JP2011007447A - Method of installing underground heat exchanger - Google Patents

Method of installing underground heat exchanger Download PDF

Info

Publication number
JP2011007447A
JP2011007447A JP2009152776A JP2009152776A JP2011007447A JP 2011007447 A JP2011007447 A JP 2011007447A JP 2009152776 A JP2009152776 A JP 2009152776A JP 2009152776 A JP2009152776 A JP 2009152776A JP 2011007447 A JP2011007447 A JP 2011007447A
Authority
JP
Japan
Prior art keywords
corrugated pipe
heat exchanger
underground heat
filler
installation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009152776A
Other languages
Japanese (ja)
Other versions
JP5397044B2 (en
Inventor
Tadashi Kaneko
正 金子
Kenji Mikota
憲司 三小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2009152776A priority Critical patent/JP5397044B2/en
Publication of JP2011007447A publication Critical patent/JP2011007447A/en
Application granted granted Critical
Publication of JP5397044B2 publication Critical patent/JP5397044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T2010/50Component parts, details or accessories
    • F24T2010/53Methods for installation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of installing an underground heat exchanger capable of securely improving thermal conductivity to a heating medium when the thermal conductivity is improved by using an expansion effect of a surface area of a pipe wall achieved by a corrugated pipe.SOLUTION: The method of installing the underground heat exchanger for performing heat exchange with a ground includes: an excavation process of forming an excavation hole at the ground; an insertion process of inserting the corrugated pipe serving as a flow passage of the heating medium related to the heat exchange into the excavation hole; and a filling process of filling a filler in a space between the excavation hole and the corrugated pipe. In the filling process, air gap suppression processing for suppressing the formation of air gaps in the vicinity of the outer peripheral face of the corrugated pipe is performed.

Description

本発明は、地盤との間で熱交換を行う地中熱交換器の設置方法に関する。   The present invention relates to a method for installing an underground heat exchanger that performs heat exchange with the ground.

通年の温度変動の小さい地中熱を利用して建物の冷暖房等を行う地中熱利用システムが注目されている。この地中熱利用システムでは、地盤との間で採・放熱を行うべく地中に地中熱交換器が設置される。そして、地中熱交換器は、例えば、夏場には地盤に放熱し、冬場には地盤から採熱する。   A geothermal heat utilization system that heats and cools buildings using geothermal heat with small year-round temperature fluctuations is attracting attention. In this geothermal heat utilization system, a geothermal heat exchanger is installed in the ground to collect and radiate heat with the ground. The underground heat exchanger, for example, radiates heat to the ground in summer and collects heat from the ground in winter.

その一例として、特許文献1には二重管構造の地中熱交換器が示されている。すなわち、図1Aの縦断面図に示すように、この地中熱交換器121は、地盤Gに鉛直に埋設される外筒としての鋼管131と、鋼管131内に配置された内筒としてのポリエチレン管141(以下、PE管と言う)と、を有している。そして、鋼管131の上端部に設けられた吐出口131aから鋼管131内に吐出された熱媒体26を、PE管141の下端部の排出口141aから取り出すことにより、地盤Gとの間で熱交換後の熱媒体26をヒートポンプ等へ送出するようになっている。   As an example, Patent Document 1 discloses a double-pipe underground heat exchanger. That is, as shown in the longitudinal sectional view of FIG. 1A, the underground heat exchanger 121 includes a steel pipe 131 as an outer cylinder vertically embedded in the ground G, and a polyethylene as an inner cylinder disposed in the steel pipe 131. And a pipe 141 (hereinafter referred to as a PE pipe). Then, the heat medium 26 discharged into the steel pipe 131 from the discharge port 131a provided at the upper end portion of the steel pipe 131 is taken out from the discharge port 141a at the lower end portion of the PE pipe 141, thereby exchanging heat with the ground G. The subsequent heat medium 26 is sent to a heat pump or the like.

特開2002−13828号公報Japanese Patent Laid-Open No. 2002-13828

ここで、熱交換効率を高めるべく上述の外筒としての鋼管131にコルゲート管(例えば、図5を参照)を用いることが考えられる。すなわち、コルゲート管31(corrugated pipe:波形管)は、管壁部の形状が波形形状であるので、管壁部の外周面31c及び内周面31dの表面積の拡大を図れて地中熱の熱媒体26への熱伝達性が向上し、地中熱交換器の熱交換効率が向上する。   Here, it is conceivable to use a corrugated pipe (for example, see FIG. 5) for the steel pipe 131 as the above-described outer cylinder in order to increase the heat exchange efficiency. That is, since the corrugated pipe (corrugated pipe) 31 has a corrugated shape, the surface area of the outer peripheral surface 31c and the inner peripheral surface 31d of the pipe wall portion can be increased, and the heat of the underground heat can be increased. The heat transfer property to the medium 26 is improved, and the heat exchange efficiency of the underground heat exchanger is improved.

他方、一般に材料費がかかり、また搬送性に劣る前記鋼管131に代えて、外筒に樹脂管を用いることも考えられるが、その場合、樹脂管は、鋼管と比較して熱伝導性に劣るため、これを補うべく、上述と同じ理由で、コルゲート管31を用いることが考えられる。   On the other hand, it is generally considered that instead of the steel pipe 131, which is expensive in terms of material cost and poor in transportability, a resin pipe may be used for the outer cylinder, but in that case, the resin pipe is inferior in thermal conductivity as compared with the steel pipe. Therefore, in order to compensate for this, it is conceivable to use the corrugated pipe 31 for the same reason as described above.

そして、鋼製及び樹脂製のどちらのコルゲート管31を外筒として用いるにせよ、その場合の地中熱交換器の設置方法としては、以下の工法が挙げられる。   Then, whether the steel or resin corrugated pipe 31 is used as the outer cylinder, the installation method of the underground heat exchanger in that case includes the following method.

先ず、図1Bに示すように、地盤Gに竪孔23を掘削し、竪孔23に外筒としてのコルゲート管31を挿入する。次に、コルゲート管31内に内筒としてのPE管41を挿入する。最後に、竪孔23と前記コルゲート管31との間の空間SP23間に、砂等の細粒物を基材とした充填材27を充填する。   First, as shown in FIG. 1B, a hole 23 is excavated in the ground G, and a corrugated pipe 31 as an outer cylinder is inserted into the hole 23. Next, a PE pipe 41 as an inner cylinder is inserted into the corrugated pipe 31. Finally, a filler 27 made of a fine-grained material such as sand is filled in the space SP23 between the hole 23 and the corrugated pipe 31.

但し、コルゲート管31の外周面31cは図5の如き波形形状になっていることから、充填材27を掘削孔23内に落下充填する際に、コルゲート管31の波形形状の谷部が山部の影になる等して、外周面31c近傍に充填材27が充填され難く、つまり、外周面31c近傍に空隙が形成され易い(例えば、図9を参照)。そして、当該空隙は、地盤Gからコルゲート管31への地中熱の伝達を阻害し、地中熱交換器21の熱交換効率を悪化させてしまう。つまり、管壁部の表面積を拡大して熱伝達性を高めるべくコルゲート管31を使用しているにも拘わらず、当該熱伝達性を有効に高められない虞がある。   However, since the outer peripheral surface 31 c of the corrugated pipe 31 has a corrugated shape as shown in FIG. 5, when the filler 27 is dropped and filled into the excavation hole 23, the corrugated trough portion of the corrugated pipe 31 is a peak. The filler 27 is unlikely to be filled in the vicinity of the outer peripheral surface 31c, that is, a gap is likely to be formed in the vicinity of the outer peripheral surface 31c (for example, see FIG. 9). And the said space | gap inhibits the transmission of the underground heat from the ground G to the corrugated pipe 31, and will deteriorate the heat exchange efficiency of the underground heat exchanger 21. FIG. That is, although the corrugated pipe 31 is used to increase the heat transferability by increasing the surface area of the tube wall portion, the heat transferability may not be effectively increased.

本発明は、上記のような従来の問題に鑑みなされたものであって、コルゲート管が奏し得る管壁部の表面積の拡大効果を利用して、熱媒体への熱伝達性を向上しようとする場合に、当該熱伝達性を確実に向上させることが可能な地中熱交換器の設置方法を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems, and attempts to improve heat transfer to a heat medium by utilizing the effect of expanding the surface area of a tube wall portion that can be produced by a corrugated tube. In this case, an object of the present invention is to provide a method for installing an underground heat exchanger capable of reliably improving the heat transfer performance.

かかる目的を達成するために請求項1に示す発明は、
地盤との間で熱交換を行う地中熱交換器の設置方法であって、
前記地盤に掘削孔を形成する掘削工程と、
前記熱交換に係る熱媒体の流路となるコルゲート管を前記掘削孔に挿入する挿入工程と、
前記掘削孔と前記コルゲート管との間の空間に充填材を充填する充填工程と、を有し、
前記充填工程において、前記コルゲート管の外周面近傍の空隙の形成を抑制する空隙抑制処理を行うことを特徴とする。
In order to achieve this object, the invention shown in claim 1
A method of installing a ground heat exchanger that exchanges heat with the ground,
A drilling step of forming a drilling hole in the ground;
An insertion step of inserting a corrugated pipe serving as a flow path of the heat medium related to the heat exchange into the excavation hole;
Filling a space between the excavation hole and the corrugated pipe with a filler, and
In the filling step, a void suppressing process for suppressing formation of voids in the vicinity of the outer peripheral surface of the corrugated pipe is performed.

上記請求項1に示す発明によれば、空隙抑制処理により、コルゲート管の外周面近傍の空隙の形成が抑制されて、地盤とコルゲート管との間のほぼ全域に亘り充填材が密実に充填されるようになる。これにより、前記空隙に起因した地中熱のコルゲート管への伝熱阻害は抑制され、その結果、コルゲート管の使用メリットたる管壁部の表面積の拡大に伴う熱伝達性の向上効果を有効に享受可能となる。   According to the first aspect of the present invention, the formation of voids in the vicinity of the outer peripheral surface of the corrugated pipe is suppressed by the void suppressing treatment, and the filler is filled densely over almost the entire area between the ground and the corrugated pipe. Become so. As a result, the heat transfer hindrance to the corrugated pipe due to the air gap is suppressed, and as a result, the effect of improving the heat transfer performance with the expansion of the surface area of the pipe wall, which is the merit of using the corrugated pipe, is effectively achieved. It can be enjoyed.

請求項2に示す発明は、請求項1に記載の地中熱交換器の設置方法であって、
前記空隙抑制処理とは、バイブレーターによって前記コルゲート管を振動させる処理であることを特徴とする。
上記請求項2に示す発明によれば、コルゲート管の外周面近傍に空隙が形成されつつある場合でも、その空隙の近傍の充填材が、コルゲート管の振動により振動して前記空隙の方へ崩れて当該空隙は埋められる。よって、当該空隙に起因した地中熱のコルゲート管への伝熱阻害は抑制される。
Invention of Claim 2 is the installation method of the underground heat exchanger of Claim 1, Comprising:
The said air gap suppression process is a process which vibrates the said corrugated pipe | tube with a vibrator, It is characterized by the above-mentioned.
According to the second aspect of the present invention, even when a gap is being formed near the outer peripheral surface of the corrugated pipe, the filler in the vicinity of the gap is vibrated by the vibration of the corrugated pipe and collapses toward the gap. Thus, the gap is filled. Therefore, the heat transfer inhibition to the corrugated pipe | tube of the underground heat resulting from the said space | gap is suppressed.

請求項3に示す発明は、請求項2に記載の地中熱交換器の設置方法であって、
前記掘削孔として前記地盤に鉛直方向に掘削された竪孔に、前記コルゲート管は、その管軸を鉛直方向に沿わせて挿入されており、
前記バイブレーターは、振動する振動子を有し、
前記空隙抑制処理では、前記振動子を前記コルゲート管の内周面に当接させつつ該振動子を鉛直方向に移動させることを特徴とする。
上記請求項3に示す発明によれば、コルゲート管が振動子の全長に比べて格段に長い場合であっても、振動子の鉛直方向の移動によりコルゲート管の全長に亘って該コルゲート管の各部位を確実に振動させることができて、これによりコルゲート管の外周面近傍の空隙の形成をコルゲート管の全長に亘って確実に抑制可能となる。
Invention of Claim 3 is the installation method of the underground heat exchanger of Claim 2, Comprising:
The corrugated pipe is inserted along the vertical axis of the corrugated pipe into the borehole drilled in the vertical direction on the ground as the excavation hole,
The vibrator has a vibrating vibrator,
In the air gap suppression process, the vibrator is moved in the vertical direction while contacting the vibrator with the inner peripheral surface of the corrugated tube.
According to the third aspect of the present invention, even when the corrugated tube is much longer than the entire length of the vibrator, each of the corrugated pipes extends over the entire length of the corrugated pipe by the movement of the vibrator in the vertical direction. The part can be vibrated with certainty, whereby the formation of a gap near the outer peripheral surface of the corrugated pipe can be reliably suppressed over the entire length of the corrugated pipe.

請求項4に示す発明は、請求項1に記載の地中熱交換器の設置方法であって、
前記充填材は、多数の細粒物を基材とし、
前記空隙抑制処理とは、前記充填材を液体に分散してなる分散液の形態で、前記掘削孔と前記コルゲート管との間の空間に投入する処理であることを特徴とする。
上記請求項4に示す発明によれば、充填材を液体に分散してなる分散液の形態で、掘削孔とコルゲート管との間の空間に投入する。よって、液体中に分散した充填材の細粒物は、液体の浸透力により狭い隙間等にも誘導され、これにより、コルゲート管の外周面近傍の空隙の形成は有効に抑制される。
Invention of Claim 4 is the installation method of the underground heat exchanger of Claim 1, Comprising:
The filler is based on a number of fine particles,
The void suppression process is a process in which the filler is dispersed into a liquid and is poured into a space between the excavation hole and the corrugated pipe.
According to the fourth aspect of the present invention, the filler is introduced into the space between the excavation hole and the corrugated pipe in the form of a dispersion obtained by dispersing the filler in the liquid. Therefore, the fine particles of the filler dispersed in the liquid are also guided to a narrow gap or the like due to the penetration force of the liquid, thereby effectively suppressing the formation of voids near the outer peripheral surface of the corrugated tube.

請求項5に示す発明は、請求項1乃至4の何れかに記載の地中熱交換器の設置方法であって、
前記掘削孔と前記コルゲート管との間に充填される前記充填材は、炭化ケイ素、アルミナ、及び高炉スラグのうちの少なくとも何れか1種からなる長粒物を所定の容積含有率で含んでいることを特徴とする。
Invention of Claim 5 is the installation method of the underground heat exchanger in any one of Claims 1 thru | or 4, Comprising:
The filler filled between the excavation hole and the corrugated pipe contains a long particle made of at least one of silicon carbide, alumina, and blast furnace slag at a predetermined volume content. It is characterized by that.

上記請求項5に示す発明によれば、充填材が含む長粒物は、炭化ケイ素、アルミナ、及び高炉スラグのうちの少なくとも何れかを素材とするが、何れの素材も高い熱伝導性を有している。また、その形状は長粒形であるので、充填材内において、互い隣り合う長粒物同士が接触する確率は高くなり、これにより、前記充填材内に熱の通り道が形成され易くなる。つまり、長粒物の含有率をあまり高めずとも、前記充填材内に高熱伝導率の伝熱経路を確実に形成可能となる。よって、充填材として一般に使用される砂等よりも前記長粒物が高価な場合であっても、地中熱交換器の製造コストを低く抑えつつ、充填材の熱伝導性を確実に高めることができる。   According to the fifth aspect of the present invention, the long particles contained in the filler are made of at least one of silicon carbide, alumina, and blast furnace slag, and all of the materials have high thermal conductivity. is doing. Moreover, since the shape is a long grain shape, the probability that the long grain objects which adjoin each other in a filler will become high, and, thereby, it becomes easy to form a heat path in the said filler. That is, it is possible to reliably form a heat transfer path with high thermal conductivity in the filler without increasing the content of the long particles. Therefore, even if the above-mentioned long particles are more expensive than sand or the like generally used as a filler, the thermal conductivity of the filler is reliably increased while keeping the manufacturing cost of the underground heat exchanger low. Can do.

請求項6に示す発明は、請求項5に記載の地中熱交換器の設置方法であって、
前記長粒物の長手方向の寸法が、10〜50mmであり、
前記長手方向と直交する方向の寸法が1〜3mmであることを特徴とする。
Invention of Claim 6 is the installation method of the underground heat exchanger of Claim 5, Comprising:
The longitudinal dimension of the long particles is 10 to 50 mm,
The dimension in a direction orthogonal to the longitudinal direction is 1 to 3 mm.

上記請求項6に示す発明によれば、長粒物の長手方向の寸法が10mm以上であるので、互いに隣り合う長粒物同士が接触する確率は高くなり、これにより、充填材内に高熱伝導率の伝熱経路を確実に形成可能となる。また、50mm以下であるので、長粒物の製造はさほど困難ではなく、製造コストの高騰を抑制できる。更には、50mmよりも長くすると前記掘削孔への充填時に折れ易くなり、製造コストの割には充填後の長粒物の長尺化を図れないという費用対効果悪化の問題が起きる虞があるが、50mm以下にすれば、この問題も有効に回避することができる。   According to the invention described in claim 6 above, since the longitudinal dimension of the long grains is 10 mm or more, the probability that the long grains adjacent to each other will be in contact with each other increases. The rate of heat transfer path can be reliably formed. Moreover, since it is 50 mm or less, manufacture of a long grain thing is not so difficult and the rise in manufacturing cost can be suppressed. Furthermore, if it is longer than 50 mm, it tends to be broken when filling the excavation hole, and there is a possibility that a problem of cost-effectiveness deterioration that a long particle after filling cannot be lengthened for the manufacturing cost may occur. However, if it is 50 mm or less, this problem can be effectively avoided.

また、長粒物の長手方向と直交する方向の寸法たる1〜3mmは、一般に充填材の基材として用いられる砂等の粒状物の粒径とほぼ同サイズである。よって、当該長粒物は、充填材の基材内に偏在すること無く均一に混在し易くなり、結果、充填材の全域に亘り高い熱伝導性を確保することができる。   Moreover, 1-3 mm which is the dimension of the direction orthogonal to the longitudinal direction of a long grain is generally the same size as the grain size of granular materials, such as sand, generally used as a base material of a filler. Therefore, the long particles are easily mixed uniformly without being unevenly distributed in the base material of the filler, and as a result, high thermal conductivity can be ensured over the entire area of the filler.

ちなみに、上述の粒状物の寸法範囲によれば、長粒物の最小サイズは、10mm×1mmとなる。よって、その粒径がミクロンオーダーの微粉の場合に起こりがちな、地下水に混ざって充填材から長粒物が流出するという不具合も確実に防止できて、充填材は長期に亘り高い熱伝導性を維持可能となる。   Incidentally, according to the dimension range of the granular material described above, the minimum size of the long granular material is 10 mm × 1 mm. Therefore, it is possible to surely prevent the problem that long particles flow out of the filler when mixed with groundwater, which tends to occur when the particle size is micron-order fine powder, and the filler has a high thermal conductivity over a long period of time. Can be maintained.

請求項7に示す発明は、請求項1乃至6の何れかに記載の地中熱交換器の設置方法であって、
前記コルゲート管は樹脂製であり、可撓性を有していることを特徴とする。
上記請求項7に示す発明によれば、コルゲート管は樹脂製であり軽量なので、当該コルゲート管を掘削孔へ建て込む際に重量物用の揚重機を用いずに済む等、建て込み易いものとなる。
また、コルゲート管は可撓性を有している。よって、その全長が数十m〜数百mの場合であっても、コルゲート管をリールに巻き取る等してコンパクトなサイズに収めることができて、施工現場へ搬送し易くなる。
Invention of Claim 7 is the installation method of the underground heat exchanger in any one of Claims 1 thru | or 6, Comprising:
The corrugated tube is made of resin and has flexibility.
According to the seventh aspect of the present invention, since the corrugated pipe is made of resin and lightweight, it is not necessary to use a heavy lifting machine when building the corrugated pipe into the excavation hole. Become.
In addition, the corrugated tube has flexibility. Therefore, even if the total length is several tens of meters to several hundreds of meters, the corrugated tube can be wound into a compact size and stored in a compact size, and can be easily transported to the construction site.

本発明によれば、コルゲート管が奏し得る管壁部の表面積の拡大効果を利用して、熱媒体への熱伝達性を向上しようとする場合に、当該熱伝達性を確実に向上させることが可能な地中熱交換器の設置方法を提供することができる。   According to the present invention, when the heat transfer property to the heat medium is to be improved by utilizing the effect of expanding the surface area of the tube wall portion that can be produced by the corrugated tube, the heat transfer property can be reliably improved. It is possible to provide a method for installing a possible underground heat exchanger.

図1Aは、従来の二重管構造の地中熱交換器121の縦断面図であり、図1Bは、参考例の説明図であって、つまり、二重管構造の外筒にコルゲート管31を用いた場合の地中熱交換器21の説明図である。FIG. 1A is a longitudinal sectional view of a conventional underground heat exchanger 121 having a double-pipe structure, and FIG. 1B is an explanatory diagram of a reference example, that is, a corrugated pipe 31 on an outer cylinder of a double-pipe structure. It is explanatory drawing of the underground heat exchanger 21 at the time of using. 地中熱交換器21を用いた地中熱利用システム11の説明図である。It is explanatory drawing of the underground heat utilization system 11 using the underground heat exchanger 21. FIG. 地中熱交換器21の縦断面図であり、その一部を側面視で示している。It is a longitudinal cross-sectional view of the underground heat exchanger 21, The one part is shown by the side view. 図4A及び図4Bは、それぞれ、冬場及び夏場での使用例の説明図であり、何れも、地中熱交換器21を縦断面視で示している。4A and 4B are explanatory diagrams of examples of use in winter and summer, respectively, and both show the underground heat exchanger 21 in a longitudinal sectional view. 地中熱交換器21の外筒に用いるコルゲート管31の斜視図である。It is a perspective view of the corrugated pipe | tube 31 used for the outer cylinder of the underground heat exchanger 21. FIG. 望ましい例の説明図である。It is explanatory drawing of a desirable example. その他の望ましい例の説明図である。It is explanatory drawing of another desirable example. 図7Aは、炭化ケイ素の長粒物27aを含有した充填材27の説明図であり、図7Bは、その比較例たる球形状の炭化ケイ素を含有した充填材27の説明図であり、図7Cは、図7Aの長粒物27aが充填材27内に形成する高熱伝導率の伝熱経路(ヒートブリッジ)の説明図である。FIG. 7A is an explanatory view of the filler 27 containing long particles 27a of silicon carbide, and FIG. 7B is an explanatory view of the filler 27 containing spherical silicon carbide as a comparative example. These are explanatory drawings of the heat transfer path (heat bridge) of the high thermal conductivity which the long grain 27a of FIG. 7A forms in the filler 27. FIG. 図8A乃至図8Fは、本実施形態に係る地中熱交換器21の設置方法の説明図である。FIG. 8A thru | or FIG. 8F are explanatory drawings of the installation method of the underground heat exchanger 21 which concerns on this embodiment. コルゲート管31の外周面31cに生じ得る充填材27の未充填部分たる空隙の説明図である。It is explanatory drawing of the space | gap which is an unfilled part of the filler 27 which may arise in the outer peripheral surface 31c of the corrugated pipe | tube 31. FIG. 図10A乃至図10Eは、地中熱交換器21の設置方法の変形例の説明図である。10A to 10E are explanatory views of a modification of the installation method of the underground heat exchanger 21.

===本実施形態===
<<<地中熱交換器21について>>>
図2は、地中熱交換器21を用いた地中熱利用システム11の説明図である。図3は、一部を側面視で示す地中熱交換器21の縦断面図である。また、図4A及び図4Bは、それぞれ、冬場及び夏場での使用例を示す地中熱交換器21の縦断面図である。図5は、地中熱交換器21の外筒に用いるコルゲート管31の斜視図である。なお、図3乃至図4Bについては、図の錯綜を防ぐべく、断面部位に付与すべき断面線を省略している。
=== This Embodiment ===
<<< About the underground heat exchanger 21 >>>
FIG. 2 is an explanatory diagram of the underground heat utilization system 11 using the underground heat exchanger 21. FIG. 3 is a longitudinal sectional view of the underground heat exchanger 21 partially shown in a side view. 4A and 4B are longitudinal sectional views of the underground heat exchanger 21 showing usage examples in winter and summer, respectively. FIG. 5 is a perspective view of the corrugated pipe 31 used for the outer cylinder of the underground heat exchanger 21. In addition, about FIG. 3 thru | or FIG. 4B, in order to prevent the confusion of a figure, the cross section line which should be provided to a cross-sectional site | part is abbreviate | omitted.

図2に示すように、この地中熱利用システム11は、地盤Gとの間で熱交換を行う地中熱交換器21と、地中熱交換器21の熱媒体26からの熱を利用して建物1の暖房のための温水や冷房のための冷水を生成するヒートポンプ15と、を有する。なお、ヒートポンプ15の構成は周知なので、その説明は省略する。   As shown in FIG. 2, the geothermal heat utilization system 11 utilizes the heat from the underground heat exchanger 21 that performs heat exchange with the ground G and the heat medium 26 of the underground heat exchanger 21. And a heat pump 15 that generates hot water for heating the building 1 and cold water for cooling. In addition, since the structure of the heat pump 15 is known, the description is abbreviate | omitted.

図3に示すように、この地中熱交換器21は、ボアホール方式の二重管型である。すなわち、地盤Gに鉛直に形成された掘削孔としての竪孔23と、竪孔23に鉛直方向に沿って挿入された外筒としてのコルゲート管31と、コルゲート管31内に配置された第1内筒としての第1ホース部材41と、同コルゲート管31内に配置された第2内筒としての第2ホース部材45と、竪孔23とコルゲート管31との間の空間SP23に充填される充填材27と、を有している。   As shown in FIG. 3, the underground heat exchanger 21 is a borehole type double pipe type. That is, a borehole 23 as an excavation hole formed vertically in the ground G, a corrugated pipe 31 as an outer cylinder inserted along the vertical direction into the borehole 23, and a first disposed in the corrugated pipe 31. The first hose member 41 as the inner cylinder, the second hose member 45 as the second inner cylinder arranged in the corrugated pipe 31, and the space SP23 between the bore 23 and the corrugated pipe 31 are filled. And a filler 27.

そして、例えば、冬場には、図4Aに示すように、ヒートポンプ15から第1ホース部材41を経由して、水又は不凍液等の熱媒体26が送られて、当該熱媒体26は、コルゲート管31の下端部31aに配された第1ホース部材41の管端開口41eから、コルゲート管31内に吐出される。すると、当該熱媒体26は、コルゲート管31内において地盤Gの地中熱により暖められて自然対流に基づきコルゲート管31内を上方へ移動し、しかる後に、コルゲート管31の上端部31bに設けられた第2ホース部材45の管端開口45eから該第2ホース部材45内へ流入しヒートポンプ15へ向けて送出される。そして、ヒートポンプ15にて温水生成に供される。   For example, in winter, as shown in FIG. 4A, a heat medium 26 such as water or antifreeze is sent from the heat pump 15 via the first hose member 41, and the heat medium 26 is a corrugated pipe 31. Is discharged into the corrugated pipe 31 from the pipe end opening 41e of the first hose member 41 arranged at the lower end 31a. Then, the heat medium 26 is heated by the underground heat of the ground G in the corrugated pipe 31 and moves upward in the corrugated pipe 31 based on natural convection, and thereafter, provided in the upper end portion 31 b of the corrugated pipe 31. The second hose member 45 flows into the second hose member 45 from the pipe end opening 45 e and is sent out toward the heat pump 15. Then, the heat pump 15 is used to generate hot water.

他方、夏場の熱媒体26の流れ方向は、上述の逆となる。すなわち、図4Bに示すように、ヒートポンプ15から第2ホース部材45を経由して熱媒体26が送られて、当該熱媒体26は、第2ホース部材45の前記管端開口45eからコルゲート管31内に吐出される。そして、当該熱媒体26は、コルゲート管31内において地盤Gの地中熱により冷やされて自然対流に基づきコルゲート管31内を下方へ移動し、しかる後に、コルゲート管31の下端部31aに設けられた第1ホース部材41の前記管端開口41eから第1ホース部材41内へ流入しヒートポンプ15へ向けて送出される。そして、ヒートポンプ15にて冷水生成に供される。   On the other hand, the flow direction of the heat medium 26 in the summer is reversed as described above. That is, as shown in FIG. 4B, the heat medium 26 is sent from the heat pump 15 through the second hose member 45, and the heat medium 26 passes through the corrugated pipe 31 from the pipe end opening 45 e of the second hose member 45. It is discharged inside. Then, the heat medium 26 is cooled by the ground heat of the ground G in the corrugated pipe 31 and moves downward in the corrugated pipe 31 based on natural convection, and then provided at the lower end portion 31 a of the corrugated pipe 31. The first hose member 41 flows into the first hose member 41 from the tube end opening 41 e and is sent out toward the heat pump 15. Then, the heat pump 15 is used for cold water generation.

以下、地中熱交換器21に係る各構成要素23,31,41,45,27について詳細に説明する。   Hereinafter, each component 23,31,41,45,27 which concerns on the underground heat exchanger 21 is demonstrated in detail.

(1)竪孔23
図3に示すように、竪孔23は、オーガ等の掘削機により地面にほぼ垂直に掘削された孔であり、その直径は100〜200mm、深さは30〜150mである。
(1) Fist hole 23
As shown in FIG. 3, the hole 23 is a hole excavated almost perpendicularly to the ground by an excavator such as an auger, and has a diameter of 100 to 200 mm and a depth of 30 to 150 m.

(2)コルゲート管31
図5及び図3に示すように、コルゲート管31は、その管壁部が波形形状の管部材である。この波形形状は、コルゲート管31の管軸C31を中心軸とする螺旋形であり、また、管壁部の厚み(壁厚)は全長に亘りほぼ一定厚みである。よって、コルゲート管31の外周面31c及び内周面31dのどちらの面も、略同形の螺旋波形形状になっている。より詳しくは、図3に示すように、外周面31cの螺旋波形形状に係る山部と内周面31dの螺旋波形形状に係る谷部、若しくは外周面31cの螺旋波形形状に係る谷部と内周面31dの螺旋波形形状に係る山部とは、互いに壁厚方向に隣り合わせで位置している。
(2) Corrugated pipe 31
As shown in FIGS. 5 and 3, the corrugated tube 31 is a tube member having a corrugated tube wall. This corrugated shape is a spiral shape with the tube axis C31 of the corrugated tube 31 as the central axis, and the thickness (wall thickness) of the tube wall portion is substantially constant over the entire length. Therefore, both the outer peripheral surface 31c and the inner peripheral surface 31d of the corrugated pipe 31 have substantially the same spiral waveform. More specifically, as shown in FIG. 3, the crest portion related to the spiral waveform shape of the outer peripheral surface 31 c and the trough portion related to the spiral waveform shape of the inner peripheral surface 31 d, or the trough portion related to the spiral waveform shape of the outer peripheral surface 31 c The crests related to the helical corrugated shape of the peripheral surface 31d are located next to each other in the wall thickness direction.

そして、このような螺旋波形形状により、管壁部の外周面31c及び内周面31dの表面積は拡大されているので、地盤Gとコルゲート管31内の熱媒体26との間の熱交換効率は格段に高められている。   And since the surface area of the outer peripheral surface 31c and inner peripheral surface 31d of a pipe wall part is expanded by such a spiral waveform shape, the heat exchange efficiency between the ground G and the heat medium 26 in the corrugated pipe 31 is It is greatly improved.

また、かかる螺旋波形形状を規定する各種パラメータ(例えば、山部と山部の管軸C31方向のピッチP(若しくは谷部と谷部の管軸C31方向のピッチP)、山部の外径D1、谷部の外径D2等)は、それぞれ、コルゲート管31の全長に亘り同仕様になっている。よって、コルゲート管31の管壁部のどの部位も、必要に応じて、雄ねじ又は雌ねじとして機能することができる。この雄ねじ又は雌ねじとしての使用例については、後述する。   Further, various parameters that define the helical waveform shape (for example, the pitch P between the crests and the crests in the direction of the tube axis C31 (or the pitch P between the troughs and the crevices in the direction of the tube axis C31), the outer diameter D1 of the crests. , The outer diameter D2 of the valleys, etc.) are the same specification over the entire length of the corrugated pipe 31. Therefore, any part of the tube wall portion of the corrugated tube 31 can function as a male screw or a female screw as necessary. Examples of use as the male screw or the female screw will be described later.

コルゲート管31の下端部31aには、この下端部31aの管端開口31edを封止するキャップ部材33が設けられている。これにより、コルゲート管31内の熱媒体26の前記管端開口31edから地盤Gへの漏出が防止される。   A cap member 33 that seals the pipe end opening 31ed of the lower end 31a is provided at the lower end 31a of the corrugated pipe 31. This prevents the heat medium 26 in the corrugated pipe 31 from leaking from the pipe end opening 31ed to the ground G.

詳しくは、キャップ部材33は、円筒部33aと、この円筒部33aから同軸且つ一体に筒軸方向に延出した略円錐部33bと、を有する。そして、円筒部33aはその内周面33cに、コルゲート管31の螺旋波形形状と対応した螺旋波形形状の部分を有し、この螺旋波形形状の部分を雌ねじとし、コルゲート管31の下端部31aの螺旋波形形状の部分を雄ねじとして、キャップ部材33はコルゲート管31の下端部31aに螺合し、これにより、コルゲート管31の下端部31aの管端開口31edを封止する。つまり、コルゲート管31の螺旋波形形状を利用してキャップ部材33をコルゲート管31にねじ込み固定する。よって、キャップ部材33を固定するための特別な固定構造を、コルゲート管31の下端部31aに追設せずに済み、コルゲート管31の構成を簡素化できる。また、キャップ部材33をコルゲート管31の下端部31aにねじ込めば当該下端部31aを封止できるので、封止作業も容易になる。   Specifically, the cap member 33 includes a cylindrical portion 33a and a substantially conical portion 33b that extends coaxially and integrally from the cylindrical portion 33a in the tube axis direction. The cylindrical portion 33a has a spiral waveform portion corresponding to the spiral waveform shape of the corrugated tube 31 on its inner peripheral surface 33c. The spiral waveform portion is an internal thread, and the lower end portion 31a of the corrugated tube 31 The cap member 33 is screwed into the lower end portion 31a of the corrugated tube 31 with the helical corrugated portion as a male screw, thereby sealing the tube end opening 31ed of the lower end portion 31a of the corrugated tube 31. That is, the cap member 33 is screwed and fixed to the corrugated pipe 31 using the spiral waveform shape of the corrugated pipe 31. Therefore, it is not necessary to add a special fixing structure for fixing the cap member 33 to the lower end portion 31a of the corrugated pipe 31, and the configuration of the corrugated pipe 31 can be simplified. Further, if the cap member 33 is screwed into the lower end portion 31a of the corrugated pipe 31, the lower end portion 31a can be sealed, so that the sealing work is facilitated.

一方、コルゲート管31の上端部31bにも、この上端部31bの管端開口31euを封止すべくキャップ部材35が設けられている。このキャップ部材35は、例えば中実の円柱体であり、その外周面35cには雄ねじが形成されている。そして、コルゲート管31上端部31bの内周面31dの螺旋波形形状の部分を雌ねじとして、キャップ部材35の前記雄ねじが螺合し、これにより、前記上端部31bの管端開口31euを封止するようになっている。なお、このキャップ部材35には、上述の第1ホース部材41及び第2ホース部材45をコルゲート管31内に導くための貫通孔35h,35hが形成されており、これら貫通孔35h,35hには、それぞれ、第1ホース部材41及び第2ホース部材45が通される。   On the other hand, a cap member 35 is also provided at the upper end 31b of the corrugated pipe 31 so as to seal the pipe end opening 31eu of the upper end 31b. The cap member 35 is, for example, a solid cylindrical body, and a male screw is formed on the outer peripheral surface 35c. And the part of the inner peripheral surface 31d of the upper end part 31b of the corrugated pipe 31 is a female screw, and the male screw of the cap member 35 is screwed together, thereby sealing the pipe end opening 31eu of the upper end part 31b. It is like that. The cap member 35 is formed with through holes 35h and 35h for guiding the first hose member 41 and the second hose member 45 described above into the corrugated pipe 31, and these through holes 35h and 35h The first hose member 41 and the second hose member 45 are passed through, respectively.

このようなコルゲート管31は、高密度ポリエチレン等の樹脂製であり、鋼管と比較して格段に軽量である。よって、当該コルゲート管31を地盤Gの竪孔23へ建て込む際に重量物用の揚重機を用いずに済む等、建て込み易いものとなる。   Such a corrugated pipe 31 is made of a resin such as high-density polyethylene and is much lighter than a steel pipe. Therefore, when the corrugated pipe 31 is built into the borehole 23 of the ground G, it is not necessary to use a heavy lifting machine.

また、可撓性を有しているので、その全長が数十m〜数百mの場合であっても、当該コルゲート管31をリールに巻き取る等してコンパクトなサイズに収めることができて、これにより、施工現場へ搬送し易くなる。   Moreover, since it has flexibility, even if the total length is several tens of meters to several hundreds of meters, the corrugated tube 31 can be wound into a reel and stored in a compact size. This makes it easy to transport to the construction site.

ここで望ましくは、図6に示すように、キャップ部材33で封止されるコルゲート管31の下端部31aには、セメント系素材又は樹脂系素材のグラウト材37が、キャップ部材33と前記下端部31aとを跨ぐように充填されていると良い。このようにしていれば、キャップ部材33の雌ねじとコルゲート管31の下端部31aの雄ねじとの間に若干の噛み合い隙間S1が存在する場合でも、当該噛み合い隙間S1にグラウト材37が入り込んで、当該隙間S1をグラウト材37により確実に塞ぐことができて、その結果、コルゲート管31の下端部31aからの熱媒体26の外部漏出を確実に防止可能となる。   Preferably, as shown in FIG. 6, a grout material 37 made of a cement-based material or a resin-based material is provided at the lower end portion 31 a of the corrugated pipe 31 sealed with the cap member 33, and the cap member 33 and the lower end portion. It is good to be filled so as to straddle 31a. In this case, even when a slight meshing gap S1 exists between the female thread of the cap member 33 and the male thread of the lower end portion 31a of the corrugated pipe 31, the grout material 37 enters the meshing gap S1, The gap S <b> 1 can be reliably closed by the grout material 37, and as a result, the external leakage of the heat medium 26 from the lower end portion 31 a of the corrugated pipe 31 can be reliably prevented.

また、このようなグラウト材37の充填部分をコルゲート管31の下端部31aに設ければ、地中熱交換器21の設置工事においてコルゲート管31を竪孔23に挿入する際に、当該グラウト材37が錘となって挿入し易くなる。詳しくは次の通りである。   Further, if such a filling portion of the grout material 37 is provided at the lower end portion 31 a of the corrugated pipe 31, the grout material 31 is inserted when the corrugated pipe 31 is inserted into the fistula 23 in the installation work of the underground heat exchanger 21. It becomes easy to insert 37 as a weight. Details are as follows.

コルゲート管31の竪孔23への建て込み深さは、一般に数十m〜数百mに達する。他方、コルゲート管31は樹脂製であり、その可撓性に起因して曲がったり小刻みに揺れる等、建て込み姿勢が不安定になり易い。その結果、竪孔23にコルゲート管31を挿入する際に、コルゲート管31の下端部31aが、竪孔23の孔壁23aに引っ掛かって詰まる等して、竪孔23の底部近傍まで速やかに到達しない虞がある。   The depth of the corrugated pipe 31 built into the fistula 23 generally reaches several tens of meters to several hundreds of meters. On the other hand, the corrugated pipe 31 is made of resin, and its built-up posture tends to be unstable, such as bending or swaying in small increments due to its flexibility. As a result, when the corrugated pipe 31 is inserted into the borehole 23, the lower end portion 31a of the corrugated pipe 31 is caught by the hole wall 23a of the borehole 23 and clogged, so that it quickly reaches the vicinity of the bottom portion of the borehole 23. There is a risk of not.

この点につき、上述の構成によれば、コルゲート管31の下端部31aに充填されたグラウト材37が錘となり、これにより、コルゲート管31を下方に引っ張って真っ直ぐに延ばした状態する。よって、コルゲート管31の下端部31aが竪孔23の孔壁23aに引っ掛かり難くなって、竪孔23に建て込み易くなる。   About this point, according to the above-mentioned structure, the grout material 37 with which the lower end part 31a of the corrugated pipe | tube 31 was filled becomes a weight, and, thereby, the corrugated pipe | tube 31 is pulled down and it is in the state extended straightly. Therefore, the lower end portion 31 a of the corrugated pipe 31 is not easily caught by the hole wall 23 a of the hole 23, and is easily built into the hole 23.

また、地中熱交換器21の設置工法の種類によっては、地盤Gの竪孔23にコルゲート管31を挿入する際、又は挿入した後に、竪孔23内に液状物が充満しているケースもある。そして、その場合には、コルゲート管31は、液状物からの浮力によって浮き上がってしまい、竪孔23にうまく挿入できない虞があるが、そのような場合にも、上述のグラウト材37が、コルゲート管31の浮力に抗する錘として有効に機能して、これにより、コルゲート管31の下端部31aは竪孔23の液状物中へ速やか且つ真っ直ぐに沈降される。ちなみに、このような浮力に確実に対抗すべく、コルゲート管31内に水等の液体を入れて当該液体を錘としながらコルゲート管31を竪孔23に挿入しても良い。   Moreover, depending on the kind of installation method of the underground heat exchanger 21, there is a case where the liquid material is filled in the borehole 23 when or after the corrugated pipe 31 is inserted into the borehole 23 of the ground G. is there. In such a case, the corrugated pipe 31 is lifted by buoyancy from the liquid material, and may not be inserted into the fistula 23. In such a case, the grout material 37 described above may be corrugated pipe. It effectively functions as a weight that resists the buoyancy of 31, whereby the lower end portion 31 a of the corrugated pipe 31 is quickly and straightly settled into the liquid material in the fistula 23. Incidentally, in order to reliably counter such buoyancy, a liquid such as water may be put into the corrugated pipe 31 and the corrugated pipe 31 may be inserted into the fistula 23 while using the liquid as a weight.

このようなグラウト材37としては、充填時に流動性を有し、充填後には固化するようなセメント系素材又は樹脂系素材が使用される。セメント系素材の具体例としては、セメントやモルタル等を例示でき、樹脂系素材の具体例としては、エポキシ樹脂やアクリル樹脂、シリコン樹脂等を例示できる。ちなみに、錘として用いる場合には、固化後の比重の高い材料が好ましく、例えば、上述のように竪孔23に液状物が充満している場合には、この液状物よりも比重の高いものをグラウト材37として用いると良い。   As such a grout material 37, a cement-based material or a resin-based material that has fluidity at the time of filling and solidifies after filling is used. Specific examples of the cement-based material include cement and mortar. Specific examples of the resin-based material include epoxy resin, acrylic resin, and silicon resin. Incidentally, when used as a weight, a material having a high specific gravity after solidification is preferable. For example, when the pores 23 are filled with a liquid material as described above, a material having a higher specific gravity than the liquid material is used. It is good to use as the grout material 37.

グラウト材37の充填処理は、コルゲート管31を竪孔23に建て込む前の地上において、次のようにして行われる。先ず、キャップ部材33をコルゲート管31に螺合して管端開口31edを封止した状態において、キャップ部材33の底部33fが下に位置するようにコルゲート管31を配置する。そして、キャップ部材33とコルゲート管31との螺合部分又は螺合部分よりも上方の管壁部の部位に、コルゲート管31内と外部空間とを連通する二つの貫通孔h1,h2を形成する。これらのうちの一方の貫通孔h1は、コルゲート管31内にグラウト材37を注入する注入孔として使用され、もう一方の貫通孔h2は、グラウト材37の充填高さの目視確認用の孔として使用される。つまり、後者の孔h2は、グラウト材37の充填目標高さに相当する位置に形成される。そして、孔h1からグラウト材37を注入し、孔h2からグラウト材37が漏出したら、グラウト材37の注入を止め、グラウト材37が固化するまで、これら孔h1,h2を外側から板で押さえる等して塞ぎ、固化後に板を取り外す。   The filling process of the grouting material 37 is performed as follows on the ground before the corrugated pipe 31 is built in the fistula 23. First, in a state where the cap member 33 is screwed into the corrugated tube 31 and the tube end opening 31ed is sealed, the corrugated tube 31 is disposed so that the bottom 33f of the cap member 33 is positioned below. And two through-holes h1 and h2 which connect the inside of the corrugated pipe 31 and external space are formed in the site | part of the pipe wall part above the screwing part of the cap member 33 and the corrugated pipe 31, or a screwing part. . One of these through holes h 1 is used as an injection hole for injecting the grout material 37 into the corrugated pipe 31, and the other through hole h 2 is a hole for visual confirmation of the filling height of the grout material 37. used. That is, the latter hole h <b> 2 is formed at a position corresponding to the target filling height of the grout material 37. Then, when the grout material 37 is injected from the hole h1 and the grout material 37 leaks from the hole h2, the injection of the grout material 37 is stopped, and the holes h1 and h2 are pressed from the outside by a plate until the grout material 37 is solidified. And then remove the plate after solidification.

ちなみに、コルゲート管31の下端部31aを密閉するグラウト材37の充填構造としては、上述の図6A以外に、例えば図6Bに示すような構造も例示できる。すなわち、この図6Bの例では、コルゲート管31の下端部31aにのみグラウト材37としての樹脂等を充填して下端部31aの管端開口31edを閉塞し、キャップ部材33の方にはグラウト材37を充填していないが、このようにしても良い。   Incidentally, as a filling structure of the grout material 37 that seals the lower end portion 31a of the corrugated pipe 31, for example, a structure as shown in FIG. That is, in the example of FIG. 6B, only the lower end portion 31a of the corrugated pipe 31 is filled with resin or the like as the grout material 37 to close the pipe end opening 31ed of the lower end portion 31a. 37 is not filled, but this may be used.

(3)第1ホース部材41及び第2ホース部材45
図3に示すように、第1ホース部材41及び第2ホース部材45は、例えばポリエチレン等の樹脂製の管部材である。そして、第1ホース部材41の下端部の管端開口41eは、コルゲート管31の下端部31aに配置されている一方、第2ホース部材45の下端部の管端開口45eは、コルゲート管31の上端部31bに配置されている。これにより、熱媒体26は、冬場には前述した図4Aのルートで、また夏場には前述した図4Bのルートで、コルゲート管31内を自然対流等に基づき上昇又は下降しながら地盤Gと熱交換する。
(3) First hose member 41 and second hose member 45
As shown in FIG. 3, the 1st hose member 41 and the 2nd hose member 45 are resin-made pipe members, such as polyethylene, for example. And the pipe end opening 41e at the lower end of the first hose member 41 is arranged at the lower end 31a of the corrugated pipe 31, while the pipe end opening 45e at the lower end of the second hose member 45 is It arrange | positions at the upper end part 31b. As a result, the heat medium 26 rises or descends in the corrugated pipe 31 based on natural convection or the like through the route of FIG. 4A described above in winter and the route of FIG. 4B described above in summer. Exchange.

(4)充填材27
充填材27は、例えば、川砂や山砂、珪砂等の細粒物を基材27bとし、コルゲート管31と竪孔23との間の空間SP23に密実に充填される。これにより、充填材27を介して、コルゲート管31内の熱媒体26と地盤Gとの間で熱交換が行われる。
(4) Filler 27
The filler 27 is densely filled into the space SP23 between the corrugated pipe 31 and the fistula 23 using, for example, fine particles such as river sand, mountain sand, and quartz sand as the base material 27b. Thereby, heat exchange is performed between the heat medium 26 in the corrugated pipe 31 and the ground G through the filler 27.

この熱交換効率を高めるべく、図7Aに示すように、充填材27には、1〜20%の容積含有率(=長粒物27aの総容積/充填材27の総容積)で、炭化ケイ素、アルミナ、及び高炉スラグのうちの少なくとも何れか1種からなる長粒物27aが混入され、この例では、炭化ケイ素27aが混入されている。そして、当該炭化ケイ素27aの熱伝導率は、168(W/mK)という具合に高い。よって、当該炭化ケイ素27aの混入により充填材27の熱伝導率は飛躍的に高められている。   In order to increase this heat exchange efficiency, as shown in FIG. 7A, the filler 27 has a volume content of 1 to 20% (= total volume of the long granules 27a / total volume of the filler 27). , Alumina, and long grain 27a made of at least one of blast furnace slag is mixed. In this example, silicon carbide 27a is mixed. And the thermal conductivity of the silicon carbide 27a is as high as 168 (W / mK). Therefore, the thermal conductivity of the filler 27 is drastically increased by the inclusion of the silicon carbide 27a.

また、炭化ケイ素27aの形状は、長粒形状(針状形状、棒状)である。よって、図7Aに示すように充填材27内において互い隣り合う炭化ケイ素27a,27a同士が接触する確率は、図7Bに示す球形状の場合と比べて格段に高くなり、これにより、充填材27内には、図7Cに示すような熱の通り道(ヒートブリッジ)が形成され易くなる。つまり、炭化ケイ素27aの含有率をあまり高めずとも、充填材27内に高熱伝導率の伝熱経路を確実に形成可能となる。よって、砂よりも高価な炭化ケイ素27aの含有率を低くすることができて、その結果、地中熱交換器21の製造コストを低く抑えながらも、充填材27の熱伝導性を確実に高めることができる。   The shape of the silicon carbide 27a is a long grain shape (needle shape, rod shape). Therefore, as shown in FIG. 7A, the probability that the silicon carbides 27a and 27a adjacent to each other in the filler 27 are in contact with each other is significantly higher than that of the spherical shape shown in FIG. 7B. Inside, a heat path (heat bridge) as shown in FIG. 7C is easily formed. That is, a heat transfer path having a high thermal conductivity can be reliably formed in the filler 27 without increasing the content of the silicon carbide 27a so much. Therefore, the content rate of the silicon carbide 27a more expensive than sand can be reduced, and as a result, the thermal conductivity of the filler 27 is reliably increased while the manufacturing cost of the underground heat exchanger 21 is kept low. be able to.

ここで望ましくは、炭化ケイ素の長粒物27aの長手方向の寸法を10〜50mmにし、また、長手方向と直交する方向の寸法を1〜3mmにすると良い。そして、長手方向の寸法を10mm以上にすれば、互いに隣り合う長粒物27a,27a同士の接触確率を高めることができる。また、同寸法を50mm以下にすれば、長粒物27aの製造はさほど困難にならず、製造コストの抑制を図れ、更には、竪孔23への充填時の長粒物27aの折損等も有効に防止できて、つまり、製造コストに見合った寸法長さの長粒物27aを、竪孔23内に確実に配することができる。   Desirably, the longitudinal dimension of the long grain 27a of silicon carbide is 10 to 50 mm, and the dimension perpendicular to the longitudinal direction is 1 to 3 mm. And if the dimension of a longitudinal direction shall be 10 mm or more, the contact probability of the long grain objects 27a and 27a adjacent to each other can be raised. Further, if the same dimension is set to 50 mm or less, the production of the long granules 27a is not so difficult, the production cost can be reduced, and the breakage of the long granules 27a at the time of filling the fistula 23 is also caused. It can be effectively prevented, that is, the long grain 27a having a length corresponding to the manufacturing cost can be reliably disposed in the fistula 23.

また、長粒物27aの長手方向と直交する方向の寸法たる1〜3mmは、一般に充填材27の基材27bとして用いられる砂等の粒状物の粒径とほぼ同サイズである。よって、当該長粒物27aは、充填材27の基材27b内に偏在すること無く均一に混入され易く、その結果、充填材27の全域に亘り高い熱伝導性を確保することができる。   Further, 1 to 3 mm, which is a dimension in a direction perpendicular to the longitudinal direction of the long-grained material 27a, is substantially the same as the particle size of a granular material such as sand generally used as the base material 27b of the filler 27. Therefore, the long particles 27 a are easily mixed uniformly without being unevenly distributed in the base material 27 b of the filler 27, and as a result, high thermal conductivity can be ensured over the entire area of the filler 27.

ちなみに、上述の寸法範囲によれば、長粒物27aの最小サイズは、10mm×1mmとなる。よって、その粒径がミクロンオーダーの微粉の場合に起こりがちな、地下水に混ざって充填材27から長粒物27aが流出するという不具合も確実に防止できて、充填材27は長期に亘り高い熱伝導性を維持可能となる。   Incidentally, according to the above-mentioned dimensional range, the minimum size of the long grain 27a is 10 mm × 1 mm. Therefore, it is possible to surely prevent the problem that the long particles 27a flow out of the filler 27 mixed with the ground water, which tends to occur when the particle size is fine powder of micron order, and the filler 27 has a high heat for a long time. Conductivity can be maintained.

<<<地中熱交換器21の設置方法について>>>
図8A乃至図8Fは、地中熱交換器21の設置方法の説明図である。
先ず、図8Aに示すように、対象地盤Gに、孔径100〜200mm、深さ30〜150mの竪孔23をボーリングマシン等の掘削機により掘削する(「掘削工程」に相当)。
<<< About the installation method of the underground heat exchanger 21 >>>
8A to 8F are explanatory diagrams of the installation method of the underground heat exchanger 21.
First, as shown in FIG. 8A, a hole 23 having a hole diameter of 100 to 200 mm and a depth of 30 to 150 m is excavated in the target ground G with an excavator such as a boring machine (corresponding to “excavation process”).

また、これと同時並行又は前後して、コルゲート管31、及び第1ホース部材41をそれぞれリール31R,41Rに巻き取った状態で現場搬入する。なお、第2ホース部材45は短尺なので、巻き取り状態で搬入しなくて良い。そして、リール31Rからコルゲート管31を少しだけ繰り出し、そのコルゲート管31の先端部の外周面における螺旋波形形状を雄ねじとして、キャップ部材33を螺合して管端開口31edを封止する。そうしたら、コルゲート管31の先端部にグラウト材37を注入して螺合部分の前記噛み合い隙間S1を埋める。   Simultaneously or in parallel with this, the corrugated pipe 31 and the first hose member 41 are carried on-site in a state of being wound around the reels 31R and 41R, respectively. In addition, since the 2nd hose member 45 is short, it does not need to carry in in a winding state. Then, the corrugated tube 31 is slightly extended from the reel 31R, and the cap member 33 is screwed together with the helical corrugated shape on the outer peripheral surface of the tip of the corrugated tube 31 as a male screw, thereby sealing the tube end opening 31ed. If it does so, grout material 37 will be poured into the tip part of corrugated pipe 31, and the above-mentioned meshing crevice S1 of a screwing part will be filled up.

次に、竪孔23にコルゲート管31を建て込む(「挿入工程に相当」)。すなわち、図8Aに示すように、リール31Rの繰り出し端を竪孔23の上方に配置し、そして、図8Bに示すように、コルゲート管31の前記先端部が下端部となるようにコルゲート管31をリール31Rから繰り出すことにより、順次、コルゲート管31を竪孔23内に建て込んでいく。なお、この建て込み中にあっては、コルゲート管31の下端部のグラウト材37が錘として機能し、コルゲート管31は全体として真っ直ぐな安定した建て込み姿勢を維持する。そして、コルゲート管31の下端部が竪孔23の底部近傍に到達したら、コルゲート管31の繰り出しを停止する。そして、コルゲート管31をリール31Rから分離すべくコルゲート管31を切断し、これによりコルゲート管31の上端部31bが形成される(図8Cを参照)。   Next, the corrugated pipe 31 is built into the fistula 23 (“corresponding to an insertion process”). That is, as shown in FIG. 8A, the feeding end of the reel 31R is arranged above the hole 23, and as shown in FIG. 8B, the corrugated pipe 31 is arranged such that the tip end portion of the corrugated pipe 31 becomes the lower end part. Are fed out from the reel 31 </ b> R, so that the corrugated pipe 31 is sequentially built into the fistula 23. During the erection, the grouting material 37 at the lower end of the corrugated pipe 31 functions as a weight, and the corrugated pipe 31 as a whole maintains a straight and stable erected posture. Then, when the lower end portion of the corrugated pipe 31 reaches the vicinity of the bottom of the hole 23, the feeding of the corrugated pipe 31 is stopped. Then, the corrugated tube 31 is cut to separate the corrugated tube 31 from the reel 31R, thereby forming the upper end portion 31b of the corrugated tube 31 (see FIG. 8C).

そうしたら、図8Cに示すように竪孔23とコルゲート管31との間の空間SP23に漏斗等を用いて充填材27を注入する(「充填工程」に相当)。   Then, as shown in FIG. 8C, the filler 27 is injected into the space SP23 between the hole 23 and the corrugated pipe 31 using a funnel or the like (corresponding to “filling step”).

但し、図9の拡大縦断面図に示すように、コルゲート管31の外周面31cは螺旋波形形状になっている。そのため、単に充填材27を上方から落下充填させるだけだと、螺旋波形形状の谷部及びその近傍空間が山部の影となって、そこには充填材27が回り難くなり、未充填部分、つまり空隙が生じてしまう。そして、このような空隙は、地盤Gからコルゲート管31内の熱媒体26への熱伝導を阻害する。   However, as shown in the enlarged vertical sectional view of FIG. 9, the outer peripheral surface 31 c of the corrugated pipe 31 has a spiral waveform shape. Therefore, if the filling material 27 is simply dropped and filled from above, the valley portion of the spiral waveform shape and the space in the vicinity thereof become a shadow of the mountain portion, and it becomes difficult for the filling material 27 to turn there, That is, voids are generated. Such voids inhibit heat conduction from the ground G to the heat medium 26 in the corrugated pipe 31.

そこで、このような空隙の形成を抑制すべく、充填材27の充填時に並行して或いは充填後に、空隙抑制処理を行うようにしている。この空隙抑制処理では、バイブレーター81を使用する。すなわち、図8Dに示すように、充填材27の充填後にコルゲート管31内にバイブレーター81を入れてコルゲート管31を振動させることにより、前記空隙の周囲の充填材27を順次空隙の方へと崩落させて当該空隙を埋める。そして、空隙が埋まったら、その分だけ充填材27の充填高さが全体的に低くなるので、その分量の充填材27を竪孔23内に追加投入する。   Therefore, in order to suppress the formation of such voids, a void suppression process is performed in parallel with or after the filling of the filler 27. In this void suppression process, a vibrator 81 is used. That is, as shown in FIG. 8D, after filling the filler 27, the vibrator 81 is put in the corrugated pipe 31 to vibrate the corrugated pipe 31, so that the filler 27 around the gap gradually collapses toward the gap. To fill the gap. Then, when the gap is filled, the filling height of the filler 27 becomes lower as a whole, so that the amount of the filler 27 is additionally charged into the fistula 23.

但し、コルゲート管31の全長は、数十m〜数百mであるところ、バイブレーター81の振動子81aの全長は精々数十cmである。そのため、例えば、バイブレーター81の振動子81aをコルゲート管31の上端部31bの内周面31cに当接させたところで、その振動を、数十m〜数百mもあるコルゲート管31の全長に亘って伝えることはできない。   However, the total length of the corrugated pipe 31 is several tens of meters to several hundreds of meters, and the total length of the vibrator 81a of the vibrator 81 is several tens of centimeters. Therefore, for example, when the vibrator 81a of the vibrator 81 is brought into contact with the inner peripheral surface 31c of the upper end portion 31b of the corrugated tube 31, the vibration is spread over the entire length of the corrugated tube 31 that is several tens to several hundreds of meters. I cannot tell you.

そこで、図8Dに示すように、コルゲート管31内に前記振動子81aをワイヤー等の吊り具81bで吊下し、吊り具81bを操作して、振動子81aをコルゲート管31の全長に亘って上下方向に移動するようにしている。そして、これにより、コルゲート管31の内周面31dにおいて振動子81aの当接により振動する部位を、コルゲート管31の全長に亘って順次移動させて、ほぼ全ての空隙を潰すようにしている。   Therefore, as shown in FIG. 8D, the vibrator 81 a is suspended in the corrugated pipe 31 by a hanger 81 b such as a wire, and the hanger 81 b is operated so that the vibrator 81 a extends over the entire length of the corrugated pipe 31. It moves up and down. As a result, the portion of the inner peripheral surface 31d of the corrugated tube 31 that vibrates due to the contact of the vibrator 81a is sequentially moved over the entire length of the corrugated tube 31 so that almost all the gaps are crushed.

なお、この充填作業を効率良く短時間で終える観点からは、望ましくは、最初に振動子81aを当接させる位置をコルゲート管31内の下端部とし、以降、この当接位置を上方へずらしていくと良い。これは、空隙が埋まる際には、その空隙分の分量の充填材27が上方から空隙の方へ崩落しており、つまり、空隙が埋まる代わりに、その上方に新たな空隙が生じるからである。よって、下方の空隙から先に潰した方が、作業の無駄が無いのである。   Note that, from the viewpoint of efficiently completing this filling operation in a short time, preferably, the position where the vibrator 81a is first contacted is the lower end portion in the corrugated pipe 31, and thereafter the contact position is shifted upward. Good to go. This is because when the gap is filled, the amount of filler 27 corresponding to the gap collapses from above toward the gap, that is, instead of filling the gap, a new gap is generated above the gap. . Therefore, there is no waste of work by squashing first from the lower gap.

そして、このようにして竪孔23とコルゲート管31との間の空間SP23に密実に充填材27が充填されたら、図8Eに示すようにコルゲート管31の上端部31bの上方に第1ホース部材41のリール41Rを配置して、このリール41Rから第1ホース部材41を繰り出してコルゲート管31内に第1ホース部材41を挿入する。そして、挿入が完了したら、図8Fに示すように、コルゲート管31の上端部31bにキャップ部材35をねじ込んで上端部31bの管端開口31euを封止する。なお、この時、キャップ部材35の二つの貫通孔35h,35hには、それぞれ、第1ホース部材41及び第2ホース部材45が通される。   When the filler 27 is densely filled in the space SP23 between the stoma 23 and the corrugated pipe 31 in this way, the first hose member is disposed above the upper end portion 31b of the corrugated pipe 31 as shown in FIG. 8E. Forty-one reels 41 </ b> R are arranged, the first hose member 41 is fed out from the reel 41 </ b> R, and the first hose member 41 is inserted into the corrugated pipe 31. When the insertion is completed, as shown in FIG. 8F, the cap member 35 is screwed into the upper end portion 31b of the corrugated pipe 31 to seal the pipe end opening 31eu of the upper end portion 31b. At this time, the first hose member 41 and the second hose member 45 are passed through the two through holes 35h and 35h of the cap member 35, respectively.

<<<地中熱交換器21の設置方法の変形例について>>>
図10A乃至図10Eは、地中熱交換器21の設置方法の変形例の説明図である。
上述した設置方法と、この変形例の設置方法とは、空隙抑制処理の点で相違する。すなわち、この変形例の設置方法では、バイブレーター81を用いない。その代わり、図10Cに示す充填材27の充填工程においては、充填材27を液体の一例としての所定の水溶液中に分散し、当該分散液27fの形態で竪孔23内に投入する。すると、コルゲート管31の外周面31cにおける波形形状の谷部近傍の狭い隙間(図9の空隙を参照)へも速やかに水溶液が浸透し、当該水溶液の浸透力に誘導される形で、前記隙間に、充填材27の基材27bたる川砂等の細粒物が誘導され、これによりコルゲート管31の外周面31c近傍の空隙の形成は有効に抑制される。なお、この空隙抑制処理によれば、上述のバイブレーター81による空隙を潰す工程たる図8Dの工程を省略できて、工期短縮を図ることもできる。
<<< Regarding Modification of Installation Method of Underground Heat Exchanger 21 >>>
10A to 10E are explanatory views of a modification of the installation method of the underground heat exchanger 21.
The installation method described above and the installation method of this modification are different in terms of the air gap suppression processing. That is, the vibrator 81 is not used in the installation method of this modification. Instead, in the filling step of the filler 27 shown in FIG. 10C, the filler 27 is dispersed in a predetermined aqueous solution as an example of a liquid, and is put into the fistula 23 in the form of the dispersion 27f. Then, the aqueous solution quickly penetrates into a narrow gap in the vicinity of the corrugated valley on the outer peripheral surface 31c of the corrugated pipe 31 (see the gap in FIG. 9), and the gap is guided by the penetration force of the aqueous solution. In addition, fine particles such as river sand as the base material 27b of the filler 27 are induced, whereby the formation of voids in the vicinity of the outer peripheral surface 31c of the corrugated pipe 31 is effectively suppressed. In addition, according to this space | gap suppression process, the process of FIG. 8D which is the process of crushing the space | gap by the above-mentioned vibrator 81 can be abbreviate | omitted, and a work period can also be shortened.

このような水溶液の一例としては、例えば、溶媒としての水に、溶質としてのセルロース系ポリマーやアクリル系ポリマー等の水溶性高分子材料を、0.2〜0.5%(重量%)の添加率で添加してなる液体を例示できる。そして、当該水溶液によれば、溶質たる前記水溶性高分子材料に基づく粘性が、砂等の細粒物を水溶液中で確実に分散させるとともに、同粘性が、水溶液による細粒物の引き込み誘導性を高め、これにより、細粒物は、コルゲート管31の外周面31c近傍部分に一層確実に密実充填されるようになる。   As an example of such an aqueous solution, for example, 0.2 to 0.5% (wt%) of a water-soluble polymer material such as a cellulose polymer or an acrylic polymer as a solute is added to water as a solvent. The liquid added at a rate can be exemplified. According to the aqueous solution, the viscosity based on the water-soluble polymer material as a solute ensures that fine particles such as sand are dispersed in the aqueous solution, and the viscosity is inductive of the fine particles by the aqueous solution. As a result, the fine particles are more reliably and solidly filled in the vicinity of the outer peripheral surface 31 c of the corrugated pipe 31.

なお、上述以外の内容は、図8A乃至図8Fの設置方法の場合と同じである。よって、図10A乃至図10E中、前述の図8A乃至図8Fの工法の場合と同一の構成については同一の符号を付し、その詳細な説明は省略する。   The contents other than those described above are the same as those in the installation method of FIGS. 8A to 8F. Therefore, in FIGS. 10A to 10E, the same components as those in the method of FIGS. 8A to 8F described above are denoted by the same reference numerals, and detailed description thereof is omitted.

===その他の実施の形態===
以上、本発明の実施形態について説明したが、本発明は、かかる実施形態に限定されるものではなく、その要旨を逸脱しない範囲で以下に示すような変形が可能である。
=== Other Embodiments ===
As mentioned above, although embodiment of this invention was described, this invention is not limited to this embodiment, The deformation | transformation as shown below is possible in the range which does not deviate from the summary.

上述の実施形態では、樹脂製のコルゲート管31を例示したが、その素材は何等樹脂に限るものではなく、鋼管や銅管等の金属製でも良い。   In the above-described embodiment, the resin corrugated pipe 31 is illustrated, but the material is not limited to resin, and may be made of metal such as a steel pipe or a copper pipe.

上述の実施形態では、コルゲート管31内の熱媒体26の流れ方向を鉛直方向にした垂直方式の地中熱交換器21を例示したが、何等これに限るものではなく、水平方式でも良い。すなわち、水平方向に広い掘削孔内に、コルゲート管31の管軸C31を水平にしながら収容し、これにより、コルゲート管31内の熱媒体26の流れ方向を水平方向にしても良い。なお、掘削孔に収容後は、充填材27により埋め戻されるのは言うまでもない。   In the above-described embodiment, the vertical type underground heat exchanger 21 in which the flow direction of the heat medium 26 in the corrugated pipe 31 is set to the vertical direction is illustrated, but the invention is not limited to this, and a horizontal method may be used. That is, the tube axis C31 of the corrugated pipe 31 may be accommodated in a horizontal excavation hole while being horizontal, whereby the flow direction of the heat medium 26 in the corrugated pipe 31 may be horizontal. Needless to say, the material is backfilled with the filler 27 after being accommodated in the excavation hole.

1 建物、11 地中熱交換システム、15 ヒートポンプ、
21 地中熱交換器、23 竪孔(掘削孔)、23a. 孔壁、26 熱媒体、
27 充填材、27a 長粒物、27b 基材、27f 分散液、
31 コルゲート管、31a 下端部、31b 上端部、31c 外周面、
31d 内周面、31ed 管端開口、31eu 管端開口、
31R リール、33 キャップ部材、33a 円筒部、33b 略円錐部、
33c 内周面、33f 底部、35 キャップ部材、
35c 外周面、35h 貫通孔、37 グラウト材、
41 第1ホース部材、41e 管端開口、41R リール、
45 第2ホース部材、45e 管端開口、
81 バイブレーター、81a 振動子、81b 吊り具、
G 地盤、S1 隙間、h1 貫通孔、h2 貫通孔、
SP23 空間、C31 管軸
1 building, 11 underground heat exchange system, 15 heat pump,
21 underground heat exchanger, 23 borehole (drilling hole), 23a. Hole wall, 26 heat medium,
27 filler, 27a long grain, 27b substrate, 27f dispersion,
31 corrugated pipe, 31a lower end, 31b upper end, 31c outer peripheral surface,
31d inner peripheral surface, 31ed pipe end opening, 31eu pipe end opening,
31R reel, 33 cap member, 33a cylindrical portion, 33b substantially conical portion,
33c inner peripheral surface, 33f bottom, 35 cap member,
35c outer peripheral surface, 35h through hole, 37 grout material,
41 first hose member, 41e pipe end opening, 41R reel,
45 second hose member, 45e pipe end opening,
81 vibrator, 81a vibrator, 81b hanger,
G ground, S1 gap, h1 through hole, h2 through hole,
SP23 space, C31 tube axis

Claims (7)

地盤との間で熱交換を行う地中熱交換器の設置方法であって、
前記地盤に掘削孔を形成する掘削工程と、
前記熱交換に係る熱媒体の流路となるコルゲート管を前記掘削孔に挿入する挿入工程と、
前記掘削孔と前記コルゲート管との間の空間に充填材を充填する充填工程と、を有し、
前記充填工程において、前記コルゲート管の外周面近傍の空隙の形成を抑制する空隙抑制処理を行うことを特徴とする地中熱交換器の設置方法。
A method of installing a ground heat exchanger that exchanges heat with the ground,
A drilling step of forming a drilling hole in the ground;
An insertion step of inserting a corrugated pipe serving as a flow path of the heat medium related to the heat exchange into the excavation hole;
Filling a space between the excavation hole and the corrugated pipe with a filler, and
In the filling step, a method for installing an underground heat exchanger is provided, wherein a void suppression process is performed to suppress formation of voids in the vicinity of the outer peripheral surface of the corrugated pipe.
請求項1に記載の地中熱交換器の設置方法であって、
前記空隙抑制処理とは、バイブレーターによって前記コルゲート管を振動させる処理であることを特徴とする地中熱交換器の設置方法。
It is the installation method of the underground heat exchanger of Claim 1, Comprising:
The said space | gap suppression process is the process which vibrates the said corrugated pipe | tube with a vibrator, The installation method of the underground heat exchanger characterized by the above-mentioned.
請求項2に記載の地中熱交換器の設置方法であって、
前記掘削孔として前記地盤に鉛直方向に掘削された竪孔に、前記コルゲート管は、その管軸を鉛直方向に沿わせて挿入されており、
前記バイブレーターは、振動する振動子を有し、
前記空隙抑制処理では、前記振動子を前記コルゲート管の内周面に当接させつつ該振動子を鉛直方向に移動させることを特徴とする地中熱交換器の設置方法。
It is the installation method of the underground heat exchanger of Claim 2, Comprising:
The corrugated pipe is inserted along the vertical axis of the corrugated pipe into the borehole drilled in the vertical direction on the ground as the excavation hole,
The vibrator has a vibrating vibrator,
In the air gap suppression process, the vibrator is moved in the vertical direction while contacting the vibrator with the inner peripheral surface of the corrugated pipe.
請求項1に記載の地中熱交換器の設置方法であって、
前記充填材は、多数の細粒物を基材とし、
前記空隙抑制処理とは、前記充填材を液体に分散してなる分散液の形態で、前記掘削孔と前記コルゲート管との間の空間に投入する処理であることを特徴とする地中熱交換器の設置方法。
It is the installation method of the underground heat exchanger of Claim 1, Comprising:
The filler is based on a number of fine particles,
The void suppression process is a process of charging the space between the excavation hole and the corrugated pipe in the form of a dispersion liquid in which the filler is dispersed in a liquid. How to install the vessel.
請求項1乃至4の何れかに記載の地中熱交換器の設置方法であって、
前記掘削孔と前記コルゲート管との間に充填される前記充填材は、炭化ケイ素、アルミナ、及び高炉スラグのうちの少なくとも何れか1種からなる長粒物を所定の容積含有率で含んでいることを特徴とする地中熱交換器の設置方法。
It is the installation method of the underground heat exchanger in any one of Claims 1 thru | or 4, Comprising:
The filler filled between the excavation hole and the corrugated pipe contains a long particle made of at least one of silicon carbide, alumina, and blast furnace slag at a predetermined volume content. The installation method of the underground heat exchanger characterized by the above-mentioned.
請求項5に記載の地中熱交換器の設置方法であって、
前記長粒物の長手方向の寸法が、10〜50mmであり、
前記長手方向と直交する方向の寸法が1〜3mmであることを特徴とする地中熱交換器の設置方法。
It is the installation method of the underground heat exchanger of Claim 5, Comprising:
The longitudinal dimension of the long particles is 10 to 50 mm,
The installation method of the underground heat exchanger characterized by the dimension of the direction orthogonal to the said longitudinal direction being 1-3 mm.
請求項1乃至6の何れかに記載の地中熱交換器の設置方法であって、
前記コルゲート管は樹脂製であり、可撓性を有していることを特徴とする地中熱交換器の設置方法。
It is the installation method of the underground heat exchanger in any one of Claims 1 thru | or 6, Comprising:
The corrugated pipe is made of resin and has flexibility.
JP2009152776A 2009-06-26 2009-06-26 Installation method of underground heat exchanger Active JP5397044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009152776A JP5397044B2 (en) 2009-06-26 2009-06-26 Installation method of underground heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009152776A JP5397044B2 (en) 2009-06-26 2009-06-26 Installation method of underground heat exchanger

Publications (2)

Publication Number Publication Date
JP2011007447A true JP2011007447A (en) 2011-01-13
JP5397044B2 JP5397044B2 (en) 2014-01-22

Family

ID=43564316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009152776A Active JP5397044B2 (en) 2009-06-26 2009-06-26 Installation method of underground heat exchanger

Country Status (1)

Country Link
JP (1) JP5397044B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242045A (en) * 2011-05-23 2012-12-10 Shimizu Corp Ground water heat utilization system
JP2013148255A (en) * 2012-01-18 2013-08-01 Kawada Industries Inc Heat exchanger and heat exchanger module
KR20140088937A (en) * 2012-12-31 2014-07-14 재단법인 포항산업과학연구원 Complex Pile With Dual Pipe For Heat Exchange and Heat Exchanging Structure Having The Same
CN103925739A (en) * 2013-01-10 2014-07-16 江苏望远节能科技开发有限公司 Closed single-tube vertical borehole ground-coupled heat pump system
EP2757229A1 (en) * 2013-01-22 2014-07-23 MAT Mischanlagentechnik GmbH Measuring device and method for monitoring the filling of a borehole
KR101569419B1 (en) 2014-12-03 2015-11-16 대림산업 주식회사 Construction method of earth heat exchange pipe
WO2017198645A1 (en) * 2016-05-17 2017-11-23 Ledwon, Anton Downhole heat exchanger and method for adjusting the length of a downhole heat exchanger
CN108507206A (en) * 2018-04-08 2018-09-07 山东达尔玛新能源科技有限公司 A kind of system and its application method acquiring hot dry rock thermal energy by U-shaped well

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104006478A (en) * 2014-06-12 2014-08-27 天津大学 Novel ground-source heat pump system and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206528A (en) * 2002-01-10 2003-07-25 Kubota Corp Civil engineering-construction pile for constructing ground heat exchange equipment and its construction method
JP2005069538A (en) * 2003-08-22 2005-03-17 Asahi Kasei Homes Kk Buried pipe for heat exchange
JP2007183008A (en) * 2005-12-29 2007-07-19 Yasushi Miyauchi Spiral blade with auxiliary blade
JP2008256329A (en) * 2007-04-09 2008-10-23 Ohbayashi Corp Underground heat exchanger
JP2009068749A (en) * 2007-09-12 2009-04-02 Furukawa Electric Co Ltd:The Heat exchanger and construction method of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206528A (en) * 2002-01-10 2003-07-25 Kubota Corp Civil engineering-construction pile for constructing ground heat exchange equipment and its construction method
JP2005069538A (en) * 2003-08-22 2005-03-17 Asahi Kasei Homes Kk Buried pipe for heat exchange
JP2007183008A (en) * 2005-12-29 2007-07-19 Yasushi Miyauchi Spiral blade with auxiliary blade
JP2008256329A (en) * 2007-04-09 2008-10-23 Ohbayashi Corp Underground heat exchanger
JP2009068749A (en) * 2007-09-12 2009-04-02 Furukawa Electric Co Ltd:The Heat exchanger and construction method of the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242045A (en) * 2011-05-23 2012-12-10 Shimizu Corp Ground water heat utilization system
JP2013148255A (en) * 2012-01-18 2013-08-01 Kawada Industries Inc Heat exchanger and heat exchanger module
KR20140088937A (en) * 2012-12-31 2014-07-14 재단법인 포항산업과학연구원 Complex Pile With Dual Pipe For Heat Exchange and Heat Exchanging Structure Having The Same
KR101724286B1 (en) * 2012-12-31 2017-04-07 재단법인 포항산업과학연구원 Complex Pile With Dual Pipe For Heat Exchange and Heat Exchanging Structure Having The Same
CN103925739A (en) * 2013-01-10 2014-07-16 江苏望远节能科技开发有限公司 Closed single-tube vertical borehole ground-coupled heat pump system
EP2757229A1 (en) * 2013-01-22 2014-07-23 MAT Mischanlagentechnik GmbH Measuring device and method for monitoring the filling of a borehole
WO2014114383A1 (en) * 2013-01-22 2014-07-31 Mat Mischanlagentechnik Gmbh Measurement device and method for monitoring the filling of a drilled hole
KR101569419B1 (en) 2014-12-03 2015-11-16 대림산업 주식회사 Construction method of earth heat exchange pipe
WO2017198645A1 (en) * 2016-05-17 2017-11-23 Ledwon, Anton Downhole heat exchanger and method for adjusting the length of a downhole heat exchanger
CN108507206A (en) * 2018-04-08 2018-09-07 山东达尔玛新能源科技有限公司 A kind of system and its application method acquiring hot dry rock thermal energy by U-shaped well

Also Published As

Publication number Publication date
JP5397044B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5397044B2 (en) Installation method of underground heat exchanger
JP5471074B2 (en) Underground heat exchanger
US10301528B1 (en) Method, apparatus, header, and composition for ground heat exchange
JP5621218B2 (en) Underground heat exchanger and filler
US5816314A (en) Geothermal heat exchange unit
KR101425632B1 (en) Underground Heat Exchanger Coil Weighing Device and Installation Method for High Precision
CA2759437A1 (en) Subterranean continuous loop heat exchanger, method of manufacture and method to heat, cool or store energy with same
JP2006052588A (en) Pile with underground heat exchanging outer pipe, and method of constructing underground heat exchanger using the pile
JP2009121063A (en) Service well, method of constructing service well, and structure of service well
JP2004271129A (en) Underground heat exchange system
JP5659767B2 (en) Method of installing pipe member related to underground heat exchanger in excavation hole
JP2010014359A (en) Method and structure for burying ground heat exchanger tube
KR101499768B1 (en) Construction method of vertical type geothermal exchanger using safety guide
JP2005069538A (en) Buried pipe for heat exchange
JP5712597B2 (en) Method of installing pipe member related to underground heat exchanger in ground excavation hole
CN105698437B (en) A kind of U-joint used for geothermal heat pump, earth source heat pump and earth source heat pump construction method
EP3086055A1 (en) Ground heat exchanger
JP6099889B2 (en) Heat exchanger construction method and heat exchange construction unit
JP4859871B2 (en) Buried pipe for heat exchange
JP6232962B2 (en) How to build pipe members
KR101437922B1 (en) Grout tube stick for vertical type geothermal grouting
JP5533620B2 (en) Method of installing U-shaped pipe in ground excavation hole for underground heat exchanger
JP5659742B2 (en) Underground heat exchanger
CN101046333A (en) Circularly geoheat exchanging underground energy-accumulating liquid reservoir and its construction process
JP5887128B2 (en) Installation method of underground heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131007

R150 Certificate of patent or registration of utility model

Ref document number: 5397044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150