度が不足し、断熱材が脆くなってしまう場合がある。   In addition, it is preferable that content of the styrene derivative of polyoxyethylene in the said heat insulating material is 0.001-0.05 mass part with respect to 100 mass parts of inorganic binders, 0.003-0.03 mass Part is more preferable, and 0.005 to 0.015 part by mass is particularly preferable. If the content is within this range, it is easy to form fine bubbles in the cement slurry, and it is easy to disperse the expanded polystyrene in the cement slurry. If the content of the styrene derivative of polyoxyethylene is too small, the affinity between the cement slurry and the expanded polystyrene is not sufficient, and it is difficult to disperse the expanded polystyrene in the cement slurry. There may be a problem such as a drop in force. Moreover, foaming of the cement slurry is poor, and it is difficult to form fine bubbles in the cement slurry. On the other hand, if the content of the polyoxyethylene styrene derivative is too large, the foam formed in the cement slurry will increase, resulting in insufficient bending strength and compressive strength of the heat insulating material, making the heat insulating material brittle. May end up.

更に、前記断熱材には、前記した以外の充填材や添加材を含有させることができる。   Further, the heat insulating material can contain fillers and additives other than those described above.

前記充填材としては、セメント等の無機結合材を結合材とする組成物に通常用いられる充填材、繊維などを適宜で用いることができる。   As the filler, fillers, fibers, and the like that are usually used in compositions having an inorganic binder such as cement as a binder can be used as appropriate.

前記充填材としては、例えば、川砂、珪砂、寒水砂、陶磁器粉砕物、ガラス粉砕物、炭酸カルシウム等の無機粉粒体、及び、パーライト、バーミキュライト、シラスバルーン、ガラス発泡体、珪藻土等の軽量無機骨材等の無機充填材、樹脂粒子、多孔質樹脂粒子、中空樹脂粒子等の有機充填材を挙げることができる。   Examples of the filler include inorganic particles such as river sand, quartz sand, cold water sand, ceramic pulverized material, glass pulverized material, calcium carbonate, and lightweight inorganic materials such as perlite, vermiculite, shirasu balloon, glass foam, diatomaceous earth, and the like. Examples include inorganic fillers such as aggregates, and organic fillers such as resin particles, porous resin particles, and hollow resin particles.

これらの充填材うち、前記断熱材には、中空樹脂粒子を用いることが好ましく、その比重は、0.01〜0.5の範囲にあるものが好ましく、0.02〜0.1の範囲にあるものがより好ましく、0.03〜0.07のものが特に好ましい。中空樹脂粒子を用いることで、断熱材に断熱性を付与することができる。また、比重が上記範囲にあることで、断熱性を特に付与することができる。比重が小さすぎるものは、中空樹脂粒子の強度が十分ではなく、セメントスラリー等と混練する際に中空樹脂粒子が粉砕されてしまい、断熱材に十分な断熱性を付与できない場合がある。逆に、比重が大きすぎる場合は中空樹脂粒子の中空部分が小さすぎるために、断熱材に十分な断熱性を付与できない場合がある   Among these fillers, it is preferable to use hollow resin particles for the heat insulating material, and the specific gravity is preferably in the range of 0.01 to 0.5, and in the range of 0.02 to 0.1. Some are more preferred, with 0.03 to 0.07 being particularly preferred. By using the hollow resin particles, heat insulation can be imparted to the heat insulating material. Moreover, heat insulation can be especially provided because specific gravity exists in the said range. When the specific gravity is too small, the strength of the hollow resin particles is not sufficient, and the hollow resin particles are pulverized when kneaded with cement slurry or the like, so that sufficient heat insulating properties may not be imparted to the heat insulating material. Conversely, when the specific gravity is too large, the hollow portion of the hollow resin particles is too small, and thus there may be cases where sufficient heat insulating properties cannot be imparted to the heat insulating material.

また、中空樹脂粒子の平均粒子径は10〜200μmの範囲にあることが好ましく、15〜150μmの範囲にあることがより好ましく、20〜90μmの範囲にあることが特に好ましい。前記平均粒子径の中空樹脂粒子を用いれば、断熱材中の発泡ポリスチレンの隙間に中空樹脂粒子が充填されることによって、断熱材中に発泡ポリスチレンと中空樹脂粒子とを細密に充填することができるとともに、十分な断熱性を付与することができる。平均粒子径が小さすぎると、中空樹脂粒子の強度が十分ではなく、セメントスラリー等と混練する際に中空樹脂粒子が粉砕されてしまう場合がある。若しくは、中空樹脂粒子の中空部分が小さすぎるために断熱材に十分な断熱性を付与できない場合がある。逆に、平均粒子径が大きすぎると、断熱材中に発泡ポリスチレンと中空樹脂粒子とを細密に充填することが困難になる。   The average particle diameter of the hollow resin particles is preferably in the range of 10 to 200 μm, more preferably in the range of 15 to 150 μm, and particularly preferably in the range of 20 to 90 μm. If the hollow resin particles having the average particle diameter are used, the foamed polystyrene and the hollow resin particles can be finely filled in the heat insulating material by filling the space between the foamed polystyrene in the heat insulating material with the hollow resin particles. In addition, sufficient heat insulation can be imparted. If the average particle size is too small, the strength of the hollow resin particles is not sufficient, and the hollow resin particles may be pulverized when kneaded with cement slurry or the like. Or since the hollow part of a hollow resin particle is too small, sufficient heat insulation may not be provided to a heat insulating material. On the other hand, if the average particle diameter is too large, it becomes difficult to finely fill the heat insulating material with the expanded polystyrene and the hollow resin particles.

なお、前記断熱材における中空樹脂粒子の含有量は、前記発泡ポリスチレン100容量部に対して5〜200容量部であることが好ましく、8〜100容量部であることがより好ましく、10〜60容量部であることが特に好ましい。含有量がこの範囲にあるとき、断熱材中の発泡ポリスチレンの隙間に中空樹脂粒子を充填して、断熱性を十分な断熱性を付与することができる。前記含有量が少なすぎると、中空樹脂粒子を混入しても断熱材に十分な断熱性を付与することができない。逆に、前記含有量が多すぎると、断熱材中に発泡ポリウレタンが細密に充填されるのを中空樹脂粒子が阻害して、発泡ポリウレタンの粒子間の距離が大きくなってしまうことによって、断熱材が十分な断熱性が得られない場合がある。   In addition, it is preferable that content of the hollow resin particle in the said heat insulating material is 5-200 volume parts with respect to 100 volume parts of said expanded polystyrene, It is more preferable that it is 8-100 volume parts, 10-60 volumes Part is particularly preferred. When the content is within this range, hollow resin particles can be filled in the space between the expanded polystyrene in the heat insulating material to provide sufficient heat insulation. If the content is too small, sufficient heat insulation cannot be imparted to the heat insulating material even if hollow resin particles are mixed. On the other hand, if the content is too large, the hollow resin particles inhibit the fine filling of the foamed polyurethane in the heat insulating material, and the distance between the foamed polyurethane particles becomes large, so that the heat insulating material is increased. However, sufficient heat insulation may not be obtained.

前記繊維としては、ロックウール、スラグウール、ガラス繊維等の無機繊維、
アクリル繊維、ビニロン繊維、ポリアミド繊維、芳香族ポリアミド繊維、ポリエステル繊維等の有機繊維を用いることができる。
As the fiber, inorganic fibers such as rock wool, slag wool, glass fiber,
Organic fibers such as acrylic fiber, vinylon fiber, polyamide fiber, aromatic polyamide fiber, and polyester fiber can be used.

これらの繊維を断熱材に含有させることで、断熱材の曲げ強度等を向上させることができる。特に、曲げ強度が得やすく、モルタル内での耐久性に富む、引張り強さ(JIS L 1096)約3.0cN・dtex-1以上、伸び率(JIS L 1096)約20%以上の特性を有する耐アルカリ性の極性合成繊維を用いることが好ましい。このような有機繊維としては、具体的には、アクリル繊維、ビニロン繊維、ポリアミド繊維、芳香族ポリアミド繊維、ポリエステル繊維等を挙げることができる。 By including these fibers in the heat insulating material, the bending strength and the like of the heat insulating material can be improved. In particular, it is easy to obtain bending strength, has excellent durability in mortar, and has properties of tensile strength (JIS L 1096) of about 3.0 cN · dtex −1 or more and elongation rate (JIS L 1096) of about 20% or more. It is preferable to use an alkali-resistant polar synthetic fiber. Specific examples of such organic fibers include acrylic fibers, vinylon fibers, polyamide fibers, aromatic polyamide fibers, and polyester fibers.

そして、繊維の形態は、繊維長が3〜25mm、かつ、「繊維長/繊維径」が100〜1000であるものが好ましく、繊維長が4〜18mm、かつ、「繊維長/繊維径」が100〜900であるものがより好ましく、繊維長が5〜12mm、かつ、「繊維長/繊維径」が100〜600であるものが特に好ましい。繊維長および「繊維長/繊維径」が上記範囲にある繊維を用いることで、繊維の配合量に対しての断熱材の曲げ強度の上昇が大きく、断熱材の曲げ強度等を効率よく向上させることができる。   And as for the form of a fiber, the thing whose fiber length is 3-25 mm and "fiber length / fiber diameter" is 100-1000 is preferable, fiber length is 4-18 mm, and "fiber length / fiber diameter" is. Those having a fiber length of 5 to 12 mm and “fiber length / fiber diameter” of 100 to 600 are particularly preferable. By using fibers whose fiber length and “fiber length / fiber diameter” are in the above range, the increase in the bending strength of the heat insulating material with respect to the blended amount of fiber is large, and the bending strength of the heat insulating material is efficiently improved. be able to.

前記繊維長は発泡ポリスチレンの平均粒子径に対して60〜300%であることが好ましく、80〜200%であることがより好ましく、100〜150%であることが特に好ましい。この範囲にあるとき、断熱材に外力が加わった場合において、断熱材中の発泡ポリスチレンの動きを効果的に抑制することができ、断熱材の圧縮強度や曲げ強度を向上させることができる。前記繊維長は発泡ポリスチレンの平均粒子径に対して60%未満の場合には、繊維長が短すぎて断熱材に外力が加わった場合の発泡スチレンの動きを十分に抑制することができない。逆に300%を超える場合には、繊維長が長すぎて繊維同士の絡み合いにより断熱材中に空隙ができてしまうおそれがある。   The fiber length is preferably 60 to 300%, more preferably 80 to 200%, and particularly preferably 100 to 150% with respect to the average particle diameter of the expanded polystyrene. When in this range, when an external force is applied to the heat insulating material, the movement of the expanded polystyrene in the heat insulating material can be effectively suppressed, and the compressive strength and bending strength of the heat insulating material can be improved. When the fiber length is less than 60% with respect to the average particle diameter of the expanded polystyrene, the movement of the expanded styrene cannot be sufficiently suppressed when an external force is applied to the heat insulating material because the fiber length is too short. Conversely, if it exceeds 300%, the fiber length is too long, and there is a possibility that voids are formed in the heat insulating material due to the entanglement of the fibers.

なお、前記繊維の含有量は、前記無機結合材100質量部に対して、0.3〜5質量部であることが好ましく、0.5〜4質量部であることがより好ましく、1〜3質量部であることが特に好ましい。含有量がこの範囲にあれば、断熱材の曲げ強度を効率よく向上させることができる。前記含有量が少なすぎると、断熱材に繊維を混入したとしても、断熱材の曲げ強度を十分に向上させることができない。逆に、前記含有量が多くしすぎても、セメントスラリー中に、発泡ポリスチレン等の充填材を混入して混練することで、繊維同士が絡まってしまい、添加した繊維が曲げ強度の向上に十分に寄与しない場合がある。また、繊維同士が絡まった凝集物は、セメントスラリー中の微小な気泡の形成を阻害することがある In addition, it is preferable that it is 0.3-5 mass parts with respect to 100 mass parts of said inorganic binders, and, as for content of the said fiber, it is more preferable that it is 0.5-4 mass parts, 1-3. The part by mass is particularly preferred. If content is in this range, the bending strength of a heat insulating material can be improved efficiently. When the content is too small, even if fibers are mixed in the heat insulating material, the bending strength of the heat insulating material cannot be sufficiently improved. On the other hand, even if the content is too large, fibers are entangled by mixing a filler such as expanded polystyrene in the cement slurry, and the added fibers are sufficient for improving the bending strength. May not contribute. In addition, aggregates in which fibers are entangled may inhibit the formation of fine bubbles in the cement slurry .

前記添加剤としては、セメント等の無機結合材を結合材とする組成物に通常用いられる、結合材となる合成樹脂、増粘剤、吸水防止剤、撥水剤、減水剤、流動化剤、保水剤、硬化遅延剤、硬化促進剤等を適宜で用いることができる。   Examples of the additive include a synthetic resin, a thickener, a water absorption inhibitor, a water repellent, a water reducing agent, a fluidizing agent, which are usually used in a composition having an inorganic binder such as cement as a binder. A water retention agent, a curing retarder, a curing accelerator and the like can be appropriately used.

これらの添加剤のうち、前記断熱材には、結合材となる合成樹脂を用いることが特に好ましい。前記無機結合材と合成樹脂とを結合材にすることによって、発泡ポリスチレン等の充填材とセメントスラリーが硬化した結合材部分との密着性が向上し、断熱材の曲げ強度を向上させることができる。   Of these additives, it is particularly preferable to use a synthetic resin as a binder for the heat insulating material. By using the inorganic binder and the synthetic resin as a binder, the adhesion between the filler such as foamed polystyrene and the binder portion where the cement slurry is cured can be improved, and the bending strength of the heat insulating material can be improved. .

前記合成樹脂としては、通常、セメントセメント等の無機結合材と混合して用いられるものであれば、特に限定されず、例えば、アクリル樹脂、酢酸ビニル樹脂、ポリスチレン樹脂、塩化ビニル樹脂、エポキシ樹脂等が挙げられる。これらは、単独で用いてもよく、2種類以上を混合して用いてもよい。また、これらの合成樹脂を形成する単量体の2以上を共重合させて用いてもよい。前記合成樹脂を無機結合材と混合するには、合成樹脂エマルジョン、水溶性樹脂、又は水と混合することで再乳化して合成樹脂エマルジョンとなる粉末樹脂等の形態のものを用いればよい。   The synthetic resin is not particularly limited as long as it is usually used by mixing with an inorganic binder such as cement cement. For example, acrylic resin, vinyl acetate resin, polystyrene resin, vinyl chloride resin, epoxy resin, etc. Is mentioned. These may be used singly or in combination of two or more. Two or more monomers forming these synthetic resins may be copolymerized and used. In order to mix the synthetic resin with the inorganic binder, a synthetic resin emulsion, a water-soluble resin, or a powder resin that is re-emulsified by mixing with water to form a synthetic resin emulsion may be used.

前記合成樹脂の含有量は、前記無機結合材100質量部に対して、3〜50質量部であることが好ましく、5〜30質量部であることがより好ましく、7〜20質量部であることが特に好ましい。含有量が上記範囲にあるとき、曲げ強度を向上させ、且つ断熱性を損なわない。前記含有量が少なすぎると曲げ強度を向上させる効果が十分に発揮されない。逆に、前記含有量が多すぎると、セメントスラリー中に形成される泡が大きくなりやすく、微小な気泡の形成が困難な場合があり、そのため断熱性が得にくくなる。   The content of the synthetic resin is preferably 3 to 50 parts by mass, more preferably 5 to 30 parts by mass, and 7 to 20 parts by mass with respect to 100 parts by mass of the inorganic binder. Is particularly preferred. When the content is in the above range, the bending strength is improved and the heat insulation is not impaired. If the content is too small, the effect of improving the bending strength is not sufficiently exhibited. On the other hand, if the content is too large, bubbles formed in the cement slurry are likely to be large, and formation of fine bubbles may be difficult, which makes it difficult to obtain heat insulation.

以上のように形成される前記断熱材において、配合物を以下の割合で混合することによって、不燃性を持つ断熱材を得ることもできる。
・ 無機結合材:100質量部、発泡ポリスチレン:1〜15質量部、ポリオキシエチレンのスチレン誘導体:0.01〜0.05質量部、発泡ポリスチレン及びポリオキシエチレンのスチレン誘導体を除く有機成分:5質量部以下、無機結合材を除く無機成分:100質量部以下。
・ 無機結合材:100質量部、発泡ポリスチレン:1〜10質量部、比重0.01〜0.07の中空樹脂粒子:30質量部以下、ポリオキシエチレンのスチレン誘導体:0.01〜0.05質量部、発泡ポリスチレン、中空樹脂粒子、及びポリオキシエチレンのスチレン誘導体を除く有機成分:5質量部以下、無機結合材を除く無機成分:100質量部以下。
In the said heat insulating material formed as mentioned above, the heat insulating material which has nonflammability can also be obtained by mixing a compound in the following ratios.
Inorganic binder: 100 parts by mass, expanded polystyrene: 1 to 15 parts by mass, styrene derivative of polyoxyethylene: 0.01 to 0.05 part by mass, organic component excluding expanded polystyrene and styrene derivative of polyoxyethylene: 5 Less than mass parts, inorganic components excluding inorganic binder: 100 mass parts or less.
Inorganic binder: 100 parts by mass, expanded polystyrene: 1 to 10 parts by mass, hollow resin particles having a specific gravity of 0.01 to 0.07: 30 parts by mass or less, styrene derivative of polyoxyethylene: 0.01 to 0.05 Organic components excluding parts by mass, expanded polystyrene, hollow resin particles, and styrene derivatives of polyoxyethylene: 5 parts by mass or less, inorganic components excluding inorganic binder: 100 parts by mass or less.

以下に記載する実施例及び比較例に示す断熱材を作製して、各断熱材の比重、曲げ強度、圧縮強度、及び熱伝導率を測定した。
実施例及び比較例に示す方法で成形又は成型した断熱材の圧縮強度及び曲げ強度の測定は、4週間養生した試験体を使用してJIS R5201:1997の試験方法に準拠して行った。ただし、圧縮強度は、試験体の破断時の圧力ではなく、試験体の高さ(圧縮方向の厚み)が圧縮前の試験体の高さの90%になるまで圧縮したときの圧力とした。
また、比重は、1000cmの体積の断熱材の質量を測定して、その質量と体積とから計算した嵩比重とした。なお、比重は断熱材の作製日より4週間後に測定した。
また、熱伝導率は、断熱材の作製日より4週間後に測定した。
The heat insulating materials shown in Examples and Comparative Examples described below were prepared, and the specific gravity, bending strength, compressive strength, and thermal conductivity of each heat insulating material were measured.
The compressive strength and bending strength of the heat insulating material molded or molded by the methods shown in Examples and Comparative Examples were measured in accordance with the test method of JIS R5201: 1997 using a test specimen cured for 4 weeks. However, the compressive strength was not the pressure at the time of rupture of the specimen, but the pressure when compressed until the height of the specimen (thickness in the compression direction) was 90% of the height of the specimen before compression.
Moreover, specific gravity measured the mass of the 1000 cm < 2 > volume heat insulating material, and made it the bulk specific gravity computed from the mass and volume. The specific gravity was measured 4 weeks after the date of production of the heat insulating material.
The thermal conductivity was measured 4 weeks after the date of production of the heat insulating material.

なお、下記の実施例及び比較例に示す混合物は、該混合物を十分に混練した後、100cm×100cm×厚み5cmの型に流し込んで硬化させ、温度20℃、湿度65%の環境下で2週間養生した。その後、硬化体を型から取り外すことによって、各混合物を成型した断熱材を得た。   The mixtures shown in the following Examples and Comparative Examples were sufficiently kneaded and then poured into a 100 cm × 100 cm × 5 cm thick mold to be cured, and in an environment of temperature 20 ° C. and humidity 65% for 2 weeks. Cured. Then, the heat insulating material which shape | molded each mixture was obtained by removing a hardening body from a type | mold.

(実施例1) 無機結合材として普通ポルトランドセメント、発泡ポリスチレンとして略球形のEPS粒子(平均粒子径:5mm、比重:0.03)、界面活性剤してポリオキシエチレンジスチレン化フェニルエーテル(HLB値:18.0)、その他の添加剤として増粘剤・保水剤となるメチルセルロースを用いて、これらの材料に水を加えて以下の割合で混合して混練した混合物を型に流し込んで硬化させて、断熱材を作製した。 (Example 1) Ordinary Portland cement as the inorganic binder, substantially spherical EPS particles (average particle diameter: 5 mm, specific gravity: 0.03) as the polystyrene foam, polyoxyethylene distyrenated phenyl ether (HLB) as the surfactant Value: 18.0), using methylcellulose as a thickener and water retention agent as other additives, adding water to these materials, mixing and kneading the mixture in the following proportions, pouring into a mold and curing Thus, a heat insulating material was produced.

普通ポルトランドセメント:600質量部、EPS粒子:40質量部、ポリオキシエチレンジスチレン化フェニルエーテル:6質量部、メチルセルロース:6質量部、水:500質量部。   Normal Portland cement: 600 parts by mass, EPS particles: 40 parts by mass, polyoxyethylene distyrenated phenyl ether: 6 parts by mass, methyl cellulose: 6 parts by mass, water: 500 parts by mass.

(実施例2) 実施例1で用いた材料に加えて、充填材として中空樹脂粒子(平均粒子径:40μm、比重0.05)を用いて、それらを以下の割合で混合して混練した混合物を型に流し込んで硬化させて、断熱材を作製した。 (Example 2) In addition to the materials used in Example 1, using hollow resin particles (average particle diameter: 40 μm, specific gravity 0.05) as a filler, they were mixed and kneaded in the following proportions: Was poured into a mold and cured to produce a heat insulating material.

普通ポルトランドセメント:600質量部、EPS粒子:40質量部、ポリオキシエチレンジスチレン化フェニルエーテル:6質量部、中空樹脂粒子150質量部、メチルセルロース:6質量部、水:500質量部。   Normal Portland cement: 600 parts by mass, EPS particles: 40 parts by mass, polyoxyethylene distyrenated phenyl ether: 6 parts by mass, hollow resin particles 150 parts by mass, methyl cellulose: 6 parts by mass, water: 500 parts by mass.

(実施例3) 実施例1で用いた材料に加えて、充填材としてビニロン繊維(繊維長:6mm、繊維径:0.03mm)を用いて、それらを以下の割合で混合して混練した混合物を型に流し込んで硬化させて、断熱材を作製した。 (Example 3) In addition to the materials used in Example 1, vinylon fibers (fiber length: 6 mm, fiber diameter: 0.03 mm) were used as fillers, and these were mixed and kneaded at the following ratios: Was poured into a mold and cured to produce a heat insulating material.

普通ポルトランドセメント:600質量部、EPS粒子:40質量部、ポリオキシエチレンジスチレン化フェニルエーテル:6質量部、ビニロン繊維10質量部、メチルセルロース:6質量部、水:500質量部。   Normal Portland cement: 600 parts by mass, EPS particles: 40 parts by mass, polyoxyethylene distyrenated phenyl ether: 6 parts by mass, vinylon fiber 10 parts by mass, methyl cellulose: 6 parts by mass, water: 500 parts by mass.

(実施例4) 実施例1で用いた材料に加えて、添加剤としてアクリル樹脂エマルジョン(固形分45質量%)を用いて、それらを以下の割合で混合して混練した混合物を型に流し込んで硬化させて、断熱材を作製した。 (Example 4) In addition to the materials used in Example 1, an acrylic resin emulsion (solid content: 45% by mass) was used as an additive, and they were mixed and kneaded in the following proportions and poured into a mold. Curing was performed to produce a heat insulating material.

普通ポルトランドセメント:600質量部、EPS粒子:40質量部、ポリオキシエチレンジスチレン化フェニルエーテル:6質量部、アクリル樹脂エマルジョンの固形分50質量部、メチルセルロース:6質量部、水:500質量部。   Normal Portland cement: 600 parts by mass, EPS particles: 40 parts by mass, polyoxyethylene distyrenated phenyl ether: 6 parts by mass, solid content of acrylic resin emulsion 50 parts by mass, methyl cellulose: 6 parts by mass, water: 500 parts by mass.

(実施例5) 実施例1で用いた材料に加えて、充填材として中空樹脂粒子(平均粒子径:40μm、比重0.05)及びビニロン繊維(繊維長:6mm、繊維径:0.03mm)、添加剤としてアクリル樹脂エマルジョン(固形分45質量%)を用いて、それらを以下の割合で混合して混練した混合物を型に流し込んで硬化させて、断熱材を作製した。 (Example 5) In addition to the materials used in Example 1, hollow resin particles (average particle diameter: 40 μm, specific gravity 0.05) and vinylon fibers (fiber length: 6 mm, fiber diameter: 0.03 mm) as fillers Using an acrylic resin emulsion (solid content: 45% by mass) as an additive, a mixture obtained by mixing and kneading them in the following proportions was poured into a mold and cured to prepare a heat insulating material.

普通ポルトランドセメント:600質量部、EPS粒子:40質量部、ポリオキシエチレンジスチレン化フェニルエーテル:6質量部、中空樹脂粒子150質量部、ビニロン繊維10質量部、アクリル樹脂エマルジョンの固形分50質量部、メチルセルロース:6質量部、水:500質量部。   Normal Portland cement: 600 parts by mass, EPS particles: 40 parts by mass, polyoxyethylene distyrenated phenyl ether: 6 parts by mass, hollow resin particles 150 parts by mass, vinylon fiber 10 parts by mass, acrylic resin emulsion solid content 50 parts by mass , Methylcellulose: 6 parts by mass, water: 500 parts by mass.

(実施例6) 実施例1で用いた材料のうち、略球形のEPS粒子に代えて、箱型に成型したEPSを破砕して得たEPS粒子(平均粒子径:5mm、比重:0.03)を用いて、それらを以下の割合で混合して混練した混合物を型に流し込んで硬化させて、断熱材を作製した。 (Example 6) Of the materials used in Example 1, instead of substantially spherical EPS particles, EPS particles obtained by crushing EPS molded into a box shape (average particle diameter: 5 mm, specific gravity: 0.03) ) Was used to mix and knead them in the following proportions, and the mixture was poured into a mold and cured to prepare a heat insulating material.

普通ポルトランドセメント:600質量部、EPS粒子:40質量部、ポリオキシエチレンジスチレン化フェニルエーテル:6質量部、メチルセルロース:6質量部、水:500質量部。   Normal Portland cement: 600 parts by mass, EPS particles: 40 parts by mass, polyoxyethylene distyrenated phenyl ether: 6 parts by mass, methyl cellulose: 6 parts by mass, water: 500 parts by mass.

(実施例7) 実施例1で用いた材料を以下の割合で混合して混練した混合物を型に流し込んで硬化させて、断熱材を作製した。 (Example 7) A mixture obtained by mixing and kneading the materials used in Example 1 in the following ratio was poured into a mold and cured to prepare a heat insulating material.

普通ポルトランドセメント:600質量部、EPS粒子:40質量部、ポリオキシエチレンジスチレン化フェニルエーテル:1質量部、メチルセルロース:6質量部、水:500質量部。   Normal Portland cement: 600 parts by mass, EPS particles: 40 parts by mass, polyoxyethylene distyrenated phenyl ether: 1 part by mass, methyl cellulose: 6 parts by mass, water: 500 parts by mass.

(実施例8) 実施例1で用いた材料を以下の割合で混合して混練した混合物を型に流し込んで硬化させて、断熱材を作製した。 (Example 8) A mixture obtained by mixing and kneading the materials used in Example 1 in the following ratio was poured into a mold and cured to produce a heat insulating material.

普通ポルトランドセメント:600質量部、EPS粒子:40質量部、ポリオキシエチレンジスチレン化フェニルエーテル:25質量部、メチルセルロース:6質量部、水:500質量部。   Normal Portland cement: 600 parts by mass, EPS particles: 40 parts by mass, polyoxyethylene distyrenated phenyl ether: 25 parts by mass, methyl cellulose: 6 parts by mass, water: 500 parts by mass.

(比較例1) 実施例1で用いた材料のうち、ポリオキシエチレンジスチレン化フェニルエーテルを除いたものを以下の割合で混合して混練した混合物を型に流し込んで硬化させて、断熱材を作製した。 (Comparative Example 1) Among the materials used in Example 1, the mixture excluding polyoxyethylene distyrenated phenyl ether was mixed and kneaded at the following ratio, and the mixture was poured into a mold and cured to obtain a heat insulating material. Produced.

普通ポルトランドセメント:600質量部、EPS粒子:40質量部、メチルセルロース:6質量部、水:500質量部。   Normal Portland cement: 600 parts by mass, EPS particles: 40 parts by mass, methyl cellulose: 6 parts by mass, water: 500 parts by mass.

(比較例2) 実施例1で用いた材料のうち、ポリオキシエチレンジスチレン化フェニルエーテルに代えて、界面活性剤としてポリオキシエチレンアルキルエーテル硫酸塩を用いて、それらを以下の割合で混合して混練した混合物を型に流し込んで硬化させて、断熱材を作製した。 (Comparative Example 2) Of the materials used in Example 1, instead of polyoxyethylene distyrenated phenyl ether, polyoxyethylene alkyl ether sulfate was used as a surfactant, and they were mixed in the following proportions. The kneaded mixture was poured into a mold and cured to prepare a heat insulating material.

普通ポルトランドセメント:600質量部、EPS粒子:40質量部、ポリオキシエチレンアルキルエーテル硫酸塩:8質量部、メチルセルロース:6質量部、水:500質量部。   Normal Portland cement: 600 parts by mass, EPS particles: 40 parts by mass, polyoxyethylene alkyl ether sulfate: 8 parts by mass, methyl cellulose: 6 parts by mass, water: 500 parts by mass.

(比較例3) 実施例2で用いた材料のうち、ポリオキシエチレンジスチレン化フェニルエーテルを除いたものを以下の割合で混合して混練した混合物を型に流し込んで硬化させて、断熱材を作製した。 (Comparative Example 3) Among the materials used in Example 2, the mixture excluding polyoxyethylene distyrenated phenyl ether was mixed and kneaded at the following ratio, and the mixture was poured into a mold and cured to obtain a heat insulating material. Produced.

普通ポルトランドセメント:600質量部、EPS粒子:40質量部、中空樹脂粒子150質量部、メチルセルロース:6質量部、水:500質量部。   Normal Portland cement: 600 parts by mass, EPS particles: 40 parts by mass, hollow resin particles 150 parts by mass, methyl cellulose: 6 parts by mass, water: 500 parts by mass.

(比較例4) 実施例2で用いた材料のうち、ポリオキシエチレンジスチレン化フェニルエーテルに代えて、界面活性剤としてアルキルスルホン酸塩を用いて、それらを以下の割合で混合して混練した混合物を型に流し込んで硬化させて、断熱材を作製した。 (Comparative Example 4) Of the materials used in Example 2, instead of polyoxyethylene distyrenated phenyl ether, alkyl sulfonate was used as a surfactant, and they were mixed and kneaded in the following proportions. The mixture was poured into a mold and cured to produce a heat insulating material.

普通ポルトランドセメント:600質量部、EPS粒子:40質量部、アルキルスルホン酸塩:8質量部、中空樹脂粒子150質量部、メチルセルロース:6質量部、水:500質量部。   Normal Portland cement: 600 parts by mass, EPS particles: 40 parts by mass, alkyl sulfonate: 8 parts by mass, hollow resin particles 150 parts by mass, methyl cellulose: 6 parts by mass, water: 500 parts by mass.

以上の実施例1〜8及び比較例1〜4の各断熱材の比重、曲げ強度、圧縮強度及び熱伝導率の測定結果を表1に示す。   Table 1 shows the measurement results of the specific gravity, bending strength, compressive strength, and thermal conductivity of each of the heat insulating materials of Examples 1 to 8 and Comparative Examples 1 to 4.

Figure 2011011938
Figure 2011011938

Claims (3)

無機結合材と、発泡ポリスチレンと、界面活性剤とを含有している断熱材であって、前記界面活性剤がポリオキシエチレンのスチレン誘導体であることを特徴とする断熱材。
A heat insulating material containing an inorganic binder, expanded polystyrene, and a surfactant, wherein the surfactant is a styrene derivative of polyoxyethylene.
前記発泡ポリスチレンが平均粒子径0.5〜15mmの粒子状であることを特徴とする請求項1に記載の断熱材。
The heat insulating material according to claim 1, wherein the expanded polystyrene is in the form of particles having an average particle diameter of 0.5 to 15 mm.
平均粒子径10〜200μmの中空樹脂粒子を含有することを特徴とする請求項1又は2に記載の断熱材。 The heat insulating material according to claim 1 or 2, comprising hollow resin particles having an average particle diameter of 10 to 200 µm.
JP2009156938A 2009-07-01 2009-07-01 Insulation Expired - Fee Related JP5513789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009156938A JP5513789B2 (en) 2009-07-01 2009-07-01 Insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009156938A JP5513789B2 (en) 2009-07-01 2009-07-01 Insulation

Publications (2)

Publication Number Publication Date
JP2011011938A true JP2011011938A (en) 2011-01-20
JP5513789B2 JP5513789B2 (en) 2014-06-04

Family

ID=43591200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009156938A Expired - Fee Related JP5513789B2 (en) 2009-07-01 2009-07-01 Insulation

Country Status (1)

Country Link
JP (1) JP5513789B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101843817B1 (en) * 2018-01-18 2018-05-14 (주) 에이티 Manufacturing method of lightweight fireproof insulating block
KR20180114679A (en) * 2017-04-11 2018-10-19 주식회사정양에스지 Lightweight Concrete Panels improving efficiency of insulation and bending strength and Manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930755A (en) * 1982-08-10 1984-02-18 宇部興産株式会社 Lightweight heat insulating mortar
JPH02103242A (en) * 1988-10-13 1990-04-16 Taisei Corp Hydraulic light-weight composition and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930755A (en) * 1982-08-10 1984-02-18 宇部興産株式会社 Lightweight heat insulating mortar
JPH02103242A (en) * 1988-10-13 1990-04-16 Taisei Corp Hydraulic light-weight composition and production thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180114679A (en) * 2017-04-11 2018-10-19 주식회사정양에스지 Lightweight Concrete Panels improving efficiency of insulation and bending strength and Manufacturing method thereof
KR102013346B1 (en) * 2017-04-11 2019-10-21 주식회사정양에스지 Lightweight Concrete Panels improving efficiency of insulation and bending strength and Manufacturing method thereof
KR101843817B1 (en) * 2018-01-18 2018-05-14 (주) 에이티 Manufacturing method of lightweight fireproof insulating block
WO2019143171A1 (en) * 2018-01-18 2019-07-25 (주)에이티 Method for manufacturing lightweight refractory insulating block

Also Published As

Publication number Publication date
JP5513789B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
KR101808663B1 (en) Thermal Insulation Material and Method For Manufacturing Same
WO2015130677A1 (en) Improved fire core compositions and methods
WO2015095778A1 (en) Improved fire core compositions and methods
CA3019760A1 (en) Geopolymer foam formulation
EP2418187A2 (en) Dry mixture for manufacturing cellular fibro concrete and method therefor
WO2013048351A1 (en) Gypsum-based composition for construction material and system
CN111362647A (en) Inorganic micro-bead foaming modified silicon-plastic composite thermal insulation material and preparation method thereof
JP2002060264A (en) Fiber-reinforced cement formed body and its production process
JP6681272B2 (en) Composition and non-combustible material
JP2009096657A (en) Cement mortar for plaster work
JPH11147777A (en) Lightweight hardened product and its production
JP2009084092A (en) Mortar-based restoring material
JP5513789B2 (en) Insulation
CN113480331A (en) Light heat-preservation silicon-oxygen-magnesium foam material and preparation method thereof
KR20050087029A (en) Cast-in-place rapid hardening aerated concrete having excellent adiabatic ability and method for manufacturing the same
JPH06293546A (en) Production of hydraulic and inorganic material molding
JP2002293601A (en) Production process of lightweight mortar material
JP2012255269A (en) Earthquake-resistant slit material and manufacturing method thereof
TW201228994A (en) Thermal insulation material and method for making the same
JP6681273B2 (en) Composition and non-combustible material
CN103724048B (en) Self-insulation porous brick for walls
JP2012131657A (en) Lightweight mortar
JPH0489339A (en) Cement composition to be extrusion-molded
JPH08277178A (en) Inorganic laminated body
JPH1171157A (en) Hydraulic composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140328

R150 Certificate of patent or registration of utility model

Ref document number: 5513789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees