JP2011009575A - Exposure device, adjusting method, and method of manufacturing device - Google Patents

Exposure device, adjusting method, and method of manufacturing device Download PDF

Info

Publication number
JP2011009575A
JP2011009575A JP2009152852A JP2009152852A JP2011009575A JP 2011009575 A JP2011009575 A JP 2011009575A JP 2009152852 A JP2009152852 A JP 2009152852A JP 2009152852 A JP2009152852 A JP 2009152852A JP 2011009575 A JP2011009575 A JP 2011009575A
Authority
JP
Japan
Prior art keywords
adjustment
optical element
optical
characteristic value
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009152852A
Other languages
Japanese (ja)
Other versions
JP2011009575A5 (en
JP5418768B2 (en
Inventor
Ryuhei Miyashiro
隆平 宮代
Yuji Shinano
勇治 品野
Yozo Fukagawa
容三 深川
Satoshi Kubo
諭史 久保
Yoshimi Takano
義巳 高野
Toshiyuki Yoshihara
俊幸 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Tokyo University of Agriculture and Technology NUC
Original Assignee
Canon Inc
Tokyo University of Agriculture and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc, Tokyo University of Agriculture and Technology NUC filed Critical Canon Inc
Priority to JP2009152852A priority Critical patent/JP5418768B2/en
Publication of JP2011009575A publication Critical patent/JP2011009575A/en
Publication of JP2011009575A5 publication Critical patent/JP2011009575A5/ja
Application granted granted Critical
Publication of JP5418768B2 publication Critical patent/JP5418768B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide novel technique for finding an adjustment amount of an optical element while taking into consideration uncertainty of an optical characteristic value caused by that an optical element which varies the optical characteristic value is adjusted.SOLUTION: An exposure device which exposes a substrate through a pattern of a reticle includes a projection optical system which includes the optical element for having at least one of the position, posture and shape adjusted, and projects light from the pattern on the substrate, an adjustment part which adjusts at least one of the position, posture and shape of the optical element, and a control part which calculates the adjustment amount of the optical element by quadratic programming or quadratic cone programming so that a value of a target function including a variable representing logical variation in optical characteristic value of the projection optical system when the optical element is adjusted in accordance with an adjustment amount of the optical element provided for the adjustment part and uncertainty of variation in optical characteristic value of the projection optical system caused owing to an adjustment error when the adjustment part adjusts the optical element satisfies an allowable level, and controls the adjustment part based upon the calculated adjustment amount.

Description

本発明は、露光装置、調整方法及びデバイスの製造方法に関する。   The present invention relates to an exposure apparatus, an adjustment method, and a device manufacturing method.

フォトリソグラフィー技術を用いて半導体メモリや論理回路などの微細な半導体デバイスを製造する際に、露光装置が使用されている。露光装置は、レチクル(マスク)に形成されたパターンを、投影光学系を介して、ウエハ等の基板に投影してパターンを転写する。   An exposure apparatus is used when a fine semiconductor device such as a semiconductor memory or a logic circuit is manufactured by using a photolithography technique. The exposure apparatus projects a pattern formed on a reticle (mask) onto a substrate such as a wafer via a projection optical system and transfers the pattern.

投影光学系は、投影光学系の光学特性(各種収差等)を測定する工程と、測定された光学特性に基づいて投影光学系の光学特性を調整するための調整量(補正量)を算出する工程と、算出された調整量に基づいて投影光学系を調整する工程とを経て調整される。   The projection optical system measures the optical characteristics (various aberrations, etc.) of the projection optical system, and calculates an adjustment amount (correction amount) for adjusting the optical characteristics of the projection optical system based on the measured optical characteristics. The adjustment is performed through the process and the process of adjusting the projection optical system based on the calculated adjustment amount.

調整対象となる多くの光学特性は、各素子(例えば、レンズ等の光学素子)の調整量に比例して変化し、その絶対値を最小化することが要求される。そこで、線形計画法を用いて各素子の調整量を決定する技術が提案されている(特許文献1参照)。   Many optical characteristics to be adjusted change in proportion to the adjustment amount of each element (for example, an optical element such as a lens), and it is required to minimize the absolute value thereof. Therefore, a technique for determining the adjustment amount of each element using linear programming has been proposed (see Patent Document 1).

一方、調整対象となる光学特性には、波面収差のRMS(Root Mean Square)値の平方のように、像平面(露光領域)内の各点における波面収差係数の重みつき2乗和で表される特性も含まれる。そこで、線形の制約条件式の下で、1次の評価値(各光学素子の調整量の1次関数で表される光学特性値)と2次の評価値(各光学素子の調整量の2次関数で表される光学特性値)とをバランスよく最適化する技術も提案されている(特許文献2参照)。   On the other hand, the optical characteristic to be adjusted is represented by a weighted square sum of the wavefront aberration coefficient at each point in the image plane (exposure area), such as the square of the RMS (Root Mean Square) value of the wavefront aberration. Characteristics are also included. Therefore, under the linear constraint equation, the primary evaluation value (optical characteristic value represented by a linear function of the adjustment amount of each optical element) and the secondary evaluation value (2 of the adjustment amount of each optical element). There has also been proposed a technique for optimizing the optical characteristic value expressed by the following function in a well-balanced manner (see Patent Document 2).

特開2002−367886号公報JP 2002-367886 A 特開2005−268451号公報JP 2005-268451 A

しかしながら、特許文献1や特許文献2で決定された調整量を目標値として各光学素子を調整する調整部に与えたとしても、実際の調整量と目標値との間には公差が生じている。従って、僅かな調整量であっても光学特性を大きく変化させる敏感な光学素子を調整した場合には、投影光学系の光学特性を悪化させてしまう可能性がある。   However, even if the adjustment amount determined in Patent Document 1 or Patent Document 2 is given as a target value to the adjustment unit that adjusts each optical element, there is a tolerance between the actual adjustment amount and the target value. . Therefore, when a sensitive optical element that greatly changes the optical characteristics even with a small adjustment amount is adjusted, the optical characteristics of the projection optical system may be deteriorated.

本発明は、このような従来技術の課題に鑑みてなされ、光学特性値を変化させる光学素子を調整することで生じる光学特性値の不確実性を考慮して、光学素子の調整量を求める新たな技術を提供することを例示的目的とする。   The present invention has been made in view of such problems of the prior art, and takes into account the uncertainties of optical characteristic values that arise from adjusting optical elements that change optical characteristic values. The purpose is to provide a simple technique.

上記目的を達成するために、本発明の一側面としての露光装置は、レチクルのパターンを介して基板を露光する露光装置であって、位置、姿勢及び形状の少なくとも1つを調整可能な光学素子を含み、前記パターンからの光を前記基板に投影する投影光学系と、前記光学素子の位置、姿勢及び形状の少なくとも1つを調整する調整部と、前記調整部に与えられる前記光学素子の調整量に応じて前記光学素子を調整できたときの前記投影光学系の光学特性値の理論上の変化を表す変数と、前記調整部が前記光学素子を調整したときの調整誤差によって生じる前記投影光学系の光学特性値の変化の不確実性とを含む目的関数の値が許容レベルを満たすように、前記光学素子の調整量を2次計画法又は2次錐計画法を用いて算出し、当該算出した調整量に基づいて前記調整部を制御する制御部と、を有することを特徴とする。   In order to achieve the above object, an exposure apparatus according to one aspect of the present invention is an exposure apparatus that exposes a substrate through a pattern of a reticle, and is an optical element that can adjust at least one of position, posture, and shape A projection optical system that projects light from the pattern onto the substrate, an adjustment unit that adjusts at least one of the position, posture, and shape of the optical element, and the adjustment of the optical element that is provided to the adjustment unit The projection optics caused by a variable representing a theoretical change in the optical characteristic value of the projection optical system when the optical element can be adjusted according to the amount, and an adjustment error when the adjustment unit adjusts the optical element Calculating the adjustment amount of the optical element using quadratic programming or quadratic cone programming so that the value of the objective function including the uncertainty of the change in the optical characteristic value of the system satisfies an allowable level, Calculated key And having a control unit for controlling the adjustment portion based on the amount.

本発明の更なる目的又はその他の側面は、以下、添付図面を参照して説明される好ましい実施形態によって明らかにされるであろう。   Further objects and other aspects of the present invention will become apparent from the preferred embodiments described below with reference to the accompanying drawings.

本発明によれば、例えば、光学特性値を変化させる光学素子を調整することで生じる光学特性値の不確実性を考慮して、光学素子の調整量を求める新たな技術を提供することができる。   According to the present invention, for example, it is possible to provide a new technique for obtaining the adjustment amount of the optical element in consideration of the uncertainty of the optical characteristic value generated by adjusting the optical element that changes the optical characteristic value. .

本発明の一側面としての露光装置の構成を示す概略斜視図である。It is a schematic perspective view which shows the structure of the exposure apparatus as 1 side surface of this invention. 図1に示す露光装置において、位置を調整可能なレチクル、ウエハ、投影光学系に含まれる光学素子の可動方向(駆動方向)の一例を模式的に示す図である。FIG. 2 is a diagram schematically showing an example of a movable direction (drive direction) of an optical element included in a reticle, a wafer, and a projection optical system whose position can be adjusted in the exposure apparatus shown in FIG. 1. 図1に示す露光装置における投影光学系の光学特性の自動調整を説明するためのフローチャートである。3 is a flowchart for explaining automatic adjustment of optical characteristics of a projection optical system in the exposure apparatus shown in FIG. 図1に示す露光装置における投影光学系の自動調整を説明するためのフローチャートである。2 is a flowchart for explaining automatic adjustment of a projection optical system in the exposure apparatus shown in FIG.

以下、添付図面を参照して、本発明の好適な実施の形態について説明する。なお、各図において、同一の部材については同一の参照番号を付し、重複する説明は省略する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the accompanying drawings. In addition, in each figure, the same reference number is attached | subjected about the same member and the overlapping description is abbreviate | omitted.

図1は、本発明の一側面としての露光装置1の構成を示す概略斜視図である。露光装置1は、本実施形態では、ステップ・アンド・スキャン方式でレチクル10のパターンをウエハ40に露光する投影露光装置である。但し、露光装置1は、ステップ・アンド・リピート方式やその他の露光方式も適用することができる。   FIG. 1 is a schematic perspective view showing a configuration of an exposure apparatus 1 as one aspect of the present invention. In this embodiment, the exposure apparatus 1 is a projection exposure apparatus that exposes the pattern of the reticle 10 onto the wafer 40 by a step-and-scan method. However, the exposure apparatus 1 can also apply a step-and-repeat method and other exposure methods.

露光装置1は、図示しない照明光学系と、レチクル10を保持するレチクルステージ20と、投影光学系30と、ウエハ40を保持するウエハステージ50と、レーザー干渉計60a、60b及び60cと、測定部70と、調整部80と、制御部90とを備える。   The exposure apparatus 1 includes an illumination optical system (not shown), a reticle stage 20 that holds a reticle 10, a projection optical system 30, a wafer stage 50 that holds a wafer 40, laser interferometers 60a, 60b, and 60c, and a measurement unit. 70, an adjustment unit 80, and a control unit 90.

図示しない照明光学系は、波長約248nmのKrFエキシマレーザー、波長約193nmのArFエキシマレーザー、波長約157nmのFレーザーなどの光源からの光束を用いて回路パターンが形成されたレチクル10を照明する。 An illumination optical system (not shown) illuminates the reticle 10 on which a circuit pattern is formed using a light beam from a light source such as a KrF excimer laser having a wavelength of about 248 nm, an ArF excimer laser having a wavelength of about 193 nm, or an F 2 laser having a wavelength of about 157 nm. .

レチクル10は、回路パターンを有し、レチクルステージ20に支持及び駆動される。レチクル10から発せられた回折光は、投影光学系30を介して、ウエハ40に投影される。   The reticle 10 has a circuit pattern and is supported and driven by the reticle stage 20. Diffracted light emitted from the reticle 10 is projected onto the wafer 40 via the projection optical system 30.

レチクルステージ20は、レチクル10を支持し、例えば、リニアモータを利用して、レチクル10を移動させる。レチクルステージ20は、制御部90に制御され、レチクル10の位置及び姿勢の少なくとも1つを調整する機能を有する。   The reticle stage 20 supports the reticle 10 and moves the reticle 10 using, for example, a linear motor. The reticle stage 20 is controlled by the control unit 90 and has a function of adjusting at least one of the position and posture of the reticle 10.

投影光学系30は、複数の光学素子(例えば、レンズや開口絞りなどの光学要素)を含み、レチクル10のパターンをウエハ40に投影する光学系である。投影光学系30に含まれる複数の光学素子のうち一部の光学素子は、調整部80によって、位置、姿勢及び形状の少なくとも1つを調整可能に構成される。   The projection optical system 30 is an optical system that includes a plurality of optical elements (for example, optical elements such as a lens and an aperture stop) and projects the pattern of the reticle 10 onto the wafer 40. Some of the optical elements included in the projection optical system 30 are configured to be adjustable by the adjusting unit 80 at least one of position, posture, and shape.

ウエハ40は、レチクル10のパターンが投影(転写)される基板である。但し、ウエハ40は、ガラスプレートやその他の基板に置換することもできる。   The wafer 40 is a substrate onto which the pattern of the reticle 10 is projected (transferred). However, the wafer 40 can be replaced with a glass plate or other substrate.

ウエハステージ50は、ウエハ40を支持し、例えば、リニアモータを利用して、ウエハ40を移動させる。ウエハステージ50は、制御部90に制御され、ウエハ40の位置及び姿勢の少なくとも1つを調整する機能を有する。   The wafer stage 50 supports the wafer 40 and moves the wafer 40 using, for example, a linear motor. The wafer stage 50 is controlled by the control unit 90 and has a function of adjusting at least one of the position and posture of the wafer 40.

レーザー干渉計60a乃至60cは、ウエハステージ50の近傍に配置され、ウエハステージ50の位置を計測する。   The laser interferometers 60 a to 60 c are arranged in the vicinity of the wafer stage 50 and measure the position of the wafer stage 50.

測定部70は、露光装置1における光学特性、特に、投影光学系30の光学特性を測定する。測定部70は、例えば、干渉計や光強度センサを含み、投影光学系30の露光領域内の各点における波面収差を測定する機能を有する。また、測定部70は、投影光学系30の収差としてのディストーション(歪曲)を測定する機能も有する。ここで、ディストーションは、例えば、像平面上の実際の像高が理想像高からどれだけずれているかを表す量であり、像平面上(露光領域内)の各点で測定することが可能である。なお、測定部70は、当業界で周知のいかなる構成をも適用することができるので、ここでは詳しい構造及び動作の説明は省略する。   The measuring unit 70 measures the optical characteristics of the exposure apparatus 1, particularly the optical characteristics of the projection optical system 30. The measurement unit 70 includes, for example, an interferometer and a light intensity sensor, and has a function of measuring wavefront aberration at each point in the exposure area of the projection optical system 30. The measurement unit 70 also has a function of measuring distortion (distortion) as an aberration of the projection optical system 30. Here, the distortion is an amount representing how much the actual image height on the image plane is deviated from the ideal image height, and can be measured at each point on the image plane (within the exposure area). is there. The measurement unit 70 can be applied with any configuration known in the art, and a detailed description of the structure and operation is omitted here.

調整部80は、制御部90に制御され、投影光学系30に含まれる複数の光学素子のうち一部の光学素子の位置、姿勢及び形状の少なくとも1つを調整する。調整部80は、アクチュエータを含み、例えば、光軸方向(図1に示すZ軸方向)、光軸方向に垂直な方向に駆動する機構、光学素子を支持する支持部を駆動する機構、光学素子に応力(光学素子を押す力又は光学素子を引く力)を付加する機構などで構成される。   The adjustment unit 80 is controlled by the control unit 90 and adjusts at least one of the position, posture, and shape of some of the optical elements included in the projection optical system 30. The adjustment unit 80 includes an actuator, and includes, for example, a mechanism that drives in the optical axis direction (Z-axis direction shown in FIG. 1), a direction perpendicular to the optical axis direction, a mechanism that drives a support unit that supports the optical element, and an optical element. And a mechanism for applying stress (force to push the optical element or force to pull the optical element).

制御部90は、図示しないCPUやメモリを有し、露光装置1の動作を制御する。制御部90は、例えば、レチクルステージ20及びウエハステージ50のスキャン速度を制御する。また、制御部90は、本実施形態では、測定部70の測定結果に基づいて、調整部80による投影光学系30の光学素子の調整量を2次計画法又は2次錐計画法を用いて算出する。例えば、制御部90は、後述するように、調整部80に与えられる調整量に応じて光学素子を調整できたときの投影光学系30の光学特性値の理論上の変化を表す変数と、投影光学系30の光学特性値の変化の不確実性とを含む目的関数を生成する。そして、制御部90は、かかる目的関数の値が許容レベルを満たすように、光学素子の調整量を、2次計画法又は2次錐計画法を用いて算出する。なお、投影光学系30の光学特性値の変化の不確実性は、光学素子を調整したときの調整誤差によって生じるものである。更に、制御部90は、2次計画法又は2次錐計画法を用いて算出した投影光学系30の光学素子の調整量に基づいて、調整部80を制御する。   The control unit 90 includes a CPU and a memory (not shown) and controls the operation of the exposure apparatus 1. For example, the control unit 90 controls the scanning speed of the reticle stage 20 and the wafer stage 50. In the present embodiment, the control unit 90 uses the quadratic programming method or the quadratic cone programming method to adjust the adjustment amount of the optical element of the projection optical system 30 by the adjusting unit 80 based on the measurement result of the measuring unit 70. calculate. For example, as will be described later, the control unit 90 includes a variable representing a theoretical change in the optical characteristic value of the projection optical system 30 when the optical element can be adjusted according to the adjustment amount given to the adjustment unit 80, and the projection An objective function including the uncertainty of the change in the optical characteristic value of the optical system 30 is generated. Then, the control unit 90 calculates the adjustment amount of the optical element by using the quadratic programming method or the quadratic cone programming method so that the value of the objective function satisfies the allowable level. Note that the uncertainty of the change in the optical characteristic value of the projection optical system 30 is caused by an adjustment error when the optical element is adjusted. Furthermore, the control unit 90 controls the adjustment unit 80 based on the adjustment amount of the optical element of the projection optical system 30 calculated using the quadratic programming method or the quadratic cone programming method.

図2は、位置を調整可能なレチクル10、ウエハ40、投影光学系30に含まれる光学素子302及び304の可動方向(駆動方向)の一例を模式的に示す図である。レチクル10は、制御部90に制御されたレチクルステージ20を介して6自由度方向(即ち、矢印X1、Y1、Z1、ωX1、ωY1及びωZ1の方向)に位置調整される。同様に、ウエハ40は、制御部90に制御されたウエハステージ50を介して6自由度方向(即ち、矢印X4、Y4、Z4、ωX4、ωY4及びωZ4の方向)に位置調整される。光学素子302は、制御部90に制御された調整部80としての駆動機構80aを介して6自由度方向(即ち、矢印X2、Y2、Z2、ωX2、ωY2及びωZ2の方向)に位置調整される。同様に、光学素子304は、制御部90に制御された調整部80としての駆動機構80bを介して6自由度方向(即ち、矢印X3、Y3、Z3、ωX3、ωY3及びωZ3の方向)に位置調整される。   FIG. 2 is a diagram schematically illustrating an example of the movable direction (drive direction) of the optical element 302 and 304 included in the reticle 10, the wafer 40, and the projection optical system 30 that can be adjusted in position. The position of the reticle 10 is adjusted in the direction of six degrees of freedom (that is, the directions of arrows X1, Y1, Z1, ωX1, ωY1, and ωZ1) via the reticle stage 20 controlled by the control unit 90. Similarly, the position of the wafer 40 is adjusted in the six degrees of freedom direction (that is, the directions of arrows X4, Y4, Z4, ωX4, ωY4, and ωZ4) via the wafer stage 50 controlled by the control unit 90. The position of the optical element 302 is adjusted in the direction of six degrees of freedom (that is, the directions of arrows X2, Y2, Z2, ωX2, ωY2, and ωZ2) via a drive mechanism 80a as the adjustment unit 80 controlled by the control unit 90. . Similarly, the optical element 304 is positioned in a 6-degree-of-freedom direction (that is, the directions of arrows X3, Y3, Z3, ωX3, ωY3, and ωZ3) via a drive mechanism 80b as an adjustment unit 80 controlled by the control unit 90. Adjusted.

以下、投影光学系30の光学特性(波面収差等)の調整方法について説明する。図3は、露光装置1における投影光学系30の光学特性の自動調整を説明するためのフローチャートである。なお、投影光学系30の光学特性の自動調整は、制御部90が露光装置1の各部を統括的に制御することで実現される。   Hereinafter, a method for adjusting the optical characteristics (such as wavefront aberration) of the projection optical system 30 will be described. FIG. 3 is a flowchart for explaining the automatic adjustment of the optical characteristics of the projection optical system 30 in the exposure apparatus 1. Note that the automatic adjustment of the optical characteristics of the projection optical system 30 is realized by the control unit 90 controlling the respective units of the exposure apparatus 1 in an integrated manner.

図3を参照するに、S1002では、測定部70を介して投影光学系30のディストーションを測定する。同様に、S1004では、測定部70を介して投影光学系30の露光領域内のH箇所の測定点ごとに波面収差を測定する。   Referring to FIG. 3, in S <b> 1002, the distortion of the projection optical system 30 is measured via the measurement unit 70. Similarly, in S1004, the wavefront aberration is measured for each of the H measurement points in the exposure area of the projection optical system 30 via the measurement unit 70.

次に、S1006では、S1004で測定した投影光学系30の露光領域内の測定点hの波面収差をJ個のゼルニケ直交関数で展開し、各々のゼルニケ係数Zihを算出する。 Next, in S1006, the wavefront aberration at the measurement point h in the exposure area of the projection optical system 30 measured in S1004 is expanded with J Zernike orthogonal functions, and each Zernike coefficient Z ih is calculated.

次に、S1006で算出した投影光学系30の測定点hごとのゼルニケ係数(波面収差係数)から、投影光学系30の光学特性値を算出する。具体的には、S1008では、線幅非対称性、像面湾曲、非点収差などの波面収差量に対して1次の特性を有するI種の光学特性値を算出する。かかる光学特性値は、投影光学系30を構成する光学素子302及び304の調整量の1次関数で表され、本実施形態では、1次光学特性値と称する。S1010では、投影光学系30の測定点hにおけるj番目のゼルニケ係数の平方値、及び、ゼルニケ成分ごとの重み係数の積和で表される光学特性値、例えば、波面収差RMS値の平方などの波面収差量に対して2次の特性を有するM種の光学特性値を算出する。かかる光学特性値は、投影光学系30を構成する光学素子302及び304の調整量の2次関数で表され、本実施形態では、2次光学特性値と称する。   Next, the optical characteristic value of the projection optical system 30 is calculated from the Zernike coefficient (wavefront aberration coefficient) for each measurement point h of the projection optical system 30 calculated in S1006. Specifically, in S1008, a type I optical characteristic value having first-order characteristics with respect to wavefront aberration amounts such as line width asymmetry, field curvature, and astigmatism is calculated. Such an optical characteristic value is represented by a linear function of the adjustment amount of the optical elements 302 and 304 constituting the projection optical system 30 and is referred to as a primary optical characteristic value in the present embodiment. In S1010, the square value of the j-th Zernike coefficient at the measurement point h of the projection optical system 30 and the optical characteristic value represented by the product sum of the weight coefficients for each Zernike component, for example, the square of the wavefront aberration RMS value, etc. M types of optical characteristic values having secondary characteristics with respect to the amount of wavefront aberration are calculated. Such an optical characteristic value is represented by a quadratic function of adjustment amounts of the optical elements 302 and 304 constituting the projection optical system 30, and is referred to as a secondary optical characteristic value in the present embodiment.

ここで、1次光学特性値、2次光学特性値及びディストーションについて説明する。なお、以下で使用する添え字h、i、j、k及びmは、数式1乃至数式5で定義される。   Here, the primary optical characteristic value, the secondary optical characteristic value, and the distortion will be described. Note that subscripts h, i, j, k, and m used below are defined by Equations 1 to 5.

Figure 2011009575
Figure 2011009575

Figure 2011009575
Figure 2011009575

Figure 2011009575
Figure 2011009575

Figure 2011009575
Figure 2011009575

Figure 2011009575
Figure 2011009575

投影光学系30の露光領域にの測定点hにおけるi番目の1次光学特性値yihは、数式6に示すように、ゼルニケ係数の線形結合で表される。また、各調整箇所(本実施形態では、光学素子302及び304)の調整量を変化させたとき、測定点hにおけるj番目のゼルニケ係数Zjhは、数式7に示すように、k番目の調整箇所の調整量xkの線形結合で表される。但し、数式6において、aijは、i番目の1次光学特性値に対するj番目のゼルニケ係数の影響度である。また、数式7において、Z0jhは、測定点hにおけるj番目のゼルニケ係数の初期値であり、bhjkは、測定点hにおけるj番目のゼルニケ係数への各調整部の調整量xの影響度である。なお、調整箇所は、光学素子302及び304に限定されるものではなく、例えば、レチクルステージ20やウエハステージ50などを含んでもよい。 The i-th primary optical characteristic value y ih at the measurement point h in the exposure area of the projection optical system 30 is expressed by a linear combination of Zernike coefficients as shown in Equation 6. In addition, when the adjustment amount of each adjustment point (the optical elements 302 and 304 in the present embodiment) is changed, the j-th Zernike coefficient Z jh at the measurement point h is the k-th adjustment as shown in Equation 7. It is represented by a linear combination of the adjustment amounts xk of the places. In Equation 6, a ij is the degree of influence of the j-th Zernike coefficient on the i-th primary optical characteristic value. In Equation 7, Z 0jh is an initial value of the j-th Zernike coefficient at the measurement point h, and b hjk is the influence of the adjustment amount x k of each adjustment unit on the j-th Zernike coefficient at the measurement point h. Degree. The adjustment location is not limited to the optical elements 302 and 304, and may include, for example, the reticle stage 20, the wafer stage 50, and the like.

Figure 2011009575
Figure 2011009575

Figure 2011009575
Figure 2011009575

数式6と数式7から数式8が導かれる。   Equation 8 is derived from Equation 6 and Equation 7.

Figure 2011009575
Figure 2011009575

このとき、各調整箇所を調整(操作)することで生じる1次光学特性値yihの不確実性pyihを数式9で定義する。但し、数式9において、qyihkは、k番目の調整箇所を調整することで生じる1次光学特性値yihの不確実性であり、eは、k番目の調整箇所を調整(操作)するか調整しないか(非操作)を表す変数である。なお、1次光学特性値yihの不確実性qyihは、k番目の調整箇所の光学特性敏感度に調整上の公差を乗じたものである。 At this time, the uncertainty py ih of the primary optical characteristic value y ih generated by adjusting (manipulating) each adjustment point is defined by Equation 9. However, in Equation 9, qy ihk is the uncertainty of the primary optical characteristic value y ih generated by adjusting the k th adjustment location, and e k adjusts (manipulates) the k th adjustment location. This variable indicates whether or not to adjust (non-operation). The uncertainty qy ih of the primary optical characteristic value y ih is obtained by multiplying the optical characteristic sensitivity at the k-th adjustment position by an adjustment tolerance.

Figure 2011009575
Figure 2011009575

また、投影光学系30の測定点hにおけるディストーションuもk番目の調整箇所の調整量xに対して1次の関数で表される1次光学特性値である。従って、調整箇所の調整量を変化させたとき、測定点hにおけるディストーションuは、数式10に示すように、k番目の調整箇所の調整量xの線形結合で表される。但し、数式10において、u0hは、測定点hにおけるディストーションの初期値であり、chkは、測定点hにおけるディストーションへの各調整箇所の調整量xの影響度である。 Further, the distortion u h at the measurement point h of the projection optical system 30 is also a primary optical characteristic value expressed by a linear function with respect to the adjustment amount x k of the k-th adjustment location. Therefore, when the adjustment amount at the adjustment point is changed, the distortion u h at the measurement point h is expressed by a linear combination of the adjustment amount x k at the k-th adjustment point as shown in Equation 10. In Equation 10, u 0h is an initial value of distortion at the measurement point h, and c hk is the degree of influence of the adjustment amount x k of each adjustment point on the distortion at the measurement point h.

Figure 2011009575
Figure 2011009575

このとき、各調整箇所を調整することで生じるディストーションuの不確実性puを数式11で定義する。但し、数式11において、quhkは、k番目の調整箇所を調整することで生じるディストーションuの不確実性である。 At this time, the uncertainty pu h of the distortion u h generated by adjusting each adjustment point is defined by Equation 11. However, in Equation 11, qu hk is the uncertainty of distortion u h generated by adjusting the k th adjustment point.

Figure 2011009575
Figure 2011009575

一方、投影光学系30の測定点hにおけるm番目の2次光学特性値wmhは、数式12で表される。但し、数式12において、djmは、m番目の2次光学特性値に対するj番目のゼルニケ係数の影響度である。 On the other hand, the m-th secondary optical characteristic value w mh at the measurement point h of the projection optical system 30 is expressed by Equation 12. In Equation 12, d jm is the degree of influence of the jth Zernike coefficient on the mth secondary optical characteristic value.

Figure 2011009575
Figure 2011009575

数式7及び数式12から、投影光学系30の測定点hにおけるM個の2次光学特性値Wmhを表す数式13が導かれる。 From Expression 7 and Expression 12, Expression 13 representing M secondary optical characteristic values W mh at the measurement point h of the projection optical system 30 is derived.

Figure 2011009575
Figure 2011009575

このとき、各調整箇所を調整することで生じる2次光学特性値wmhの不確実性pwmhを数式14で定義する。但し、数式13において、qwmhkは、k番目の調整箇所を調整することで生じる2次光学特性値wmhの不確実性である。 At this time, the uncertainty pw mh of the secondary optical characteristic value w mh generated by adjusting each adjustment point is defined by Equation 14. However, in Equation 13, qw mhk is the uncertainty of the secondary optical characteristic value w mh generated by adjusting the k th adjustment location.

Figure 2011009575
Figure 2011009575

また、各調整箇所の調整量xには物理的限界値が存在することから、各調整箇所の調整量xは、数式15で表される。但し、数式15において、Lは、k番目の調整箇所の調整量の下限値であり、Uは、k番目の調整箇所の調整量の上限値である。 Further, since the physical limit exists in the adjusting amount x k of the adjustment locations, adjusting amount x k of each adjustment portion is represented by equation 15. However, in Equation 15, L k is the lower limit value of the adjustment amount at the k th adjustment location, and U k is the upper limit value of the adjustment amount at the k th adjustment location.

Figure 2011009575
Figure 2011009575

なお、数式6乃至数式15において、yih、u、x及びeは、未知である。一方、Zjh、Z0ij、aij、bhjk、u0h、chk、djm、L、U、pyih、pu、pwmh、qyihk、quhk及びqwmhkは、既知である。 In Expressions 6 to 15, y ih , u h , x k and e k are unknown. On the other hand, Z jh , Z 0ij , a ij , b hjk , u 0h , c hk , d jm , L k , U k , py ih , pu h , pw mh , qy ihk , qu hk and qw mhk are known. is there.

S1012では、各調整箇所の調整量を求めるための目的関数、及び、1次光学特性値、ディストーション及び2次光学特性値の制約条件式を生成する。具体的には、数式16乃至数式23で示すように、1次光学特性値、ディストーション及び各調整箇所の調整量の調整範囲について、特許文献1で提案されたダミー変数を用いた線形計画法の制約条件式を生成する。従って、数式16乃至数式23は、最適化問題の制約条件式となる。なお、数式16の右辺におけるt1i及び数式18の右辺におけるtは、1次光学特性値の上限値に対応するダミー変数である。 In step S1012, an objective function for obtaining the adjustment amount of each adjustment point, and a constraint condition expression for the primary optical characteristic value, distortion, and secondary optical characteristic value are generated. Specifically, as shown in Equations 16 to 23, the linear optical programming method using dummy variables proposed in Patent Document 1 is used for the adjustment range of the primary optical characteristic value, the distortion, and the adjustment amount of each adjustment portion. Generate constraint expression. Therefore, Equations 16 to 23 are constraint equations for the optimization problem. Note that t 1i on the right side of Equation 16 and t 2 on the right side of Equation 18 are dummy variables corresponding to the upper limit value of the primary optical characteristic value.

Figure 2011009575
Figure 2011009575

Figure 2011009575
Figure 2011009575

Figure 2011009575
Figure 2011009575

Figure 2011009575
Figure 2011009575

Figure 2011009575
Figure 2011009575

Figure 2011009575
Figure 2011009575

Figure 2011009575
Figure 2011009575

Figure 2011009575
Figure 2011009575

一方、ゼルニケ係数の重みつき2乗和で表される2次光学特性値を最小化するために、投影光学系30の測定点hにおけるj番目のゼルニケ係数の絶対値の上限Zajhを数式24及び数式25で表す。 On the other hand, in order to minimize the secondary optical characteristic value expressed by the weighted square sum of the Zernike coefficient, the upper limit Z ajh of the absolute value of the j-th Zernike coefficient at the measurement point h of the projection optical system 30 is expressed by Equation 24. And Expression 25.

Figure 2011009575
Figure 2011009575

Figure 2011009575
Figure 2011009575

数式24及び数式25から明らかなように、上限Zajhは常に非負である。 As is clear from Equations 24 and 25, the upper limit Z ajh is always non-negative.

ここで、数式26乃至数式28に示す制約条件式を追加する。数式26及び数式27の右辺におけるt3mは、2次光学特性値の上限値に対応するダミー変数である。 Here, the constraint condition expressions shown in Expressions 26 to 28 are added. T 3m on the right side of Expression 26 and Expression 27 is a dummy variable corresponding to the upper limit value of the secondary optical characteristic value.

Figure 2011009575
Figure 2011009575

Figure 2011009575
Figure 2011009575

Figure 2011009575
Figure 2011009575

また、調整箇所を調整したときに生じる光学特性値の不確実性の上限値を以下の数式29乃至31で表す。なお、数式29の右辺におけるs1iは、1次光学特性値の不確実性の上限値に対応するダミー変数である。数式30の右辺におけるsは、ディストーションの不確実性の上限値に対応するダミー変数である。数式31の右辺におけるs3mは、2次光学特性値の不確実性の上限値に対応するダミー変数である。 Moreover, the upper limit value of the uncertainty of the optical characteristic value generated when the adjustment location is adjusted is expressed by the following mathematical formulas 29 to 31. Note that s 1i on the right side of Equation 29 is a dummy variable corresponding to the upper limit value of the uncertainty of the primary optical characteristic value. S 2 on the right side of Equation 30 is a dummy variable corresponding to the upper limit value of distortion uncertainty. S 3m on the right side of Equation 31 is a dummy variable corresponding to the upper limit value of the uncertainty of the secondary optical characteristic value.

Figure 2011009575
Figure 2011009575

Figure 2011009575
Figure 2011009575

Figure 2011009575
Figure 2011009575

このようにして、最小化したい目的関数を数式32で表せば、以下に示す制約2次計画問題が生成される。但し、Yは、i番目の1次光学特性値の許容値であり、Uは、ディストーションの許容値であり、Wは、m番目の2次光学特性値の許容値である。 In this way, if the objective function to be minimized is expressed by Equation 32, the following constraint quadratic programming problem is generated. Here, Y i is an allowable value of the i-th primary optical characteristic value, U is an allowable value of distortion, and W m is an allowable value of the m-th secondary optical characteristic value.

Figure 2011009575
Figure 2011009575

S1014では、S1012で生成した制約2次計画問題に対して、制約2次計画法の計算プログラム(制約2次計画ソルバ)を用いて最適化計算を行い、各調整箇所(光学素子302及び304)の調整量を算出する。数式32で示される目的関数においては、投影光学系30の各光学特性をバランスよく最適化するために、各光学特性値を許容値で除して正規化するとよい。これにより、いずれの光学特性値も評価量が1以下で許可、1を超えると不許可となり、複数の収差をバランスよく最小化することができる。   In S1014, optimization calculation is performed on the constrained quadratic programming problem generated in S1012 using a constrained quadratic programming calculation program (constraint quadratic programming solver), and each adjustment location (optical elements 302 and 304). The adjustment amount is calculated. In the objective function expressed by Equation 32, in order to optimize each optical characteristic of the projection optical system 30 with good balance, each optical characteristic value may be normalized by dividing by an allowable value. Accordingly, any optical characteristic value is permitted when the evaluation amount is 1 or less, and is not permitted when the evaluation value exceeds 1, and a plurality of aberrations can be minimized in a balanced manner.

S1016では、S1014で算出した各調整箇所の調整量に基づいて、各調整箇所を調整する。具体的には、調整部80を介して、投影光学系30の光学素子302及び304のそれぞれについて、位置、姿勢及び形状などを調整する。これにより、投影光学系30の光学特性が調整される(即ち、投影光学系30の収差が補正される)。   In S1016, each adjustment location is adjusted based on the adjustment amount of each adjustment location calculated in S1014. Specifically, the position, posture, shape, and the like of each of the optical elements 302 and 304 of the projection optical system 30 are adjusted via the adjustment unit 80. Thereby, the optical characteristic of the projection optical system 30 is adjusted (that is, the aberration of the projection optical system 30 is corrected).

このように、本実施形態における投影光学系30の光学特性の調整方法によれば、光学特性値を変化させる素子を調整することで生じる光学特性値の不確実性を考慮して、素子の調整量を求めることができる。また、非常に簡易な処理でありながら、素子の調整を行うかどうかを含めて、露光領域内の各点毎(即ち、露光領域内全体)の光学特性値を適正な範囲(即ち、許容範囲)に維持するための各部の調整量を得ることができる。   As described above, according to the method for adjusting the optical characteristics of the projection optical system 30 in the present embodiment, the element adjustment is performed in consideration of the uncertainty of the optical characteristic value generated by adjusting the element that changes the optical characteristic value. The amount can be determined. In addition, the optical characteristic value for each point in the exposure area (that is, the entire exposure area) is set to an appropriate range (that is, an allowable range) including whether or not to adjust the element, even though it is a very simple process. It is possible to obtain the adjustment amount of each part for maintaining the above.

上述したように、制御変数である各調整箇所の調整量xには、ウエハステージ50の調整量(例えば、フォーカス調整やアライメント調整における調整量)も含めることが可能である。従って、投影光学系30の露光領域内の各点の波面収差にデフォーカス成分が含まれる場合にも、本実施形態の投影光学系30の調整方法によれば、かかるデフォーカス成分の影響を受けることなく、各調整箇所の調整量を得ることができる。同様に、投影光学系30の露光領域内の各点のディストーションにアライメント成分が含まれる場合にも、本実施形態の投影光学系30の調整方法によれば、かかるアライメント成分の影響を受けることなく、各調整箇所の調整量を得ることができる。 As described above, the adjustment amount x k of the adjustment locations, which is a control variable, the adjustment amount of the wafer stage 50 (e.g., adjusting the amount of focus adjustment and alignment adjustment) can also be included. Therefore, even when the wavefront aberration at each point in the exposure area of the projection optical system 30 includes a defocus component, the adjustment method of the projection optical system 30 according to the present embodiment is affected by the defocus component. The amount of adjustment at each adjustment point can be obtained without any problem. Similarly, even when an alignment component is included in the distortion of each point in the exposure area of the projection optical system 30, according to the adjustment method of the projection optical system 30 of the present embodiment, the alignment component is not affected. The amount of adjustment at each adjustment point can be obtained.

また、図4に示すように、2次錐計画法を用いて投影光学系30の光学特性の自動調整を行ってもよい。図4は、露光装置1における投影光学系30の光学特性の自動調整を説明するためのフローチャートである。なお、投影光学系30のディストーションの測定(S1002)、投影光学系30の波面収差の測定(S1004)、ゼルニケ係数の算出(S1006)、1次光学特性値の算出(S1008)及び2次光学特性値の算出(S1010)は、上述した通りである。   Moreover, as shown in FIG. 4, you may perform the automatic adjustment of the optical characteristic of the projection optical system 30 using a secondary cone planning method. FIG. 4 is a flowchart for explaining the automatic adjustment of the optical characteristics of the projection optical system 30 in the exposure apparatus 1. Measurement of distortion of the projection optical system 30 (S1002), measurement of wavefront aberration of the projection optical system 30 (S1004), calculation of Zernike coefficients (S1006), calculation of primary optical characteristic values (S1008), and secondary optical characteristics The value calculation (S1010) is as described above.

S1012Aでは、各調整箇所の調整量を求めるための目的関数、及び、1次光学特性値、ディストーション及び2次光学特性値の制約条件式を生成する。具体的には、数式16乃至数式31を以下に示す等価な式(数式33乃至数式45)に変形する。これにより、2次錐計画問題が生成される。   In S1012A, an objective function for obtaining an adjustment amount at each adjustment location, and a constraint condition expression for the primary optical characteristic value, distortion, and secondary optical characteristic value are generated. Specifically, Formula 16 to Formula 31 are transformed into the following equivalent formulas (Formula 33 to Formula 45). As a result, a secondary cone planning problem is generated.

Figure 2011009575
Figure 2011009575

ここで、数式33乃至数式45において、X、Bhm、αhm及びβhmは、以下の数式46乃至数式49で表される。 Here, in Expressions 33 to 45, X, B hm , α hm, and β hm are expressed by Expressions 46 to 49 below.

Figure 2011009575
Figure 2011009575

Figure 2011009575
Figure 2011009575

Figure 2011009575
Figure 2011009575

Figure 2011009575
Figure 2011009575

S1014Aでは、S1012Aで生成した2次錐計画問題に対して、2次錐計画法の計算プログラム(2次錐計画ソルバ)を用いて最適化計算を行い、各調整箇所(光学素子302及び304)の調整量を算出する。   In S1014A, the second-order cone planning problem generated in S1012A is subjected to optimization calculation using a second-order cone programming calculation program (secondary cone planning solver), and each adjustment location (optical elements 302 and 304). The adjustment amount is calculated.

S1016では、S1014Aで算出した各調整箇所の調整量に基づいて、各調整箇所を調整する。具体的には、調整部80を介して、投影光学系30の光学素子302及び304のそれぞれについて、位置、姿勢及び形状などを調整する。これにより、投影光学系30の光学特性が調整される(即ち、投影光学系30の収差が補正される)。   In S1016, each adjustment location is adjusted based on the adjustment amount of each adjustment location calculated in S1014A. Specifically, the position, posture, shape, and the like of each of the optical elements 302 and 304 of the projection optical system 30 are adjusted via the adjustment unit 80. Thereby, the optical characteristic of the projection optical system 30 is adjusted (that is, the aberration of the projection optical system 30 is corrected).

このように、2次錐計画法を用いても、光学特性値を変化させる素子を調整することで生じる光学特性値の不確実性を考慮して、素子の調整量を求めることができる。   As described above, even when the second-order cone programming method is used, the adjustment amount of the element can be obtained in consideration of the uncertainty of the optical characteristic value generated by adjusting the element that changes the optical characteristic value.

露光において、光源から発せられた光束は、照明光学系によってレチクル10を照明する。レチクル10のパターンを反映する光束は、投影光学系30によってウエハ40上に結像する。この際、投影光学系30は、上述した調整方法によって、露光領域内の光学特性が最適となるように調整されているため、優れた結像性能でレチクル10のパターンをウエハ40に投影することができる。従って、露光装置1は、高いスループットで経済性よく高品位なデバイス(半導体素子、LCD素子、撮像素子(CCDなど)、薄膜磁気ヘッドなど)を提供することができる。かかるデバイスは、露光装置1を用いてフォトレジスト(感光剤)が塗布された基板(ウエハ、ガラスプレート等)を露光する工程と、露光された基板を現像する工程と、その他の周知の工程と、を経ることによって製造される。   In the exposure, the light beam emitted from the light source illuminates the reticle 10 by the illumination optical system. The light beam reflecting the pattern of the reticle 10 is imaged on the wafer 40 by the projection optical system 30. At this time, the projection optical system 30 is adjusted so that the optical characteristics in the exposure region are optimized by the adjustment method described above, and therefore the pattern of the reticle 10 is projected onto the wafer 40 with excellent imaging performance. Can do. Therefore, the exposure apparatus 1 can provide a high-quality device (semiconductor element, LCD element, imaging element (CCD, etc.), thin film magnetic head, etc.) with high throughput and high cost efficiency. Such a device includes a step of exposing a substrate (wafer, glass plate, etc.) coated with a photoresist (photosensitive agent) using the exposure apparatus 1, a step of developing the exposed substrate, and other known steps. , Manufactured by going through.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。   As mentioned above, although preferable embodiment of this invention was described, it cannot be overemphasized that this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.

Claims (8)

レチクルのパターンを介して基板を露光する露光装置であって、
位置、姿勢及び形状の少なくとも1つを調整可能な光学素子を含み、前記パターンからの光を前記基板に投影する投影光学系と、
前記光学素子の位置、姿勢及び形状の少なくとも1つを調整する調整部と、
前記調整部に与えられる前記光学素子の調整量に応じて前記光学素子を調整できたときの前記投影光学系の光学特性値の理論上の変化を表す変数と、前記調整部が前記光学素子を調整したときの調整誤差によって生じる前記投影光学系の光学特性値の変化の不確実性とを含む目的関数の値が許容レベルを満たすように、前記光学素子の調整量を2次計画法又は2次錐計画法を用いて算出し、当該算出した調整量に基づいて前記調整部を制御する制御部と、
を有することを特徴とする露光装置。
An exposure apparatus that exposes a substrate through a reticle pattern,
A projection optical system that includes an optical element capable of adjusting at least one of position, posture, and shape, and that projects light from the pattern onto the substrate;
An adjustment unit for adjusting at least one of the position, posture and shape of the optical element;
A variable representing a theoretical change in an optical characteristic value of the projection optical system when the optical element can be adjusted according to an adjustment amount of the optical element given to the adjustment unit; and The adjustment amount of the optical element is set to a quadratic programming method or 2 so that the value of the objective function including the uncertainty of the change in the optical characteristic value of the projection optical system caused by the adjustment error when adjusted is satisfied. A control unit that calculates using a next cone programming method, and controls the adjustment unit based on the calculated adjustment amount;
An exposure apparatus comprising:
前記目的関数は、前記不確実性を、前記調整部が前記光学素子を調整したときの調整誤差によって生じる前記投影光学系の光学特性値の変化と前記調整部による前記光学素子の調整を行うかどうかを表す変数との積の項として含むことを特徴とする請求項1に記載の露光装置。   Whether the objective function performs the uncertainty by adjusting the optical element value by the adjustment unit and the change of the optical characteristic value of the projection optical system caused by an adjustment error when the adjustment unit adjusts the optical element. The exposure apparatus according to claim 1, wherein the exposure apparatus includes a product term with a variable representing whether or not. 前記調整部は、アクチュエータを含み、
前記不確実性は、前記アクチュエータに前記光学素子の調整量を与えたときに、前記アクチュエータが与えられた光学素子の調整量に従って前記光学素子を調整したときの調整誤差によって生じる前記投影光学系の光学特性値の変化であることを特徴とする請求項1に記載の露光装置。
The adjustment unit includes an actuator,
The uncertainty is caused by an adjustment error caused when the optical element is adjusted according to the adjustment amount of the optical element given by the actuator when the adjustment amount of the optical element is given to the actuator. The exposure apparatus according to claim 1, wherein the exposure apparatus is a change in optical characteristic value.
前記光学特性値は、波面収差係数の線形結合で表される光学特性の値、前記投影光学系の収差としてのディストーションの値、波面収差係数の重みつき2乗和で表される光学特性の値及び波面収差RMS値の平方の少なくとも1つを含むことを特徴とする請求項1乃至3のうちいずれか1項に記載の露光装置。   The optical characteristic value is an optical characteristic value represented by a linear combination of wavefront aberration coefficients, a distortion value as an aberration of the projection optical system, and an optical characteristic value represented by a weighted square sum of wavefront aberration coefficients. 4. The exposure apparatus according to claim 1, further comprising at least one of a square of the wavefront aberration RMS value. 5. 前記波面収差係数は、ゼルニケ係数であることを特徴とする請求項4に記載の露光装置。   5. The exposure apparatus according to claim 4, wherein the wavefront aberration coefficient is a Zernike coefficient. 位置、姿勢及び形状の少なくとも1つを調整可能な光学素子を含み、レチクルのパターンからの光を基板に投影する投影光学系の調整方法であって、
前記光学素子の調整量に応じて前記光学素子を調整できたときの前記投影光学系の光学特性値の理論上の変化を表す変数と、前記光学素子を調整したときの調整誤差によって生じる前記投影光学系の光学特性値の変化の不確実性とを含む目的関数を生成する生成ステップと、
前記生成ステップで生成した目的関数の値が許容レベルを満たすように、前記光学素子の調整量を、2次計画法又は2次錐計画法を用いて算出する算出ステップと、
前記算出ステップで算出した調整量に基づいて、前記光学素子を調整する調整ステップと、
を有することを特徴とする調整方法。
A method for adjusting a projection optical system, which includes an optical element capable of adjusting at least one of position, posture, and shape, and projects light from a reticle pattern onto a substrate,
The projection caused by a variable representing a theoretical change in the optical characteristic value of the projection optical system when the optical element can be adjusted according to the adjustment amount of the optical element and an adjustment error when adjusting the optical element A generating step for generating an objective function including an uncertainty of a change in an optical characteristic value of the optical system;
A calculation step of calculating the adjustment amount of the optical element using a quadratic programming method or a quadratic cone programming method so that the value of the objective function generated in the generating step satisfies an allowable level;
An adjustment step of adjusting the optical element based on the adjustment amount calculated in the calculation step;
The adjustment method characterized by having.
前記不確実性は、前記光学素子を調整するアクチュエータに前記光学素子の調整量を与えたときに、前記アクチュエータが与えられた光学素子の調整量に従って前記光学素子を調整したときの調整誤差によって生じる前記投影光学系の光学特性値の変化であることを特徴とする請求項1に記載の調整方法。   The uncertainty is caused by an adjustment error when the optical element is adjusted in accordance with the adjustment amount of the optical element given to the actuator that adjusts the optical element when the adjustment amount of the optical element is given to the actuator that adjusts the optical element. The adjustment method according to claim 1, wherein the adjustment is a change in an optical characteristic value of the projection optical system. 請求項1乃至5のうちいずれか1項に記載の露光装置を用いて基板を露光するステップと、
露光された前記基板を現像するステップと、
を有することを特徴とするデバイスの製造方法。
Exposing the substrate using the exposure apparatus according to any one of claims 1 to 5,
Developing the exposed substrate;
A device manufacturing method characterized by comprising:
JP2009152852A 2009-06-26 2009-06-26 Exposure apparatus, adjustment method, and device manufacturing method Expired - Fee Related JP5418768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009152852A JP5418768B2 (en) 2009-06-26 2009-06-26 Exposure apparatus, adjustment method, and device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009152852A JP5418768B2 (en) 2009-06-26 2009-06-26 Exposure apparatus, adjustment method, and device manufacturing method

Publications (3)

Publication Number Publication Date
JP2011009575A true JP2011009575A (en) 2011-01-13
JP2011009575A5 JP2011009575A5 (en) 2012-08-16
JP5418768B2 JP5418768B2 (en) 2014-02-19

Family

ID=43565871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009152852A Expired - Fee Related JP5418768B2 (en) 2009-06-26 2009-06-26 Exposure apparatus, adjustment method, and device manufacturing method

Country Status (1)

Country Link
JP (1) JP5418768B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013856A1 (en) * 2012-07-19 2014-01-23 Canon Kabushiki Kaisha Exposure apparatus, method of obtaining amount of regulation of object to be regulated, program, and method of manufacturing article

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367886A (en) * 2001-06-06 2002-12-20 Canon Inc Aligner optimally adjusted by linear programming and adjusting method therefor
JP2005268451A (en) * 2004-03-17 2005-09-29 Canon Inc Aligner, adjusting method therefor and device manufacturing method
JP2009094178A (en) * 2007-10-05 2009-04-30 Canon Inc Method of determining distortion adjustment amount, method of determining adjustment amount of shot arrangement, exposure apparatus and device manufacturing method
JP2009105097A (en) * 2007-10-19 2009-05-14 Tokyo Univ Of Agriculture & Technology Exposure apparatus, and method of manufacturing device
JP2009117556A (en) * 2007-11-05 2009-05-28 Canon Inc Exposure apparatus and device fabrication method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367886A (en) * 2001-06-06 2002-12-20 Canon Inc Aligner optimally adjusted by linear programming and adjusting method therefor
JP2005268451A (en) * 2004-03-17 2005-09-29 Canon Inc Aligner, adjusting method therefor and device manufacturing method
JP2009094178A (en) * 2007-10-05 2009-04-30 Canon Inc Method of determining distortion adjustment amount, method of determining adjustment amount of shot arrangement, exposure apparatus and device manufacturing method
JP2009105097A (en) * 2007-10-19 2009-05-14 Tokyo Univ Of Agriculture & Technology Exposure apparatus, and method of manufacturing device
JP2009117556A (en) * 2007-11-05 2009-05-28 Canon Inc Exposure apparatus and device fabrication method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013856A1 (en) * 2012-07-19 2014-01-23 Canon Kabushiki Kaisha Exposure apparatus, method of obtaining amount of regulation of object to be regulated, program, and method of manufacturing article
JP2014022613A (en) * 2012-07-19 2014-02-03 Canon Inc Exposure equipment, method for calculating adjustment amount of adjustment object, program and method for manufacturing device
US9310695B2 (en) 2012-07-19 2016-04-12 Canon Kabushiki Kaisha Exposure apparatus, method of obtaining amount of regulation of object to be regulated, program, and method of manufacturing article

Also Published As

Publication number Publication date
JP5418768B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP5105474B2 (en) Exposure apparatus and device manufacturing method
US6646729B2 (en) Method of measuring aberration in an optical imaging system
US7262831B2 (en) Lithographic projection apparatus and device manufacturing method using such lithographic projection apparatus
TWI397779B (en) Method for reducing a wave front aberration, and computer program product
JP4352458B2 (en) Projection optical system adjustment method, prediction method, evaluation method, adjustment method, exposure method and exposure apparatus, exposure apparatus manufacturing method, program, and device manufacturing method
US7403264B2 (en) Lithographic projection apparatus and a device manufacturing method using such lithographic projection apparatus
US9551938B2 (en) Light source optimizing method, exposure method, device manufacturing method, program, exposure apparatus, lithography system, light source evaluation method, and light source modulation method
US20050210438A1 (en) Modification of an image of a pattern during an imaging process
JP2008244494A (en) Method of adjusting focusing characteristics, exposure method and exposure device, program, information recording medium, method of manufacturing device, and manufacturing method
US8237913B2 (en) Lithographic apparatus and method
CN101762988A (en) Optimization method and a lithographic cell
US8634061B2 (en) Exposure apparatus and device manufacturing method
KR20200012975A (en) Projection exposure method and projection exposure apparatus for microlithography
JP6554141B2 (en) Determination method, exposure method, information processing apparatus, program, and article manufacturing method
JP2008283178A (en) Lithographic apparatus and method
JP2009194107A (en) Generation method for database of effective light-source shape, optical-image calculation method, program, exposure method, and device manufacturing method
JP2009218492A (en) Method of measuring wavefront error, method of adjusting wavefront error, and method of manufacturing semiconductor device
JP4793683B2 (en) Calculation method, adjustment method, exposure method, image forming state adjustment system, and exposure apparatus
TWI675259B (en) Photolithography system, simulation device, and pattern forming method
JP5969848B2 (en) Exposure apparatus, method for obtaining adjustment amount for adjustment, program, and device manufacturing method
JP5418768B2 (en) Exposure apparatus, adjustment method, and device manufacturing method
US6897947B1 (en) Method of measuring aberration in an optical imaging system
WO2012060099A1 (en) Light source adjustment method, exposure method, device manufacturing method, illumination optical system, and exposure device
JP2007165845A (en) Exposure method and apparatus, and method of manufacturing device
JP2003045795A (en) Optical characteristics measurement method, adjustment and exposure method of projection optical system, and manufacturing method of aligner

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120626

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131105

R150 Certificate of patent or registration of utility model

Ref document number: 5418768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees