JP2011007755A - Navigation device and navigation method - Google Patents

Navigation device and navigation method Download PDF

Info

Publication number
JP2011007755A
JP2011007755A JP2009154222A JP2009154222A JP2011007755A JP 2011007755 A JP2011007755 A JP 2011007755A JP 2009154222 A JP2009154222 A JP 2009154222A JP 2009154222 A JP2009154222 A JP 2009154222A JP 2011007755 A JP2011007755 A JP 2011007755A
Authority
JP
Japan
Prior art keywords
dimensional
pedestrian bridge
interpolation point
staircase
dimensional plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009154222A
Other languages
Japanese (ja)
Other versions
JP5299123B2 (en
Inventor
Tetsuo Akaha
哲郎 赤羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2009154222A priority Critical patent/JP5299123B2/en
Publication of JP2011007755A publication Critical patent/JP2011007755A/en
Application granted granted Critical
Publication of JP5299123B2 publication Critical patent/JP5299123B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To form a three-dimensional footbridge displayable on a bird's eye view by simple processing from a two-dimensional map having a small information amount.SOLUTION: This navigation device 100 includes: an information acquisition part 130 for acquiring coordinate information and connection information of a two-dimensional plane interpolation point 168; a three-dimensional plane generation part 132 for generating a three-dimensional plane interpolation point 174 based on the coordinate information, and on information showing a footbridge thickness and information showing a footbridge height which are set beforehand; a two-dimensional step generation part 134 for adopting as a two-dimensional step interpolation point 182, an end point elongated as long as a step length from an optional two-dimensional plane interpolation point based on the connection information and the step length set beforehand; a three-dimensional step generation part 136 for generating a three-dimensional step interpolation point 186 based on the three-dimensional plane interpolation point, the two-dimensional step interpolation point, and information showing the footbridge thickness and information showing the footbridge height; and a bird's eye view generation part 140 for generating a bird's eye view by subjecting the three-dimensional plane interpolation point and the three-dimensional step interpolation point to projection transformation.

Description

本発明は、目的地までの車両の移動経路を案内するナビゲーション装置およびナビゲーション方法に関する。   The present invention relates to a navigation apparatus and a navigation method for guiding a moving route of a vehicle to a destination.

近年、ナビゲーション装置を搭載した車両が急増している。ナビゲーション装置は、予め記憶された2次元地図データと、GPS(Global Positioning System)衛星との無線通信により導出される位置情報とに基づいて、2次元地図を用いて車両の現在位置や目的地までの移動経路を搭乗者に報知する。搭乗者は、かかるナビゲーション装置の指示に従って移動することで、迅速かつ安全に目的地にたどり着くことができる。   In recent years, the number of vehicles equipped with navigation devices has increased rapidly. The navigation device uses the two-dimensional map to reach the current position and destination of the vehicle based on two-dimensional map data stored in advance and position information derived by wireless communication with a GPS (Global Positioning System) satellite. Is notified to the passenger. The passenger can quickly and safely reach the destination by moving according to the instructions of the navigation device.

ナビゲーション装置では、目的地までの移動経路のみならず、右左折を要する交差点や車両の現在位置をより把握し易くするため、道路標識、信号、交差点名称、著名な建物等の指標を2次元地図に重畳表示している。さらに、車両後方の上空から進行方向に見える景色を模擬した鳥瞰図を表示するナビゲーション装置もある。   In navigation devices, in order to make it easier to grasp not only the route to the destination but also the intersection that requires a right or left turn and the current position of the vehicle, a two-dimensional map is used for indicators such as road signs, signals, intersection names, and prominent buildings. Is superimposed. There is also a navigation device that displays a bird's-eye view simulating the scenery seen in the traveling direction from the sky behind the vehicle.

上記鳥瞰図は、遠近法に基づいて、手前に位置する道路や建物の幅が広く見えるように表された図である。鳥瞰図は、例えば、表示枠の各頂点に対応する地図上の位置によって変換領域が設定された場合に、その変換領域内の道路地図を座標変換することで形成される(例えば、特許文献1)。また、山や建物等の比較的大きなオブジェクトを、その属性に対して予め定められた高さ情報、または予め定められた1階あたりの平均高さ情報と個々の階数との乗算値に従って3次元表示するナビゲーション装置も開示されている(例えば、特許文献2)。   The above bird's-eye view is a view that is shown so that the width of a road or a building located in front is visible based on perspective. The bird's-eye view is formed by, for example, coordinate-converting a road map in the conversion area when the conversion area is set by a position on the map corresponding to each vertex of the display frame (for example, Patent Document 1). . In addition, a relatively large object such as a mountain or a building is three-dimensionally displayed according to a predetermined height information for the attribute or a product of a predetermined average height information per floor and an individual floor number. A navigation device for displaying is also disclosed (for example, Patent Document 2).

特開平8−160852号公報JP-A-8-160852 特開平5−027677号公報JP-A-5-027677

上述した従来のナビゲーション装置では、鉛直方向に延設される角柱状または円柱状の建物に関しては2次元地図に示された外形と高さ情報とを用いてその立体形状を表示することができるが、特殊な構造で形成された高架橋や歩道橋は表示することができない。特に歩道橋に至っては、車両が直接利用できる対象物ではないため重要視されず、また、構造が複雑なので厳密な3次元化を行うには処理負荷が高すぎるといった問題があった。   In the conventional navigation device described above, a three-dimensional shape of a prismatic or columnar building extending in the vertical direction can be displayed using the outer shape and height information shown in the two-dimensional map. Viaducts and footbridges formed with special structures cannot be displayed. In particular, the pedestrian bridge is not regarded as important because the vehicle is not an object that can be directly used, and the processing load is too high for strict three-dimensionalization because the structure is complicated.

しかし、歩道橋は、車両走行時において、同様の外観で複数並置された建物群よりも低出現頻度かつ特徴的であり、走行中に視点をほとんど変えなくても容易に視認できるので、目印として有効に機能するといった利点を有する。従って、ナビゲーション装置の指標として歩道橋を追加して欲しいという要望がある。   However, pedestrian bridges are effective as landmarks because they are more frequent and distinctive than a group of buildings juxtaposed in a similar appearance when driving, and can be easily seen without changing the viewpoint during driving. It has the advantage of functioning. Therefore, there is a demand for adding a pedestrian bridge as an index of the navigation device.

本発明は、このような課題に鑑み、情報量の少ない2次元地図から、簡易な処理で、鳥瞰図に重畳する3次元の歩道橋を形成することが可能なナビゲーション装置およびナビゲーション方法を提供することを目的としている。   In view of such a problem, the present invention provides a navigation device and a navigation method capable of forming a three-dimensional pedestrian bridge to be superimposed on a bird's-eye view from a two-dimensional map with a small amount of information with a simple process. It is aimed.

上記課題を解決するために、本発明は下記の装置を提供するものである。
(1)目的地までの車両の移動経路を案内するナビゲーション装置であって、歩道橋の平面部分である歩道橋平面部の平面外形を特定可能な4以上の2次元平面補間点の座標情報と、前記4以上の2次元平面補間点のうち、いずれが歩道橋の階段部分である歩道橋階段部との連結点にあたるかを示す連結情報と、を取得する情報取得部と、前記座標情報と予め設定された歩道橋厚みを示す情報および歩道橋高さを示す情報とに基づいて、前記歩道橋平面部を立体的に表示するための3次元平面補間点を生成する3次元平面生成部と、前記連結情報と予め設定された階段長さを示す情報とに基づいて、前記2次元平面補間点をすべて連接した場合に、前記連結点にあたる任意の2次元平面補間点と連接している2つの2次元平面補間点のうち、同一の歩道橋階段部と連結している2次元平面補間点とは異なる2次元平面補間点と、前記任意の2次元平面補間点との結線を、前記任意の2次元平面補間点から前記階段長さだけ延長した端点を、前記歩道橋階段部の平面外形を特定可能な2次元階段補間点とする2次元階段生成部と、前記3次元平面補間点と前記2次元階段補間点と前記歩道橋厚みを示す情報および歩道橋高さを示す情報とに基づいて、前記歩道橋階段部を立体的に示すための3次元階段補間点を生成する3次元階段生成部と、前記3次元平面補間点および3次元階段補間点を射影変換して、車両位置後方の所定の高さにある視点から2次元地図を見下ろす鳥瞰図を生成する鳥瞰図生成部と、を備えることを特徴とするナビゲーション装置。
(2)前記2次元平面補間点には、連接する順を示した番号が付され、前記2次元階段生成部は、前記番号に従って、前記階段長さだけ延長する2次元平面補間点を特定することを特徴とする上記(1)に記載のナビゲーション装置。
(3)前記歩道橋平面部および前記歩道橋階段部の側面に位置する3次元平面補間点および3次元階段補間点を、設定されたフェンス高さだけ鉛直方向に延長した端点を3次元フェンス補間点とする3次元フェンス生成部をさらに備えることを特徴とする上記(1)または(2)に記載のナビゲーション装置。
(4)前記鳥瞰図生成部は、射影変換された前記歩道橋のポリゴンを透過処理して前記鳥瞰図に重畳することを特徴とする上記(1)から(3)のいずれかに記載のナビゲーション装置。
(5)前記鳥瞰図生成部は、射影変換された前記歩道橋階段部のポリゴンに、階段を表す画像をさらに重畳することを特徴とする上記(1)から(4)のいずれかに記載のナビゲーション装置。
(6)目的地までの車両の移動経路を案内するナビゲーション方法であって、歩道橋の平面部分である歩道橋平面部の平面外形を特定可能な4以上の2次元平面補間点の座標情報と、前記4以上の2次元平面補間点のうち、いずれが歩道橋の階段部分である歩道橋階段部との連結点にあたるかを示す連結情報と、を取得し、前記座標情報と予め設定された歩道橋厚みを示す情報および歩道橋高さを示す情報とに基づいて、前記歩道橋平面部を立体的に表示するための3次元平面補間点を生成し、前記連結情報と予め設定された階段長さを示す情報とに基づいて、前記2次元平面補間点をすべて連接した場合に、前記連結点にあたる任意の2次元平面補間点と連接している2つの2次元平面補間点のうち、同一の歩道橋階段部と連結している2次元平面補間点とは異なる2次元平面補間点と、前記任意の2次元平面補間点との結線を、前記任意の2次元平面補間点から前記階段長さだけ延長した端点を、前記歩道橋階段部の平面外形を特定可能な2次元階段補間点とし、前記3次元平面補間点と前記2次元階段補間点と前記歩道橋厚みを示す情報および歩道橋高さを示す情報とに基づいて、前記歩道橋階段部を立体的に示すための3次元階段補間点を生成し、前記3次元平面補間点および3次元階段補間点を射影変換して、車両位置後方の所定の高さにある視点から2次元地図を見下ろす鳥瞰図を生成することを特徴とするナビゲーション方法。
In order to solve the above problems, the present invention provides the following apparatus.
(1) A navigation device that guides a moving route of a vehicle to a destination, the coordinate information of four or more two-dimensional plane interpolation points that can specify a planar outline of a pedestrian bridge plane part that is a plane part of the pedestrian bridge, An information acquisition unit for acquiring connection information indicating which one of the four or more two-dimensional plane interpolation points corresponds to a connection point with a pedestrian bridge staircase that is a staircase portion of the pedestrian bridge, and the coordinate information is set in advance Based on information indicating the thickness of the pedestrian bridge and information indicating the height of the pedestrian bridge, a three-dimensional plane generation unit that generates a three-dimensional plane interpolation point for displaying the pedestrian bridge plane portion in three dimensions, and the connection information and the presetting When all the two-dimensional plane interpolation points are connected based on the information indicating the staircase length, two two-dimensional plane interpolation points connected to an arbitrary two-dimensional plane interpolation point corresponding to the connection point are calculated. home, A connection between a two-dimensional plane interpolation point that is different from the two-dimensional plane interpolation point connected to one pedestrian bridge staircase section and the arbitrary two-dimensional plane interpolation point from the arbitrary two-dimensional plane interpolation point to the stair length A two-dimensional staircase generation unit that uses the extended end point as a two-dimensional staircase interpolation point that can specify the planar outline of the pedestrian bridge staircase unit, the three-dimensional plane interpolation point, the two-dimensional stairway interpolation point, and the footbridge thickness. A three-dimensional staircase generation unit for generating a three-dimensional staircase interpolation point for three-dimensionally indicating the pedestrian bridge staircase, based on the information indicating and the information indicating the height of the pedestrian bridge, the three-dimensional plane interpolation point and the three-dimensional staircase A navigation apparatus comprising: a bird's eye view generation unit that performs projective conversion of an interpolation point and generates a bird's eye view that looks down on a two-dimensional map from a viewpoint at a predetermined height behind a vehicle position.
(2) The two-dimensional plane interpolation point is assigned a number indicating the order in which the two-dimensional plane interpolation points are connected, and the two-dimensional step generation unit identifies a two-dimensional plane interpolation point extending by the step length according to the number. The navigation device according to (1) above, wherein
(3) 3D plane interpolation points and 3D stair interpolation points located on the side surfaces of the pedestrian bridge plane part and the pedestrian bridge staircase part are defined as three-dimensional fence interpolation points obtained by extending the end points in the vertical direction by a set fence height. The navigation device according to (1) or (2), further including a three-dimensional fence generation unit that performs the above-described operation.
(4) The navigation device according to any one of (1) to (3), wherein the bird's-eye view generation unit performs a transparent process on the projection-converted polygon of the pedestrian bridge and superimposes the polygon on the bird's-eye view.
(5) The navigation device according to any one of (1) to (4), wherein the bird's eye view generation unit further superimposes an image representing a staircase on the polygon of the pedestrian bridge staircase portion that has undergone projective transformation. .
(6) A navigation method for guiding a moving route of a vehicle to a destination, the coordinate information of four or more two-dimensional plane interpolation points capable of specifying a planar outline of a pedestrian bridge plane part which is a planar part of the pedestrian bridge, Connection information indicating which of the four or more two-dimensional plane interpolation points corresponds to a connection point with a pedestrian bridge staircase that is a stairs part of a pedestrian bridge, and the coordinate information and a preset pedestrian bridge thickness are indicated. Based on the information and the information indicating the height of the pedestrian bridge, a three-dimensional plane interpolation point for displaying the plane portion of the pedestrian bridge in three dimensions is generated, and the connection information and information indicating the preset staircase length are generated. Based on the above, when all of the two-dimensional plane interpolation points are connected, it is connected to the same pedestrian bridge staircase portion of two two-dimensional plane interpolation points connected to any two-dimensional plane interpolation point corresponding to the connection point. 2 An end point obtained by extending a connection between the two-dimensional plane interpolation point different from the original plane interpolation point and the arbitrary two-dimensional plane interpolation point from the arbitrary two-dimensional plane interpolation point by the staircase length is used as the pedestrian bridge staircase portion. A two-dimensional stair interpolation point that can specify a planar outer shape of the pedestrian bridge, and based on the three-dimensional plane interpolation point, the two-dimensional stair interpolation point, the information indicating the thickness of the pedestrian bridge, and the information indicating the height of the pedestrian bridge, A three-dimensional stair interpolation point for three-dimensionally showing the three-dimensional step interpolation point is generated, and the three-dimensional plane interpolation point and the three-dimensional stair interpolation point are projectively transformed to generate a two-dimensional map from a viewpoint at a predetermined height behind the vehicle position. A navigation method characterized by generating a bird's eye view looking down.

本発明を用いることで、情報量の少ない2次元地図から、簡易な処理で、鳥瞰図に重畳する3次元の歩道橋を形成することが可能となる。   By using the present invention, it is possible to form a three-dimensional pedestrian bridge to be superimposed on a bird's eye view with a simple process from a two-dimensional map with a small amount of information.

ナビゲーション装置の概略的な機能を示した機能ブロック図である。It is the functional block diagram which showed the schematic function of the navigation apparatus. ナビゲーション装置の正面視の外観を示した説明図である。It is explanatory drawing which showed the external view of the front view of the navigation apparatus. 歩道橋情報を説明するための説明図である。It is explanatory drawing for demonstrating pedestrian bridge information. 3次元平面生成部の処理を説明するための説明図である。It is explanatory drawing for demonstrating the process of a three-dimensional plane production | generation part. 2次元階段生成部の処理を説明するための説明図である。It is explanatory drawing for demonstrating the process of a two-dimensional staircase production | generation part. 3次元階段生成部の処理を説明するための説明図である。It is explanatory drawing for demonstrating the process of a three-dimensional staircase production | generation part. 3次元フェンス生成部の処理を説明するための説明図である。It is explanatory drawing for demonstrating the process of a three-dimensional fence production | generation part. 表示部に鳥瞰図を表示する場合の画面形成処理を説明するための説明図である。It is explanatory drawing for demonstrating the screen formation process in the case of displaying a bird's-eye view on a display part. ポリゴンの展開を説明するための説明図である。It is explanatory drawing for demonstrating expansion | deployment of a polygon. 鳥瞰図生成部の透過処理を説明するための説明図である。It is explanatory drawing for demonstrating the permeation | transmission process of a bird's-eye view production | generation part. 鳥瞰図生成部の描画処理を説明するための説明図である。It is explanatory drawing for demonstrating the drawing process of a bird's-eye view production | generation part. ナビゲーション表示方法の全体的な流れを示したフローチャートである。It is the flowchart which showed the whole flow of the navigation display method.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.

(ナビゲーション装置100)
図1は、ナビゲーション装置100の概略的な機能を示した機能ブロック図であり、図2は、ナビゲーション装置100の正面視の外観を示した説明図である。ナビゲーション装置100は、操作部110と、表示部112と、音声入出力部114と、位置取得部116と、記憶部118と、中央制御部120と、を含んで構成されている。
(Navigation device 100)
FIG. 1 is a functional block diagram illustrating schematic functions of the navigation device 100, and FIG. 2 is an explanatory diagram illustrating an external appearance of the navigation device 100 in a front view. The navigation device 100 includes an operation unit 110, a display unit 112, a voice input / output unit 114, a position acquisition unit 116, a storage unit 118, and a central control unit 120.

操作部110は、ナビゲーション装置100に対する搭乗者の操作入力を受け付ける。表示部112は、液晶ディスプレイ、有機EL(Electro Luminescence)ディスプレイ等で構成される。表示部112には、搭乗者による視点切替入力に応じて、図2(a)に示すような2次元地図や図2(b)に示すような鳥瞰図が表示される。例えば、図2(a)の2次元地図では、自身が搭乗している車両150の現在位置152や目的地までの移動経路154が表示される。   The operation unit 110 receives a passenger's operation input to the navigation device 100. The display unit 112 includes a liquid crystal display, an organic EL (Electro Luminescence) display, or the like. A two-dimensional map as shown in FIG. 2A and a bird's-eye view as shown in FIG. 2B are displayed on the display unit 112 in accordance with the viewpoint switching input by the passenger. For example, in the two-dimensional map of FIG. 2A, the current position 152 of the vehicle 150 on which the vehicle is boarded and the movement route 154 to the destination are displayed.

音声入出力部114は、車両150の行き先方向を音声で案内すると共に、搭乗者の音声による指示を受け付ける。位置取得部116は、GPS衛星156やジャイロセンサを通じて、ナビゲーション装置100を搭載している車両150の位置情報(例えば、経度、緯度、高度の情報)を導出し、中央制御部120に伝達する。   The voice input / output unit 114 guides the destination direction of the vehicle 150 by voice and receives instructions from the passenger's voice. The position acquisition unit 116 derives position information (for example, longitude, latitude, and altitude information) of the vehicle 150 on which the navigation device 100 is mounted through the GPS satellite 156 and the gyro sensor, and transmits the position information to the central control unit 120.

記憶部118は、フラッシュメモリやHDD等で構成され、2次元地図データや、2次元地図および鳥瞰図を表示する上で必要な情報を保持する。なお、HDDは正確には装置に相当するが、説明の便宜上、本説明では記憶媒体と同義として扱う。また、2次元地図データには、建物の平面外形(鉛直真上から見た外形)を特定するための補間点、道路法規、背景、アイコン、各建物の名称等が関連付けられ、例えば、その補間点に基づいて、鉛直方向に延長される角柱状または円柱状の単純な建物を構成するポリゴンを形成することができる。ここで、ポリゴンは、3DCG(3 Dimensional Computer Graphics)における立体形状を表現するために用いられる多角形(主に三角形や四角形)を言う。本実施形態において、記憶部118は、さらに歩道橋厚みD(例えば約0.3m)、歩道橋高さH(例えば約4.7m)、階段長さL(例えば約5m)、フェンス高さZ(例えば約1.2m)それぞれを示す情報を予め保持している。また、以下では、これらの情報によって示される値を、単に、歩道橋厚みD、歩道橋高さH、階段長さL、フェンス高さZと表現する。   The storage unit 118 includes a flash memory, an HDD, and the like, and holds information necessary for displaying 2D map data, a 2D map, and a bird's eye view. Note that the HDD corresponds to a device precisely, but for the sake of convenience of explanation, it is treated as synonymous with a storage medium in this description. In addition, 2D map data is associated with interpolation points, road regulations, backgrounds, icons, names of buildings, etc. for specifying the planar outline of the building (the outline seen from directly above). Based on the points, polygons constituting a simple prismatic or columnar building extending in the vertical direction can be formed. Here, the polygon is a polygon (mainly a triangle or a quadrangle) used to represent a three-dimensional shape in 3DCG (3 Dimensional Computer Graphics). In the present embodiment, the storage unit 118 further includes a footbridge thickness D (for example, about 0.3 m), a footbridge height H (for example, about 4.7 m), a staircase length L (for example, about 5 m), and a fence height Z (for example, About 1.2 m), information indicating each is held in advance. In the following, the values indicated by these pieces of information are simply expressed as pedestrian bridge thickness D, pedestrian bridge height H, stairs length L, and fence height Z.

中央制御部120は、中央処理装置(CPU)、プログラム等が格納されたROM、ワークエリアとしてのRAM等を含む半導体集積回路により、ナビゲーション装置100全体を制御し、操作部110、表示部112、音声入出力部114、位置取得部116、記憶部118等とのインターフェースを果たすと共に、2次元地図や鳥瞰図を表示するための各種演算処理を実行する。また、中央制御部120は、ROMやRAMと協働して、情報取得部130と、3次元平面生成部132と、2次元階段生成部134と、3次元階段生成部136と、3次元フェンス生成部138と、鳥瞰図生成部140と、画像音声処理部142としても機能する。かかる情報取得部130、3次元平面生成部132、2次元階段生成部134、3次元階段生成部136、3次元フェンス生成部138は、操作部110を通じて鳥瞰図を表示する操作入力を受け付けると、道路や建物のラインやポリゴンを形成するための補間点を抽出する処理と並行して、歩道橋のポリゴンを形成するための各補間点を生成する。   The central control unit 120 controls the entire navigation apparatus 100 by a semiconductor integrated circuit including a central processing unit (CPU), a ROM storing programs, a RAM as a work area, and the like, and includes an operation unit 110, a display unit 112, It performs an interface with the voice input / output unit 114, the position acquisition unit 116, the storage unit 118, and the like, and executes various arithmetic processes for displaying a two-dimensional map and a bird's eye view. In addition, the central control unit 120 cooperates with the ROM and the RAM to obtain the information acquisition unit 130, the three-dimensional plane generation unit 132, the two-dimensional staircase generation unit 134, the three-dimensional staircase generation unit 136, and the three-dimensional fence. It also functions as the generation unit 138, the bird's eye view generation unit 140, and the image / audio processing unit 142. When the information acquisition unit 130, the 3D plane generation unit 132, the 2D staircase generation unit 134, the 3D staircase generation unit 136, and the 3D fence generation unit 138 receive an operation input for displaying a bird's eye view through the operation unit 110, In parallel with the process of extracting the interpolation points for forming the building lines and polygons, each interpolation point for forming the pedestrian bridge polygons is generated.

情報取得部130は、鳥瞰図の視野に相当する地理的領域に歩道橋が含まれるか否か判断し、歩道橋が含まれている場合に、記憶部118から歩道橋情報160を取得する。   The information acquisition unit 130 determines whether or not a pedestrian bridge is included in the geographical region corresponding to the field of view of the bird's eye view, and acquires the pedestrian bridge information 160 from the storage unit 118 when the pedestrian bridge is included.

図3は、歩道橋情報160を説明するための説明図である。歩道橋情報160は、図3(a)に示した歩道橋162の平面部分である歩道橋平面部164の平面外形を特定可能な複数の2次元平面補間点168の座標情報と、その複数の2次元平面補間点168のうち、いずれが歩道橋162の階段部分である歩道橋階段部170との連結点172にあたるかを示す連結情報とを含んでいる。2次元平面補間点168は、図3(b)や図3(c)において円で示されるように4以上の点で構成される。連結点は、図3(b)、(c)に黒で塗りつぶした円で示したように、2次元平面補間点168のうち、歩道橋階段部170との連結部分に配される点を示す。ここで、連結点172を示す連結情報が無い場合、2次元平面補間点168のうち、2次元地図の歩道に対応している点を連結点172とみなして後述する処理を実行するとも可能である。   FIG. 3 is an explanatory diagram for explaining the pedestrian bridge information 160. The pedestrian bridge information 160 includes coordinate information of a plurality of two-dimensional plane interpolation points 168 that can specify the planar outline of the pedestrian bridge plane portion 164 that is a plane portion of the pedestrian bridge 162 shown in FIG. 3A, and the plurality of two-dimensional planes. The interpolation point 168 includes connection information indicating which one of the interpolation points 168 corresponds to the connection point 172 with the pedestrian bridge staircase portion 170 which is the staircase portion of the pedestrian bridge 162. The two-dimensional plane interpolation point 168 is composed of four or more points as shown by circles in FIGS. 3B and 3C. The connection point indicates a point arranged at a connection portion with the pedestrian bridge staircase portion 170 among the two-dimensional plane interpolation points 168, as indicated by black circles in FIGS. 3B and 3C. Here, when there is no connection information indicating the connection point 172, it is also possible to regard the point corresponding to the sidewalk of the two-dimensional map among the two-dimensional plane interpolation points 168 as the connection point 172 and execute the processing described later. is there.

また、図3(b)のように4つの2次元平面補間点168で歩道橋平面部164の平面外形を表す場合に対して、図3(c)のように6つの2次元平面補間点168で歩道橋平面部164の平面外形を表す場合、図3(d)の如く、曲折した歩道橋平面部164にも対応することが可能となる。従って、2次元平面補間点168の数は、歩道橋平面部164の平面外形に応じて設定するのが望ましい。   In addition, as shown in FIG. 3B, the two-dimensional plane interpolation points 168 represent the planar outline of the pedestrian bridge plane portion 164, whereas in FIG. 3C, six two-dimensional plane interpolation points 168 are used. When the planar outline of the pedestrian bridge plane part 164 is represented, as shown in FIG. 3D, it is possible to deal with a curved pedestrian bridge plane part 164. Therefore, the number of two-dimensional plane interpolation points 168 is preferably set according to the planar outline of the pedestrian bridge plane portion 164.

3次元平面生成部132は、2次元平面補間点168の座標情報と、予め設定された歩道橋厚みDを示す情報および歩道橋高さHを示す情報とに基づいて、歩道橋平面部164を立体的に表示するための3次元平面補間点174を生成する。以下、3次元平面生成部132の詳細な処理を説明する。   Based on the coordinate information of the two-dimensional plane interpolation point 168 and the information indicating the preset pedestrian bridge thickness D and the information indicating the pedestrian bridge height H, the three-dimensional plane generation unit 132 three-dimensionally converts the pedestrian bridge plane unit 164. A three-dimensional plane interpolation point 174 for display is generated. Hereinafter, detailed processing of the three-dimensional plane generation unit 132 will be described.

図4は、3次元平面生成部132の処理を説明するための説明図である。ここでは、図4(a)に示す、歩道橋平面部164の平面外形が、6つの2次元平面補間点168によって特定されている例を挙げて説明する。   FIG. 4 is an explanatory diagram for explaining processing of the three-dimensional plane generation unit 132. Here, an example in which the planar outline of the pedestrian bridge plane part 164 shown in FIG. 4A is specified by six two-dimensional plane interpolation points 168 will be described.

3次元平面生成部132は、情報取得部130が取得した歩道橋情報160に含まれるすべての2次元平面補間点168(以後、理解を容易にするため個々の点を識別可能なP1〜P6の表現を用いる。)の座標情報を抽出し、また、記憶部118に予め保持された歩道橋厚みDを示す情報と歩道橋高さHを示す情報とを読み出す。そして、3次元平面生成部132は、2次元平面補間点168(P1〜P6)を用いて、歩道橋高さHの位置に歩道橋厚みDを有する3次元の歩道橋平面部164を形成する。   The three-dimensional plane generation unit 132 displays all the two-dimensional plane interpolation points 168 included in the pedestrian bridge information 160 acquired by the information acquisition unit 130 (hereinafter, expressions P1 to P6 that can identify individual points for easy understanding). And the information indicating the pedestrian bridge thickness D and the information indicating the pedestrian bridge height H, which are stored in the storage unit 118 in advance, are read out. Then, the three-dimensional plane generation unit 132 uses the two-dimensional plane interpolation points 168 (P1 to P6) to form a three-dimensional pedestrian bridge plane unit 164 having a pedestrian bridge thickness D at the position of the pedestrian bridge height H.

詳細に、3次元平面生成部132は、2次元平面補間点P1〜P6と座標情報中の緯度・経度が等しく、高さが歩道橋厚みDだけ異なる2組(12個)の3次元平面補間点174(P11〜P16)、(P21〜P26)を形成する。従って、例えば、3次元平面補間点P26は、緯度・経度が2次元平面補間点P6と等しく、高さが歩道橋高さHとなり、3次元平面補間点P16は、緯度・経度が2次元平面補間点P6と等しく、高さが歩道橋高さHと歩道橋厚みDとの和になる。他の3次元平面補間点P11〜P15や3次元平面補間点P21〜P25も同様に緯度・経度が2次元平面補間点P1〜5と等しく、高さが歩道橋高さHや、歩道橋高さHと歩道橋厚みDとの和となる。3次元平面生成部132は、生成した3次元平面補間点174を一時的に記憶部118に記憶する。   Specifically, the three-dimensional plane generation unit 132 has two sets (12 pieces) of three-dimensional plane interpolation points P1 to P6 having the same latitude and longitude in the coordinate information and different in height by the footbridge thickness D. 174 (P11 to P16) and (P21 to P26) are formed. Thus, for example, the 3D plane interpolation point P26 has the same latitude and longitude as the 2D plane interpolation point P6, the height is the footbridge height H, and the 3D plane interpolation point P16 has the 2D plane interpolation of latitude and longitude. It is equal to the point P6, and the height is the sum of the footbridge height H and footbridge thickness D. Similarly, the other three-dimensional plane interpolation points P11 to P15 and the three-dimensional plane interpolation points P21 to P25 have the same latitude and longitude as the two-dimensional plane interpolation points P1 to 5, and the height is the footbridge height H or the footbridge height H. And pedestrian bridge thickness D. The three-dimensional plane generation unit 132 temporarily stores the generated three-dimensional plane interpolation point 174 in the storage unit 118.

2次元階段生成部134は、連結情報と予め設定された階段長さLを示す情報とに基づいて、歩道橋階段部170の平面外形を特定可能な2次元階段補間点182を生成する。   The two-dimensional staircase generation unit 134 generates a two-dimensional stair interpolation point 182 that can specify the planar outline of the pedestrian bridge staircase unit 170 based on the connection information and information indicating the preset staircase length L.

図5は、2次元階段生成部134の処理を説明するための説明図である。ここでも、図4(a)に示した、歩道橋情報160が、6つの2次元平面補間点168から形成されている例を挙げて説明する。   FIG. 5 is an explanatory diagram for explaining the processing of the two-dimensional staircase generation unit 134. Here, an example in which the pedestrian bridge information 160 shown in FIG. 4A is formed from six two-dimensional plane interpolation points 168 will be described.

2次元階段生成部134は、記憶部118に予め保持された階段長さLを示す情報を読み出すと共に、図5の如く、2次元平面補間点168をすべて連接する。ここで、連接は、2点間の結線が他の結線と交わることなく、すべての点それぞれが他の2点と接続されることをいう。そして、2次元階段生成部134は、歩道橋情報160の連結情報を用いて、歩道橋階段部170との連結点172にあたる2次元平面補間点168(ここでは、P2、P3、P5、P6)から階段長さLだけ延長した端点を導出し、その端点を2次元階段補間点182とする。   The two-dimensional staircase generation unit 134 reads information indicating the staircase length L stored in advance in the storage unit 118 and connects all the two-dimensional plane interpolation points 168 as shown in FIG. Here, the connection means that all the points are connected to the other two points without the connection between the two points intersecting with the other connections. Then, the two-dimensional staircase generation unit 134 uses the connection information of the pedestrian bridge information 160 to stair from the two-dimensional plane interpolation point 168 (here, P2, P3, P5, P6) corresponding to the connection point 172 with the pedestrian bridge staircase unit 170. An end point extended by the length L is derived, and the end point is set as a two-dimensional step interpolation point 182.

詳細には、歩道橋階段部170と連結している2次元平面補間点168(ここでは、歩道橋階段部170aに連結しているP2、P3および歩道橋階段部170bに連結しているP5、P6)のそれぞれと連接している2次元平面補間点168(例えば、P2の場合、P2に連接しているP1とP3)のうち、同一の歩道橋階段部170(ここでは170a)と連結している2次元平面補間点168(ここでは、P3)とは異なる2次元平面補間点168、即ちP1を特定する。   Specifically, the two-dimensional plane interpolation points 168 connected to the pedestrian bridge staircase 170 (here, P2 and P3 connected to the pedestrian bridge staircase 170a and P5 and P6 connected to the pedestrian bridge staircase 170b). Of the two-dimensional plane interpolation points 168 connected to each of them (for example, P1 and P3 connected to P2 in the case of P2), the two-dimensional connected to the same pedestrian bridge staircase 170 (170a in this case). A two-dimensional plane interpolation point 168 different from the plane interpolation point 168 (here, P3), that is, P1 is specified.

そして、特定された2次元平面補間点168であるP1と、対象となる2次元平面補間点168であるP2との結線184を、図4中矢印で示したように、対象となる2次元平面補間点168であるP2から階段長さLだけ延長し、2次元階段補間点182であるF2を生成する。かかる処理は、歩道橋階段部170と連結している2次元平面補間点168、ここでは、P2、P3、P5、P6すべてについて実行する。こうして、図5のように2次元階段補間点182としてのF2、F3、F5、F6が配置される。   Then, the connection line 184 between the identified two-dimensional plane interpolation point 168, P1, and the target two-dimensional plane interpolation point 168, P2, as indicated by an arrow in FIG. 4, is the target two-dimensional plane. A step length L is extended from P2 which is the interpolation point 168, and F2 which is a two-dimensional step interpolation point 182 is generated. Such processing is executed for all the two-dimensional plane interpolation points 168 connected to the pedestrian bridge staircase portion 170, here, P2, P3, P5, and P6. Thus, as shown in FIG. 5, F2, F3, F5, and F6 are arranged as the two-dimensional staircase interpolation point 182.

ここでは、2次元階段生成部134が、2次元平面補間点168同士の位置関係、特に連結点172と他の2次元平面補間点168との位置関係に基づいて2次元階段補間点182を生成しているが、2次元平面補間点168それぞれを特定する付番を設けることで、より簡単に2次元階段補間点182を生成することができる。かかる説明を上述した例と同様、図5を用いて説明する。   Here, the two-dimensional staircase generation unit 134 generates the two-dimensional staircase interpolation point 182 based on the positional relationship between the two-dimensional plane interpolation points 168, particularly the positional relationship between the connection point 172 and another two-dimensional plane interpolation point 168. However, it is possible to generate the two-dimensional staircase interpolation point 182 more easily by providing numbering for specifying each of the two-dimensional plane interpolation points 168. This will be described with reference to FIG. 5 as in the above example.

2次元階段生成部134は、2次元平面補間点168に連接する順を示した番号を付す。例えば、図5のように、6つの2次元平面補間点168に対して、所定の順、ここでは、反時計回りにP1→P2→P3→P4→P5→P6が付番される。2次元階段生成部134は、2次元平面補間点168に付された番号に従って、階段長さLだけ延長する2次元平面補間点168を特定する。   The two-dimensional staircase generation unit 134 assigns a number indicating the order of connection to the two-dimensional plane interpolation point 168. For example, as shown in FIG. 5, six two-dimensional plane interpolation points 168 are numbered in a predetermined order, here, P1 → P2 → P3 → P4 → P5 → P6 in a counterclockwise direction. The two-dimensional staircase generation unit 134 specifies a two-dimensional plane interpolation point 168 extending by the staircase length L according to the number assigned to the two-dimensional plane interpolation point 168.

例えば、歩道橋階段部170aとの連結点172がP2、P3であり、歩道橋階段部170bとの連結点がP5、P6であった場合を考える。この場合、2次元階段生成部134は、歩道橋階段部170aとの連結点P2、P3のうち番号が小さい連結点172であるP2と、一つ番号が小さい2次元平面補間点168(ここではP1)とを結ぶベクトル/(P1P2)を算出し、連結点172(ここではP2)から、その算出されたベクトル/(P1P2)方向に、設定された階段長さLだけ離れた点F2を導出して2次元階段補間点182とする。   For example, consider a case where the connection points 172 with the pedestrian bridge staircase portion 170a are P2 and P3, and the connection points with the pedestrian bridge staircase portion 170b are P5 and P6. In this case, the two-dimensional staircase generation unit 134 has a connection point 172 having a smaller number among the connection points P2 and P3 with the pedestrian bridge staircase portion 170a and a two-dimensional plane interpolation point 168 having a smaller number (here, P1). ) Are calculated, and a point F2 that is separated from the connection point 172 (here P2) by the set step length L in the calculated vector / (P1P2) direction is derived. 2D stair interpolation point 182.

続いて、2次元階段生成部134は、歩道橋階段部170aとの連結点P2、P3のうち、番号が大きい2次元平面補間点168であるP3と、一つ番号が大きい2次元平面補間点168(ここではP4)とを結ぶベクトル/(P4P3)を算出し、2次元平面補間点168(ここではP3)から、その算出されたベクトル/(P4P3)方向に、階段長さLだけ離れた点F3を導出して2次元階段補間点182とする。   Subsequently, the two-dimensional staircase generation unit 134, among the connection points P2 and P3 with the pedestrian bridge staircase portion 170a, P3 which is a two-dimensional plane interpolation point 168 having a large number and a two-dimensional plane interpolation point 168 having one large number. A vector / (P4P3) connecting (here P4) is calculated, and a point separated from the two-dimensional plane interpolation point 168 (here P3) by the step length L in the calculated vector / (P4P3) direction. F3 is derived and set as a two-dimensional stair interpolation point 182.

歩道橋階段部170bと連結するP5、P6についても同様の規則に基づいてベクトル/(P4P5)、/(P1P6)を算出し、その算出されたベクトル方向に階段長さLだけ離れた点F5、F6を導出して2次元階段補間点182とする。ただし、P6に対するP1は、その連続性を踏まえてP7として考慮される。2次元階段生成部134は、生成した2次元階段補間点182を一時的に記憶部118に記憶する。ここでは、図5を用いて、2次元平面補間点168が6つの場合を例に挙げたが、2次元平面補間点168は、2次元平面補間点168の連結点172さえ特定できれば、4以上のいずれの数であっても本実施形態を適用することができる。   For P5 and P6 connected to the pedestrian bridge staircase 170b, vectors / (P4P5) and / (P1P6) are calculated based on the same rule, and points F5 and F6 separated by the staircase length L in the calculated vector direction. Is derived as a two-dimensional stair interpolation point 182. However, P1 with respect to P6 is considered as P7 based on its continuity. The two-dimensional staircase generation unit 134 temporarily stores the generated two-dimensional staircase interpolation point 182 in the storage unit 118. Here, the case where there are six two-dimensional plane interpolation points 168 has been described as an example using FIG. 5, but the two-dimensional plane interpolation point 168 is four or more as long as the connection point 172 of the two-dimensional plane interpolation point 168 can be specified. The present embodiment can be applied to any number.

かかる2次元平面補間点168に付番して2次元階段補間点182を導出する構成では、番号の大小関係以外の複雑な判断が不要になり、2次元階段補間点182を短時間かつ軽負荷で生成することが可能となる。   In the configuration in which the two-dimensional step interpolation point 182 is derived by assigning the number to the two-dimensional plane interpolation point 168, complicated determinations other than the size relationship are not required, and the two-dimensional step interpolation point 182 is quickly and lightly loaded. Can be generated.

3次元階段生成部136は、3次元平面補間点174と、2次元階段補間点182と、設定された歩道橋厚みDを示す情報および歩道橋高さHを示す情報とに基づいて、歩道橋階段部170を立体的に示すための3次元階段補間点186を生成する。以下、3次元階段生成部136の詳細な処理を説明する。   The three-dimensional staircase generation unit 136 is based on the three-dimensional plane interpolation point 174, the two-dimensional step interpolation point 182, the information indicating the pedestrian bridge thickness D and the information indicating the pedestrian bridge height H, and the pedestrian bridge staircase unit 170. A three-dimensional staircase interpolation point 186 for three-dimensionally showing is generated. Hereinafter, detailed processing of the three-dimensional staircase generation unit 136 will be described.

まず、3次元階段生成部136は、3次元平面生成部132が生成した3次元平面補間点174の連結点172(図4(b)に示したP12、P13、P15、P16、P22、P23、P25、P26)、および2次元階段生成部134が生成した2次元階段補間点182(図5に示したF2、F3、F5、F6)の座標情報を抽出し、また、記憶部118に予め保持された歩道橋厚みDを示す情報と歩道橋高さHを示す情報とを読み出す。   First, the three-dimensional staircase generation unit 136 includes connection points 172 of the three-dimensional plane interpolation points 174 generated by the three-dimensional plane generation unit 132 (P12, P13, P15, P16, P22, P23 shown in FIG. 4B). P25, P26), and the coordinate information of the two-dimensional stair interpolation point 182 (F2, F3, F5, F6 shown in FIG. 5) generated by the two-dimensional stair generation unit 134 are extracted and stored in the storage unit 118 in advance. The information indicating the pedestrian bridge thickness D and the information indicating the pedestrian bridge height H are read out.

図6は、3次元階段生成部136の処理を説明するための説明図である。3次元階段生成部136は、図6(a)に示すように、2次元階段補間点182(F2、F3、F5、F6)と緯度・経度が等しく、高さが0である3次元階段補間点186(F22、F23、F25、F26)を生成する。このとき3次元階段補間点186(F22、F23、F25、F26)と3次元平面補間点174の連結点172(P22、P23、P25、P26)とをそれぞれ結ぶ斜線は歩道橋階段部170の傾斜(H/L)を示すこととなる。   FIG. 6 is an explanatory diagram for explaining the processing of the three-dimensional staircase generation unit 136. As shown in FIG. 6A, the three-dimensional staircase generation unit 136 has the same latitude / longitude as the two-dimensional stair interpolation point 182 (F2, F3, F5, F6) and has a height of 0. Point 186 (F22, F23, F25, F26) is generated. At this time, diagonal lines connecting the three-dimensional stair interpolation point 186 (F22, F23, F25, F26) and the connection point 172 (P22, P23, P25, P26) of the three-dimensional plane interpolation point 174 are the inclinations of the pedestrian bridge staircase 170 ( H / L).

続いて、3次元階段生成部136は、図6(b)に示すように、3次元階段補間点186(F22、F23、F25、F26)と3次元平面補間点174の連結点172(P22、P23、P25、P26)とを結ぶベクトル(/(P22F22)、/(P23F23)、/(P25F25)、/(P26F26))が、それぞれ3次元平面補間点174(P12、P13、P15、P16)を通った場合における高さ0の平面との交点を3次元階段補間点186(F22、F23、F25、F26)とする。3次元階段生成部136は、生成した3次元階段補間点186を一時的に記憶部118に記憶する。   Subsequently, as shown in FIG. 6B, the three-dimensional staircase generation unit 136 connects the three-dimensional step interpolation point 186 (F22, F23, F25, F26) and the connection point 172 (P22, F2) of the three-dimensional plane interpolation point 174. The vectors (/ (P22F22), / (P23F23), / (P25F25), / (P26F26)) connecting the P23, P25, and P26) are the three-dimensional plane interpolation points 174 (P12, P13, P15, and P16), respectively. The intersection point with the zero-height plane when passing through is defined as a three-dimensional step interpolation point 186 (F22, F23, F25, F26). The three-dimensional staircase generation unit 136 temporarily stores the generated three-dimensional staircase interpolation point 186 in the storage unit 118.

3次元フェンス生成部138は、歩道橋平面部164の側面および歩道橋階段部170の側面に位置する3次元平面補間点174および3次元階段補間点186を、設定されたフェンス高さZだけ鉛直方向に延設した端点を導出し、3次元フェンス補間点190とする。   The three-dimensional fence generation unit 138 causes the three-dimensional plane interpolation point 174 and the three-dimensional step interpolation point 186 located on the side surface of the pedestrian bridge plane unit 164 and the side surface of the pedestrian bridge staircase unit 170 to vertically extend by the set fence height Z. The extended end point is derived and set as a three-dimensional fence interpolation point 190.

図7は、3次元フェンス生成部138の処理を説明するための説明図である。3次元フェンス生成部138は、3次元平面生成部132が生成した3次元平面補間点174の上面に位置する点(P11、P12、P13、P14、P15、P16)および3次元階段生成部136が生成した3次元階段補間点186の上面に位置する点(F12、F13、F15、F16)の座標情報を抽出し、また、記憶部118に予め保持されたフェンス高さZを示す情報を読み出す。そして、3次元フェンス生成部138は、3次元平面補間点174の上面に位置する点(P11、P12、P13、P14、P15、P16)および3次元階段補間点186の上面に位置する点(F12、F13、F15、F16)を用いて、フェンス高さZを有する3次元のフェンスを形成する。   FIG. 7 is an explanatory diagram for explaining processing of the three-dimensional fence generation unit 138. The three-dimensional fence generation unit 138 includes points (P11, P12, P13, P14, P15, P16) located on the upper surface of the three-dimensional plane interpolation point 174 generated by the three-dimensional plane generation unit 132, and a three-dimensional staircase generation unit 136. The coordinate information of the points (F12, F13, F15, F16) located on the upper surface of the generated three-dimensional staircase interpolation point 186 is extracted, and information indicating the fence height Z held in advance in the storage unit 118 is read. Then, the three-dimensional fence generation unit 138 has a point (P11, P12, P13, P14, P15, P16) located on the upper surface of the three-dimensional plane interpolation point 174 and a point (F12) located on the upper surface of the three-dimensional step interpolation point 186. , F13, F15, F16) to form a three-dimensional fence having a fence height Z.

詳細に、3次元フェンス生成部138は、図7(b)に示すように、3次元平面補間点174の上面に位置する点(P11、P12、P13、P14、P15、P16)および3次元階段補間点186の上面に位置する点(F12、F13、F15、F16)と緯度・経度が等しく、高さが各補間点よりフェンス高さZだけ高い3次元フェンス補間点190(C1〜C10)を生成する。従って、歩道橋平面部164上の3次元フェンス補間点190の高さは、歩道橋高さHと歩道橋厚みDとフェンス高さZとの和となる。3次元フェンス生成部138は、生成した3次元フェンス補間点190を一時的に記憶部118に記憶する。   Specifically, as shown in FIG. 7B, the three-dimensional fence generation unit 138 includes points (P11, P12, P13, P14, P15, P16) located on the upper surface of the three-dimensional plane interpolation point 174 and a three-dimensional staircase. The three-dimensional fence interpolation points 190 (C1 to C10) having the same latitude and longitude as the points (F12, F13, F15, and F16) located on the upper surface of the interpolation point 186 and the height being higher than the respective interpolation points by the fence height Z. Generate. Accordingly, the height of the three-dimensional fence interpolation point 190 on the pedestrian bridge plane 164 is the sum of the pedestrian bridge height H, the pedestrian bridge thickness D, and the fence height Z. The three-dimensional fence generation unit 138 temporarily stores the generated three-dimensional fence interpolation point 190 in the storage unit 118.

かかる3次元フェンス生成部138を設けることで、3次元のオブジェクトをより実際に近い形状で表示することができるため、搭乗者は、表示部112に表示されているのが歩道橋162であることをより迅速かつ確実に把握することができ、ナビゲーション装置100の利便性を向上させることが可能となる。   By providing such a three-dimensional fence generation unit 138, it is possible to display a three-dimensional object in a shape that is closer to reality, so that the passenger can confirm that the pedestrian bridge 162 is displayed on the display unit 112. It is possible to grasp the information more quickly and reliably, and the convenience of the navigation device 100 can be improved.

鳥瞰図生成部140は、2次元地図データの地図情報および記憶部118に保持された各補間点を取得し、ラインまたはポリゴンを形成して、車両位置後方の所定の高さにある視点から2次元地図を見下ろす鳥瞰図を生成する。   The bird's-eye view generation unit 140 acquires the map information of the two-dimensional map data and each interpolation point held in the storage unit 118, forms a line or a polygon, and generates a two-dimensional view from a viewpoint at a predetermined height behind the vehicle position. Generate a bird's-eye view overlooking the map.

図8は、表示部112に鳥瞰図を表示する場合の画面形成処理を説明するための説明図である。まず、鳥瞰図生成部140は、2次元地図データから地図情報を取得し、進行方向の道路の補間点に基づいてライン描画を実行し、図8(a)に示すような、車両150と道路192のみの鳥瞰図を生成する。ここで道路情報は、道路、川、鉄道などのノード情報を含み、各ノード情報は複数の補間点を有する。たとえば、道路の場合、補間点は、緯度・経度の2次元座標と車線数などの道路属性で構成される。   FIG. 8 is an explanatory diagram for explaining a screen forming process when a bird's eye view is displayed on the display unit 112. First, the bird's eye view generation unit 140 acquires map information from the two-dimensional map data, executes line drawing based on the interpolation point of the road in the traveling direction, and the vehicle 150 and the road 192 as shown in FIG. Only a bird's eye view is generated. Here, the road information includes node information such as roads, rivers, and railroads, and each node information has a plurality of interpolation points. For example, in the case of a road, an interpolation point is composed of two-dimensional coordinates of latitude and longitude and road attributes such as the number of lanes.

続いて、鳥瞰図生成部140は、鉛直方向に延長される角柱状または円柱状に形成された単純な建物194を構成するポリゴンを描画し、図8(b)に示すように、車両150と道路192のみの鳥瞰図に建物を加える。   Subsequently, the bird's-eye view generation unit 140 draws a polygon that forms a simple building 194 formed in a prismatic or columnar shape extending in the vertical direction, and as shown in FIG. Add buildings to the bird's eye view of 192 only.

最後に、鳥瞰図生成部140は、3次元平面補間点174、3次元階段補間点186、および3次元フェンス補間点190によって構成される歩道橋162を3次元ウィンドウ座標系に射影変換し、3次元ウィンドウ座標系の各補間点を連接してポリゴンを展開し、図8(c)に示すように、鳥瞰図にその歩道橋162を重畳する。   Finally, the bird's eye view generation unit 140 projects the pedestrian bridge 162 constituted by the 3D plane interpolation point 174, the 3D step interpolation point 186, and the 3D fence interpolation point 190 into a 3D window coordinate system, and converts the 3D window The polygons are developed by connecting the interpolation points of the coordinate system, and the pedestrian bridge 162 is superimposed on the bird's eye view as shown in FIG.

図9は、ポリゴンの展開を説明するための説明図である。鳥瞰図生成部140は、図9(a)に示した、3次元平面生成部132が生成した12の3次元平面補間点P11〜P16、P21〜P26(3次元オブジェクト)を射影変換して、3次元ウィンドウ座標を算出する。3次元平面生成部132は、算出された3次元ウィンドウ座標における歩道橋平面部164の3次元オブジェクトを複数のポリゴンに展開する。   FIG. 9 is an explanatory diagram for explaining the development of a polygon. The bird's eye view generation unit 140 performs projective transformation on the 12 three-dimensional plane interpolation points P11 to P16 and P21 to P26 (three-dimensional objects) generated by the three-dimensional plane generation unit 132 shown in FIG. Dimension window coordinates are calculated. The three-dimensional plane generation unit 132 expands the three-dimensional object of the footbridge plane unit 164 in the calculated three-dimensional window coordinates into a plurality of polygons.

ここでは、図9(b)に示すように、鳥瞰図生成部140が、3次元オブジェクトを、上下2つの四角形176(P11−P12−P13−P14−P15−P16、P21−P22−P23−P24−P25−P26)と、歩道橋階段部170に連結される2つの四角形178(P12−P13−P23−P22、P15−P16−P26−P25)と、側面に対応する4つの四角形180(P11−P12―P22−P21、P13−P14―P24−P23、P14−P15―P25−P24、P16−P11―P21−P26)との8つのポリゴンに展開する。   Here, as shown in FIG. 9B, the bird's eye view generation unit 140 converts the three-dimensional object into two upper and lower quadrilaterals 176 (P11-P12-P13-P14-P15-P16, P21-P22-P23-P24-). P25-P26), two squares 178 (P12-P13-P23-P22, P15-P16-P26-P25) connected to the pedestrian bridge staircase 170, and four squares 180 (P11-P12- corresponding to the side surfaces) P22-P21, P13-P14-P24-P23, P14-P15-P25-P24, and P16-P11-P21-P26).

同様に、鳥瞰図生成部140は、3次元平面生成部132が生成した12の3次元階段補間点186(P12、P13、P22、P23、F12、F13、F22、F23)、(P15、P16、P25、P26、F15、F16、F25、F26)の2つの3次元オブジェクトを射影変換して、3次元ウィンドウ座標を算出する。鳥瞰図生成部140は、算出された3次元ウィンドウ座標における歩道橋階段部170の2つの3次元オブジェクトを複数のポリゴンに展開する(図6(b)参照)。   Similarly, the bird's eye view generation unit 140 includes twelve three-dimensional step interpolation points 186 (P12, P13, P22, P23, F12, F13, F22, F23) generated by the three-dimensional plane generation unit 132, (P15, P16, P25). , P26, F15, F16, F25, and F26), the three-dimensional window coordinates are calculated by projective transformation. The bird's eye view generation unit 140 expands the two 3D objects of the pedestrian bridge staircase unit 170 in the calculated 3D window coordinates into a plurality of polygons (see FIG. 6B).

具体的には、鳥瞰図生成部140が、一方の3次元オブジェクトを、上下2つの四角形(P12−P13−F13−F12、P22−P23−F23−F22)、歩道橋平面部164に連結される四角形(P12−P13−P23−P22)、地面に連結する四角形(F12−F13−F23−F22)、側面に対応する2つの四角形(P12−F12−F22−P22、P13−F13−F23−P23)との6つのポリゴンに展開する。また、他方の3次元オブジェクトに関しても、鳥瞰図生成部140が、上下2つの四角形(P15−P16−F16−F15、P25−P26−F26−F25)、歩道橋平面部164に連結される四角形(P15−P16−P26−P25)、地面に連結する四角形(F15−F16−F26−F25)、側面に対応する2つの四角形(P15−F15−F25−P25、P16−F16−F26−P26)との6つのポリゴンに展開する。   Specifically, the bird's eye view generation unit 140 converts one three-dimensional object into two rectangles (P12-P13-F13-F12, P22-P23-F23-F22), and a quadrilateral ( P12-P13-P23-P22), a square connected to the ground (F12-F13-F23-F22), and two squares corresponding to the side (P12-F12-F22-P22, P13-F13-F23-P23) Expand to 6 polygons. For the other three-dimensional object, the bird's-eye view generation unit 140 also includes a quadrilateral (P15-P16-F16-F15, P25-P26-F26-F25) and a quadrilateral (P15-) connected to the pedestrian bridge plane 164. P16-P26-P25), a square connected to the ground (F15-F16-F26-F25), two squares corresponding to the side (P15-F15-F25-P25, P16-F16-F26-P26) Expand to polygon.

続いて、鳥瞰図生成部140は、3次元フェンス生成部138が生成した10の3次元フェンス補間点190(C1〜C10)の3次元オブジェクトを射影変換して、3次元ウィンドウ座標を算出する。鳥瞰図生成部140は、算出された3次元ウィンドウ座標におけるフェンスの3次元オブジェクトを複数のポリゴンに展開する(図7(b)参照)。   Subsequently, the bird's eye view generation unit 140 performs projective conversion on the three-dimensional objects of the ten three-dimensional fence interpolation points 190 (C1 to C10) generated by the three-dimensional fence generation unit 138, and calculates three-dimensional window coordinates. The bird's eye view generation unit 140 expands the three-dimensional object of the fence in the calculated three-dimensional window coordinates into a plurality of polygons (see FIG. 7B).

具体的には、鳥瞰図生成部140が、3次元オブジェクトを、歩道橋平面部164の側面に該当する四角形、即ち、歩道橋平面部164と連結する線分P12−P13、P15−P16を含まない4つの四角形(C1−C2−P12−P11、C3−C4−P14−P13、C4−C5−P15−P14、C6−C1−P11−P16)、歩道橋階段部170の側面に該当する4つの四角形(C2―C7−F12−P12、C3―C8−F13−P13、C5―C9−F15−P15、C6―C10−F16−P16)との8つのポリゴンに展開する。   Specifically, the bird's-eye view generation unit 140 includes a quadrilateral corresponding to the side of the pedestrian bridge plane 164, that is, four lines that do not include the line segments P12-P13 and P15-P16 that connect the pedestrian bridge plane 164. Quadrilateral (C1-C2-P12-P11, C3-C4-P14-P13, C4-C5-P15-P14, C6-C1-P11-P16), four squares (C2- C7-F12-P12, C3-C8-F13-P13, C5-C9-F15-P15, and C6-C10-F16-P16).

本実施形態では、2次元座標で構成された2次元地図から、その平面外形を特定可能な歩道橋情報160を取得するだけで、構造が複雑な歩道橋162を3次元表示することが可能となる。従って、搭乗者は、進行方向に歩道橋162がある場合に、表示部112を見るだけで、目印となる歩道橋の位置や距離を確実に把握することができる。   In the present embodiment, a pedestrian bridge 162 having a complicated structure can be displayed in three dimensions only by acquiring pedestrian bridge information 160 that can specify the planar outline from a two-dimensional map configured by two-dimensional coordinates. Therefore, when the pedestrian bridge 162 is present in the traveling direction, the passenger can surely grasp the position and distance of the pedestrian bridge as a landmark only by looking at the display unit 112.

また、鳥瞰図生成部140は、射影変換された歩道橋162のポリゴンを透過処理して鳥瞰図に重畳してもよい。   Further, the bird's-eye view generation unit 140 may perform transparent processing on the polygon of the pedestrian bridge 162 that has undergone the projective transformation and superimpose it on the bird's-eye view.

図10は、鳥瞰図生成部140の透過処理を説明するための説明図である。本来、鳥瞰図生成部140は、図10(a)の如く、他の建物等と同様に歩道橋162のポリゴンも着色する。しかし、歩道橋162はその目的から、図10(a)のように車両150の進行方向の道路192を覆うこともあり、道路192の形状を把握し難くなるおそれがある。   FIG. 10 is an explanatory diagram for explaining the transmission processing of the bird's eye view generation unit 140. Originally, as shown in FIG. 10A, the bird's eye view generation unit 140 colors the polygon of the pedestrian bridge 162 in the same manner as other buildings. However, the pedestrian bridge 162 may cover the road 192 in the traveling direction of the vehicle 150 as shown in FIG. 10A for that purpose, which may make it difficult to grasp the shape of the road 192.

ここでは、鳥瞰図生成部140が歩道橋162のポリゴンを所定の透過度で透過処理することで、図10(b)のように、歩道橋162の目印としての機能を損なうことなく、その背後にある道路192を搭乗者に視認させることができる。   Here, the bird's-eye view generation unit 140 transmits the polygon of the pedestrian bridge 162 with a predetermined transparency so that the function as a landmark of the pedestrian bridge 162 is not impaired as shown in FIG. 192 can be made visible to the passenger.

さらに、鳥瞰図生成部140は、射影変換された歩道橋階段部170のポリゴンに、階段を表す画像をさらに重畳してもよい。   Further, the bird's eye view generation unit 140 may further superimpose an image representing the stairs on the polygon of the pedestrian bridge staircase unit 170 that has undergone the projective transformation.

図11は、鳥瞰図生成部140の描画処理を説明するための説明図である。鳥瞰図生成部140は、図11(a)のように歩道橋階段部170を構成するポリゴンを平面的に着色する。しかし、歩道橋階段部170には凹凸のある階段が設けられていることが通常であり、その平面的な着色が違和感を与えることもある。   FIG. 11 is an explanatory diagram for explaining the drawing process of the bird's eye view generation unit 140. The bird's eye view generation unit 140 planarly colors the polygons constituting the pedestrian bridge staircase unit 170 as shown in FIG. However, the pedestrian bridge staircase 170 is usually provided with uneven stairs, and the planar coloring may give a sense of incongruity.

ここでは、鳥瞰図生成部140が歩道橋162の歩道橋階段部170の上部ポリゴン(図6(b)のP12−P13−F13−F12、P15−P16−F16−F15)に、図11(b)に示すような、階段を表す画像(テクスチャー情報)を重畳することで、3次元のオブジェクトをより実際に近い形状で表示することができるため、搭乗者は、表示部112に表示されているのが歩道橋162であることをより迅速かつ確実に把握することができ、ナビゲーション装置100の利便性を向上させることが可能となる。   Here, the bird's-eye view generation unit 140 shows the upper polygons (P12-P13-F13-F12, P15-P16-F16-F15 in FIG. 6B) of the pedestrian bridge staircase 170 of the pedestrian bridge 162, as shown in FIG. By superimposing images (texture information) representing stairs like this, it is possible to display a three-dimensional object with a shape that is closer to the actual shape. 162 can be grasped more quickly and reliably, and the convenience of the navigation device 100 can be improved.

画像音声処理部142は、音声入出力部114を通じて入力された搭乗者の音声による指示を分析処理すると共に、車両150の行き先方向を表示部112や音声入出力部114に表示または音声出力させる。   The image / audio processing unit 142 analyzes and processes the instructions by the passenger's voice input through the voice input / output unit 114 and causes the display unit 112 and the voice input / output unit 114 to display or output the destination direction of the vehicle 150.

以上説明したように本実施形態のナビゲーション装置100では、表示部112に鳥瞰図を表示する際、歩道橋162も加えて3次元表示している。かかる歩道橋162は、同様の外観で複数並置された建物群よりも低出現頻度かつ特徴的であり、走行中に視点をほとんど変えなくても容易に視認できるので、目印として有効に機能するといった利点を有する反面、構造が複雑すぎて厳密な3次元化を行うには処理負荷が高すぎるといった問題がある。   As described above, in the navigation device 100 according to the present embodiment, when the bird's-eye view is displayed on the display unit 112, the pedestrian bridge 162 is also displayed in a three-dimensional display. The pedestrian bridge 162 has a similar appearance and a lower appearance frequency and a characteristic than a plurality of juxtaposed buildings, and can be easily seen without changing the viewpoint during travel, so that it can function effectively as a landmark. However, there is a problem that the processing load is too high to perform strict three-dimensionalization because the structure is too complicated.

本実施形態では、車高の規制等により歩道橋厚みD、歩道橋高さH、階段長さL、フェンス高さZは所定値に近い値がとられるので、たとえその値を所定値に決め打ちしたとしても、実際の歩道橋162の外形と相違しないことに着目し、予め設定された、歩道橋厚みD、歩道橋高さH、階段長さL、フェンス高さZを用いて、情報量の少ない2次元地図から、簡易な処理で、鳥瞰図に表示可能な3次元の歩道橋162の大凡の外観を模擬している。ここでは、簡易的な形状ではあるものの、歩道橋162を鳥瞰図に含めることで、搭乗者の利便性を飛躍的に向上させることが可能となる。   In the present embodiment, the pedestrian bridge thickness D, pedestrian bridge height H, stairs length L, and fence height Z have values close to predetermined values due to vehicle height restrictions and the like. However, paying attention to the fact that it does not differ from the actual shape of the pedestrian bridge 162, two-dimensional information with a small amount of information using preset pedestrian bridge thickness D, pedestrian bridge height H, stairs length L, and fence height Z From the map, the general appearance of the three-dimensional pedestrian bridge 162 that can be displayed in a bird's-eye view is simulated by simple processing. Here, although it is a simple shape, by including the pedestrian bridge 162 in the bird's-eye view, it is possible to dramatically improve the convenience of the passenger.

(ナビゲーション方法)
次に、上述したナビゲーション装置100を用いて、車両150の移動経路を案内するナビゲーション方法を具体的に説明する。
(Navigation method)
Next, a navigation method for guiding the moving route of the vehicle 150 using the navigation device 100 described above will be specifically described.

図12は、ナビゲーション表示方法の全体的な流れを示したフローチャートである。割り込み処理が発生すると(S200のYES)、ナビゲーション装置100の情報取得部130は、歩道橋162の平面部分である歩道橋平面部164の平面外形を特定可能な4以上の2次元平面補間点168の座標情報と、4以上の2次元平面補間点168のうち、いずれが歩道橋162の階段部分である歩道橋階段部170との連結点172にあたるかを示す連結情報と、を含む歩道橋情報160を取得する(S202)。   FIG. 12 is a flowchart showing the overall flow of the navigation display method. When interrupt processing occurs (YES in S200), the information acquisition unit 130 of the navigation device 100 coordinates four or more two-dimensional plane interpolation points 168 that can specify the planar outline of the pedestrian bridge plane unit 164, which is a plane part of the pedestrian bridge 162. The pedestrian bridge information 160 including information and connection information indicating which of the four or more two-dimensional plane interpolation points 168 corresponds to the connection point 172 with the pedestrian bridge staircase portion 170 which is the stairs portion of the pedestrian bridge 162 is acquired ( S202).

そして、3次元平面生成部132は、座標情報と予め設定された歩道橋厚みDを示す情報および歩道橋高さHを示す情報とに基づいて、歩道橋平面部164を立体的に表示するための3次元平面補間点174を生成する(S204)。   Then, the three-dimensional plane generation unit 132 is a three-dimensional display for stereoscopically displaying the pedestrian bridge plane unit 164 based on the coordinate information, information indicating the pedestrian bridge thickness D and information indicating the pedestrian bridge height H. A plane interpolation point 174 is generated (S204).

2次元階段生成部134は、連結情報と予め設定された階段長さLを示す情報とに基づいて、2次元平面補間点168をすべて連接した場合に、連結点172にあたる2次元平面補間点168と連接している2つの2次元平面補間点168のうち、同一の歩道橋階段部170と連結している2次元平面補間点168とは異なる2次元平面補間点168と、連結点172にあたる2次元平面補間点168との結線184を、連結点172にあたる2次元平面補間点168から階段長さLだけ延長した端点を、歩道橋階段部170の平面外形を特定可能な2次元階段補間点182として生成し(S206)、3次元階段生成部136は、2次元階段補間点182と歩道橋厚みDを示す情報および歩道橋高さHを示す情報とに基づいて、3次元階段補間点186を生成する(S208)。   The two-dimensional staircase generating unit 134 connects the two-dimensional plane interpolation points 168 corresponding to the connection points 172 when all the two-dimensional plane interpolation points 168 are connected based on the connection information and the information indicating the preset step length L. 2D plane interpolation points 168 that are different from the 2D plane interpolation points 168 connected to the same pedestrian bridge staircase 170 among the two 2D plane interpolation points 168 connected to the 2D plane, and the 2D corresponding to the connection point 172 An end point obtained by extending the connection line 184 with the plane interpolation point 168 by the staircase length L from the two-dimensional plane interpolation point 168 corresponding to the connection point 172 is generated as a two-dimensional step interpolation point 182 that can specify the planar outline of the pedestrian bridge staircase 170. (S206) The three-dimensional staircase generation unit 136 performs the three-dimensional staircase based on the two-dimensional stair interpolation point 182 and the information indicating the footbridge thickness D and the information indicating the footbridge height H. Generating between point 186 (S208).

3次元フェンス生成部138は、歩道橋平面部164および歩道橋階段部170の側面に位置する3次元平面補間点174および3次元階段補間点186を、設定されたフェンス高さZだけ鉛直方向に延設した3次元フェンス補間点190を生成する(S210)。   The three-dimensional fence generation unit 138 extends the three-dimensional plane interpolation point 174 and the three-dimensional step interpolation point 186 located on the side surfaces of the pedestrian bridge plane unit 164 and the pedestrian bridge step unit 170 in the vertical direction by the set fence height Z. The generated three-dimensional fence interpolation point 190 is generated (S210).

鳥瞰図生成部140は、3次元平面補間点174および3次元階段補間点186を射影変換して鳥瞰図を生成する(S212)。このとき、鳥瞰図生成部140は、射影変換された歩道橋162のポリゴンを透過処理して鳥瞰図に重畳したり、射影変換された歩道橋162のポリゴンの歩道橋階段部170に階段を表す画像をさらに重畳したりすることができる。   The bird's-eye view generation unit 140 performs projective transformation on the three-dimensional plane interpolation point 174 and the three-dimensional step interpolation point 186 to generate a bird's-eye view (S212). At this time, the bird's eye view generation unit 140 transmits the polygon of the pedestrian bridge 162 that has undergone the projection conversion and superimposes it on the bird's eye view, or further superimposes the image representing the stairs on the pedestrian bridge staircase 170 of the polygon of the pedestrian bridge 162 that has undergone the projection conversion. Can be.

最後に画像音声処理部142は、鳥瞰図生成部140によって生成された鳥瞰図を表示部112に表示させる(S214)。   Finally, the image and sound processing unit 142 causes the display unit 112 to display the bird's eye view generated by the bird's eye view generation unit 140 (S214).

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this embodiment. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

例えば、上述した実施形態では、車両150に固定的に搭載されるナビゲーション装置100を示したが、かかる場合に限らず、例えば、独立して持ち運び可能なポータブルナビゲーション装置にも適用することが可能である。   For example, in the above-described embodiment, the navigation device 100 that is fixedly mounted on the vehicle 150 has been described. However, the present invention is not limited to such a case, and can be applied to, for example, a portable navigation device that can be carried independently. is there.

なお、本明細書のナビゲーション方法における各工程は、必ずしもフローチャートとして記載された順序に沿って時系列に処理する必要はなく、並列的あるいはサブルーチンによる処理を含んでもよい。   Note that each step in the navigation method of the present specification does not necessarily have to be processed in time series in the order described in the flowchart, and may include parallel or subroutine processing.

本発明は、目的地までの車両の移動経路を案内するナビゲーション装置およびナビゲーション方法に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a navigation device and a navigation method for guiding a moving route of a vehicle to a destination.

100 …ナビゲーション装置
130 …情報取得部
132 …3次元平面生成部
134 …2次元階段生成部
136 …3次元階段生成部
138 …3次元フェンス生成部
140 …鳥瞰図生成部
142 …画像音声処理部
160 …歩道橋情報
162 …歩道橋
164 …歩道橋平面部
168 …2次元平面補間点
170 …歩道橋階段部
172 …連結点
174 …3次元平面補間点
182 …2次元階段補間点
186 …3次元階段補間点
190 …3次元フェンス補間点
DESCRIPTION OF SYMBOLS 100 ... Navigation apparatus 130 ... Information acquisition part 132 ... Three-dimensional plane generation part 134 ... Two-dimensional stair generation part 136 ... Three-dimensional stair generation part 138 ... Three-dimensional fence generation part 140 ... Bird's-eye view generation part 142 ... Image sound processing part 160 ... Footbridge information 162 ... footbridge 164 ... footbridge plane part 168 ... 2D plane interpolation point 170 ... footbridge staircase part 172 ... connection point 174 ... 3D plane interpolation point 182 ... 2D step interpolation point 186 ... 3D step interpolation point 190 ... 3 Dimension fence interpolation point

Claims (6)

目的地までの車両の移動経路を案内するナビゲーション装置であって、
歩道橋の平面部分である歩道橋平面部の平面外形を特定可能な4以上の2次元平面補間点の座標情報と、前記4以上の2次元平面補間点のうち、いずれが歩道橋の階段部分である歩道橋階段部との連結点にあたるかを示す連結情報と、を取得する情報取得部と、
前記座標情報と予め設定された歩道橋厚みを示す情報および歩道橋高さを示す情報とに基づいて、前記歩道橋平面部を立体的に表示するための3次元平面補間点を生成する3次元平面生成部と、
前記連結情報と予め設定された階段長さを示す情報とに基づいて、前記2次元平面補間点をすべて連接した場合に、前記連結点にあたる任意の2次元平面補間点と連接している2つの2次元平面補間点のうち、同一の歩道橋階段部と連結している2次元平面補間点とは異なる2次元平面補間点と、前記任意の2次元平面補間点との結線を、前記任意の2次元平面補間点から前記階段長さだけ延長した端点を、前記歩道橋階段部の平面外形を特定可能な2次元階段補間点とする2次元階段生成部と、
前記3次元平面補間点と前記2次元階段補間点と前記歩道橋厚みを示す情報および歩道橋高さを示す情報とに基づいて、前記歩道橋階段部を立体的に示すための3次元階段補間点を生成する3次元階段生成部と、
前記3次元平面補間点および3次元階段補間点を射影変換して、車両位置後方の所定の高さにある視点から2次元地図を見下ろす鳥瞰図を生成する鳥瞰図生成部と、
を備えることを特徴とするナビゲーション装置。
A navigation device for guiding a moving route of a vehicle to a destination,
Coordinate information of four or more two-dimensional plane interpolation points that can specify the plane outline of the pedestrian bridge plane part, which is a plane part of the pedestrian bridge, and any of the four or more two-dimensional plane interpolation points are pedestrian bridge stairs. An information acquisition unit for acquiring connection information indicating whether it is a connection point with the staircase unit;
A three-dimensional plane generation unit that generates a three-dimensional plane interpolation point for stereoscopically displaying the pedestrian bridge plane part based on the coordinate information, information indicating the thickness of the pedestrian bridge and information indicating the height of the pedestrian bridge When,
Based on the connection information and information indicating a preset staircase length, when all the two-dimensional plane interpolation points are connected, two two-dimensional plane interpolation points corresponding to the connection points are connected. Of the two-dimensional plane interpolation points, a connection between a two-dimensional plane interpolation point different from the two-dimensional plane interpolation points connected to the same pedestrian bridge staircase and the arbitrary two-dimensional plane interpolation point is the arbitrary two-dimensional interpolation point. A two-dimensional staircase generation unit that uses an end point extended from the three-dimensional plane interpolation point by the length of the staircase as a two-dimensional staircase interpolation point that can specify a planar outline of the pedestrian bridge staircase unit;
Based on the three-dimensional plane interpolation point, the two-dimensional step interpolation point, the information indicating the thickness of the pedestrian bridge, and the information indicating the height of the pedestrian bridge, a three-dimensional step interpolation point for three-dimensionally indicating the pedestrian bridge staircase is generated. A three-dimensional staircase generator to
A bird's-eye view generation unit for projectively transforming the three-dimensional plane interpolation point and the three-dimensional stair interpolation point to generate a bird's-eye view overlooking a two-dimensional map from a viewpoint at a predetermined height behind the vehicle position;
A navigation device comprising:
前記2次元平面補間点には、連接する順を示した番号が付され、
前記2次元階段生成部は、前記番号に従って、前記階段長さだけ延長する2次元平面補間点を特定することを特徴とする請求項1に記載のナビゲーション装置。
The two-dimensional plane interpolation point is given a number indicating the order of connection,
The navigation device according to claim 1, wherein the two-dimensional staircase generation unit specifies a two-dimensional plane interpolation point extending by the staircase length according to the number.
前記歩道橋平面部および前記歩道橋階段部の側面に位置する3次元平面補間点および3次元階段補間点を、設定されたフェンス高さだけ鉛直方向に延長した端点を3次元フェンス補間点とする3次元フェンス生成部をさらに備えることを特徴とする請求項1または2に記載のナビゲーション装置。   A three-dimensional fence interpolation point having a three-dimensional plane interpolation point and a three-dimensional step interpolation point located on the sides of the pedestrian bridge plane and the side of the pedestrian bridge staircase extending in the vertical direction by a set fence height. The navigation apparatus according to claim 1, further comprising a fence generation unit. 前記鳥瞰図生成部は、射影変換された前記歩道橋のポリゴンを透過処理して前記鳥瞰図に重畳することを特徴とする請求項1から3のいずれか1項に記載のナビゲーション装置。   The navigation device according to any one of claims 1 to 3, wherein the bird's-eye view generation unit performs a transparent process on the projection-converted polygon of the pedestrian bridge and superimposes the polygon on the bird's-eye view. 前記鳥瞰図生成部は、射影変換された前記歩道橋階段部のポリゴンに、階段を表す画像をさらに重畳することを特徴とする請求項1から4のいずれか1項に記載のナビゲーション装置。   5. The navigation device according to claim 1, wherein the bird's eye view generation unit further superimposes an image representing a stairs on the polygon of the pedestrian bridge stairs that has undergone projective conversion. 目的地までの車両の移動経路を案内するナビゲーション方法であって、
歩道橋の平面部分である歩道橋平面部の平面外形を特定可能な4以上の2次元平面補間点の座標情報と、前記4以上の2次元平面補間点のうち、いずれが歩道橋の階段部分である歩道橋階段部との連結点にあたるかを示す連結情報と、を取得し、
前記座標情報と予め設定された歩道橋厚みを示す情報および歩道橋高さを示す情報とに基づいて、前記歩道橋平面部を立体的に表示するための3次元平面補間点を生成し、
前記連結情報と予め設定された階段長さを示す情報とに基づいて、前記2次元平面補間点をすべて連接した場合に、前記連結点にあたる任意の2次元平面補間点と連接している2つの2次元平面補間点のうち、同一の歩道橋階段部と連結している2次元平面補間点とは異なる2次元平面補間点と、前記任意の2次元平面補間点との結線を、前記任意の2次元平面補間点から前記階段長さだけ延長した端点を、前記歩道橋階段部の平面外形を特定可能な2次元階段補間点とし、
前記3次元平面補間点と前記2次元階段補間点と前記歩道橋厚みを示す情報および歩道橋高さを示す情報とに基づいて、前記歩道橋階段部を立体的に示すための3次元階段補間点を生成し、
前記3次元平面補間点および3次元階段補間点を射影変換して、車両位置後方の所定の高さにある視点から2次元地図を見下ろす鳥瞰図を生成することを特徴とするナビゲーション方法。
A navigation method for guiding a vehicle travel route to a destination,
Coordinate information of four or more two-dimensional plane interpolation points that can specify the plane outline of the pedestrian bridge plane part, which is a plane part of the pedestrian bridge, and any of the four or more two-dimensional plane interpolation points are pedestrian bridge stairs. Connection information indicating whether it is a connection point with the staircase, and
Based on the coordinate information and information indicating the preset pedestrian bridge thickness and information indicating the pedestrian bridge height, generating a three-dimensional plane interpolation point for stereoscopically displaying the pedestrian bridge plane portion,
Based on the connection information and information indicating a preset staircase length, when all the two-dimensional plane interpolation points are connected, two two-dimensional plane interpolation points corresponding to the connection points are connected. Of the two-dimensional plane interpolation points, a connection between a two-dimensional plane interpolation point different from the two-dimensional plane interpolation points connected to the same pedestrian bridge staircase and the arbitrary two-dimensional plane interpolation point is the arbitrary two-dimensional interpolation point. An end point extended from the three-dimensional plane interpolation point by the length of the staircase is defined as a two-dimensional staircase interpolation point that can specify the planar outline of the pedestrian bridge staircase,
Based on the three-dimensional plane interpolation point, the two-dimensional step interpolation point, the information indicating the thickness of the pedestrian bridge, and the information indicating the height of the pedestrian bridge, a three-dimensional step interpolation point for three-dimensionally indicating the pedestrian bridge staircase is generated. And
A navigation method characterized by projectively transforming the three-dimensional plane interpolation point and the three-dimensional stair interpolation point to generate a bird's eye view overlooking a two-dimensional map from a viewpoint at a predetermined height behind the vehicle position.
JP2009154222A 2009-06-29 2009-06-29 Navigation device and navigation method Active JP5299123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009154222A JP5299123B2 (en) 2009-06-29 2009-06-29 Navigation device and navigation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009154222A JP5299123B2 (en) 2009-06-29 2009-06-29 Navigation device and navigation method

Publications (2)

Publication Number Publication Date
JP2011007755A true JP2011007755A (en) 2011-01-13
JP5299123B2 JP5299123B2 (en) 2013-09-25

Family

ID=43564581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009154222A Active JP5299123B2 (en) 2009-06-29 2009-06-29 Navigation device and navigation method

Country Status (1)

Country Link
JP (1) JP5299123B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110555905A (en) * 2018-06-04 2019-12-10 百度在线网络技术(北京)有限公司 Method and device for generating three-dimensional overpass model, computer equipment and storage medium
CN111104700A (en) * 2018-10-10 2020-05-05 北京嘀嘀无限科技发展有限公司 Method, device and equipment for three-dimensional modeling of overpass and readable storage medium
CN113865600A (en) * 2021-09-28 2021-12-31 北京三快在线科技有限公司 High-precision map construction method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09222851A (en) * 1996-02-16 1997-08-26 Nissan Motor Co Ltd Navigation device for vehicle
JP2005156247A (en) * 2003-11-21 2005-06-16 Mitsubishi Electric Corp Navigation system, data structure used therefor, and recording medium
WO2005098792A1 (en) * 2004-03-31 2005-10-20 Pioneer Corporation Map information creating device, map information creating method, and map information creating program
JP2008014754A (en) * 2006-07-05 2008-01-24 Xanavi Informatics Corp Navigation apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09222851A (en) * 1996-02-16 1997-08-26 Nissan Motor Co Ltd Navigation device for vehicle
JP2005156247A (en) * 2003-11-21 2005-06-16 Mitsubishi Electric Corp Navigation system, data structure used therefor, and recording medium
WO2005098792A1 (en) * 2004-03-31 2005-10-20 Pioneer Corporation Map information creating device, map information creating method, and map information creating program
JP2008014754A (en) * 2006-07-05 2008-01-24 Xanavi Informatics Corp Navigation apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110555905A (en) * 2018-06-04 2019-12-10 百度在线网络技术(北京)有限公司 Method and device for generating three-dimensional overpass model, computer equipment and storage medium
CN110555905B (en) * 2018-06-04 2023-05-23 百度在线网络技术(北京)有限公司 Method, device, computer equipment and storage medium for generating three-dimensional overpass model
CN111104700A (en) * 2018-10-10 2020-05-05 北京嘀嘀无限科技发展有限公司 Method, device and equipment for three-dimensional modeling of overpass and readable storage medium
CN111104700B (en) * 2018-10-10 2024-01-05 北京嘀嘀无限科技发展有限公司 Method, device, equipment and readable storage medium for three-dimensional modeling of overpass
CN113865600A (en) * 2021-09-28 2021-12-31 北京三快在线科技有限公司 High-precision map construction method and device
CN113865600B (en) * 2021-09-28 2023-01-06 北京三快在线科技有限公司 High-precision map construction method and device

Also Published As

Publication number Publication date
JP5299123B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
US8040343B2 (en) Map display device and map display method
EP2725323B1 (en) Map viewer and method
US9116011B2 (en) Three dimensional routing
JP3606805B2 (en) MAP INFORMATION CREATION DEVICE AND MAP INFORMATION DISPLAY DEVICE USING THE SAME
KR100634536B1 (en) 3 dimensional transformation method for 2 dimensional overpass data on 3 dimensional graphics environment and apparatus therefor, and 3 dimensional visualization method for 2 dimensional overpass data on 3 dimensional graphics environment and apparatus using the same
US9646416B2 (en) Three-dimensional map display system
JP2008191717A (en) Information processing apparatus, image display apparatus, information processing system, method for controlling them, and program for causing computer to execute the method
CN102692228A (en) Landmark icons in digital maps
JP5299123B2 (en) Navigation device and navigation method
JP5959479B2 (en) 3D map display system
KR20170063002A (en) Road Fingerprint Data Construction System and Method Using the LAS Data
JP2019128260A (en) Display device, and map data structure
JP5837841B2 (en) 3D map display system
CN111238500B (en) Map generation method, device and system for road segments of road map area
US11112264B2 (en) System and method for rendering an overpass object using map and link data
JP5165851B2 (en) 3D map display method, 3D map display device, and navigation device
KR101601720B1 (en) 3D City Modeling System for Transportation Noise Mapping and method thereof
JP7145807B2 (en) MAP DISPLAY DEVICE, MAP DISPLAY SYSTEM, PROGRAM AND MAP DATA GENERATOR
KR101132276B1 (en) Apparatus and Method for providing lane information in three-dimensional map
KR101061547B1 (en) Apparatus and method for generating 3D map data by reflecting height information
JP2006018022A (en) Summary map display device, on-vehicle navigation system, and summary map preparing device
CN115597622A (en) Navigation route display method, navigation route display device, electronic apparatus, navigation route display medium, and program product
JP2007172016A (en) Map display device mounted inside vehicle
JP2007171229A (en) Map display apparatus
JP2011209176A (en) Navigation device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20111012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R150 Certificate of patent or registration of utility model

Ref document number: 5299123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150