JP2011008156A - Method and device for inspecting defect of color filter - Google Patents

Method and device for inspecting defect of color filter Download PDF

Info

Publication number
JP2011008156A
JP2011008156A JP2009153491A JP2009153491A JP2011008156A JP 2011008156 A JP2011008156 A JP 2011008156A JP 2009153491 A JP2009153491 A JP 2009153491A JP 2009153491 A JP2009153491 A JP 2009153491A JP 2011008156 A JP2011008156 A JP 2011008156A
Authority
JP
Japan
Prior art keywords
inspection
defect
color filter
area
inspecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009153491A
Other languages
Japanese (ja)
Inventor
Tatsuro Matsuzuka
達郎 松塚
Takahiro Ishikawa
能啓 石川
Kazuma Otaka
一真 大▲高▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2009153491A priority Critical patent/JP2011008156A/en
Publication of JP2011008156A publication Critical patent/JP2011008156A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Optical Filters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inspection method and an inspection device for inspecting surely and efficiently a shape defect of a fine pattern in a color filter having the risk of bringing an unfavorable influence on display coming up widely by generating a plurality of small-sized defects in adjacent positions.SOLUTION: This method of for inspecting the defect of the color filter determines the shape defect using comprehensively the first inspection result (4) executed in the whole effective area as an object, based on the first inspection reference (2), and the second inspection result (12) executed based on the second inspection reference (10) set with a defect detection ability higher than that of the first inspection reference (2), while limiting an inspection area in the vicinity of partial points out of the points detected as candidates by the first inspection result (4).

Description

本発明は、カラー液晶表示装置に用いられるカラーフィルタに設けられたVAパターンの欠陥を検査する検査方法、ならびに検査装置に関する。   The present invention relates to an inspection method for inspecting a defect of a VA pattern provided in a color filter used in a color liquid crystal display device, and an inspection apparatus.

近年、平面型ディスプレイ装置が多く使われるようになってきており、中でもLCD(液晶表示装置)は、特にカラーフィルタによって色表示を行う多色カラータイプがテレビ、モニタ、携帯端末等の表示パネルに利用が進んでいる。多色カラー化のために一般にマイクロセル構造のカラーフィルタが多用され、カラーフィルタは液晶表示パネルの表示品質を決める重要な役割を担っている。カラーフィルタはガラス板やプラスチック板などの透明基板上に所定の色の画素色層を形成している。また、液晶の配向を制御するために、画素色層上にITO(インジウム錫酸化物)、酸化インジウム、酸化亜鉛などからなる透明電極を形成している。   2. Description of the Related Art In recent years, flat display devices have been widely used, and in particular, LCDs (liquid crystal display devices) are multicolor types that perform color display using color filters, especially for display panels such as televisions, monitors, and portable terminals. Use is progressing. In general, a microcell color filter is frequently used for multicolor, and the color filter plays an important role in determining the display quality of the liquid crystal display panel. The color filter forms a pixel color layer of a predetermined color on a transparent substrate such as a glass plate or a plastic plate. In order to control the alignment of the liquid crystal, a transparent electrode made of ITO (indium tin oxide), indium oxide, zinc oxide, or the like is formed on the pixel color layer.

一方、LCDの応用分野が広がるにつれて、その視野角の狭さが問題となり、種々の改良提案がなされてきた。中でもVA(Vertical Alignment)方式とIPS(In-Plane Switching)方式の2方式は、大型の高品位テレビ用途に利用が進んでいる。   On the other hand, as the application field of LCDs has expanded, the narrowness of the viewing angle has become a problem, and various improvements have been proposed. In particular, the VA (Vertical Alignment) system and the IPS (In-Plane Switching) system are being used for large-sized high-definition television applications.

VA方式は、初期状態の液晶の垂直配向を基本にしており、誘電率異方性が負のネマチック液晶が使われる。電圧印加により、液晶分子が立った状態から寝た状態に変化し、偏光板との組み合わせで、暗から明に透過率が変化する。電圧無印加の初期状態に黒表示となるVA方式は一般的により黒い色が出せるため、コントラストが高く、通常のTN(Twisted Nematic)方式より応答速度も速い。   The VA method is based on vertical alignment of liquid crystal in the initial state, and nematic liquid crystal having negative dielectric anisotropy is used. By applying a voltage, the liquid crystal molecules change from standing to sleeping, and the transmittance changes from dark to bright in combination with the polarizing plate. Since the VA system that displays black in the initial state where no voltage is applied generally produces a black color, the contrast is high and the response speed is faster than the normal TN (Twisted Nematic) system.

VA方式で視野角を改善する手段として、一つの画素中で液晶分子の配向状態を変える分割配向を行うように複数のドメインを形成するマルチドメイン配向が一般的であるが、これは温度変化や中間調表示に対しても均一性を維持する方法として適している。   As a means for improving the viewing angle in the VA method, multi-domain alignment in which a plurality of domains are formed so as to perform divided alignment that changes the alignment state of liquid crystal molecules in one pixel is generally used. It is suitable as a method for maintaining uniformity even for halftone display.

マルチドメイン配向を実現する手段としては、カラーフィルタに形成した、液晶分子の配向を制御する電極に突起部を形成したり、スリット等の開口部を設けたりする方法がある(特許文献1参照)。例えば、VAパターンと称するリブ状の突起部を形成して液晶にマルチドメイン配向させるためのきっかけを与える部位を透明電極上に設ける場合、突起部の傾斜面が液晶分子の傾きに影響を与える。従って、前記突起部の平面配置を画素上にどのように設計するかにより、マルチドメイン配向の組み合わせ状態が決められる。   As means for realizing multi-domain alignment, there are methods of forming protrusions on an electrode for controlling the alignment of liquid crystal molecules formed in a color filter, or providing openings such as slits (see Patent Document 1). . For example, in the case where a rib-like protrusion called a VA pattern is formed and a portion for providing a trigger for multi-domain alignment in the liquid crystal is provided on the transparent electrode, the inclined surface of the protrusion affects the inclination of the liquid crystal molecules. Therefore, the combination state of the multi-domain alignment is determined by how the planar arrangement of the protrusions is designed on the pixel.

前記VAパターンと称するリブ状の突起部は、通常、主リブと枝リブの2種類のパターンからなり、5〜10μm程度の線幅を有する。一般にフォトリソグラフィー法による製造プロセスにおけるプロセス条件により、リブ状の突起部の高さや幅、形状が変動する。また、前記プロセス条件による変動とは別に、VAパターンの主リブや枝リブの一部が欠けたり出っ張ったりする形状欠陥が生じると、欠陥部分の面積以上の領域にわたって、液晶のマルチドメイン配向の状態に影響を与えて液晶表示不良を引き起こしたりするので、上記欠陥品の流出は特に避けなければならない。   The rib-like protrusion called the VA pattern is usually composed of two types of patterns, a main rib and a branch rib, and has a line width of about 5 to 10 μm. In general, the height, width, and shape of the rib-like protrusions vary depending on the process conditions in the manufacturing process using the photolithography method. In addition to the variation due to the process conditions, when a shape defect occurs in which a part of the main rib or branch rib of the VA pattern is chipped or protrudes, the state of multi-domain alignment of the liquid crystal over a region larger than the area of the defect portion. The liquid crystal display defect may be caused by affecting the above, so the outflow of the defective product must be particularly avoided.

一方、一般的な形状欠陥品の流出を避けるために、従来より、カラーフィルタの着色層の異物やスペーサー突起部の欠陥等の形状欠陥を検出して、良/不良の判定をするための検査機が多く提案されている(特許文献2〜4参照)。前記提案では、反射光源や透過光源からの検出光をCCDカメラ等の撮像手段により入力して、正常パターンとの直接比較
や設計データとの比較によって、異常部を判定する手法を用いている。従来からの欠陥を検出、判定する上記の検査機を用いて、前記VAパターンの形状欠陥を検出、判定することも行われている。
On the other hand, in order to avoid the outflow of general shape defect products, it has traditionally been used to detect defects such as foreign matter in the colored layer of the color filter and defects in the spacer protrusions to determine good / bad. Many machines have been proposed (see Patent Documents 2 to 4). In the proposal, detection light from a reflected light source or a transmitted light source is input by an imaging means such as a CCD camera, and an abnormal portion is determined by direct comparison with a normal pattern or comparison with design data. Detecting and determining a shape defect of the VA pattern using the above-described inspection machine that detects and determines a conventional defect.

特開平11−242225号公報Japanese Patent Laid-Open No. 11-242225 特開平5−288640号公報Japanese Patent Laid-Open No. 5-288640 特開平10−104117号公報JP-A-10-104117 特開2000−221514号公報JP 2000-221514 A

前記VAパターンの形状欠陥の検出、判定を従来の検査方法および検査機により実施することは一般的には可能であるが、VAパターンにおいては、近接した位置に複数の欠陥が生じると、個々の欠陥のサイズが小さく単独では不良とみなさない場合であっても、その波及範囲が特に大きくなり、表示上問題となることがある。前記の事情を考慮して不良判定をしなければならない場合も発生するので、初めから欠陥の判断基準を厳しく設定し、擬似欠陥も含めた多くの欠陥判定品の候補の中から、目視判定を加えて最終判定するという方法もある。   Although it is generally possible to detect and determine the shape defect of the VA pattern by a conventional inspection method and inspection machine, in the VA pattern, when a plurality of defects occur in close positions, Even when the size of the defect is small and it is not regarded as a defect alone, the ripple range becomes particularly large, which may cause a display problem. Since it may occur that the defect must be determined in consideration of the above-mentioned circumstances, the determination criteria for defects are strictly set from the beginning, and visual determination is made from many defect determination product candidates including pseudo defects. In addition, there is a method of final determination.

然るに、欠陥サイズとしての判断基準をどの程度のサイズの欠陥に設定するかは、擬似欠陥の検出可能性や検査データの処理能力も勘案して、運用時に適切に決めなければならないことが多く、徒に欠陥の判断基準を厳しく設定することは適当ではない。今までは、見逃し検出を極力避ける一方で、過剰な検査負担や過度の不良判定に陥らないように適正な検査を実現するための一般的な手法は得られていなかった。   However, it is often necessary to appropriately determine the size of the defect to be determined as the defect size at the time of operation, taking into consideration the possibility of detecting fake defects and the processing capacity of inspection data. It is not appropriate to set strict criteria for judging defects. Until now, there has not been a general method for realizing proper inspection so as not to cause excessive inspection burden and excessive defect determination while avoiding miss detection as much as possible.

本発明は、前記の問題点に鑑みて提案するものであり、本発明が解決しようとする課題は、小サイズの複数の欠陥が近接した位置に発生することにより表示上の悪影響が広く及ぶ可能性のあるカラーフィルタの微細パターンの形状欠陥を確実にかつ効率的に検査する検査方法、ならびに検査装置を提供することである。   The present invention is proposed in view of the above-described problems, and the problem to be solved by the present invention is that a plurality of small-sized defects may occur at close positions, and thus adverse effects on display may be widespread. It is an object to provide an inspection method and an inspection apparatus for reliably and efficiently inspecting a shape defect of a fine pattern of a reliable color filter.

上記の課題を解決するための手段として、請求項1に記載の発明は、第一の検査基準に基づいて有効エリア全体を対象に実施した第一の検査結果と、前記第一の検査結果により形状欠陥の候補として検出した点の内、一部の点の近傍に検査領域を限定して、前記第一の検査基準より欠陥検出能を高く設定した第二の検査基準に基づいて実施した、第二の検査結果と、を総合して形状欠陥を判定することを特徴とするカラーフィルタの欠陥検査方法である。   As means for solving the above-mentioned problem, the invention according to claim 1 is based on a first inspection result performed on the entire effective area based on a first inspection standard, and the first inspection result. Of the points detected as shape defect candidates, the inspection area was limited to the vicinity of some of the points, and was performed based on the second inspection standard set higher defect detection ability than the first inspection standard, A defect inspection method for a color filter, characterized in that a shape defect is determined by combining the second inspection result.

また、請求項2に記載の発明は、前記第二の検査の限定した検査領域が、前記第一の検査で形状欠陥の候補として検出した点の内、繰り返しの共通性の認められる点を含むことを特徴とする請求項1に記載のカラーフィルタの欠陥検査方法である。   In addition, the invention according to claim 2 includes a point in which the common area of the repetition is recognized among the points detected as the shape defect candidates in the first inspection by the inspection region limited by the second inspection. The color filter defect inspection method according to claim 1, wherein:

また、請求項3に記載の発明は、前記カラーフィルタが、液晶のマルチドメイン配向を実現するためのVAパターンを有することを特徴とする請求項1または2に記載のカラーフィルタの欠陥検査方法である。   According to a third aspect of the present invention, in the color filter defect inspection method according to the first or second aspect, the color filter has a VA pattern for realizing multi-domain alignment of liquid crystals. is there.

また、請求項4に記載の発明は、請求項1〜3のいずれかに記載のカラーフィルタの欠陥検査方法により、カラーフィルタの形状欠陥を検査する検査装置であって、1枚のカラ
ーフィルタを2段階で検査するための動作制御機構と2段階の検査基準を設定、指示するための条件制御機構と2段階の検査結果を集めて総合判定するためのデータ処理機構とを有することを特徴とするカラーフィルタの検査装置である。
According to a fourth aspect of the present invention, there is provided an inspection apparatus for inspecting a shape defect of a color filter by the color filter defect inspection method according to any one of the first to third aspects. It has an operation control mechanism for inspecting in two stages, a condition control mechanism for setting and instructing inspection standards in two stages, and a data processing mechanism for collecting and comprehensively judging the inspection results in two stages. This is a color filter inspection apparatus.

本発明のカラーフィルタの欠陥検査方法によれば、小サイズの複数の欠陥が近接した位置に発生することにより表示上の悪影響が広く及ぶ可能性のあるカラーフィルタの微細パターンの形状欠陥を確実にかつ効率的に検査する検査方法を提供することができ、また、前記検査方法を実現するための機構を設けた検査装置を提供することができる。特に、繰り返しの共通性の認められる形状欠陥や、液晶のマルチドメイン配向を実現するためのVAパターンに生じる形状欠陥における微細欠陥検出能力を高めた検査方法、ならびに検査装置を提供することができる。   According to the defect inspection method for a color filter of the present invention, it is possible to reliably prevent a shape defect of a fine pattern of a color filter, which may have a wide adverse effect on display due to occurrence of a plurality of small-sized defects in close proximity. In addition, an inspection method for efficiently inspecting can be provided, and an inspection apparatus provided with a mechanism for realizing the inspection method can be provided. In particular, it is possible to provide an inspection method and an inspection apparatus in which a fine defect detection capability is improved in a shape defect in which repeated commonality is recognized and a shape defect generated in a VA pattern for realizing multi-domain alignment of liquid crystal.

本発明の検査方法の全体手順を示すためのフロー図である。It is a flowchart for showing the whole procedure of the inspection method of the present invention. 本発明の検査方法の第二の検査基準を設定する限定検査領域を説明するための平面模式図である。It is a plane schematic diagram for demonstrating the limited inspection area | region which sets the 2nd inspection standard of the inspection method of this invention. 本発明の検査装置の概要を説明するための構成模式図である。It is a structure schematic diagram for demonstrating the outline | summary of the test | inspection apparatus of this invention. 本発明の検査方法の2つの検査基準に基づく判定結果の一例説明図である。It is an example explanatory drawing of the determination result based on two inspection criteria of the inspection method of the present invention.

以下、本発明を実施するための形態を図面に従って述べる。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1は、本発明の検査方法の全体手順を示すためのフロー図である。
本発明のカラーフィルタの検査方法は、検査対象とするカラーフィルタを準備し(1)、第一の検査基準を記憶データとして検査装置に入力し(2)、第一の検査基準に基づいて有効エリア全体を対象に第一の検査を実施し(3)、その結果を前記第一の検査基準に照らし合わせて判定する(4)。ここで、NG判定としたカラーフィルタは、NG品処理のために検査のフローから外す(5)。残りのカラーフィルタは、データ格納(6)した上で、格納された第一の検査のデータを元に、この段階でNG判定には至らない小さな形状欠陥候補点の仕分け(7)を行う。
FIG. 1 is a flowchart for showing the entire procedure of the inspection method of the present invention.
The color filter inspection method of the present invention prepares a color filter to be inspected (1), inputs the first inspection standard as stored data to the inspection apparatus (2), and is effective based on the first inspection standard. A first inspection is performed on the entire area (3), and the result is determined in light of the first inspection standard (4). Here, the color filter determined as NG is removed from the inspection flow for NG product processing (5). The remaining color filters store data (6), and then sort (7) small shape defect candidate points that do not reach NG determination at this stage based on the stored first inspection data.

次に、パターン設計に関わるデータや既に実施した検査結果等の関連情報(8)を入力して、前記形状欠陥候補点の中から後述の第二の検査を実施すべき対象となる点を全て抽出し、予め設定した特定点からの近傍領域の定義に従って、前記抽出した点の近傍領域からなる限定検査領域を設定(9)する。その後、前記第一の検査基準より欠陥検出能を高く設定した第二の検査基準を記憶データとして検査装置に入力し(10)、前記限定検査領域を対象に前記第二の検査基準に基づいて、第二の検査を実施する(11)。その結果を前記第二の検査基準に照らし合わせて判定する(12)。ここで、NG判定としたカラーフィルタは、NG品処理のために検査のフローから外す(13)。残りのカラーフィルタは、良品として収納し(14)、検査の全体手順を終える。   Next, input related data (8) such as data related to pattern design and inspection results already performed, and all points to be subjected to the second inspection described later from among the shape defect candidate points. Extraction is performed, and a limited inspection area consisting of the vicinity area of the extracted point is set (9) in accordance with the definition of the vicinity area from the predetermined specific point. Thereafter, the second inspection standard set higher in defect detection capability than the first inspection standard is input as storage data to the inspection apparatus (10), and the limited inspection area is targeted based on the second inspection standard. A second inspection is carried out (11). The result is judged by comparing with the second inspection standard (12). Here, the color filter determined as NG is removed from the inspection flow for NG product processing (13). The remaining color filters are stored as non-defective products (14), and the entire inspection procedure is completed.

図2は、本発明の検査方法の第二の検査基準を設定する限定検査領域を説明するための平面模式図である。(a)はカラーフィルタ1のマザー基板1枚の中に面付けパターン2を1単位とする繰り返しパターンの欠陥が共通欠陥A3として複数個現れる場合を示す。また、(b)は、異なるマザー基板の同一箇所に共通欠陥B4として繰り返し現れる場合を示す。前記(a)や(b)の場合以外にも繰り返しパターンの単位に応じて各種の共通欠陥が発生する可能性がある。これらの共通欠陥A3、B4は、カラーフィルタ1の製造工程において、フォトマスク自体の欠陥である例が代表的であって、フォトマスクを使用した露光工程に起因する欠陥であることが、特に微細パターンの場合に多い。本発明者は
、上記の知見に基づいて、前記第一の検査で形状欠陥の候補として検出した点の内、繰り返しの共通性の認められる点を含むように限定検査領域を定めることが好ましいことを見出した。
FIG. 2 is a schematic plan view for explaining a limited inspection region for setting a second inspection standard of the inspection method of the present invention. (A) shows a case where a plurality of defects of a repeated pattern having the imposition pattern 2 as one unit appear as a common defect A3 in one mother substrate of the color filter 1. Moreover, (b) shows the case where it repeatedly appears as the common defect B4 in the same location of different mother substrates. Besides the cases (a) and (b), various common defects may occur depending on the unit of the repeated pattern. The common defects A3 and B4 are typically examples of defects in the photomask itself in the manufacturing process of the color filter 1, and are particularly fine defects caused by the exposure process using the photomask. Often in the case of patterns. Based on the above knowledge, the present inventor preferably defines a limited inspection region so as to include a point in which repetition commonality is recognized among points detected as shape defect candidates in the first inspection. I found.

前記第二の検査は、前記第一の検査でNG判定には至らない小さな形状欠陥候補点の中から一部の点、例えば上記繰り返しの共通性の認められる一部の点を抽出して、第二の検査を実施すべき対象となる点とし、該点の近傍領域からなる限定検査領域を設定することにより実施できる。図2の吹き出し中の拡大図に、上記繰り返しの共通性の認められる共通欠陥A3、B4を中心に、例えば1〜数mmの範囲を区切った、限定検査領域5を点線で示す。   In the second inspection, a part of the small shape defect candidate points that do not reach the NG determination in the first inspection, for example, a part of the point where the commonality of the repetition is recognized, This can be performed by setting a point to be subjected to the second inspection and setting a limited inspection region including a region near the point. In the enlarged view in the balloon shown in FIG. 2, the limited inspection region 5 is shown by dotted lines, with a range of, for example, 1 to several mm, centered on the common defects A3 and B4 that are recognized to have the above-mentioned commonality.

なお、前記限定検査領域5の広がり設定値は、前述のように、特定点からの近傍領域の定義として、使用する検査装置の初期設定値に予め確定しておくこともできるが、パターン設計に関わるデータや既に実施した検査結果等の関連情報(8)と共に、毎回の検査で新たに入力しても良い。後者の場合は、対象とするカラーフィルタ1のパターンの微細さの程度や形状の特徴に応じて、また、直近の製造品質の状況に応じて自由に設定することができる。そのため、不良品の見逃しを避けるとともに、過剰な検査負担や過度の不良判定に陥らないように、カラーフィルタの欠陥を検査することができる。   The spread setting value of the limited inspection area 5 can be determined in advance as the initial setting value of the inspection apparatus to be used as the definition of the vicinity area from the specific point as described above. Along with the related data (8) such as the related data and the result of the already performed inspection, it may be newly input at each inspection. In the latter case, the color filter 1 can be set freely according to the degree of fineness and shape characteristics of the target color filter 1 and according to the latest manufacturing quality. Therefore, it is possible to inspect the color filter for defects so as not to overlook defective products and avoid falling into excessive inspection burden and excessive defect determination.

図4は、本発明の検査方法の2つの検査基準に基づく判定結果の一例説明図である。
不規則な形状を有する欠陥について、欠陥サイズを該欠陥の最大径と定義して、小さい方から大きい方へ、SS、S、M、L、LLの5段階のランクに分けた場合を例に説明する。各ランクの欠陥サイズの下限値を規定しておけば、LLサイズ以外は、各ランクの下限値以上で1つ上のランクの下限値未満の範囲の欠陥サイズを有する欠陥を該当ランクに分類することができる。また、LLサイズは上限を有しない。
FIG. 4 is an explanatory diagram illustrating an example of a determination result based on two inspection standards of the inspection method of the present invention.
For a defect having an irregular shape, the defect size is defined as the maximum diameter of the defect, and the case is divided into five ranks SS, S, M, L, and LL from the smallest to the largest. explain. If the lower limit value of the defect size of each rank is defined, defects other than the LL size and having a defect size in a range that is not less than the lower limit value of each rank and less than the lower limit value of the next higher rank are classified into the corresponding rank. be able to. The LL size has no upper limit.

前記第一の検査基準は、通常の欠陥検査と同様であって、例えば、Lサイズ以上の欠陥を有する場合を不良(×印で表示)と判定し、Sサイズ以下の欠陥は良(○印で表示)とする規定を設ける。Mサイズの欠陥は、品種と発生個数により、判断基準を別途指定するように決める(△印で表示)。LLサイズの欠陥は、単に不良と判定するだけでなく、発生原因の早急な確認を求めて対策と繋がるように警報を発する意味を持たせる(××印で表示)。また、SSサイズの欠陥は、単に良品扱いとするだけでなく、外部への表示の必要もなしと位置付ける(−印で表示)。   The first inspection standard is the same as the normal defect inspection. For example, a defect having an L size or larger is determined to be defective (indicated by an X mark), and a defect having an S size or smaller is determined to be good (O mark). (Displayed in). For the M size defect, a decision criterion is separately designated according to the type and the number of occurrences (denoted by Δ). An LL size defect is not only determined as a defect, but also has a meaning of issuing an alarm so that an immediate confirmation of the cause of the occurrence can be made and linked to a countermeasure (displayed with an xx mark). In addition, the SS size defect is not only treated as a non-defective product, but also needs to be displayed to the outside (displayed with a minus sign).

前記第二の検査基準は、前記限定検査領域のみに適用する検査基準であって、前記第一の検査基準より欠陥検出能を高く設定している。また、既に第一の検査によって不良と判定された欠陥があれば、再度の表示は不要である。前記限定検査領域は、前述のとおり、第一の検査で不良判定には至らない小さな形状欠陥候補点の中から、第二の検査を実施すべき対象となる一部の点を抽出し、予め設定した特定点からの近傍領域の定義に従って、前記点の近傍領域からなる領域を設定したものである。従って、上記の特別の意味を有する領域に存在するMサイズの欠陥は、第一の検査で△レベルに判定したとはいえ、第二の検査では、限定検査領域に存在する以上、欠陥としての認識を厳しくする必要があり、他の近接欠陥の有無に関わらず、×レベルとする。欠陥サイズがSやSSの場合も、検査領域の特殊性を考慮して、限定検査領域に他の近接欠陥が無くても(通常判定)、欠陥としての認識を第一の検査より厳しくする。近接欠陥がある場合には(近接判定)、さらに厳しく判定する。   The second inspection standard is an inspection standard applied only to the limited inspection region, and has a defect detection capability higher than that of the first inspection standard. In addition, if there is a defect that has already been determined to be defective by the first inspection, it is not necessary to display it again. As described above, the limited inspection region is extracted in advance from a small shape defect candidate point that does not lead to a failure determination in the first inspection, and a part of points to be subjected to the second inspection is extracted in advance. In accordance with the definition of the neighborhood area from the set specific point, an area composed of the neighborhood area of the point is set. Therefore, although the M-size defect present in the region having the special meaning described above is determined to be a △ level in the first inspection, in the second inspection, since it exists in the limited inspection region, It is necessary to make the recognition strict, and the x level is used regardless of the presence or absence of other proximity defects. Even when the defect size is S or SS, in consideration of the peculiarity of the inspection area, even if there is no other proximity defect in the limited inspection area (normal determination), the recognition as a defect is made stricter than the first inspection. If there is a proximity defect (proximity determination), it is determined more strictly.

前記第二の検査の結果に、以前の第一の検査の結果を補うことにより、近接欠陥が無い場合と有る場合に分けて、総合判定を示すことができる。但し、判定結果は一例であって、これに限定されない。   Complementing the result of the first inspection with the result of the second inspection, it is possible to show the comprehensive determination separately for cases where there is no proximity defect. However, the determination result is an example, and the present invention is not limited to this.

図3は、本発明の検査装置の概要を説明するための構成模式図である。
ステージ10の上にカラーフィルタ11を設置して、照明ランプ12からの光によるカラーフィルタ11の画像を撮像カメラ13で読み取る。図では、折れ線矢印が光の経路を示し、反射照明の例を示すが、透過照明をステージ10の裏側から与えて、透過像を読み取ることもできる。照明ランプ12には、通常のキセノン・メタルハライド白色光源が使用でき、撮像カメラ13には、CCD固体撮像素子を用いたリニアセンサが利用できる。ブロック矢印で示すステージの動作や照明ランプの点灯を初めとする動作関係全般は、動作制御機構14で制御することができる。1枚のカラーフィルタ11を検査領域の異なる2段階で検査し、検査の内容も異なるので、ステージやカメラの移動速度やランプの明るさ等の検査環境を決める条件を1枚のカラーフィルタの検査の中で変えられるような動作制御機構14が望ましい。
FIG. 3 is a schematic configuration diagram for explaining the outline of the inspection apparatus of the present invention.
A color filter 11 is installed on the stage 10, and an image of the color filter 11 by light from the illumination lamp 12 is read by the imaging camera 13. In the figure, a broken line arrow indicates the path of light, and an example of reflected illumination is shown. However, a transmitted image can be read by applying transmitted illumination from the back side of the stage 10. The illumination lamp 12 can use a normal xenon metal halide white light source, and the imaging camera 13 can use a linear sensor using a CCD solid-state imaging device. The entire operation relationship including the operation of the stage indicated by the block arrow and the lighting of the illumination lamp can be controlled by the operation control mechanism 14. Since one color filter 11 is inspected in two stages with different inspection areas, and the contents of the inspection are also different, the conditions for determining the inspection environment such as the moving speed of the stage and the camera and the brightness of the lamp are inspected for one color filter. An operation control mechanism 14 that can be changed in the above is desirable.

本発明の検査装置は2段階の検査基準を設定、指示する必要があり、条件制御機構15がこの機能を分担する。条件制御機構15は、さらに、パターン設計に関わるデータや既に実施した検査結果等の関連情報を連接するデータ処理機構16から得て、動作制御機構14を通じて必要な指示を与えることができる。データ処理機構16は撮像カメラ13からの画像の取り込みと処理および条件制御機構15との情報の交換を行い、2段階の検査結果を集めて形状欠陥の総合判定と結果の保存を行うことができる。   The inspection apparatus of the present invention needs to set and instruct two-stage inspection standards, and the condition control mechanism 15 shares this function. Further, the condition control mechanism 15 can obtain related information such as data related to pattern design and inspection results already performed from the data processing mechanism 16, and can give necessary instructions through the operation control mechanism 14. The data processing mechanism 16 can take in an image from the imaging camera 13, exchange information with the condition control mechanism 15, collect two-stage inspection results, and perform comprehensive determination of shape defects and save the results. .

本発明による、カラーフィルタの2段階の欠陥検査の方法と検査装置によれば、繰り返しの共通性の認められる形状欠陥や、液晶のマルチドメイン配向を実現するためのVAパターンに生じる形状欠陥における微細欠陥検出能力を高めた検査方法、ならびに検査装置を提供することができる。   According to the two-step defect inspection method and inspection apparatus for color filters according to the present invention, fine defects in shape defects that are recognized by repeated commonality and shape defects that occur in VA patterns for realizing multi-domain alignment of liquid crystals are obtained. An inspection method and an inspection apparatus with improved defect detection capability can be provided.

一方、カラーフィルタのマザー基板の検査を連続して行う場合、2段階目の検査を行う対象となる前記限定検査領域を、初期のマザー基板の検査で発見し、確定できれば、以後のマザー基板の検査においては、見かけ上一回の検査であるかのように、前記と同様の2段階検査を行うことができる。即ち、前記限定検査領域のみ第二の検査基準に従うことは、前述のとおりであるが、第一の検査基準に従う検査を行う領域を有効エリア全体としないで、前記限定検査領域を除くエリアとして、検査基準の異なるエリア間を連続的に検査することができる。但し、前記検査基準の異なるエリア間の連続的な検査を実現するためには、高速の信号処理が必要であり、検査装置の構成要素をさらに高性能なものにするために厳選することが好ましい。   On the other hand, when the inspection of the mother substrate of the color filter is continuously performed, if the limited inspection area to be subjected to the second stage inspection is found and confirmed by the initial inspection of the mother substrate, the subsequent mother substrate can be checked. In the inspection, a two-stage inspection similar to the above can be performed as if it is an apparent one-time inspection. That is, as described above, only the limited inspection area according to the second inspection standard is as described above, but the area to be inspected according to the first inspection standard is not the entire effective area, and the area excluding the limited inspection area, It is possible to inspect continuously between areas having different inspection standards. However, in order to realize continuous inspection between areas with different inspection standards, high-speed signal processing is required, and it is preferable to select carefully in order to make the constituent elements of the inspection apparatus higher performance. .

1・・・カラーフィルタ(マザー基板)
2・・・カラーフィルタ(面付けパターン)
3・・・共通欠陥A
4・・・共通欠陥B
5・・・限定検査領域
10・・ステージ
11・・カラーフィルタ(マザー基板)
12・・照明ランプ
13・・撮像カメラ
14・・動作制御機構
15・・条件制御機構
16・・データ処理機構
1 ... Color filter (mother substrate)
2. Color filter (imposition pattern)
3. Common defect A
4 ... Common defect B
5 ... Limited inspection area 10 ... Stage 11 ... Color filter (mother substrate)
12. Illumination lamp 13 Imaging camera 14 Operation control mechanism 15 Condition control mechanism 16 Data processing mechanism

Claims (4)

第一の検査基準に基づいて有効エリア全体を対象に実施した第一の検査結果と、前記第一の検査結果により形状欠陥の候補として検出した点の内、一部の点の近傍に検査領域を限定して、前記第一の検査基準より欠陥検出能を高く設定した第二の検査基準に基づいて実施した、第二の検査結果と、を総合して形状欠陥を判定することを特徴とするカラーフィルタの欠陥検査方法。   An inspection area in the vicinity of a part of the first inspection result performed on the entire effective area based on the first inspection standard and points detected as shape defect candidates based on the first inspection result And determining the shape defect by combining the second inspection result, which is carried out based on the second inspection standard set higher in defect detection ability than the first inspection standard. Defect inspection method for color filter. 前記第二の検査の限定した検査領域が、前記第一の検査で形状欠陥の候補として検出した点の内、繰り返しの共通性の認められる点を含むことを特徴とする請求項1に記載のカラーフィルタの欠陥検査方法。   2. The inspection area defined by the second inspection includes a point in which repetitive commonality is recognized among points detected as shape defect candidates in the first inspection. Color filter defect inspection method. 前記カラーフィルタが、液晶のマルチドメイン配向を実現するためのVAパターンを有することを特徴とする請求項1または2に記載のカラーフィルタの欠陥検査方法。   The color filter defect inspection method according to claim 1, wherein the color filter has a VA pattern for realizing multi-domain alignment of liquid crystal. 請求項1〜3のいずれかに記載のカラーフィルタの欠陥検査方法により、カラーフィルタの形状欠陥を検査する検査装置であって、1枚のカラーフィルタを2段階で検査するための動作制御機構と2段階の検査基準を設定、指示するための条件制御機構と2段階の検査結果を集めて総合判定するためのデータ処理機構とを有することを特徴とするカラーフィルタの検査装置。   An inspection apparatus for inspecting a shape defect of a color filter by the color filter defect inspection method according to any one of claims 1 to 3, comprising an operation control mechanism for inspecting one color filter in two stages; A color filter inspection apparatus comprising: a condition control mechanism for setting and instructing a two-stage inspection standard; and a data processing mechanism for collecting and comprehensively determining two-stage inspection results.
JP2009153491A 2009-06-29 2009-06-29 Method and device for inspecting defect of color filter Pending JP2011008156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009153491A JP2011008156A (en) 2009-06-29 2009-06-29 Method and device for inspecting defect of color filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009153491A JP2011008156A (en) 2009-06-29 2009-06-29 Method and device for inspecting defect of color filter

Publications (1)

Publication Number Publication Date
JP2011008156A true JP2011008156A (en) 2011-01-13

Family

ID=43564866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009153491A Pending JP2011008156A (en) 2009-06-29 2009-06-29 Method and device for inspecting defect of color filter

Country Status (1)

Country Link
JP (1) JP2011008156A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09288037A (en) * 1996-04-19 1997-11-04 Sanyo Electric Co Ltd Inspection method for lcd panel
JP2002257749A (en) * 2001-02-27 2002-09-11 Toray Ind Inc Inspection device, inspection method, and method of manufacturing color filter using thereof
JP2004117062A (en) * 2002-09-24 2004-04-15 Seiko Epson Corp Electro-optic panel board, methods of testing and manufacturing the same, electro-optic device and electronic equipment
JP2008249653A (en) * 2007-03-30 2008-10-16 Toray Ind Inc Inspection system
JP2009086294A (en) * 2007-09-28 2009-04-23 Sharp Corp Lighting inspection system, lighting inspection device, lighting inspection method, lighting inspection program, and computer-readable recording medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09288037A (en) * 1996-04-19 1997-11-04 Sanyo Electric Co Ltd Inspection method for lcd panel
JP2002257749A (en) * 2001-02-27 2002-09-11 Toray Ind Inc Inspection device, inspection method, and method of manufacturing color filter using thereof
JP2004117062A (en) * 2002-09-24 2004-04-15 Seiko Epson Corp Electro-optic panel board, methods of testing and manufacturing the same, electro-optic device and electronic equipment
JP2008249653A (en) * 2007-03-30 2008-10-16 Toray Ind Inc Inspection system
JP2009086294A (en) * 2007-09-28 2009-04-23 Sharp Corp Lighting inspection system, lighting inspection device, lighting inspection method, lighting inspection program, and computer-readable recording medium

Similar Documents

Publication Publication Date Title
US10620730B2 (en) Display device
US20150325158A1 (en) Display panel and display device
KR101213592B1 (en) Detection Circuit And Method For a Liquid Crystal Display
JP2008045959A (en) Device and method for inspecting liquid crystal display panel
EP2722838A1 (en) Method for detecting the bright point in the liquid crystal display panel
US20080018838A1 (en) Color filter substrate, color liquid crystal display device using the same, and method for repairing the same
KR102000648B1 (en) Array substrate, display device and manufacturing method of the array substrate
US20100128060A1 (en) Liquid crystal display apparatus and method for restraining a bright point
US10634967B2 (en) Display device, brightness defect correction method for display device, and brightness defect correction device for display device
US7990486B2 (en) Liquid crystal display panel with line defect repairing mechanism and repairing method thereof
US20080206896A1 (en) Method for repairing liquid crystal display panel
JP2015175857A (en) Display device and manufacturing method thereof
KR20080105656A (en) Apparatus and method for automatically repairing defect of liquid crystal display panel, and method for manufacturing liquid crystal display panel
JP2011008156A (en) Method and device for inspecting defect of color filter
CN108414535B (en) Method for judging white point Mura defect and Cell foreign body halo open defect of LCD
WO2020071572A1 (en) Method and device for repairing bright spot defect of liquid crystal display device
JP5572925B2 (en) VA pattern defect inspection method and inspection apparatus
JP2012018303A (en) Method and device for correcting defect of color filter
US10777107B2 (en) Array substrate, testing method and display apparatus
KR20090114214A (en) Method and apparatus for repairing a defect of liquid crystal display panel
WO2011043065A1 (en) Apparatus and method for inspecting display defect of display panel
JPH10318880A (en) Method and device for inspecting liquid-crystal display device
WO2012115004A1 (en) Inspection device and inspection method for liquid crystal panels
JP3239644B2 (en) Defect correction method and device for liquid crystal display element
TWI225150B (en) Detecting method of defective areas in liquid crystal panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140715