JP2011007516A - Plant with piping having branch, and boiling water nuclear power plant - Google Patents

Plant with piping having branch, and boiling water nuclear power plant Download PDF

Info

Publication number
JP2011007516A
JP2011007516A JP2009148844A JP2009148844A JP2011007516A JP 2011007516 A JP2011007516 A JP 2011007516A JP 2009148844 A JP2009148844 A JP 2009148844A JP 2009148844 A JP2009148844 A JP 2009148844A JP 2011007516 A JP2011007516 A JP 2011007516A
Authority
JP
Japan
Prior art keywords
pipe
branch
plant
branch pipe
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009148844A
Other languages
Japanese (ja)
Other versions
JP4994425B2 (en
Inventor
Keita Okuyama
圭太 奥山
Shiro Takahashi
志郎 高橋
Akinori Tamura
明紀 田村
Masaaki Tsubaki
正昭 椿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2009148844A priority Critical patent/JP4994425B2/en
Publication of JP2011007516A publication Critical patent/JP2011007516A/en
Application granted granted Critical
Publication of JP4994425B2 publication Critical patent/JP4994425B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Pipe Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plant with piping having branches, capable of decreasing the pressure fluctuation based on acoustic resonance.SOLUTION: A BWR plant 1 includes a main steam pipe 10 that supplies steam from a reactor pressure vessel to turbines. A branch pipe 15 with a relief safety valve 13 is joined to the main steam pipe 10. An opening is formed on the main steam pipe 10 in the joint between the main steam pipe 10 and the branch pipe 15. The branch pipe 15 is connected to the main steam pipe 10 through the opening. The diameter length of the opening formed on the main steam pipe 10 in an axial direction of the main steam pipe 10 is longer than that both in the direction perpendicular to the central axis of the main steam pipe 10 and in the direction perpendicular to the central axis of the branch pipe 15. The St number is larger than 0.6, and no feedback loops of vortexes and sounds are made in the branch pipe 15. Consequently, the pressure fluctuation based on acoustic resonance can be decreased further.

Description

本発明は、分岐部を有する配管を備えたプラント及び沸騰水型原子力プラントに関する。   The present invention relates to a plant including a piping having a branching section and a boiling water nuclear power plant.

原子炉として沸騰水型原子炉(以下、BWRという)を有する沸騰水型原子力プラント(以下、BWRプラントという)では、発電容量を増大する際に、主蒸気流量の増大に伴って圧力変動が増大し、プラントの機器損傷に至る事例が報告されている。機器の損傷を避けるため、主蒸気系の流路形状の適正化及び構造強度の増大などの対策がとられている。このような事例及び対策が、G. Deboo, et al., “Quad cities unit 2 main steam line
acoustic source identification and load reduction”, ICONE14-89903 Proceedings of ICONE 14, (2006)に開示されている。
In a boiling water nuclear power plant (hereinafter referred to as a BWR plant) having a boiling water reactor (hereinafter referred to as a BWR) as a nuclear reactor, when the power generation capacity is increased, the pressure fluctuation increases as the main steam flow rate increases. However, there have been reports of cases leading to plant damage. In order to avoid damage to the equipment, measures are taken such as optimizing the flow path shape of the main steam system and increasing the structural strength. Such cases and countermeasures are described in G. Deboo, et al., “Quad cities unit 2 main steam line
acoustic source identification and load reduction ”, ICONE 14-89903 Proceedings of ICONE 14, (2006).

BWRプラントにおける主蒸気系(主蒸気配管等)での圧力変動の原因の一つとして、音響共鳴が考えられている。原子炉圧力容器の蒸気ドームから主蒸気配管を通って高圧タービンに至る主蒸気系では、主蒸気配管に設置されている主蒸気逃し安全弁などの分岐管において圧力波が発生し、主蒸気系内を伝播、反射する。これによって、大きな振幅を持つ定在波(音響共振モード)が形成され、圧力変動の振幅が増大する可能性がある。特に、発電容量を増大したBWRプラントでは、主蒸気流量の増大に伴って蒸気の圧力変動が大きくなるため、音響共鳴が生じやすくなる。   Acoustic resonance is considered as one of the causes of pressure fluctuations in the main steam system (main steam piping or the like) in the BWR plant. In the main steam system from the steam dome of the reactor pressure vessel to the high-pressure turbine through the main steam pipe, a pressure wave is generated in the branch pipe such as the main steam relief safety valve installed in the main steam pipe, and the inside of the main steam system Propagate and reflect. As a result, a standing wave (acoustic resonance mode) having a large amplitude is formed, and the amplitude of pressure fluctuation may increase. In particular, in a BWR plant with an increased power generation capacity, fluctuations in steam pressure increase as the main steam flow rate increases, so acoustic resonance is likely to occur.

この音響共鳴を抑制する方法としては、例えば、特開2006−153869号公報には、ヘルムホルツ共鳴管を利用してBWRプラントの主蒸気系で発生する音響共鳴に伴う圧力変動を抑制する方法が開示されている。特開2008−14458号公報には、音響共鳴が発生すると考えられているキャビティに庇部材を設けることで、音響共鳴に伴う圧力変動を抑制する方法が開示されている。S. Ziada, et al., “Self-excited resonances of two side-branches in close proximity”, Journal of Fluids and Structures, 6, P583-601(1992)では、隣接する2本の分岐管の間で音響共鳴が発生した場合に、隣接する分岐管の長さに差をつけることで、音圧を抑制できることを開示している。   As a method for suppressing this acoustic resonance, for example, Japanese Patent Laid-Open No. 2006-153869 discloses a method for suppressing pressure fluctuations accompanying acoustic resonance generated in the main steam system of a BWR plant using a Helmholtz resonance tube. Has been. Japanese Patent Application Laid-Open No. 2008-14458 discloses a method of suppressing pressure fluctuation associated with acoustic resonance by providing a flange member in a cavity where acoustic resonance is considered to occur. S. Ziada, et al., “Self-excited resonances of two side-branches in close proximity”, Journal of Fluids and Structures, 6, P583-601 (1992). It is disclosed that when resonance occurs, the sound pressure can be suppressed by making a difference between the lengths of adjacent branch pipes.

特開2006−153869号公報JP 2006-153869 A 特開2008−14458号公報JP 2008-14458 A

G. Deboo, et al., “Quad cities unit 2 main steam line acoustic source identification and load reduction”, ICONE14-89903 Proceedings of ICONE 14, (2006)G. Deboo, et al., “Quad cities unit 2 main steam line acoustic source identification and load reduction”, ICONE14-89903 Proceedings of ICONE 14, (2006) S. Ziada, et al., “Self-excited resonances of two side-branches in close proximity”, Journal of Fluids and Structures, 6, P583-601(1992)S. Ziada, et al., “Self-excited resonances of two side-branches in close proximity”, Journal of Fluids and Structures, 6, P583-601 (1992)

原子炉の主蒸気配管が引き回される原子炉格納容器内のスペースが限られていることから、発電容量増大時の音響共鳴の抑制方法としても、空間的な制約が小さく、コンパクトな手法が必要になる。   Since the space inside the reactor containment vessel through which the main steam piping of the reactor is routed is limited, the method of suppressing acoustic resonance when the power generation capacity is increased is also a space-saving and compact method. I need it.

特開2006−153869号公報では、上記したように、主蒸気配管にヘルムホルツ管を設置することにより、ヘルムホルツ共鳴管が主蒸気系内の音響エネルギーを吸収して、効果的に音響共鳴モードを減衰させることができる。しかしながら、特開2006−153869号公報は、分岐管毎にヘルムホルツ管を設置する必要がある。BWRプラントにおいて、逃し安全弁は10ヶ所以上あることが多いため、原子炉格納容器を大きくする必要性が生じる。   In JP-A-2006-153869, as described above, by installing a Helmholtz pipe in the main steam pipe, the Helmholtz resonance pipe absorbs the acoustic energy in the main steam system and effectively attenuates the acoustic resonance mode. Can be made. However, Japanese Patent Laid-Open No. 2006-153869 needs to install a Helmholtz tube for each branch tube. In a BWR plant, since there are often 10 or more relief safety valves, it is necessary to enlarge the reactor containment vessel.

特開2008−14458号公報も、分岐管毎に音響共鳴モードを減衰させる必要がある。この場合、配管の構造が複雑化する課題が生じる。   Japanese Patent Application Laid-Open No. 2008-14458 also needs to attenuate the acoustic resonance mode for each branch pipe. In this case, the subject that the structure of piping becomes complicated arises.

S. Ziada, et al., “Self-excited resonances of two side-branches in close proximity”, Journal of Fluids and Structures, 6, P583-601(1992)では、隣接する2本の分岐管の間で音響共鳴が発生した場合に、隣接する分岐管の長さに差をつけることで、音圧を抑制できることを開示している。しかしながら、分岐管が原子炉の主蒸気逃がし安全弁管台である場合、分岐管の下端には主蒸気逃がし安全弁が設置されていることから、場合によっては他の主蒸気配管と空間的に干渉する可能性がある。   S. Ziada, et al., “Self-excited resonances of two side-branches in close proximity”, Journal of Fluids and Structures, 6, P583-601 (1992). It is disclosed that when resonance occurs, the sound pressure can be suppressed by making a difference between the lengths of adjacent branch pipes. However, when the branch pipe is a reactor main steam relief safety valve pedestal, a main steam relief safety valve is installed at the lower end of the branch pipe, which may interfere with other main steam pipes in some cases. there is a possibility.

本発明の目的は、音響共鳴に基づく圧力変動をさらに低減できる、分岐部を有する配管を備えたプラント及び沸騰水型原子力プラントを提供することにある。   An object of the present invention is to provide a plant and a boiling water nuclear power plant including a pipe having a branching portion that can further reduce pressure fluctuations based on acoustic resonance.

上記した目的を達成する本発明の特徴は、分岐管に連絡される開口部が、 分岐管と内部に気体が流れる配管との接続部で配管に形成されており、
この開口部の、配管の軸方向における第1の差し渡し長さが、その開口部の、配管の中心軸に直交する方向で且つ分岐管の中心軸に直交する方向における第2の差し渡し長さよりも長くなっており、
第1の差し渡し長さが第2の差し渡し長さの10倍以下であることにある。
The feature of the present invention that achieves the above-described object is that the opening communicated with the branch pipe is formed in the pipe at the connection between the branch pipe and the pipe through which gas flows.
The first passing length of the opening in the axial direction of the pipe is greater than the second passing length in the direction perpendicular to the central axis of the pipe and the central axis of the branch pipe. It ’s getting longer,
The first passing length is not more than 10 times the second passing length.

第1の差し渡し長さが第2の差し渡し長さよりも長くなっているので、分岐管と主配管の接続部において分岐管の上流側端部で発生したある渦が、その接続部での分岐管の下流側端部付近で分岐管の内面に衝突するまでの期間に発生する渦の発生周波数と、その下流側端部付近で分岐管の内面で発生した音波が、分岐管内を伝播し分岐管の上流側端部に到達するまでの期間における音波の周波数とのフィードバックループが、分岐管及び配管にまたがって形成されない。このため、分岐管で発生する音響共鳴による音を小さくすることができ、音響共鳴に基づく圧力変動をさらに低減できる。   Since the first passing length is longer than the second passing length, a certain vortex generated at the upstream end of the branch pipe at the connecting portion between the branch pipe and the main pipe is the branch pipe at the connecting portion. The frequency of the vortex generated in the period until it hits the inner surface of the branch pipe near the downstream end of the tube, and the sound wave generated on the inner surface of the branch pipe near the downstream end propagates in the branch pipe and A feedback loop with the frequency of the sound wave in the period until reaching the upstream end of the pipe is not formed across the branch pipe and the pipe. For this reason, the sound by the acoustic resonance which generate | occur | produces in a branch pipe can be made small, and the pressure fluctuation based on acoustic resonance can further be reduced.

本発明によれば、分岐管で発生する音響共鳴による音を小さくすることができ、音響共鳴に基づく圧力変動をさらに低減できる。   ADVANTAGE OF THE INVENTION According to this invention, the sound by the acoustic resonance which generate | occur | produces in a branch pipe can be made small, and the pressure fluctuation based on acoustic resonance can further be reduced.

図2に示す主蒸気配管と分岐管の分岐部の拡大縦断面図である。FIG. 3 is an enlarged longitudinal sectional view of a branch portion of a main steam pipe and a branch pipe shown in FIG. 2. 本発明の好適な一実施例である実施例1の分岐部を有する配管を備えたプラント(沸騰水型原子力プラント)の構成図である。It is a block diagram of the plant (boiling water type nuclear power plant) provided with the piping which has a branch part of Example 1 which is one suitable Example of this invention. 図2に示す主蒸気配管と分岐管の接続部で主蒸気配管に形成された開口部の拡大図である。It is an enlarged view of the opening part formed in main steam piping by the connection part of the main steam piping shown in FIG. 2, and a branch pipe. St数と二乗平均平方根(RMS)で表す圧力変動の関係を示す特性図である。It is a characteristic view which shows the relationship of the pressure fluctuation | variation represented by St number and root mean square (RMS). 本発明の他の実施例である実施例2の分岐部を有する配管を備えたプラント(沸騰水型原子力プラント)において、主蒸気配管と分岐管の接続部で主蒸気配管に形成された開口部の拡大図である。In a plant (boiling water nuclear power plant) having a pipe having a branch portion according to embodiment 2 which is another embodiment of the present invention, an opening formed in the main steam pipe at a connection portion between the main steam pipe and the branch pipe FIG. 本発明の他の実施例である実施例3の分岐部を有する配管を備えたプラント(沸騰水型原子力プラント)における分岐部の拡大縦断面図である。It is an expanded longitudinal cross-sectional view of the branch part in the plant (boiling water type nuclear power plant) provided with piping which has the branch part of Example 3 which is another Example of this invention.

主蒸気逃し安全弁などの分岐管における音の発生メカニズムを、以下に説明する。弁の弁体により閉止される分岐管が主配管に設置されており、気体(例えば、空気または蒸気)が主配管内を流れている。分岐管と主配管の接続部において分岐管の上流側端部で、主配管内を流れる気体の流れが剥離し、渦が発生する。この渦は気体とともに下流に向って流れ、上記の接続部において分岐管の下流側端部付近で分岐管の内面に衝突する。この渦の分岐管内面への衝突により音波が発生する。音波は、分岐管内を伝播し、分岐管を封鎖している弁の弁体で反射される。反射された音波が、分岐管と主配管の接続部において分岐管の上流側端部に到達する。このため、反射されてこの接続部に到達した音波が、主配管から剥離した渦を強める働きをする。分岐管と主配管の接続部において分岐管の上流側端部で発生したある渦が、その接続部での分岐管の下流側端部付近で分岐管の内面に衝突するまでの期間に発生する渦の発生周波数と、その下流側端部付近で分岐管の内面で発生した音波が、分岐管内を伝播し分岐管の上流側端部に到達するまでの期間における音波の周波数とが近い値のときに、分岐管及び主配管内において、このような音波のフィードバックループが形成される。この渦と音波のフィードバックループの形成によって、音波の強度が数十〜数百倍に強められる。以上が分岐管の設置による音の発生メカニズムである。   The sound generation mechanism in the branch pipe such as the main steam relief safety valve will be described below. A branch pipe that is closed by the valve body of the valve is installed in the main pipe, and gas (for example, air or steam) flows in the main pipe. At the upstream end portion of the branch pipe at the connection portion between the branch pipe and the main pipe, the gas flow flowing in the main pipe is separated, and a vortex is generated. This vortex flows downstream together with the gas, and collides with the inner surface of the branch pipe near the downstream end of the branch pipe at the connection portion. Sound waves are generated by the collision of the vortex with the inner surface of the branch pipe. The sound wave propagates through the branch pipe and is reflected by the valve body of the valve blocking the branch pipe. The reflected sound wave reaches the upstream end of the branch pipe at the connection between the branch pipe and the main pipe. For this reason, the sound wave that is reflected and reaches the connection portion works to strengthen the vortex peeled off from the main pipe. A vortex generated at the upstream end of the branch pipe at the connection between the branch pipe and the main pipe is generated in a period until it collides with the inner surface of the branch pipe near the downstream end of the branch pipe at the connection. The vortex generation frequency is close to the sound wave frequency in the period from when the sound wave generated on the inner surface of the branch pipe near the downstream end reaches the upstream end of the branch pipe. Sometimes, such a sound wave feedback loop is formed in the branch pipe and the main pipe. The formation of the vortex and sound wave feedback loop increases the intensity of the sound wave by several tens to several hundred times. The above is the sound generation mechanism by installing the branch pipe.

分岐管で発生する音響共鳴に伴う圧力変動を低下させるためには、上記した渦と音波のフィードバックループが形成されないようにすればよい。分岐管の主配管への接続部である分岐部で発生する音響共鳴に伴う圧力変動は、ストローハル数(St)とよばれる無次元数で(1)式のように表される。   In order to reduce the pressure fluctuation caused by the acoustic resonance generated in the branch pipe, the above-described vortex and sound wave feedback loop should not be formed. The pressure fluctuation accompanying the acoustic resonance generated at the branch portion which is the connection portion of the branch pipe to the main pipe is expressed by the dimensionless number called Strouhal number (St) as shown in the equation (1).

St=f×d/U ……(1)
ここで、dは分岐管との接続部で主配管に形成された開口部の、主配管の軸方向における差し渡し長さ(以下、第1の差し渡し長さという)、Lは分岐管の長さ(分岐管と主配管との接続部と、この分岐管に設けられた弁のうち、その接続部に最も近い弁の弁体との間の最短距離)、Uは主配管内の流体の流速、fは主配管と分岐配管の接続部で発生する音響共鳴に伴う圧力変動の周波数である。差し渡し長さとは、開口部での、開口部の対向する側面間の距離を示すもので、例えば、円の差し渡し長さは円の直径と等しくなる。
St = f × d / U (1)
Here, d is the length of the opening formed in the main pipe at the connection with the branch pipe in the axial direction of the main pipe (hereinafter referred to as the first length), and L is the length of the branch pipe. (The shortest distance between the connecting part of the branch pipe and the main pipe and the valve body of the valve closest to the connecting part among the valves provided in the branch pipe), U is the flow velocity of the fluid in the main pipe , F is the frequency of pressure fluctuation accompanying acoustic resonance occurring at the connection between the main pipe and the branch pipe. The passing length indicates the distance between the opposing side surfaces of the opening at the opening. For example, the passing length of the circle is equal to the diameter of the circle.

St数の値が0.3から0.6の範囲内にあるとき、前述した渦と音のフィードバックループが分岐管内等に形成されることにより、音響共鳴が発生することが知られている。特に、St数が0.4前後で強い音響共鳴が発生する。音響共鳴を回避する対策としては、St数を0.3よりも小さくする方法、及びSt数を0.6よりも大きくして渦と音のフィードバックループの形成を回避する方法がある。プラントの定格運転時のSt数を0.3よりも小さくした場合、その定格運転時での音響共鳴は回避できる。   It is known that when the St number value is in the range of 0.3 to 0.6, acoustic resonance occurs when the above-described vortex and sound feedback loop is formed in the branch pipe or the like. In particular, strong acoustic resonance occurs when the St number is around 0.4. As countermeasures for avoiding acoustic resonance, there are a method of making the St number smaller than 0.3 and a method of making the St number larger than 0.6 to avoid the formation of a vortex and sound feedback loop. When the St number at the rated operation of the plant is made smaller than 0.3, acoustic resonance at the rated operation can be avoided.

しかしながら、プラントの起動時における主配管内の気体の流速はプラントの定格運転時におけるその気体の流速よりも遅いため、起動時のSt数は約0.3から約0.6の範囲内になる可能性がある。したがって、実質的な音響共鳴を回避する対策としては、定格運転時のSt数を0.6よりも大きくすることになるので、(1)式に基づけば、第1の差し渡し長さを、大きくすることになる。主配管に接続される従来の分岐管は、ほとんどが、横断面が円形をしている。横断面が円形をしている分岐管を設けた場合における第1の差し渡し長さを大きくするためには、横断面が円のまま、分岐管の内径を大きくすることになる。分岐管の内径は、主配管の外径との関係で制約があり、むやみに大きくできなく、音響共鳴の回避にも限界がある。   However, since the flow rate of the gas in the main pipe at the time of starting the plant is slower than the flow rate of the gas at the time of rated operation of the plant, the St number at the start is within the range of about 0.3 to about 0.6. there is a possibility. Therefore, as a measure for avoiding substantial acoustic resonance, the St number during rated operation is set to be larger than 0.6. Therefore, based on the equation (1), the first passing length is increased. Will do. Most conventional branch pipes connected to the main pipe have a circular cross section. In order to increase the first passing length in the case where a branch pipe having a circular cross section is provided, the inner diameter of the branch pipe is increased while the cross section remains circular. The inner diameter of the branch pipe is limited by the relationship with the outer diameter of the main pipe, cannot be increased unnecessarily, and there is a limit to avoiding acoustic resonance.

発明者らは、このような課題の解決策を鋭意検討した結果、分岐管との接続部で主配管に形成された開口部の、主配管の中心軸に直交する方向で且つ分岐管の中心軸に直交する方向における差し渡し長さ(以下、第2の差し渡し長さという)が、St数に影響を与えていないことに気がついた。この新たな知見に基づいて、発明者らは、第1の差し渡し長さと第2の差し渡し長さとを違う長さにすれば、音響共鳴を回避できることを見出した。特に、第2の差し渡し長さは、主配管の内径によって制約を受けるため、第1の差し渡し長さを第2の差し渡し長さよりも長くすることが望ましい。音響共鳴を回避するために、St数が0.6よりも大きくなるように第1の差し渡し長さを決定し、第2の差し渡し長さを第1の差し渡し長さよりも短くすれば、空間的にもコンパクトな体系で積極的に音響共鳴による音を抑制できることを、発明者らが初めて見出した。   As a result of earnestly examining the solution of such a problem, the inventors have found that the opening formed in the main pipe at the connection with the branch pipe is in the direction perpendicular to the central axis of the main pipe and the center of the branch pipe. It was noticed that the passing length in the direction perpendicular to the axis (hereinafter referred to as the second passing length) did not affect the St number. Based on this new finding, the inventors have found that acoustic resonance can be avoided if the first and second passing lengths are different. In particular, since the second delivery length is restricted by the inner diameter of the main pipe, it is desirable to make the first delivery length longer than the second delivery length. In order to avoid acoustic resonance, if the first passing length is determined so that the St number is larger than 0.6 and the second passing length is shorter than the first passing length, spatial In addition, the inventors found for the first time that sound due to acoustic resonance can be actively suppressed with a compact system.

以上の検討結果を考慮して得られた、本発明の実施例を以下に説明する。   Examples of the present invention obtained in consideration of the above examination results will be described below.

本発明の好適な一実施例である分岐部を有する配管を備えたプラントを、図1、図2及び図3を用いて以下に説明する。本実施例の分岐部を有する配管を備えたプラントは、BWRプラント1である。BWRプラント1は、原子炉2、主蒸気配管10、タービン12、復水器(図示せず)及び給水配管を備えている。   A plant including a pipe having a branching portion, which is a preferred embodiment of the present invention, will be described below with reference to FIGS. 1, 2, and 3. The plant provided with the pipe having the branching portion of the present embodiment is a BWR plant 1. The BWR plant 1 includes a nuclear reactor 2, a main steam pipe 10, a turbine 12, a condenser (not shown), and a water supply pipe.

原子炉2は、原子炉圧力容器(以下、RPVという)3、及びRPV3内に配置された炉心を有する。炉心には、多数の燃料集合体(図示せず)が装荷されている。取り外し可能な蓋4がRPV3に取り付けられている。RPV3内には、炉心の上方に気水分離器(図示せず)が設置され、気水分離器の上方に波板6を有する蒸気乾燥器5が設置される。主蒸気配管10は、RPV3に形成されたノズル9に接続され、蒸気乾燥器5よりも上方でRPV3内に形成される蒸気ドーム7に連絡される。タービン12が主蒸気配管10に接続される。分岐管15が主蒸気配管10に接続され、蒸気逃し安全弁13が分岐管15に設置される。分岐管15は、図示されていないが、原子炉2を取り囲んでいる原子炉格納容器内に設けられた圧力抑制室内まで伸びており、その先端部が圧力抑制室内のプール水に浸漬されている。   The reactor 2 has a reactor pressure vessel (hereinafter referred to as RPV) 3 and a core disposed in the RPV 3. A large number of fuel assemblies (not shown) are loaded in the core. A removable lid 4 is attached to the RPV 3. In the RPV 3, a steam / water separator (not shown) is installed above the core, and a steam dryer 5 having a corrugated plate 6 is installed above the steam / water separator. The main steam pipe 10 is connected to a nozzle 9 formed in the RPV 3 and communicates with a steam dome 7 formed in the RPV 3 above the steam dryer 5. A turbine 12 is connected to the main steam pipe 10. A branch pipe 15 is connected to the main steam pipe 10, and a steam relief safety valve 13 is installed in the branch pipe 15. Although not shown, the branch pipe 15 extends to the pressure suppression chamber provided in the reactor containment vessel surrounding the nuclear reactor 2, and its tip is immersed in pool water in the pressure suppression chamber. .

再循環ポンプ(図示せず)の駆動によってRPV3内の冷却水が昇圧されてRPV3内に設置されたジェットポンプ(図示せず)のノズルから噴出される。この噴出された冷却水流によって、ノズルの周囲に存在する冷却水が、ジェットポンプ内に吸引されてジェットポンプから吐出される。吐出された冷却水は、炉心に供給される。冷却水は、炉心を上昇する間に、燃料集合体内の核燃料物質の核分裂で発生する熱によって加熱され、一部が蒸気16になる。蒸気16に含まれている水分が、気水分離器及び蒸気乾燥器5で除去される。水分が除去された蒸気16は、主蒸気配管10を通ってタービン12に導かれ、タービン12を回転させる。タービン12に連結された発電機(図示せず)が回転し、電力が発生する。タービン12から排出された蒸気16は、復水器(図示せず)で凝縮されて水になる。この水は、給水として、給水ポンプ(図示せず)で昇圧され、給水配管(図示せず)を通ってRPV3内に供給される。BWRプラントの原子炉2は蒸気発生装置である。蒸気乾燥器5で分離された水分は、ドレン管8を通って蒸気乾燥器5よりも下方で気水分離器の相互間に形成された領域に排出される。   By driving a recirculation pump (not shown), the cooling water in the RPV 3 is pressurized and ejected from a nozzle of a jet pump (not shown) installed in the RPV 3. By the jetted cooling water flow, the cooling water existing around the nozzle is sucked into the jet pump and discharged from the jet pump. The discharged cooling water is supplied to the core. The cooling water is heated by the heat generated by the nuclear fission of the nuclear fuel material in the fuel assembly while ascending the core, and a part of the cooling water becomes steam 16. Moisture contained in the steam 16 is removed by the steam separator and the steam dryer 5. The steam 16 from which moisture has been removed is guided to the turbine 12 through the main steam pipe 10 and rotates the turbine 12. A generator (not shown) connected to the turbine 12 rotates to generate electric power. The steam 16 discharged from the turbine 12 is condensed into water by a condenser (not shown). This water is pressurized as a feed water by a feed water pump (not shown), and supplied into the RPV 3 through a feed water pipe (not shown). The reactor 2 of the BWR plant is a steam generator. The water separated by the steam dryer 5 is discharged through the drain pipe 8 to a region formed between the steam-water separators below the steam dryer 5.

万が一、RPV3内の圧力が設定値よりも高くなったとき、蒸気逃し安全弁13が自動的に開く。すなわち、蒸気逃し安全弁13の弁体17が押し上げられる。RPV3内の蒸気16は、主蒸気配管10及び蒸気逃し安全弁13を通り、分岐管15を経て圧力抑制室内のプール水中に放出され、凝縮される。これにより、RPV3内の圧力が設定値以下に抑えられ、原子炉2の安全性が確保される。   In the unlikely event that the pressure in the RPV 3 becomes higher than the set value, the steam relief valve 13 is automatically opened. That is, the valve element 17 of the steam relief safety valve 13 is pushed up. The steam 16 in the RPV 3 passes through the main steam pipe 10 and the steam relief safety valve 13, is released into the pool water in the pressure suppression chamber through the branch pipe 15, and is condensed. Thereby, the pressure in the RPV 3 is suppressed to a set value or less, and the safety of the nuclear reactor 2 is ensured.

主蒸気配管10と分岐管15との接続部において、主蒸気配管10に開口部18が形成される(図1参照)。分岐管15は開口部18を介して主蒸気配管10に連絡される。本実施例において、主蒸気配管10に形成された開口部18は、真上から見た形状が図3に示すようになっている。すなわち、開口部18は、主蒸気配管10の軸方向において対向すされている、半円の2つの円弧21を有し、これらの円弧21のそれぞれの両端同士を2本の直線で結んで形成される側面を有している。これらの直線は主蒸気配管10の軸方向において互いに平行になっている。分岐管15との接続部で主蒸気配管10形成された開口部18の、主蒸気配管10の軸方向における差し渡し長さ、すなわち、第1の差し渡し長さ19は、開口部18の、主蒸気配管10の中心軸に直交する方向で且つ分岐管15の中心軸に直交する方向における差し渡し長さ、すなわち、第2の差し渡し長さ20よりも長くなっている。このため、(1)式によりSt数の値が大きくなり、St数が0.6よりも大きくなる。St数が0.6よりも大きくなったとき、前述したように、渦の発生周波数と音の周波数にずれが生じるため、分岐管15及び主蒸気配管10内に渦と音(音波)のフィードバックループが形成されない。すなわち、強い音の発生を抑制することができる。   An opening 18 is formed in the main steam pipe 10 at the connection between the main steam pipe 10 and the branch pipe 15 (see FIG. 1). The branch pipe 15 communicates with the main steam pipe 10 through the opening 18. In this embodiment, the opening 18 formed in the main steam pipe 10 has a shape as seen from directly above as shown in FIG. That is, the opening 18 has two semicircular arcs 21 that are opposed to each other in the axial direction of the main steam pipe 10, and is formed by connecting both ends of these arcs 21 with two straight lines. Has a side surface. These straight lines are parallel to each other in the axial direction of the main steam pipe 10. The passing length in the axial direction of the main steam pipe 10, that is, the first passing length 19 of the opening 18 formed in the main steam pipe 10 at the connection portion with the branch pipe 15 is the main steam of the opening 18. The passing length in the direction perpendicular to the central axis of the pipe 10 and the direction perpendicular to the central axis of the branch pipe 15, that is, longer than the second passing length 20. For this reason, the value of St number becomes large by (1) Formula, and St number becomes larger than 0.6. When the St number is larger than 0.6, the vortex generation frequency and the sound frequency are shifted as described above, and therefore, the vortex and sound (sound wave) feedback in the branch pipe 15 and the main steam pipe 10. A loop is not formed. That is, generation of a strong sound can be suppressed.

第1の差し渡し長さ19が第2の差し渡し長さ20よりも長くなっている本実施例では、主蒸気配管10に接続された分岐管15は、主蒸気配管10と蒸気逃し安全弁13の間で以下の構成を有する。分岐管15は、主蒸気配管10から蒸気逃し安全弁13に向って、3つの領域、すなわち、拡大流路部23、流路縮小部24及び円管部25を有する(図1参照)。拡大流路部23は、流路断面積が開口部18を真上から見たときの開口部18の面積と同じであり、開口部10の位置で主蒸気配管10の外面に取り付けられる。拡大流路部23の内面が、開口部18の上記した形状と同じ形状を有している。円管部25が蒸気逃し安全弁13に取り付けられる。流路縮小部24は、拡大流路部23と円管部25に接続されている。流路縮小部24の流路断面積は、拡大流路部23の流路断面積から、この流路断面積よりも小さい円管部25の流路断面積になるように、徐々に減少している。   In the present embodiment in which the first delivery length 19 is longer than the second delivery length 20, the branch pipe 15 connected to the main steam pipe 10 is between the main steam pipe 10 and the steam relief safety valve 13. It has the following configuration. The branch pipe 15 has three regions, that is, an enlarged flow path portion 23, a flow path reduction portion 24, and a circular pipe portion 25 from the main steam pipe 10 toward the steam relief safety valve 13 (see FIG. 1). The enlarged flow path portion 23 has the same cross-sectional area as the area of the opening 18 when the opening 18 is viewed from directly above, and is attached to the outer surface of the main steam pipe 10 at the position of the opening 10. The inner surface of the enlarged flow path portion 23 has the same shape as the shape of the opening 18 described above. A circular pipe portion 25 is attached to the steam relief safety valve 13. The flow path reduction part 24 is connected to the enlarged flow path part 23 and the circular pipe part 25. The flow passage cross-sectional area of the flow passage reduction portion 24 gradually decreases from the flow passage cross-sectional area of the enlarged flow passage portion 23 so as to become the flow passage cross-sectional area of the circular pipe portion 25 smaller than the flow passage cross-sectional area. ing.

仮に、第2の差し渡し長さ20が第1の差し渡し長さ19と等しい場合、分岐管の外径が大きくなり、場合によっては分岐管の外径が主蒸気配管10の外径よりも大きくなる。このように分岐管の外径が主蒸気配管10の外径よりも大きい場合には、分岐部の形状が複雑になり、実機に適用することが困難になる。   If the second delivery length 20 is equal to the first delivery length 19, the outer diameter of the branch pipe is increased. In some cases, the outer diameter of the branch pipe is larger than the outer diameter of the main steam pipe 10. . As described above, when the outer diameter of the branch pipe is larger than the outer diameter of the main steam pipe 10, the shape of the branch portion becomes complicated and it is difficult to apply to the actual machine.

本実施例において、分岐管15が主蒸気配管10に設置されている部分、すなわち、分岐部11における圧力変動の強さである二乗平均平方根(RMS)のSt数に対する変化を、図4に示す。St数の値が約0.3から約0.6の範囲内で、前述した渦と音のフィードバックループが形成され、音響共鳴が発生することが知られている。特に、St数が0.4前後になったときに、音響共鳴が大きくなることが知られている。St数を小さくするためには、(1)式から蒸気の流速を大きくするか、第1の差し渡し長さ19を小さくすればよい。また、St数を大きくするためには、蒸気の流速を小さくするか、第1の差し渡し長さ19を大きくすればよい。   In this embodiment, the change of the root mean square (RMS), which is the strength of pressure fluctuation in the portion where the branch pipe 15 is installed in the main steam pipe 10, that is, the branch portion 11, with respect to the St number is shown in FIG. . It is known that the above-described vortex-sound feedback loop is formed and acoustic resonance occurs when the St number value is in the range of about 0.3 to about 0.6. In particular, it is known that acoustic resonance increases when the St number becomes around 0.4. In order to reduce the St number, the steam flow rate may be increased from the equation (1) or the first delivery length 19 may be decreased. Further, in order to increase the St number, it is only necessary to decrease the flow velocity of the steam or increase the first delivery length 19.

音響共鳴を回避する対策としては、St数を小さくする方法と大きくする方法がある。BWRプラント1の定格出力運転時のSt数を0.3よりも小さくした場合、その定格出力運転時の音響共鳴は回避できる。しかしながら、BWRプラント1の起動時における主蒸気配管10内での蒸気の流速は定格出力運転時におけるその蒸気の流速よりも遅いため、起動時のSt数は約0.3から約0.6の範囲内の値になる可能性がある。したがって、実質的な音響共鳴を回避する対策としては、定格出力運転時でのSt数を0.6よりも大きくすることになる。このため、主蒸気配管10内の蒸気の流速を小さくするか、第1の差し渡し長さ19を大きくする必要がある。しかしながら、主蒸気配管10の内径を変えない限り、原子炉出力が一定であれば蒸気の流速はほぼ一定であるので、実質的な音響共鳴対策は、前述したように、第1の差し渡し長さ19を第2の差し渡し長さ20よりも大きくすることになる。ただし、第1の差し渡し長さ19は第2の差し渡し長さ20の10倍以下にすることが望ましい。   As countermeasures for avoiding acoustic resonance, there are a method of decreasing the St number and a method of increasing the St number. When the St number during the rated output operation of the BWR plant 1 is made smaller than 0.3, acoustic resonance during the rated output operation can be avoided. However, since the flow rate of the steam in the main steam pipe 10 at the time of starting up the BWR plant 1 is slower than the flow rate of the steam at the rated output operation, the St number at the start-up is about 0.3 to about 0.6. Possible values are in range. Therefore, as a measure for avoiding substantial acoustic resonance, the St number at the rated output operation is set to be larger than 0.6. For this reason, it is necessary to reduce the steam flow velocity in the main steam pipe 10 or to increase the first delivery length 19. However, as long as the inner diameter of the main steam pipe 10 is not changed, the steam flow rate is substantially constant if the reactor power is constant. Therefore, as described above, the substantial acoustic resonance countermeasure is the first delivery length. 19 is made larger than the second delivery length 20. However, it is desirable that the first delivery length 19 is not more than 10 times the second delivery length 20.

特開2006−153869号公報に記載されたBWRプラントは、主蒸気配管に接続された分岐管にヘルムホルツ共鳴管を設けることによって、音響共鳴を回避している。しかしながら、BWRプラント1の主蒸気配管10には、10本程度の分岐管が接続されている。音響共鳴を回避するためには、これらすべての分岐管にそれぞれヘルムホルツ共鳴管を設置する必要がある。しかし、このようなヘルムホルツ共鳴管の設置は原子炉格納容器を大きくすることになる。   The BWR plant described in Japanese Patent Laid-Open No. 2006-153869 avoids acoustic resonance by providing a Helmholtz resonance pipe in a branch pipe connected to the main steam pipe. However, about 10 branch pipes are connected to the main steam pipe 10 of the BWR plant 1. In order to avoid acoustic resonance, it is necessary to install Helmholtz resonance tubes in all of these branch tubes. However, the installation of such a Helmholtz resonance tube enlarges the reactor containment vessel.

本実施例では、主蒸気配管10と分岐管15との接続部で主蒸気配管10に形成された開口部18が、第1の差し渡し長さ19を第2の差し渡し長さ20よりも長くすることにより、音響共鳴を抑制することができ、音響共鳴に基づく圧力変動をさらに低減することができる。さらに、第1の差し渡し長さ19を第2の差し渡し長さ20よりも長くしているので、原子炉格納容器を大きくする必要がない。   In the present embodiment, the opening 18 formed in the main steam pipe 10 at the connecting portion between the main steam pipe 10 and the branch pipe 15 makes the first delivery length 19 longer than the second delivery length 20. Thus, acoustic resonance can be suppressed, and pressure fluctuations based on acoustic resonance can be further reduced. Furthermore, since the first delivery length 19 is longer than the second delivery length 20, it is not necessary to enlarge the reactor containment vessel.

特開2008−14458号公報に記載されたキャビティに庇部材を設けたBWRプラントは、複数の分岐管に庇部材を設置する必要があり、構造が複雑化する。第1の差し渡し長さ19を第2の差し渡し長さ20よりも長くする本実施例では、BWRプラント1の構成が、ヘルムホルツ共鳴管を設置する特開2006−153869号公報及び庇部材を設置する特開2008−14458号公報にそれぞれ記載されたBWRプラントよりも単純化される。   The BWR plant provided with the eaves member in the cavity described in Japanese Patent Application Laid-Open No. 2008-14458 needs to install eaves members in a plurality of branch pipes, and the structure is complicated. In the present embodiment in which the first delivery length 19 is longer than the second delivery length 20, the configuration of the BWR plant 1 is provided with Japanese Patent Application Laid-Open No. 2006-153869 in which a Helmholtz resonance tube is installed and a saddle member. This is more simplified than the BWR plant described in Japanese Patent Application Laid-Open No. 2008-14458.

本実施例は、第1の差し渡し長さ19を第2の差し渡し長さ20よりも長くしているので、原子炉格納容器の拡大を抑えつつ、音響共鳴に基づく圧力変動をさらに低減することができる。これにより、分岐部11での音響共鳴の発生を抑制して主蒸気配管10内を流れる蒸気16の圧力変動を低減することができる。このため、BWRプラント1の出力向上を容易に達成することができる。BWRプラント1の出力向上は、炉心流量を増加させて原子炉出力を定格出力(100%出力)よりも増大させるものである。この出力向上においてはタービン12に供給される蒸気の流量が増大される。本実施例は、第1の差し渡し長さ19を第2の差し渡し長さ20よりも長くして分岐部11での音響共鳴の発生を抑制でき、主蒸気配管10内を流れる蒸気16の圧力変動を低減できる。このため、本実施例は、タービン12に供給する蒸気16の流量を容易に増加させることができ、BWRプラントの出力向上を容易に達成できるのである。   In this embodiment, since the first delivery length 19 is longer than the second delivery length 20, the pressure fluctuation based on acoustic resonance can be further reduced while suppressing the expansion of the containment vessel. it can. Thereby, generation | occurrence | production of the acoustic resonance in the branch part 11 can be suppressed, and the pressure fluctuation of the steam 16 which flows through the inside of the main steam piping 10 can be reduced. For this reason, the output improvement of the BWR plant 1 can be achieved easily. The improvement in the output of the BWR plant 1 is to increase the reactor core flow and increase the reactor output from the rated output (100% output). In this output improvement, the flow rate of the steam supplied to the turbine 12 is increased. In the present embodiment, the first passing length 19 is longer than the second passing length 20 to suppress the occurrence of acoustic resonance in the branch portion 11, and the pressure fluctuations of the steam 16 flowing in the main steam pipe 10. Can be reduced. For this reason, in this embodiment, the flow rate of the steam 16 supplied to the turbine 12 can be easily increased, and the output improvement of the BWR plant can be easily achieved.

本発明の他の実施例である分岐部を有する配管を備えたプラントを、図5を用いて以下に説明する。本実施例の分岐部を有する配管を備えたプラントは、BWRプラント1Aである。BWRプラント1Aは、実施例1のBWRプラント1において主蒸気配管10に形成した開口部18を開口部18Aに替えた構成を有する。BWRプラント1Aの他の構成はBWRプラント1と同じである。   The plant provided with piping which has the branch part which is the other Example of this invention is demonstrated below using FIG. The plant provided with the piping having the branch portion of the present embodiment is a BWR plant 1A. The BWR plant 1A has a configuration in which the opening 18 formed in the main steam pipe 10 in the BWR plant 1 of Example 1 is replaced with the opening 18A. The other configuration of the BWR plant 1A is the same as that of the BWR plant 1.

本実施例における主蒸気配管10と分岐管15の接続部において、開口部18Aが形成される(図5参照)。分岐管15は開口部18Aを介して主蒸気配管10に連絡される。本実施例において、主蒸気配管10に形成された開口部18Aは、真上から見た形状が図5に示すように楕円形状になっている。開口部18Aにおいても、第1の差し渡し長さ19Aが第2の差し渡し長さ20Aよりも長くなっている。   An opening 18A is formed at the connection between the main steam pipe 10 and the branch pipe 15 in the present embodiment (see FIG. 5). The branch pipe 15 communicates with the main steam pipe 10 through the opening 18A. In the present embodiment, the opening 18A formed in the main steam pipe 10 has an elliptical shape as viewed from directly above as shown in FIG. Also in the opening 18A, the first delivery length 19A is longer than the second delivery length 20A.

本実施例も、実施例1で生じる各効果を得ることができる。   Also in this embodiment, each effect produced in the first embodiment can be obtained.

本発明の他の実施例である分岐部を有する配管を備えたプラントを、図6を用いて以下に説明する。本実施例の分岐部を有する配管を備えたプラントは、BWRプラント1Bである。BWRプラント1Bは、実施例1のBWRプラント1において分岐管15を分岐管15Aに替えた構成を有する。BWRプラント1Bの他の構成はBWRプラント1と同じである。   The plant provided with the piping which has a branch part which is another Example of this invention is demonstrated below using FIG. The plant provided with the piping having the branching portion of the present embodiment is a BWR plant 1B. The BWR plant 1B has a configuration in which the branch pipe 15 is replaced with the branch pipe 15A in the BWR plant 1 of the first embodiment. The other structure of the BWR plant 1B is the same as that of the BWR plant 1.

分岐管15Aとの接続部で主蒸気配管10に形成される開口部18は、実施例1において主蒸気配管10に形成される開口部18と同じ形状を有している。分岐管15Aは、蒸気逃し安全弁13に接続された端部の横断面が円形であり、主蒸気配管10に接続された他の端部が開口部18を取り囲んでいる。分岐管15Aの、蒸気逃し安全弁13に接続された端部の内面は、横断面が円形であり、主蒸気配管10に接続された他の端部の内面が、開口部18の上記した形状(図3参照)と同じ形状を有している。   The opening 18 formed in the main steam pipe 10 at the connecting portion with the branch pipe 15A has the same shape as the opening 18 formed in the main steam pipe 10 in the first embodiment. The branch pipe 15 </ b> A has a circular cross section at the end connected to the steam relief safety valve 13, and the other end connected to the main steam pipe 10 surrounds the opening 18. The inner surface of the end portion of the branch pipe 15A connected to the steam relief valve 13 has a circular cross section, and the inner surface of the other end portion connected to the main steam pipe 10 has the above-described shape of the opening 18 ( (See FIG. 3).

本実施例においても、第1の差し渡し長さ19が、実施例1と同様に、第2の差し渡し長さ20よりも長くなっている。このため、(1)式によりSt数の値が大きくなり、St数が0.6よりも大きくなる。St数が0.6よりも大きくなったとき、実施例1で述べたように、渦の発生周波数と音の周波数にずれが生じ、分岐管15及び主蒸気配管10内に渦と音(音波)のフィードバックループが形成されない。すなわち、本実施例は、強い音の発生を抑制することができる。   Also in this embodiment, the first delivery length 19 is longer than the second delivery length 20 as in the first embodiment. For this reason, the value of St number becomes large by (1) Formula, and St number becomes larger than 0.6. When the St number is larger than 0.6, as described in the first embodiment, a deviation occurs between the vortex generation frequency and the sound frequency, and the vortex and sound (sound wave) is generated in the branch pipe 15 and the main steam pipe 10. ) Feedback loop is not formed. That is, this embodiment can suppress the generation of a strong sound.

本実施例も、実施例1で生じる各効果を得ることができる。   Also in this embodiment, each effect produced in the first embodiment can be obtained.

以上に述べた各実施例は、蒸気発生器(蒸気発生装置)とタービンを連絡する蒸気配管を有する加圧水型原子力プラント、及びボイラ(蒸気発生装置)とタービンを連絡する蒸気配管を有する火力プラント等の分岐部を有して気体(蒸気及び空気等)が流れる配管を備えたプラントに適用することができる。また、蒸気発生装置に連絡される蒸気配管を有する暖房システムにも、上記した各実施例を適用することができる。   Each of the embodiments described above includes a pressurized water nuclear plant having a steam pipe connecting the steam generator (steam generator) and the turbine, a thermal power plant having a steam pipe connecting the boiler (steam generator) and the turbine, and the like. It can apply to the plant provided with piping which has a branch part of this and gas (steam, air, etc.) flows. Moreover, each above-mentioned Example is applicable also to the heating system which has the steam piping connected to a steam generator.

本発明は、蒸気配管を有する原子力プラント及び火力プラント等のプラントに適用することができる。   The present invention can be applied to plants such as nuclear power plants and thermal power plants having steam pipes.

1,1A,1B…沸騰水型原子力プラント、2…原子炉、3…原子炉圧力容器、10…主蒸気配管、15,15A…分岐管、13…主蒸気逃し安全弁、11…分岐部、18,18A…開口部。   DESCRIPTION OF SYMBOLS 1,1A, 1B ... Boiling water type nuclear power plant, 2 ... Reactor, 3 ... Reactor pressure vessel, 10 ... Main steam piping, 15, 15A ... Branch pipe, 13 ... Main steam relief safety valve, 11 ... Branch part, 18 , 18A ... opening.

Claims (7)

分岐管が接続されて内部に気体が流れる配管を備え、
前記分岐管に連絡される開口部が、前記分岐管と前記配管との接続部で前記配管に形成されており、
前記開口部の、前記配管の軸方向における第1の差し渡し長さが、前記開口部の、前記配管の中心軸に直交する方向で且つ前記分岐管の中心軸に直交する方向における第2の差し渡し長さよりも長くなっており、
前記第1の差し渡し長さが前記第2の差し渡し長さの10倍以下であることを特徴とする分岐部を有する配管を備えたプラント。
It is equipped with a pipe to which a branch pipe is connected and gas flows inside.
An opening connected to the branch pipe is formed in the pipe at a connection portion between the branch pipe and the pipe,
The second span of the opening in the direction perpendicular to the central axis of the branch pipe and the first span in the axial direction of the pipe is perpendicular to the central axis of the pipe Longer than the length,
A plant comprising a pipe having a branching section, wherein the first delivery length is 10 times or less of the second delivery length.
前記分岐管が弁を設けており、
前記配管と前記弁との間で前記分岐管の少なくとも一部において、前記分岐管の流路断面積が前記配管から前記弁に向って減少している請求項1に記載の分岐部を有する配管を備えたプラント。
The branch pipe is provided with a valve;
The pipe having a branch portion according to claim 1, wherein a flow passage cross-sectional area of the branch pipe decreases from the pipe toward the valve in at least a part of the branch pipe between the pipe and the valve. With a plant.
前記配管が蒸気発生装置に接続される蒸気配管である請求項1または2に記載の分岐部を有する配管を備えたプラント。   The plant provided with a pipe having a branch part according to claim 1 or 2, wherein the pipe is a steam pipe connected to a steam generator. 前記プラントが原子力プラント及び火力プラントのいずれかである請求項1ないし3のいずれか1項に記載の分岐部を有する配管を備えたプラント。   The said plant is either a nuclear power plant or a thermal power plant, The plant provided with piping which has a branch part of any one of Claim 1 thru | or 3. 前記分岐管に弁が設けられている請求項1,3及び4のいずれか1項に記載の分岐部を有する配管を備えたプラント。   The plant provided with piping which has a branching part given in any 1 paragraph of Claims 1, 3 and 4 with which a valve is provided in said branching pipe. 原子炉と、前記原子炉に接続されて前記原子炉で発生した蒸気を導き、分岐管が接続されている蒸気配管とを備え、
前記分岐管に連絡される開口部が、前記分岐管と前記蒸気配管との接続部で前記蒸気配管に形成されており、
前記開口部の、前記蒸気配管の軸方向における第1の差し渡し長さが、前記開口部の、前記蒸気配管の中心軸に直交する方向で且つ前記分岐管の中心軸に直交する方向における第2の差し渡し長さよりも長くなっており、
前記第1の差し渡し長さが前記第2の差し渡し長さの10倍以下であることを特徴とする分岐部を有する配管を備えた沸騰水型原子力プラント。
A reactor and a steam pipe connected to the reactor to guide the steam generated in the reactor and connected to a branch pipe;
An opening communicated with the branch pipe is formed in the steam pipe at a connection portion between the branch pipe and the steam pipe,
The first span length of the opening in the axial direction of the steam pipe is a second length in the direction perpendicular to the central axis of the steam pipe and in the direction perpendicular to the central axis of the branch pipe. It is longer than the delivery length of
A boiling water nuclear plant comprising a pipe having a branching portion, wherein the first delivery length is 10 times or less of the second delivery length.
前記分岐管に蒸気逃し安全弁が設けられている請求項6に記載の沸騰水型原子力プラント。   The boiling water nuclear plant according to claim 6, wherein a steam relief safety valve is provided in the branch pipe.
JP2009148844A 2009-06-23 2009-06-23 Plant with piping having a branching section and boiling water nuclear power plant Active JP4994425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009148844A JP4994425B2 (en) 2009-06-23 2009-06-23 Plant with piping having a branching section and boiling water nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009148844A JP4994425B2 (en) 2009-06-23 2009-06-23 Plant with piping having a branching section and boiling water nuclear power plant

Publications (2)

Publication Number Publication Date
JP2011007516A true JP2011007516A (en) 2011-01-13
JP4994425B2 JP4994425B2 (en) 2012-08-08

Family

ID=43564375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009148844A Active JP4994425B2 (en) 2009-06-23 2009-06-23 Plant with piping having a branching section and boiling water nuclear power plant

Country Status (1)

Country Link
JP (1) JP4994425B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759398U (en) * 1980-09-25 1982-04-08
JPH05119187A (en) * 1991-10-23 1993-05-18 Toshiba Corp Main steam escape valve
JPH07332576A (en) * 1994-06-03 1995-12-22 Toshiba Corp Steam turbine piping device
JPH11194780A (en) * 1997-12-29 1999-07-21 Ippei Torigoe Muffler device
JP2006153869A (en) * 2004-11-05 2006-06-15 Hitachi Ltd Boiling water reactor and its acoustic vibration suppression method
JP2007232537A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Boiling water reactor and method for suppressing acoustic vibration of steam piping in boiling water reactor
JP2008014458A (en) * 2006-07-07 2008-01-24 Saga Univ Device for reducing pressure fluctuation in supersonic cavity
JP2008157455A (en) * 2006-12-22 2008-07-10 General Electric Co <Ge> Sleeve insert for reducing acoustic cavity resonance, and related method
JP2008256130A (en) * 2007-04-06 2008-10-23 Toshiba Corp Fluid pipe and modifying method of fluid pipe

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759398U (en) * 1980-09-25 1982-04-08
JPH05119187A (en) * 1991-10-23 1993-05-18 Toshiba Corp Main steam escape valve
JPH07332576A (en) * 1994-06-03 1995-12-22 Toshiba Corp Steam turbine piping device
JPH11194780A (en) * 1997-12-29 1999-07-21 Ippei Torigoe Muffler device
JP2006153869A (en) * 2004-11-05 2006-06-15 Hitachi Ltd Boiling water reactor and its acoustic vibration suppression method
JP2007232537A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Boiling water reactor and method for suppressing acoustic vibration of steam piping in boiling water reactor
JP2008014458A (en) * 2006-07-07 2008-01-24 Saga Univ Device for reducing pressure fluctuation in supersonic cavity
JP2008157455A (en) * 2006-12-22 2008-07-10 General Electric Co <Ge> Sleeve insert for reducing acoustic cavity resonance, and related method
JP2008256130A (en) * 2007-04-06 2008-10-23 Toshiba Corp Fluid pipe and modifying method of fluid pipe

Also Published As

Publication number Publication date
JP4994425B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP5057825B2 (en) Fluid pipe and method for modifying fluid pipe
US20110088379A1 (en) Exhaust gas diffuser
EP2476868B1 (en) Exhaust system for steam turbine
JP5449745B2 (en) Acoustic load relaxation device
JP4776494B2 (en) Steam valves and steam turbines
JP4546489B2 (en) Jet pump and reactor
JP6173939B2 (en) Vibration suppressor for jet pump and jet pump
EP2287857B1 (en) System for dampening vibration
JP4994425B2 (en) Plant with piping having a branching section and boiling water nuclear power plant
JP4945511B2 (en) Plant with piping having a branching section and boiling water nuclear power plant
JP5015213B2 (en) Lower tie plate of fuel assembly and fuel assembly
JP5586270B2 (en) Plant with piping having a branching section and boiling water nuclear power plant
JP2010242899A (en) Plant equipped with piping having branch part and boiling water type nuclear power plant
JP2012032248A (en) Main steam relief safety valve nozzle of boiling-water nuclear power plant
JP5642515B2 (en) Plant with piping having valve stem and boiling water nuclear power plant
JP2012058113A (en) Steam separation facility for nuclear reactor
US20160093408A1 (en) Jet pump for boiling water reactor and boiling water reactor
JP5587843B2 (en) Boiling water reactor jet pump
JP5415701B2 (en) Reactor jet pump
JP2012041822A (en) Steam turbine
JP5148531B2 (en) Boiling water reactor jet pump
Ko et al. Vibration Analysis Methodology for the Piping Attached to the Steam Generator for the APR1400 CVAP
JP2006214404A (en) Hydraulic machine
US20100246743A1 (en) Steam flow vortex straightener
KR101811223B1 (en) Steam turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4994425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150