JP2011009466A - 固体撮像装置及び電子機器 - Google Patents

固体撮像装置及び電子機器 Download PDF

Info

Publication number
JP2011009466A
JP2011009466A JP2009151466A JP2009151466A JP2011009466A JP 2011009466 A JP2011009466 A JP 2011009466A JP 2009151466 A JP2009151466 A JP 2009151466A JP 2009151466 A JP2009151466 A JP 2009151466A JP 2011009466 A JP2011009466 A JP 2011009466A
Authority
JP
Japan
Prior art keywords
region
solid
state imaging
imaging device
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009151466A
Other languages
English (en)
Inventor
Kimihiko Sato
公彦 佐藤
Tetsuya Iizuka
哲也 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2009151466A priority Critical patent/JP2011009466A/ja
Publication of JP2011009466A publication Critical patent/JP2011009466A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】固体撮像装置において、画素セルが微細化されても取り扱い信号電荷量を確保する。
【解決手段】光電変換部を有する複数の画素42が配列された画素領域を備える。
光電変換部は、半導体基板43の表面側の第1導電型半導体領域61と、半導体基板43の内部側の第2導電型電荷蓄積領域63と、両領域61及び63との間に挟まれた真性半導体領域62、又は第2導電型電荷蓄積領域63より低不純物濃度のp型半導体領域とを有する。
【選択図】図3

Description

本発明は、固体撮像装置、及びこの固体撮像装置を備えたカメラ等に適用される電子機器に関する。
固体撮像装置として、CMOS(Complementary Metal Oxide Semiconductor)等のMOS型イメージセンサに代表される増幅型固体撮像装置知られている。また、CCD(Charge Coupled Device)イメージセンサに代表される電荷転送型固体撮像装置が知られている。これら固体撮像装置は、各種携帯端末機器、デジタルスチルカメラ、デジタル一眼レフカメラ、デジタルビデオカメラなどの画像入力装置として使用されている。
MOS固体撮像装置は、光電変換部となるフォトダイオードと複数の画素トランジスタからなる複数の画素が2次元マトリクス状に配列されて構成される。最近では、画素の微細化に伴い、1画素当りの画素トランジスタの占める面積を抑制するために、画素トランジスタの一部を複数の画素で共有させた、いわゆる複数画素共有構造が提案されている。
CCD固体撮像装置は、光電変換部となるフォトダイオードとCCD構造の垂直転送レジスタの一部とからなる複数の画素が2次元マトリクス状に配列されて構成される。垂直転送レジスタは、光電変換部(受光部)の列毎に配置される。これら垂直転送レジスタがCCD構造の水平転送レジスタに接続され、さらに、水平転送レジスタの終段に接続されたフローティングディフージョン部が出力部に接続される。
図11及び図12に、従来のMOS固体撮像装置の一例を示す。図11は、1画素(単位画素セル)を構成する光電変換部(受光部)と転送トランジスタを含む領域の概略平面構造を示し、図12は、図11のA−A線上の概略断面構造を示す。この固体撮像装置1は、例えばn型の半導体基板3に形成したp型の半導体ウェル領域4に、光電変換部となるフォトダイオード(受光部)5と、複数の画素トランジスタから成る単位画素2を有する。固体撮像装置1では、この単位画素が複数、2次元マトリクス状に配列して構成される。画素2におけるフォトダイオード5の下方には、n型半導体基板3に接するp型のオーバーフローパス領域6が形成される。図11及び図12では、画素トランジスタのうちの転送トランジスタTr1が形成される。
フォトダイオード5は、n型半導体領域による電荷蓄積領域8と、このn型電荷蓄積領域8に接して基板表面に臨む高不純物濃度のp型半導体領域(p半導体領域)9とから構成される。転送トランジスタTr1は、n型半導体領域によるフローティングディフージョン部(FD)11と、フローティングディフージョン部11とフォトダイオード5との間にゲート絶縁膜12を介して形成された転送ゲート電極13とにより形成される。隣り合う画素2の間には、素子分離領域7が形成される。基板表面上には、層間絶縁膜14を介して複数層の配線15を配置した多層配線層16が形成され、各層の配線15がヴィアコンタクトを介して回路的に接続される。すなわち、配線15が所要の半導体領域あるいはゲート電極等に接続される。この多層配線層16上には、平坦化膜17を介してオンチップカラーフィルタ17及びその上のオンチップマイクロレンズ19が形成される。
受光部を構成するフォトダイオードとして、高不純物濃度のp型半導体領域の下にn型電荷蓄積領域を形成して、pn接合を形成するようにしたフォトダイオードを備えた固体撮像装置は、例えば特許文献1などで知られている。特許文献1の固体撮像装置はCCD固体撮像装置である。この固体撮像装置では、フォトダイオードの高不純物濃度のp型半導体領域を2段に形成し、フォトダイオードと垂直転送レジスタ側のとの境箇所での電界強度を緩和して、垂直転送レジスタへの信号電荷の読み出し効率を向上するようにしている。
特開2003−318383号公報
近年、固体撮像装置においては、多画素化が進み、画素セルが微細化されるにつれて、単位画素セル当りの取り扱い信号電荷量Qsを確保することが大きな課題となっている。加えて、高画質化を考える上では、さらなる取り扱い信号電荷量Qsの増加が要求されている。取り扱い信号電荷量Qsの確保や増加は、S/N比の向上に密接に係わっており、相対的なノイズの改善を行う上で非常に重要である。
取り扱い信号電荷量Qsを増やすには、n型電荷蓄積領域8の不純物濃度を上げることで可能になる。しかし、この構成はいくつかの不都合な副作用を伴う。例えば、n型電荷蓄積領域8の不純物濃度を上げることにより、基板表面近傍のpn接合間の最大電界が強くなる。これは、点欠陥や暗時ノイズと係わっており、画質の悪化に繋がる。
また、フォトダイオードはでは、電荷のダイナミックなオーバーフロー現象により、フォトダイオードから読み出される間に多くの電荷が消失する。このオーバーフローにおけるパスのポテンシャルが、例えば表面のpn接合部(つまりpn接合部)と同等のポテンシャル深さで形成されるならば、p半導体領域への空乏層はあまり伸びない。これにより、オーバーフローでバリアハイトが形成されるまでの間にn型電荷蓄積領域のpn接合端の信号電荷が消失してしまう。
図13を用いて更に説明する。図13Aは、空間電荷分布を示す。縦軸に不純物濃度、横軸に基板表面からの深さ(d)を夫々示す。ρpはp半導体領域9側の空間電荷量、ρnはn型電荷蓄積領域8側の空間電荷量である。この空間電荷量ρpとρnを表す面積は、互いに釣り合っている。なお、ρn′は、オーバーフローパス領域での空間電荷量ρp′(図示せず)と釣り合うようにn型電荷蓄積領域8側に生じる空間電荷量である。
この空間電荷分布を積分して、図13Bの電界が得られる。図13Bにおいて、縦軸に電界強度、横軸に基板表面からの深さ(d)をそれぞれ示す。pn接合部が最大電界強度となる。
図13Cは、ポテンシャル分布を示す。ポテンシャル分布は上記電界分布を積分して得られる。フォトダイオード5に光が入射され、光電変換して生成した電子・正孔対のうち、信号電荷となる電子がn型電荷蓄積領域8のポテンシャルに蓄積される。信号電荷は、蓄積されて行き、オーバーフローパスのポテンシャルφbを超えると、基板3側にオーバーフローする。ここで、電荷蓄積がオーバーフローパスのポテンシャルφbと同レベルになっても、熱等の要因で、ある一定の確率で電荷がオーバーフローパスのポテンシャルφbを越えて信号電荷が減少し、障壁、すなわちバリアハイトΔφが生じる。このバリアハイトΔφは、初期段階で急激に電荷がオーバーフローして形成される。以後電荷はゆっくりと減少して行く。
そして、p+n構造のフォトダイオード5では、図13Cのポテンシャル分布で示すように、バリアハイトΔφがn型電荷蓄積領域8内のポテンシャル変化で形成され易くなり、電荷の蓄積に寄与しない領域Aに蓄積された電荷e′が消失されることになる。
一方、n型電荷蓄積領域8の不純物濃度を高くすると、pn接合部の電界強度が強くなり、点欠陥や暗時ノイズが増え、画質が劣化する。また、pn接合の電界強度が強くなると、pn接合部近傍のポテンシャル勾配が急峻になり、接合容量が大きくなる。接合容量が大きくなった分、放電が増えることになり、バリアハイトΔφが出来るまでの間に抜ける電荷量が多くなってしまう。
このように、n型電荷蓄積領域8の不純物濃度を単に高くするだけでは、取り扱い信号電荷量が増加する反面、画質の悪化を伴う可能性が高く、結果としてさらなる問題を引き起こす。
特許文献1では、フォトダイオードを構成するp半導体領域を2段階で形成しており、垂直転送レジスタ側の電界の緩和が見込まれる。しかしながら、特許文献1の構成では、フォトダイオードのp半導体領域とn型電荷蓄積領域(文献中p層とn層)が同程度の濃度で構成されている。従って、pn接合部の最大電界強度を、p+半導体領域を1段階で形成したものと同程度にした場合、特許文献1の構成では、センサポテンシャルを深く作れる効果が薄く、取り扱い信号電荷量Qsの増加はそれほど見込めない。
本発明は、上述の点に鑑み、pn接合部の最大電界強度を維持した場合に、ダイナミックなオーバーフロー後の取り扱い信号電荷量Qsの向上を図った固体撮像装置及び、この固体撮像装置を備えたカメラ等の電子機器を提供するものである。
本発明に係る固体撮像装置は、光電変換部を有する複数の画素が配列された画素領域を備える。光電変換部は、半導体基板の表面側の第1導電型半導体領域と、半導体基板の内部側に第2導電型電荷蓄積領域と、第1導電型半導体領域と第2導電型電荷蓄積領域との間に挟まれた真性半導体領域とを有する。
本発明の固体撮像装置では、光電変換部が、第1導電型半導体領域と第2導電型電荷蓄積領域との間に真性半導体領域を挟んだ、いわゆるpin構造で形成される。この構成により、最大電界強度を維持したときに、バリアハイトが真性半導体領域内のポテンシャル変化で形成れ、バリアハイトが形成される間に消失する電荷が低減する。また、第2導電型電荷蓄積領域のポテンシャルが深くなる。
本発明に係る固体撮像装置は、光電変換部を有する複数の画素が配列された画素領域を備える。光電変換部は、半導体基板の表面側の第1の第1導電型半導体領域と、半導体基板の内部側の導電型電荷蓄積領域を有する。さらに、第1の第1導電型半導体領域と第2導電型電荷蓄積領域との間に挟まれ、第2導電型電荷蓄積領域より低不純物濃度の第2の第1導電型半導体領域とを有する。
本発明の固体撮像装置では、光電変換部が、第1の第1導電型半導体領域と第2導電型電荷蓄積領域との間に第2導電型半導体領域より低不純物濃度の第2の第導電1方半導体領域を挟んだ、いわゆるpn構造で形成される。この構成により、最大電界強度を維持したときに、バリアハイトが第2の第1導電型半導体領域内のポテンシャル変化で形成れ、バリアハイトが形成される間に消失する電荷が低減する。また、第2導電型電荷蓄積領域のポテンシャルが深くなる。
本発明に係る電子機器は、光学系と、固体撮像装置と、固体撮像装置の出力信号を処理する信号処理回路を備える。固体撮像装置は、上記本発明の何れかの固体撮像装置で形成される。
本発明の電子機器では、固体撮像装置として上記本発明の固体撮像装置を備える。従って、光電変換部における最大電界強度を維持したとき、バリアハイトが真性半導体領域、あるいは第2の第1導電型半導体領域内のポテンシャル変化で形成れ、第2導電型電荷蓄積領域のポテンシャルが深くなり、取り扱い信号電荷量Qsが増える。
本発明に係る固体撮像装置によれば、光電変換部となるフォトダイオードの接合部の最大電界強度を維持した場合に、ダイナミックなオーバーフロー後の取り扱い信号電荷量Qsを向上することができる。
本発明に係る電子機器によれば、本発明の固体撮像装置を備えるので、ダイナミックなオーバーフロー後の取り扱い信号電荷量Qsが向上し、高品質の電子機器を提供できる。
本発明に適用されるMOS固体撮像装置の一例を示す概略構成図である。 本発明に係る固体撮像装置の第1実施の形態の要部の概略平面図である。 図2のA−A線上の断面図である。 A〜C 第1実施の形態の説明に供する空間電荷分布、電界分布、ポテンシャル分布を示す図である。 第1実施の形態のポテンシャル分布と従来構成のポテンシャルとを比較したポテンシャル分布図である。 本発明に係る固体撮像装置の第2実施の形態の要部の概略平面図である。 図6のA−A線上の断面図である。 A〜C 第2実施の形態の説明に供する空間電荷分布、電界分布、ポテンシャル分布を示す図である。 第2実施の形態のポテンシャル分布と従来構成のポテンシャルとを比較したポテンシャル分布図である。 本発明の第3実施の形態に係る電子機器の概略構成図である。 従来の固体撮像装置の要部を示す概略構成図である。 図11のA−A線上の断面図である。 従来例の説明に供する空間電荷分布、電界分布、ポテンシャル分布を示す図である。
以下、発明を実施するための形態(以下実施の形態とする)について説明する。なお、説明は以下の順序で行う。
1. MOS固体撮像装置の概略構成例
2. 第1実施の形態(固体撮像装置の構成例)
3. 第2実施の形態(固体撮像装置の構成例)
4. 第3実施の形態(電子機器の構成例)
<1.CMOS固体撮像装置の概略構成例>
図1に、本発明の各実施の形態に適用されるMOS固体撮像装置の一例の概略構成を示す。本例の固体撮像装置21は、図1に示すように、半導体基板31例えばシリコン基板に光電変換部を含む複数の画素22が規則的に2次元的に配列された画素領域(いわゆる撮像領域)23と、周辺回路部とを有して構成される。画素22の回路構成例については、後述する。また、画素としては、複数の光電変換部が転送トランジスタを除く他の画素トランジスタを共有し、且つフローティングディフージョンを共有する、いわゆる画素共有構造を適用することもできる。
周辺回路部は、垂直駆動回路24と、カラム信号処理回路25と、水平駆動回路26と、出力回路27と、制御回路28などを有して構成される。
制御回路28は、入力クロックと、動作モードなどを指令するデータを受け取り、また固体撮像装置の内部情報などのデータを出力する。すなわち、制御回路28では、垂直同期信号、水平同期信号及びマスタクロックに基いて、垂直駆動回路24、カラム信号処理回路25及び水平駆動回路26などの動作の基準となるクロック信号や制御信号を生成する。そして、これらの信号を垂直駆動回路24、カラム信号処理回路25及び水平駆動回路26等に入力する。
垂直駆動回路24は、例えばシフトレジスタによって構成され、画素駆動配線を選択し、選択された画素駆動配線に画素を駆動するためのパルスを供給し、行単位で画素を駆動する。すなわち、垂直駆動回路24は、画素領域23の各画素2を行単位で順次垂直方向に選択走する。そして、垂直信号線29を通して各画素2の光電変換素子となる例えばフォトダイオードにおいて受光量に応じて生成した信号電荷に基く画素信号をカラム信号処理回路25に供給する。
カラム信号処理回路25は、画素2の例えば列ごとに配置されており、1行分の画素22から出力される信号を画素列ごとにノイズ除去などの信号処理を行う。すなわちカラム信号処理回路25は、画素2固有の固定パターンノイズを除去するためのCDSや、信号増幅、AD変換等の信号処理を行う。カラム信号処理回路5の出力段には水平選択スイッチ(図示せず)が水平信号線30との間に接続されて設けられる。
水平駆動回路26は、例えばシフトレジスタによって構成され、水平走査パルスを順次出力することによって、カラム信号処理回路25の各々を順番に選択し、カラム信号処理回路25の各々から画素信号を水平信号線30に出力させる。
出力回路27は、カラム信号処理回路25の各々から水平信号線30を通して順次に供給される信号に対し、信号処理を行って出力する。例えば、バファリングだけする場合もあるし、黒レベル調整、列ばらつき補正、各種デジタル信号処理などが行われる場合もある。入出力端子32は、外部と信号のやりとりをする。
<2.第1実施の形態>
[固体撮像装置の構成例]
図2及び図3に、本発明に係る固体撮像装置の第1実施の形態を示す。本実施の形態の固体撮像装置は、MOS固体撮像装置である。図2は、1画素(単位画素セル)を構成する光電変換部(受光部)と転送トランジスタを含む領域の概略平面構造を示し、図3は、図2のA−A線上の概略断面構造を示す。
第1実施の形態に係る固体撮像装置41は、第2導電型、本例ではn型の半導体基板43に形成した第1導電型、本例ではp型の半導体ウェル領域44に、光電変換部となるフォトダイオード(受光部)45と、複数の画素トランジスタからなる画素42を有する。固体撮像装置41では、この画素42が複数、2次元マトリクス状に配列されて成る。フォトダイオード45の下方には、n型半導体基板43に接するp型のオーバーフローパス領域46が形成される。図2及び図3では、転送トランジスタを含む複数の画素トランジスタのうち、転送トランジスタTr11を代表として形成される。なお、電荷のオーバーフローパスは、このオーバーフローパス領域46のポテンシャルを越えるパスと、転送トランジスタTr11の転送ゲート下のポテンシャルを超えるパスとがあり、固体撮像装置の構成によりいずれかのオーバーフローパスが支配的となる。
転送トランジスタTr11は、n型半導体領域によるフローティングディフージョン部(FD)47と、ゲート絶縁膜を介して配置した転送ゲート電極49とを有して形成される。すなわち、フローティングディフージョン部47とフォトダイオード45との間の基板上にゲート絶縁膜12を介して例えば多結晶シリコン膜による転送ゲート電極49を形成して構成される。
p型半導体ウェル領域44が形成された半導体基板43には、各画素42を分離するための素子分離領域51が形成される。素子分離領域51は、LOCOS構造、STI構造、高不純物濃度のp型半導体領域、あるいは高不純物濃度のp型半導体領域の上に絶縁膜を形成した構造等により構成することができる。本例では、高不純物濃度のp型半導体領域51Aの上に絶縁膜51Bを形成して素子分離領域51が形成される。
基板表面上には、層間絶縁膜52を介して複数層の配線53を配置した多層配線層54が形成され、各層の配線53がヴィアコンタクト40を介して回路的に接続される。すなわち、配線53が所要の半導体領域あるいはゲート電極等に回路的に接続される。この多層配線層54上には、平坦化膜55を介してオンチップカラーフィルタ56、さらにその上にオンチップマイクロレンズ57が形成される。
本実施の形態では、特にフォトダイオード45を、半導体基板の表面側のp型半導体領域61と、半導体基板の内部側のn型電荷蓄積領域63と、p型半導体領域61とn型電荷蓄積領域63の間に挟まれた真性半導体領域62とを有して構成される。p型半導体領域61は高不純物濃度で形成され、n型電荷蓄積領域63は、p型半導体領域63より低不純物濃度で形成される。すなわち、フォトダイオード45は、高不純物濃度のp型半導体領域(以下、p領域という)61と、真性半導体領域(以下、i領域という)62と、n型電荷蓄積領域(以下,n領域という)63とからなる、pin構造で構成される。つまり、フォトダイオード45は、Si−SiO界面から基板内部方向に、p領域61、i領域62、n領域63を形成して成るpin接合フォトダイオードで構成される。
第1実施の形態の固体撮像装置41によれば、フォトダイオード45をpin構造とすることにより、p領域61とn領域63の間の最大電界強度を、pn構造と同程度に維持した場合に、オーバーフロー後の取り扱い信号電荷量Qsを向上することができる。すなわち、i領域62内で起こるポテンシャル変化によりバリアハイトが形成され、ポテンシャルを深くすることができる。このため、ダイナミックなオーバーフロー現象により、フォトダイオード45から読み出される間に消失する電荷量を低減し、且つポテンシャルが深くなることと相俟って、取り扱い信号電荷量Qsを多く確保することができる。逆に、取り扱い信号電荷量Qsを従来のpn構造と同じに確保するのであれば、n領域63の不純物濃度を低くできるので、欠陥発生の確率をより低減することができる上に、上記最大電界強度を下げることができ、画質のより向上が図れる。
図4を用いて更に説明する。図4Aは、pin接合フォトダイオード45における空間電荷分布を示す。図4Bは、この空間電荷分布を積分して獲られた電界分布を示す。さらに、図4Cは、この電界分布を積分して獲られたポテンシャル分布を示す。p領域61とn領域63との間にi領域62を挟むpin構造では、pi接合とin接合の間で最大電界強度Emaxとなる。
フォトダイオード45に光が入射されると、光電変換で生成した電子・正孔のうちの電子(信号電荷)がn型電荷蓄積領域63に蓄積されて行き、p型オーバーフローパス領域46のポテンシャルレベルφbを超えて基板43側にオーバーフローする。ポテンシャルレベルφbを超える前でもオーバーフロー電流は存在し、バリアハイトが小さくなるにつれ指数関数的に増える。そして、蓄積電荷がオーバーフローパスのポテンシャルレベルφbと同レベルになっても前述したように、ある一定の確率でオーバーフローしてバリアハイトΔφが形成される。例えば、シャッタ膜を用いたカメラの場合、飽和状態にある信号電荷をフォトダイオードから読み出すまでに、電荷のオーバーフローが起こることで蓄積電荷の消失が起こる。
オーバーフローパスは、上述したように、基板内部のp型オーバーフローパス領域46のポテンシャルを越えるパスと、転送トランジスタTr11がオフ時の転送ゲート下のポテンシャルを超えるパスとがある。固体撮像装置の構造により何れかのオーバーフローパスが支配的となる。
in接合フォトダイオード45について、このオーバーフローに寄与するオーバーフローパスのポテンシャルレベルφbが、in接合のポテンシャル深さと同等、もしくはそれより浅いポテンシャル深さの場合を想定する。この場合、pin接合フォトダイオード45では、最大電界強度Emaxをpn接合フォトダイオード5と同程度にしたとき、i領域62内で起こるポテンシャル変化によってバリアハイトΔφが形成され、n領域63のポテンシャルがより深く形成される。すなわち、蓄積に寄与しない領域Bがpn接合フォトダイオード(図 C参照)に比べて狭くなる。このため、電荷に寄与しない領域Bに蓄積された分のバリアハイトΔφの形成時に消失される電荷e′は、pn接合フォトダイオード5に比べて小さくなる。一方、pin構造とすることにより、接合部での電界が緩和されるので、その分、最大電界強度を同程度にするためのn領域63の不純物濃度を上げることができる。最大電界強度を従来と同程度とすることで、n領域63の不純物濃度は、欠陥が許容できる程度に上げることができる。これによって、図5の比較図で示すように、pin構造のn領域63のポテンシャル深さVmaxpinが、従来のpn構造のn領域8のポテンシャル深さVmaxrefより深くなる(Vmaxpin>Vmaxref)。図5において、ポテンシャル分布aはpn接合フォトダイオード5、ポテンシャル分布bはpin接合フォトダイオード45である。
従って、最大電界強度Emaxを同等に維持したときには、pin接合フォトダイオード45の方が、pn接合フォトダイオード5より取り扱い信号電荷量Qsが多くなる。
一方で、pin構造において、オーバーフローによる放電後にpn構造と同一の取り扱い信号電荷量Qsを維持するならば、pn構造より最大電界強度を低減することが可能になる。このため、フォトダイオード45のn型電荷蓄積領域63の不純物濃度を低くすることができ、欠陥発生の確率がより低減し、より画質向上が図られる。
<3.第2実施の形態>
[固体撮像装置の構成例]
図6及び図7に、本発明に係る固体撮像装置の第2実施の形態を示す。本実施の形態の固体撮像装置は、MOS固体撮像装置である。図6は、1画素(単位画素セル)を構成する光電変換部(受光部)と転送トランジスタを含む領域の概略平面構造を示し、図7は、図2のA−A線上の概略断面構造を示す。
第2実施の形態に係る固体撮像装置71は、フォトダイオードの構成以外が,前述の第1実施の形態と同様の構成である。図6及び図7において、図2及び図3と対応する部分には同一符号を付す。すなわち、固体撮像装置61は、第2導電型、本例ではn型の半導体基板43に形成した第1導電型、本例ではp型の半導体ウェル領域44に、光電変換部となるフォトダイオード(受光部)65と、複数の画素トランジスタからなる画素42を有する。固体撮像装置41では、この画素42が複数、2次元マトリクス状に配列されて成る。フォトダイオード65の下方には、n型半導体基板43に接するp型のオーバーフローパス領域46が形成される。図6及び図7では、転送トランジスタを含む複数の画素トランジスタのうち、転送トランジスタTr11を代表として形成される。電荷のオーバーフローパスは、前述と同様に、オーバーフローパス領域46のポテンシャル、あるいは転送トランジスタTr11の転送ゲート下のポテンシャルを超えるパスの何れかが支配的となる。
転送トランジスタTr11は、n型半導体領域によるフローティングディフージョン部(FD)47と、ゲート絶縁膜を介して配置した転送ゲート電極49とを有して形成される。すなわち、フローティングディフージョン部47とフォトダイオード65との間の基板上にゲート絶縁膜12を介して例えば多結晶シリコン膜による転送ゲート電極49を形成して構成される。
p型半導体ウェル領域44が形成された半導体基板43には、各画素42を分離するための素子分離領域51が形成される。素子分離領域51は、LOCOS構造、STI構造、高不純物濃度のp型半導体領域、あるいは高不純物濃度のp型半導体領域の上に絶縁膜を形成した構造等により構成することができる。
基板表面上には、層間絶縁膜52を介して複数層の配線53を配置した多層配線層54が形成され、各層の配線53がヴィアコンタクト40を介して回路的に接続される。すなわち、配線53が所要の半導体領域あるいはゲート電極等に接続される。この多層配線層54上には、平坦化膜55を介してオンチップカラーフィルタ56、さらにその上にオンチップマイクロレンズ57が形成される。
本実施の形態では、特にフォトダイオード65を、半導体基板の表面側の第1のp型半導体領域61と、半導体基板の内部側のn型電荷蓄積領域63と、p型半導体領域61とn型電荷蓄積領域63の間に挟まれた第2のp型半導体領域64とを有して構成される。第1のp型半導体領域61は高不純物濃度で形成され、n型電荷蓄積領域63は、第1のp型半導体領域61より低不純物濃度で形成される。また、第2のp型半導体領域64は、n型電荷蓄積領域63より低不純物濃度、特にn型電荷蓄積領域63の不純物濃度の1/2以下の不純物濃度で形成される。すなわち、フォトダイオード65は、第1のp型半導体領域(以下、p領域という)61と、第2のp型半導体領域(以下、p領域という)64と、n型電荷蓄積領域(以下、n領域という)63とからなる、pn構造で構成される。つまり、フォトダイオード45は、Si−SiO界面から基板内部方向に、p領域61、p領域64、n領域63を形成して成るpn接合フォトダイオードで構成される。
領域64は、所要のド−ズ量で、所要の打ち込みエネルギーによるイオン注入により形成することができる。または、p領域64は、p+領域61をイオン注入で形成する際の不純物打ち込みによるチャネリング成分や、不純物分布の裾で形成することができる。
第2実施の形態の固体撮像装置71によれば、前述の第1実施の形態と同様の作用、効果を奏する。すなわち、フォトダイオード65をpn構造とすることにより、p領域61とn領域63の間の最大電界強度を、pn構造と同程度に維持した場合に、オーバーフロー後の取り扱い信号電荷量Qsを向上することができる。つまり、ダイナミックなオーバーフロー現象により、フォトダイオード65から読み出される間に消失する電荷量を低減し、且つポテンシャルが深くなることと相俟って、取り扱い信号電荷量Qsを多く確保することができる。逆に、取り扱い信号電荷量Qsを従来のpn構造と同じに確保するのであれば、n領域63の不純物濃度を低くできるので、欠陥発生の確率をより低減することができる上に、上記最大電界強度を下げることができ、欠陥発生の確率をより低減することがで、画質のより向上が図られる。
図8を用いて更に説明する。図8Aは、pn接合フォトダイオード65における空間電荷分布を示す。図8Bは、この空間電荷分布を積分して獲られた電界分布を示す。さらに、図8Cは、この電界分布を積分して獲られたポテンシャル分布を示す。p領域61とn領域63との間にp領域64を挟むpn構造では、pn接合で最大電界強度Emaxとなる。
前述と同様に、フォトダイオード65に光が入射されると、光電変換で生成した電子(信号電荷)がn型電荷蓄積領域63に蓄積されて行き、p型オーバーフローパス領域46のポテンシャルレベルφbを超えて基板43側にオーバーフローする。そして、蓄積電荷がオーバーフローパスのポテンシャルレベルφbと同レベルになっても、ある一定の確率でオーバーフローしてバリアハイトΔφが形成される。例えば、シャッタ膜を用いたカメラの場合、飽和状態にある信号電荷をフォトダイオードから読み出すまでに、電荷のオーバーフローが起こることで蓄積電荷の消失が起こる。
オーバーフローパスは、基板内部のp型オーバーフローパス領域64のポテンシャル、あるいは転送トランジスタTr11がオフ時の転送ゲート下のポテンシャルを超える何れかのパスが支配的となる。
n接合フォトダイオード65について、このオーバーフローに寄与するオーバーフローパスのポテンシャルレベルφbが、pn接合のポテンシャル深さと同等、もしくはそれより浅いポテンシャル深さの場合を想定する。この場合、pn接合フォトダイオード65では、最大電界強度Emaxをpn接合フォトダイオード5と同程度にしたとき、p領域内で起こるポテンシャル変化によってバリアハイトΔφが形成される。また、n領域63のポテンシャルがより深く形成される(図9参照)。すなわち、蓄積に寄与しない領域Cがpn接合フォトダイオード(図 C参照)に比べて狭くなる。このため、電荷に寄与しない領域Cに蓄積された分のバリアハイトΔφ形成時に消失される電荷e′は、pn接合フォトダイオード5に比べて小さくなる。一方、pn構造とすることにより、接合部での電界が緩和されるので、その分、最大電界強度を同程度にするためのn領域63の不純物濃度を上げることができる。最大電界強度を従来と同程度とすることで、n領域63の不純物濃度は、欠陥が許容できる程度に上げることができる。これによって、図9の比較図で示すように、pn構造のn領域63のポテンシャル深さVmaxppnが、従来のpn構造のn領域8のポテンシャル深さVmaxrefより深くなる(Vmaxppn>Vmaxref)。図9において、ポテンシャル分布aはpn接合フォトダイオード5、ポテンシャル分布cはpn接合フォトダイオード45である。
従って、最大電界強度Emaxを同等に維持したときには、pn接合フォトダイオード65の方が、pn接合フォトダイオード5より取り扱い信号電荷量Qsが多くなる。
一方で、pn構造において、オーバーフローによる放電後にpn構造と同一の取り扱い信号電荷量Qsを維持するならば、pn構造より最大電界強度を低減することが可能になる。このため、フォトダイオード65のn型電荷蓄積領域63の不純物濃度を低くすることができ、欠陥発生の確率が低くなり、画質向上が図れる。
n構造のフォトダイオード65では、p−領域の不純物濃度を、n領域の不純物濃度の1/2以下、好ましくは1桁以上低い濃度に設定している。このようなp+p−n構造では、p+in構造と同等のバリアハイトΔφを形成するために必要な層の厚みをi領域を用いたときよりも厚く作ることができる。これは、不純物分布の構造を作る上で、イオン注入の際の加速エネルギーやイオン注入濃度の調整に幅を持たせることができ、製造の自由度が増す。
上述の実施の形態の固体撮像装置は、オーバーフローパスが転送ゲート下、あるいは基板内部のオーバーフローパス領域64のいずれかであっても、支配的に働くオーバーフローパス(ポテンシャルが深い方のパス)において、効果が得られる。
上述の実施の形態においては、第1導電型をp型とし、第2導電型をn型として信号電荷を電子とした固体撮像装置について説明したが、信号電荷を正孔とする場合についても適用できる。その場合には第1導電型がn型となり第2導電型がp型となる。
上述した実施の形態に係るp+in構造のフォトダイオード45、あるいはp+p−n構造のフォトダイオード65は、図示しないが、CCD固体撮像装置における光電変換部となるフォトダイオード(受光部)にも適用できる。この場合も同様の効果を奏する。
上述したように、本発明の実施の形態に係る固体撮像装置は、多画素化により画素セルが微細化されても、単位画素セル当りの取り扱い信号電荷量Qsを従来よりも多く確保することができる。また、逆に取り扱い信号電荷量Qsを従来と同程度とするときは、点欠陥や暗時ノイズを低減し、画質の向上を図ることができる。
<4.第3実施の形態>
[電子機器の構成例]
上述の本発明に係る固体撮像装置は、例えばデジタルカメラ、デジタル一眼カメラ、ビデオカメラ等のカメラシステムや、各種形態端末機器、例えば撮像機能を有する携帯電話、あるいは撮像機能を備えた他の機器、などの電子機器に適用することができる。
図10に、本発明に係る電子機器の一例としてカメラに適用した第3実施の形態を示す。本実施形態例に係るカメラは、静止画像又は動画撮影可能なビデオカメラを例としたものである。本実施形態例のカメラ81は、固体撮像装置82と、固体撮像装置82の受光センサ部に入射光を導く光学系83と、シャッタ装置84を有する。さらに、カメラ81は、固体撮像装置82を駆動する駆動回路85と、固体撮像装置82の出力信号を処理する信号処理回路86を有する。
固体撮像装置82は、上述した各実施の形態の固体撮像装置(MOS固体撮像装置41、71、CCD固体撮像装置を含む)のいずれかが適用される。光学系(光学レンズ)83は、被写体からの像光(入射光)を固体撮像装置82の撮像面上に結像させる。これにより、固体撮像装置82内に、一定期間信号電荷が蓄積される。光学系83は、複数の光学レンズから構成された光学レンズ系としてもよい。シャッタ装置84は、固体撮像装置82への光照射期間及び遮光期間を制御する。駆動回路85は、固体撮像装置82の転送動作及びシャッタ装置84のシャッタ動作を制御する駆動信号を供給する。駆動回路85から供給される駆動信号(タイミング信号)により、固体撮像装置82の信号転送を行う。信号処理回路86は、各種の信号処理を行う。信号処理が行われた映像信号は、メモリなどの記憶媒体に記憶され、或いは、モニタに出力される。
第3実施の形態に係る電子機器81によれば、固体撮像装置において、その光電変換部となるフォトダイオードとして、p+in構造、あるいはp+p−n構造のフォトダイオードで構成することにより、画素が微細化されても取り扱い信号電荷量Qsを確保できる。従って、高画質、高品質の電子機器を提供することがでる。例えば、高画質の一眼レフカメラなどの撮像カメラを提供することができる。
21・・固体撮像装置、22・・画素、23・・画素領域、41、71・・固体撮像装置、42・・画素、43・・半導体基板、44・・p型半導体ウェル領域、45・・フォトダイオード、47・・フローティングディフージョン部、49・・転送ゲート電極、Tr11転送トランジスタ、61・・p型半導体領域(p+領域)、62・・真性半導体領域(i領域)、63・・n型電荷蓄積領域(n領域)、64・・p型半導体領域(p領域)、54・・多層配線層、56・・オンチップカラーフィルタ、57・・オンチップマイクロレンズ、φb・・オーバーフローパスのポテンシャル、Δφ・・バリアハイト

Claims (11)

  1. 光電変換部を有する複数の画素が配列された画素領域を備え、
    前記光電変換部は、
    半導体基板の表面側の第1導電型半導体領域と、
    前記半導体基板の内部側の第2導電型電荷蓄積領域と、
    前記第1導電型半導体領域と前記第2電荷蓄積領域との間に挟まれた真性半導体領域と
    を有する
    固体撮像装置。
  2. 前記光電変換部の下方に第1導電型のオーバーフローバリア領域を有する
    請求項1記載の固体撮像装置。
  3. 前記画素は、前記光電変換部と転送トランジスタを含む複数の画素トランジスタとを有する
    請求項2記載の固体撮像装置。
  4. 光電変換部を有する複数の画素が配列された画素領域を備え、
    前記光電変換部は、
    半導体基板の表面側の第1の第1導電型半導体領域と、
    前記半導体基板の内部側の第2導電型電荷蓄積領域と、
    前記第1の第1導電型半導体領域と前記第2導電型電荷蓄積領域との間に挟まれ、前記第2導電型電荷蓄積領域より低不純物濃度の第2の第1導電型半導体領域と
    を有する
    固体撮像装置。
  5. 前記光電変換部の下方に第1導電型のオーバーフローバリア領域を有する
    請求項4記載の固体撮像装置。
  6. 前記画素は、前記光電変換部と転送トランジスタを含む複数の画素トランジスタとを有する
    請求項5記載の固体撮像装置。
  7. 前記第2の第1導電型半導体領域が、前記第1の第1導電型半導体領域を形成する際のイオン打ち込みによるチャネリング成分で形成される
    請求項6記載の固体撮像装置。
  8. 光学系と、
    固体撮像装置と、
    前記固体撮像装置の出力信号を処理する信号処理回路を備え、
    前記固体撮像装置は、
    光電変換部を有する複数の画素が配列され、前記光電変換部の下方に第1導電型のオーバーフローバリア領域を有する画素領域を備え、
    前記光電変換部が、
    半導体基板の表面側の第1導電型半導体領域と、
    前記半導体基板の内部側の第2導電型電荷蓄積領域と、
    前記第1導電型半導体領域と前記第2電荷蓄積領域との間に挟まれた真性半導体領域と
    を有する
    電子機器。
  9. 前記固体撮像装置における画素が、光電変換部と転送トランジスタを含む複数の画素トランジスタを有する
    請求項8記載の電子機器。
  10. 光学系と、
    固体撮像装置と、
    前記固体撮像装置の出力信号を処理する信号処理回路を備え、
    前記固体撮像装置は、
    光電変換部を有する複数の画素が配列され、前記光電変換部の下方に第1導電型のオーバーフローバリア領域を有する画素領域を備え、
    前記光電変換部が、
    半導体基板の表面側の第1導電型半導体領域と、
    前記半導体基板の内部側の第2導電型電荷蓄積領域と、
    前記第1導電型半導体領域と前記第2電荷蓄積領域との間に挟まれ、前記第2導電型電荷蓄積領域より低不純物濃度の第2の第1導電型半導体領域とを有する
    電子機器。
  11. 前記固体撮像装置における画素が、光電変換部と転送トランジスタを含む複数の画素トランジスタを有する
    請求項10記載の電子機器。
JP2009151466A 2009-06-25 2009-06-25 固体撮像装置及び電子機器 Pending JP2011009466A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009151466A JP2011009466A (ja) 2009-06-25 2009-06-25 固体撮像装置及び電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009151466A JP2011009466A (ja) 2009-06-25 2009-06-25 固体撮像装置及び電子機器

Publications (1)

Publication Number Publication Date
JP2011009466A true JP2011009466A (ja) 2011-01-13

Family

ID=43565780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009151466A Pending JP2011009466A (ja) 2009-06-25 2009-06-25 固体撮像装置及び電子機器

Country Status (1)

Country Link
JP (1) JP2011009466A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044209A1 (ja) * 2017-08-30 2019-03-07 ソニーセミコンダクタソリューションズ株式会社 半導体装置及び電子機器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003188367A (ja) * 2001-12-14 2003-07-04 Toshiba Corp 固体撮像装置
JP2005026717A (ja) * 2004-10-04 2005-01-27 Sony Corp 固体撮像素子
JP2007053250A (ja) * 2005-08-18 2007-03-01 Fujifilm Corp 固体撮像素子の製造方法および固体撮像素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003188367A (ja) * 2001-12-14 2003-07-04 Toshiba Corp 固体撮像装置
JP2005026717A (ja) * 2004-10-04 2005-01-27 Sony Corp 固体撮像素子
JP2007053250A (ja) * 2005-08-18 2007-03-01 Fujifilm Corp 固体撮像素子の製造方法および固体撮像素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044209A1 (ja) * 2017-08-30 2019-03-07 ソニーセミコンダクタソリューションズ株式会社 半導体装置及び電子機器
US11380804B2 (en) 2017-08-30 2022-07-05 Sony Semiconductor Solutions Corporation Semiconductor device with higher breakdown voltage and electronic apparatus

Similar Documents

Publication Publication Date Title
US20210351213A1 (en) Solid-state imaging device and method for manufacturing solid-state imaging device, and electronic device
JP5564909B2 (ja) 固体撮像装置とその製造方法、及び電子機器
JP5471174B2 (ja) 固体撮像装置とその製造方法、及び電子機器
JP6126666B2 (ja) 固体撮像装置及び電子機器
JP5365144B2 (ja) 固体撮像装置とその製造方法、及び電子機器
US8792035B2 (en) Solid-state imaging device and manufacturing method thereof, driving method of solid-state imaging device, and electronic equipment
JP4677258B2 (ja) 固体撮像装置及びカメラ
JP2014192348A (ja) 固体撮像装置およびその製造方法、並びに電子機器
US8390043B2 (en) Solid-state imaging device with stress-relieving silicide blocking layer and electronic apparatus comprising said solid-state device
JP2012199489A (ja) 固体撮像装置、固体撮像装置の製造方法、及び電子機器
KR20110010058A (ko) 고체 촬상 장치와 그 제조 방법, 및 전자기기
JP6123866B2 (ja) 固体撮像装置、及び電子機器
JP5842903B2 (ja) 固体撮像装置、及び電子機器
JP2011009466A (ja) 固体撮像装置及び電子機器
JP2023012890A (ja) 光検出装置及び電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140204