JP2011007216A - Shaft for constant velocity universal joint - Google Patents

Shaft for constant velocity universal joint Download PDF

Info

Publication number
JP2011007216A
JP2011007216A JP2009148671A JP2009148671A JP2011007216A JP 2011007216 A JP2011007216 A JP 2011007216A JP 2009148671 A JP2009148671 A JP 2009148671A JP 2009148671 A JP2009148671 A JP 2009148671A JP 2011007216 A JP2011007216 A JP 2011007216A
Authority
JP
Japan
Prior art keywords
shaft
shaft member
torque transmission
constant velocity
velocity universal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009148671A
Other languages
Japanese (ja)
Inventor
Daiji Okamoto
大路 岡本
Hiroki Mukai
浩氣 向井
Kazuhiko Yoshida
和彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2009148671A priority Critical patent/JP2011007216A/en
Publication of JP2011007216A publication Critical patent/JP2011007216A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a compact shaft for a constant velocity universal joint, which is vibration-absorbing, and improved in strength and durability.SOLUTION: The shaft for the constant velocity universal joint includes a first shaft member 10 in which a recessed groove 11 axially extending is formed in a plurality of positions in the circumferential direction of an inner diameter surface of a cylindrical portion 12, and a second shaft member 20 having a shaft 21 inserted in the cylindrical portion 12 of the first shaft member 10, wherein projections 22, 23 axially extending are formed in a plurality of circumferential positions of the outer diameter surface of the shaft 21, and housed in the recessed groove 11. A low torque transmission 30 having an elastic body 31 inserted between the recessed groove 11 of the first shaft member 10 and the projection 22 of the second shaft member 20 is provided between the cylindrical portion 12 and the shaft 21, and a high torque transmission 40 having a gap formed between the recessed groove 11 of the first shaft member 10 and the projection 23 of the second shaft member 20 is provided in the axial position different from the low torque transmission 30 between the cylindrical portion 12 and the shaft 21 so that the low torque transmission 30 remains in an uncured state.

Description

本発明は、例えば自動車、航空機、船舶や各種産業機械の動力伝達系において使用され、駆動側と従動側の二軸を繋ぐ等速自在継手用シャフトに関する。   The present invention relates to a constant velocity universal joint shaft that is used in a power transmission system of, for example, an automobile, an aircraft, a ship, and various industrial machines and connects two axes of a driving side and a driven side.

例えば、自動車の動力伝達系において、トランスミッションギヤやデフギヤの製作精度のばらつき等により、自動車の走行時に、トランスミッションのギヤ振動、特にデフギヤの噛み合い振動が発生する。この場合、この振動が車軸に伝達され、さらにフロントハブ、フロントサスペンションを経由して車体に伝わり、乗員に不快な音として聞こえてくる不具合が生じる場合がある。特に、車の速度、すなわち駆動車軸の回転数が駆動系の捩り振動の固有振動数付近においては駆動系が共振し、この振動がフロントサスペンション等を経由して車体に伝わり、不快な音や振動となる。   For example, in a power transmission system of an automobile, transmission gear vibrations, particularly differential gear meshing vibrations are generated when the automobile is running due to variations in manufacturing accuracy of transmission gears and differential gears. In this case, this vibration is transmitted to the axle and further transmitted to the vehicle body via the front hub and the front suspension, which may cause a problem that the passenger hears an unpleasant sound. In particular, when the vehicle speed, that is, the rotational speed of the drive axle is close to the natural frequency of the torsional vibration of the drive system, the drive system resonates, and this vibration is transmitted to the vehicle body via the front suspension, etc. It becomes.

そこで、従来、この種の振動を低減することを目的とした自動車用駆動車軸が先に提案されている(例えば、特許文献1参照)。   Therefore, conventionally, an automobile drive axle aimed at reducing this kind of vibration has been proposed (for example, see Patent Document 1).

この駆動車軸は、内径面の一方の開口部側にスプライン状の第1係合部が設けられると共に、内径面の他方の開口部側にスプライン状の第2係合部が設けられた連結部材と、第1被係合部が外径面の一端部に設けられた第1軸部材と、第2被係合部が外径面の一端部に設けられた第2軸部材とを備えている。   This drive axle has a spline-shaped first engagement portion provided on one opening side of the inner diameter surface and a connecting member provided with a spline-shaped second engagement portion on the other opening side of the inner diameter surface. And a first shaft member in which the first engaged portion is provided at one end portion of the outer diameter surface, and a second shaft member in which the second engaged portion is provided at one end portion of the outer diameter surface. Yes.

以上の構成からなる駆動車軸では、連結部材の第1係合部に第1軸部材の第1被係合部が弾性体を介して係合すると共に、連結部材の第2係合部に第2軸部材の第2被係合部が弾性体を介して係合した構造を具備する。このような構造を具備することにより、駆動系に伝達される振動を低減している。   In the driving axle configured as described above, the first engaged portion of the first shaft member is engaged with the first engaging portion of the connecting member via the elastic body, and the second engaged portion of the connecting member is the second engaging portion. A structure in which the second engaged portion of the biaxial member is engaged via an elastic body is provided. By providing such a structure, vibration transmitted to the drive system is reduced.

実公平5−1442号公報No. 5-1442

ところで、前述の特許文献1に開示された自動車用駆動車軸では、連結部材の第1係合部に第1軸部材の第1被係合部が弾性体を介して係合すると共に、連結部材の第2係合部に第2軸部材の第2被係合部が弾性体を介して係合した構造を具備することにより、駆動系に伝達される振動を低減するようにしている。   By the way, in the drive axle for automobiles disclosed in Patent Document 1 described above, the first engaged portion of the first shaft member engages with the first engaging portion of the connecting member via the elastic body, and the connecting member. By providing the second engaging portion with a structure in which the second engaged portion of the second shaft member is engaged through an elastic body, vibration transmitted to the drive system is reduced.

しかしながら、自動車の発進時などにおいて高トルクが作用した場合、弾性体の強度および耐久性を確保することが困難である。つまり、弾性体の強度および耐久性を確保するためには、シャフトのサイズ径を大きくする必要があり、シャフトが大径化すると共に、重量が増加し、製品のコストアップを招くことになる。   However, it is difficult to ensure the strength and durability of the elastic body when a high torque is applied when the vehicle starts. That is, in order to ensure the strength and durability of the elastic body, it is necessary to increase the size diameter of the shaft, which increases the diameter of the shaft, increases the weight, and increases the cost of the product.

そこで、本発明は前述の問題点に鑑みて提案されたもので、その目的とするところは、振動の低減を図ると共に強度および耐久性の向上を図り得るコンパクトな等速自在継手用シャフトを提供することにある。   Accordingly, the present invention has been proposed in view of the above-mentioned problems, and an object of the present invention is to provide a compact constant velocity universal joint shaft capable of reducing vibration and improving strength and durability. There is to do.

前述の目的を達成するための技術的手段として、本発明に係る等速自在継手用シャフトは、軸方向に延びる凹溝が筒状部の内径面の円周方向複数箇所に形成された第一軸部材と、その第一軸部材の筒状部に挿入配置される軸状部を有し、軸方向に延びる突条が軸状部の外径面の円周方向複数箇所に形成されて凹溝に収容された第二軸部材とを備え、第一軸部材の凹溝と第二軸部材の突条との間に弾性体を介在させた低トルク伝達部を筒状部と軸状部との間に設けると共に、筒状部と軸状部との間の低トルク伝達部と異なる軸方向位置に、第一軸部材の凹溝と第二軸部材の突条との間に隙間を形成した高トルク伝達部を設け、低トルク伝達部を未硬化処理の状態としたことを特徴とする。   As a technical means for achieving the above-mentioned object, the constant velocity universal joint shaft according to the present invention is a first in which concave grooves extending in the axial direction are formed at a plurality of locations in the circumferential direction of the inner diameter surface of the cylindrical portion. The shaft member has a shaft-like portion inserted and arranged in the cylindrical portion of the first shaft member, and protrusions extending in the axial direction are formed and recessed at a plurality of circumferential positions on the outer diameter surface of the shaft-like portion. A low torque transmission portion comprising a second shaft member housed in the groove and having an elastic body interposed between the concave groove of the first shaft member and the protrusion of the second shaft member. And a gap between the groove of the first shaft member and the protrusion of the second shaft member at an axial position different from that of the low torque transmission portion between the tubular portion and the shaft portion. The formed high torque transmission part is provided, and the low torque transmission part is in an uncured state.

本発明の等速自在継手用シャフトでは、高トルク伝達部における第一軸部材の凹溝と第二軸部材の突条との間に形成された隙間を維持できるトルク作用時(低トルク作用時)には、低トルク伝達部で第一軸部材の凹溝と第二軸部材の突条との間の弾性体を介してトルクを伝達し、また、その弾性体が変形して前述の隙間を維持できないトルク作用時(高トルク作用時)には、高トルク伝達部で第一軸部材の凹溝と第二軸部材の突条とが直接的に接触してトルクを伝達する。   In the constant velocity universal joint shaft according to the present invention, the torque formed by the high torque transmitting portion between the concave groove of the first shaft member and the protrusion of the second shaft member can be maintained (at the time of low torque operation). ) Transmits torque through the elastic body between the groove of the first shaft member and the protrusion of the second shaft member at the low torque transmission portion, and the elastic body is deformed to When the torque action cannot be maintained (during high torque action), the concave groove of the first shaft member and the protrusion of the second shaft member are in direct contact with each other at the high torque transmission portion to transmit torque.

このように低トルク作用時には弾性体を介して低トルクが伝達されるので、振動を低減することができ、また、高トルク作用時には、低トルク伝達部の弾性体を介さずに高トルク伝達部でトルクを伝達するため、低トルク伝達部における弾性体の強度および耐久性を確保することが容易となり、シャフトのコンパクト化が図れる。   Thus, since low torque is transmitted through the elastic body during low torque operation, vibration can be reduced, and during high torque operation, the high torque transmission unit can be connected without using the elastic body of the low torque transmission unit. Therefore, it is easy to secure the strength and durability of the elastic body in the low torque transmission portion, and the shaft can be made compact.

さらに、前述の低トルク伝達部を未硬化処理の状態としたことにより、硬化処理による熱で第一軸部材の凹溝および第二軸部材の突条が変形することはないので、シャフトの組立時に低トルク伝達部における第一軸部材の凹溝と第二軸部材の突条との間に弾性体を挿入することが容易となり、弾性体の組み付け性が向上する。また、第一軸部材の凹溝と第二軸部材の突条との間に弾性体を均等に介在させることができる。さらに、弾性体を挿入するに際してスケールが発生し難くなってスケール除去工程が不要となる。   Further, since the low torque transmitting portion is in an uncured state, the groove of the first shaft member and the protrusions of the second shaft member are not deformed by heat due to the curing process. Sometimes it becomes easy to insert an elastic body between the concave groove of the first shaft member and the protrusion of the second shaft member in the low torque transmission portion, and the assembly of the elastic body is improved. Further, the elastic body can be evenly interposed between the concave groove of the first shaft member and the protrusion of the second shaft member. Further, when the elastic body is inserted, a scale is difficult to be generated, and a scale removing step is not necessary.

本発明において、第一軸部材の筒状部の開口端部を未硬化処理の状態とすることが望ましい。このようにすれば、硬化処理による熱で開口端部が変形することがないので、シャフトの組立時に第一軸部材に第二軸部材を挿入することが容易となり、第一軸部材に対する第二軸部材の組み付け性が向上すると共に、第一軸部材の開口端部での焼き割れの発生を未然に防止することができる。   In this invention, it is desirable to make the opening edge part of the cylindrical part of a 1st shaft member into the state of an unhardened process. If it does in this way, since an opening end part does not change with the heat by hardening processing, it becomes easy to insert a 2nd axis member to the 1st axis member at the time of an assembly of a shaft, and it is the 2nd to the 1st axis member. Assembling property of the shaft member is improved, and occurrence of burning cracks at the opening end portion of the first shaft member can be prevented in advance.

本発明において、高トルク伝達部に硬化処理を施すことが望ましい。このようにすれば、高トルク伝達部における第一軸部材の凹溝と第二軸部材の突条とが直接的に接触する部位の耐摩耗性を向上させることができる。   In the present invention, it is desirable to perform a curing process on the high torque transmission unit. If it does in this way, the abrasion resistance of the site | part which the ditch | groove of the 1st shaft member in the high torque transmission part and the protrusion of the 2nd shaft member contact directly can be improved.

本発明において、第一軸部材の高トルク伝達部における凹溝底部での硬化比を凹溝側壁部での硬化比よりも大きくすることが望ましい。このようにすれば、シャフトの捩り疲労強度を確保することができると共に、硬化処理を短い時間で完了させることができる。ここで、前述の「硬化比」とは、凹溝底部および凹溝側壁部での肉厚に対する有効硬化深さの比を意味する。   In the present invention, it is desirable that the curing ratio at the bottom of the groove in the high torque transmission portion of the first shaft member is larger than the curing ratio at the side wall of the groove. In this way, the torsional fatigue strength of the shaft can be ensured, and the curing process can be completed in a short time. Here, the above-mentioned “curing ratio” means the ratio of the effective curing depth to the thickness at the groove bottom and the groove sidewall.

例えば、第一軸部材の高トルク伝達部における凹溝底部での硬化比を1とし、かつ、凹溝側壁部での硬化比を0.3〜0.8とすることが好ましい。このようにすれば、シャフトの捩り疲労強度の確保および硬化処理時間の短縮化がより一層容易となる。なお、凹溝底部での硬化比が1よりも小さかったり、凹溝側壁部での硬化比が0.3よりも小さいと、シャフトの捩り疲労強度の確保が困難となる。また、凹溝側壁部での硬化比が0.8よりも大きいと、硬化処理時間の短縮化が困難となる。   For example, it is preferable that the curing ratio at the bottom of the groove in the high torque transmission portion of the first shaft member is 1 and the curing ratio at the side wall of the groove is 0.3 to 0.8. In this way, it becomes much easier to ensure the torsional fatigue strength of the shaft and shorten the curing process time. If the curing ratio at the bottom of the groove is smaller than 1 or the curing ratio at the side wall of the groove is smaller than 0.3, it is difficult to ensure the torsional fatigue strength of the shaft. Moreover, when the hardening ratio in a groove side wall part is larger than 0.8, shortening of hardening processing time will become difficult.

本発明において、第一軸部材および第二軸部材の素材炭素量を0.15〜0.46%とすることが望ましい。このようにすれば、素材コストを低減させることが容易となる。なお、素材炭素量が0.15%よりも小さいと、第一軸部材および第二軸部材の硬度が低下して摩耗が著しく進行し、素材炭素量が0.46%よりも大きいと、冷間加工性が著しく低下して第一軸部材および第二軸部材の製作が困難となる。   In the present invention, it is desirable that the carbon content of the first shaft member and the second shaft member is 0.15 to 0.46%. If it does in this way, it will become easy to reduce material cost. When the material carbon content is less than 0.15%, the hardness of the first shaft member and the second shaft member is lowered and wear proceeds remarkably, and when the material carbon content is greater than 0.46%, The inter-workability is remarkably lowered, making it difficult to manufacture the first shaft member and the second shaft member.

本発明において、筒状部の端部に軸状部材を摩擦圧接した構造を具備する場合、その筒状部の端部、つまり、摩擦圧接部位を低トルク伝達部から30mm以上離間させることが望ましい。このようにすれば、低トルク伝達部の弾性体が摩擦圧接時に生じる熱の悪影響を受けることを抑制できる。   In the present invention, when a structure in which a shaft-like member is friction-welded to the end portion of the cylindrical portion is provided, it is desirable that the end portion of the cylindrical portion, that is, the friction-welded portion is separated from the low torque transmission portion by 30 mm or more. . If it does in this way, it can control that the elastic body of a low torque transmission part receives the bad influence of the heat which arises at the time of friction welding.

本発明において、第一軸部材の筒状部の開口端部内径に、その開口端部に向けて拡径するテーパ部を設けることが望ましい。このようにすれば、第一軸部材の筒状部の開口側に高トルク伝達部を配設した場合、その高トルク伝達部における第一軸部材の凹溝と第二軸部材の突条との接触部位が前述のテーパ部に位置することから、トルク伝達時での第一軸部材の筒状部の開口部の応力集中を緩和することができる。   In this invention, it is desirable to provide the taper part which diameter-expands toward the opening end part in the opening end part internal diameter of the cylindrical part of a 1st shaft member. In this way, when the high torque transmission part is disposed on the opening side of the cylindrical part of the first shaft member, the concave groove of the first shaft member and the protrusion of the second shaft member in the high torque transmission part Since the contact portion is located in the aforementioned tapered portion, the stress concentration in the opening of the cylindrical portion of the first shaft member during torque transmission can be reduced.

本発明において、第一軸部材の凹溝および第二軸部材の突条を円周方向3〜6箇所に設けることが望ましい。このようにすれば、第一軸部材と第二軸部材との間でのトルク伝達を効率よく行うことができると共に、第一軸部材の凹溝および第二軸部材の突条の形成が容易となる。   In the present invention, it is desirable to provide the concave grooves of the first shaft member and the protrusions of the second shaft member at 3 to 6 locations in the circumferential direction. In this way, torque transmission between the first shaft member and the second shaft member can be efficiently performed, and the concave grooves of the first shaft member and the protrusions of the second shaft member can be easily formed. It becomes.

本発明において、第二軸部材の軸状部径に対する第一軸部材の筒状部の外径の比を1.8〜2.4とすることが望ましい。このようにすれば、弾性体の捩り剛性の確保と車両組み付け性の点で有効である。なお、第二軸部材の軸状部径に対する第一軸部材の筒状部の外径の比が1.8よりも小さいと、弾性体の捩り剛性が低くなり衝撃トルクによる振動を低減できなくなり、その比が2.4よりも大きいと、車両に組み付ける時に他の部品と干渉することになる。   In the present invention, it is desirable that the ratio of the outer diameter of the cylindrical portion of the first shaft member to the shaft-shaped portion diameter of the second shaft member is 1.8 to 2.4. This is effective in terms of securing torsional rigidity of the elastic body and vehicle assembly. Note that if the ratio of the outer diameter of the cylindrical portion of the first shaft member to the shaft-shaped portion diameter of the second shaft member is smaller than 1.8, the torsional rigidity of the elastic body becomes low and vibration due to impact torque cannot be reduced. If the ratio is larger than 2.4, it interferes with other parts when assembled in the vehicle.

本発明において、第二軸部材の高トルク伝達部の内接円径を第二軸部材の軸状部径より大きくすることが望ましい。このようにすれば、高トルク伝達部の強度と耐久性の点で有効である。   In the present invention, it is desirable that the inscribed circle diameter of the high torque transmission portion of the second shaft member is larger than the shaft-shaped portion diameter of the second shaft member. This is effective in terms of strength and durability of the high torque transmission portion.

本発明において、第二軸部材の低トルク伝達部の内接円径を第二軸部材の高トルク伝達部の内接円径より小さくし、第二軸部材の低トルク伝達部の内接円径に対する第一軸部材の筒状部の外径の比を1.8〜2.8とすることが望ましい。このようにすれば、弾性体の捩り剛性と車両組み付け性の点で有効である。なお、第二軸部材の低トルク伝達部の内接円径に対する第一軸部材の筒状部の外径の比が1.8より小さいと弾性体の捩り剛性が低くなり衝撃トルクによる振動を低減できなくなり、その比が2.8より大きいと車両に組み付ける時に他の部品と干渉することになる。   In the present invention, the inscribed circle diameter of the low torque transmitting portion of the second shaft member is made smaller than the inscribed circle diameter of the high torque transmitting portion of the second shaft member, and the inscribed circle of the low torque transmitting portion of the second shaft member is It is desirable that the ratio of the outer diameter of the cylindrical portion of the first shaft member to the diameter is 1.8 to 2.8. This is effective in terms of the torsional rigidity of the elastic body and the vehicle assembly property. Note that if the ratio of the outer diameter of the cylindrical portion of the first shaft member to the inscribed circle diameter of the low torque transmission portion of the second shaft member is smaller than 1.8, the torsional rigidity of the elastic body is lowered and vibration due to impact torque is caused. If the ratio cannot be reduced and the ratio is larger than 2.8, it will interfere with other parts when assembled to the vehicle.

本発明によれば、第一軸部材の凹溝と第二軸部材の突条との間に弾性体を介在させた低トルク伝達部を筒状部と軸状部との間に設けると共に、筒状部と軸状部との間の低トルク伝達部と異なる軸方向位置に、第一軸部材の凹溝と第二軸部材の突条との間に隙間を形成した高トルク伝達部を設けたことにより、低トルク作用時には弾性体を介して低トルクが伝達されるので、振動を低減することができる。また、トルク作用時の初期振動や衝撃トルクによる振動に対してもその振動を低減することができる。また、高トルク作用時には、低トルク伝達部の弾性体を介さずに高トルク伝達部でトルクを伝達するため、弾性体の強度および耐久性を確保することが容易となり、シャフトのコンパクト化が図れる。   According to the present invention, a low torque transmission portion having an elastic body interposed between the concave groove of the first shaft member and the protrusion of the second shaft member is provided between the tubular portion and the shaft portion, A high torque transmission portion in which a gap is formed between the concave groove of the first shaft member and the protrusion of the second shaft member at an axial position different from the low torque transmission portion between the cylindrical portion and the shaft portion. By providing the low torque, the low torque is transmitted through the elastic body when the low torque is applied, so that vibration can be reduced. Moreover, the vibration can be reduced even with respect to the initial vibration at the time of the torque action and the vibration due to the impact torque. In addition, when high torque is applied, torque is transmitted by the high torque transmission portion without using the elastic body of the low torque transmission portion, so that it is easy to ensure the strength and durability of the elastic body, and the shaft can be made compact. .

さらに、前述の低トルク伝達部を未硬化処理の状態としたことにより、硬化処理による熱で第一軸部材の凹溝および第二軸部材の突条が変形することはないので、シャフトの組立時に低トルク伝達部における第一軸部材の凹溝と第二軸部材の突条との間に弾性体を挿入することが容易となり、弾性体の組み付け性が向上し、シャフトの生産性の向上が図れる。また、第一軸部材の凹溝と第二軸部材の突条との間に弾性体を均等に介在させることができ、安定した品質のシャフトを提供できる。さらに、弾性体を挿入するに際してスケールが発生し難くなってスケール除去工程が不要となり、製品のコスト低減が図れる。   Further, since the low torque transmitting portion is in an uncured state, the groove of the first shaft member and the protrusions of the second shaft member are not deformed by heat due to the curing process. Sometimes it becomes easy to insert an elastic body between the concave groove of the first shaft member and the protrusion of the second shaft member in the low torque transmission part, the assembly of the elastic body is improved, and the productivity of the shaft is improved. Can be planned. Moreover, an elastic body can be evenly interposed between the concave groove of the first shaft member and the protrusion of the second shaft member, and a stable quality shaft can be provided. Furthermore, when an elastic body is inserted, scales are not easily generated, and a scale removal step is not necessary, so that the cost of the product can be reduced.

本発明の実施形態で、第一軸部材と第二軸部材とで構成された等速自在継手用シャフトを示す縦断面図である。It is a longitudinal cross-sectional view which shows the shaft for constant velocity universal joints comprised by the 1st shaft member and the 2nd shaft member in embodiment of this invention. (a)は図1の第一軸部材を示す縦断面図、(b)は(a)の左側面図である。(A) is a longitudinal cross-sectional view which shows the 1st shaft member of FIG. 1, (b) is a left view of (a). (a)は図1の第二軸部材を示す正面図、(b)は(a)のA−A線に沿う横断面図、(c)は(a)のB−B線に沿う横断面図である。(A) is the front view which shows the 2nd shaft member of FIG. 1, (b) is a cross-sectional view which follows the AA line of (a), (c) is a cross section which follows the BB line of (a). FIG. 図1のシャフトの両端に等速自在継手を連結したドライブシャフトを示す縦断面図である。It is a longitudinal cross-sectional view which shows the drive shaft which connected the constant velocity universal joint to the both ends of the shaft of FIG. 図1のC−C線に沿う横断面図である。It is a cross-sectional view which follows the CC line of FIG. 図1のD−D線に沿う横断面図である。It is a cross-sectional view which follows the DD line | wire of FIG. 第一軸部材の高トルク伝達部における硬化処理状態を示す横断面図である。It is a cross-sectional view which shows the hardening process state in the high torque transmission part of a 1st shaft member.

本発明に係る等速自在継手用シャフトの実施形態を以下に詳述する。なお、図1は第一軸部材10と第二軸部材20とで構成された等速自在継手用シャフト1、図2(a)(b)は図1に示す等速自在継手用シャフト1の第一軸部材10、図3(a)〜(c)は図1に示す等速自在継手用シャフト1の第二軸部材20、図4は図1のシャフト1の両端に等速自在継手を連結したドライブシャフトを示す。   Embodiments of the constant velocity universal joint shaft according to the present invention will be described in detail below. 1 shows a constant velocity universal joint shaft 1 composed of a first shaft member 10 and a second shaft member 20, and FIGS. 2A and 2B show the constant velocity universal joint shaft 1 shown in FIG. The first shaft member 10, FIGS. 3A to 3C are the second shaft member 20 of the constant velocity universal joint shaft 1 shown in FIG. 1, and FIG. 4 is a constant velocity universal joint at both ends of the shaft 1 of FIG. The connected drive shaft is shown.

図1〜図3に示す実施形態の等速自在継手用シャフト1は、軸方向に延びる凹溝11が筒状部12の内径面の円周方向複数箇所(図では90°ピッチで4箇所)に形成された第一軸部材10と、その第一軸部材10の筒状部12に挿入配置される軸状部21を有し、軸方向に延びる突条22,23が軸状部21の外径面の円周方向複数箇所(図では90°ピッチで4箇所)に形成されて第一軸部材10の凹溝11に収容された第二軸部材20とで主要部が構成されている。   1-3, the constant velocity universal joint shaft 1 of the embodiment shown in FIG. 1 has a plurality of circumferentially extending concave grooves 11 on the inner surface of the cylindrical portion 12 (four locations at 90 ° pitch in the figure). The first shaft member 10 is formed on the first shaft member 10, and the shaft portion 21 is inserted into the cylindrical portion 12 of the first shaft member 10. The main part is composed of the second shaft member 20 formed at a plurality of locations in the circumferential direction of the outer diameter surface (four locations at a pitch of 90 ° in the figure) and accommodated in the groove 11 of the first shaft member 10. .

図2(a)に示すように第一軸部材10の筒状部12の端部(図示右側)には、軸状部材13が摩擦圧接により接合一体化されている。この軸状部材13の端部の外径面には、図1に示すようにスプライン14が形成され、このスプライン14による嵌合構造でもって摺動式等速自在継手50がトルク伝達可能に連結される(図4参照)。また、第一軸部材10の筒状部12の開口端部12aの内径に、その開口端部12aに向けて拡径するテーパ部15が形成されている。第一軸部材10の筒状部12の内径面に形成された凹溝11は、図2(b)に示すように対向する一対の側壁面16と両側壁面16を繋ぐ底面17とを備えている。   As shown in FIG. 2A, the shaft-shaped member 13 is joined and integrated to the end portion (right side in the drawing) of the cylindrical portion 12 of the first shaft member 10 by friction welding. A spline 14 is formed on the outer diameter surface of the end portion of the shaft-like member 13 as shown in FIG. 1, and the sliding type constant velocity universal joint 50 is connected so as to be able to transmit torque with a fitting structure by the spline 14. (See FIG. 4). Moreover, the taper part 15 diameter-expanded toward the opening end part 12a is formed in the internal diameter of the opening end part 12a of the cylindrical part 12 of the 1st shaft member 10. As shown in FIG. The concave groove 11 formed in the inner diameter surface of the cylindrical portion 12 of the first shaft member 10 includes a pair of side wall surfaces 16 and a bottom surface 17 that connects both side wall surfaces 16 as shown in FIG. Yes.

図3(a)に示すように第二軸部材20は、第一軸部材10の筒状部12に挿入配置される軸状部21(図示右側)と、第一軸部材10の筒状部12の外部に配置される軸状部24(図示左側)とからなり(図1参照)、前者の軸状部21の外径面には、円周方向幅広の突条23〔図3(c)参照〕と、その突条23から連続して軸端部側へ延びる円周方向幅狭の突条22〔図3(b)参照〕とが円周方向複数箇所(図では90°ピッチで4箇所)に形成されている。後者の軸状部24の端部の外径面には、図1および図3(a)に示すようにスプライン25が形成され、このスプライン25による嵌合構造でもって固定式等速自在継手60がトルク伝達可能に連結される(図4参照)。   As shown in FIG. 3A, the second shaft member 20 includes a shaft-shaped portion 21 (right side in the drawing) that is inserted into the tubular portion 12 of the first shaft member 10, and a tubular portion of the first shaft member 10. 12 (see FIG. 1), and the outer surface of the former shaft-shaped portion 21 has a circumferentially wide protrusion 23 [FIG. 3 (c). )] And a circumferentially narrow ridge 22 (see FIG. 3B) extending continuously from the ridge 23 toward the shaft end side (see FIG. 3B) at a plurality of locations in the circumferential direction (at 90 ° pitch in the figure). 4 places). A spline 25 is formed on the outer diameter surface of the end portion of the latter shaft-shaped portion 24 as shown in FIGS. 1 and 3A, and the fixed type constant velocity universal joint 60 has a fitting structure by the spline 25. Are coupled so that torque can be transmitted (see FIG. 4).

前述の第一軸部材10の筒状部12に第二軸部材20の軸状部21を挿入して筒状部12の凹溝11に軸状部21の突条22,23を収容させることにより第一軸部材10と第二軸部材20とを組み付けて等速自在継手用シャフト1を構成する。この時、第二軸部材20の軸状部24の外径d2〔図3(a)参照〕に対する第一軸部材10の筒状部12の外径d1〔図2(a)参照〕の比d1/d2を1.8〜2.4とする。 The shaft portion 21 of the second shaft member 20 is inserted into the tubular portion 12 of the first shaft member 10 described above, and the protrusions 22 and 23 of the shaft portion 21 are accommodated in the concave groove 11 of the tubular portion 12. Thus, the first shaft member 10 and the second shaft member 20 are assembled to form the constant velocity universal joint shaft 1. At this time, the outer diameter d 1 of the cylindrical portion 12 of the first shaft member 10 (see FIG. 2A) with respect to the outer diameter d 2 of the shaft-shaped portion 24 of the second shaft member 20 (see FIG. 3A). The ratio d 1 / d 2 is 1.8 to 2.4.

このように比d1/d2を範囲規定することにより、弾性体の捩り剛性の確保と車両組み付け性の点で有効となる。なお、第二軸部材20の軸状部24の外径d2に対する第一軸部材10の筒状部12の外径d1の比d1/d2が1.8よりも小さいと、弾性体の捩り剛性が低くなり衝撃トルクによる振動を低減できなくなり、その比d1/d2が2.4よりも大きいと、車両に組み付ける時に他の部品と干渉することになる。 Thus, by defining the range of the ratio d 1 / d 2 , it is effective in terms of ensuring the torsional rigidity of the elastic body and the ease of assembling the vehicle. In addition, if the ratio d 1 / d 2 of the outer diameter d 1 of the cylindrical portion 12 of the first shaft member 10 to the outer diameter d 2 of the shaft-shaped portion 24 of the second shaft member 20 is smaller than 1.8, it is elastic. The torsional rigidity of the body becomes low and vibration due to impact torque cannot be reduced. If the ratio d 1 / d 2 is larger than 2.4, it interferes with other parts when assembled to the vehicle.

図1に示すように第一軸部材10と第二軸部材20とを組み付けた等速自在継手用シャフト1では、第一軸部材10の筒状部12の凹溝11と第二軸部材20の軸状部21の幅狭の突条22とで低トルク伝達部30が構成され、その低トルク伝達部30と異なる軸方向位置、つまり、低トルク伝達部30と軸方向で隣接する位置に、第一軸部材10の筒状部12の凹溝11と第二軸部材20の軸状部21の幅広の突条23とで高トルク伝達部40が構成されている。   As shown in FIG. 1, in the constant velocity universal joint shaft 1 in which the first shaft member 10 and the second shaft member 20 are assembled, the concave groove 11 of the tubular portion 12 of the first shaft member 10 and the second shaft member 20. A low torque transmission portion 30 is formed by the narrow protrusion 22 of the shaft-shaped portion 21, and the axial position is different from that of the low torque transmission portion 30, that is, a position adjacent to the low torque transmission portion 30 in the axial direction. The high torque transmission portion 40 is configured by the concave groove 11 of the cylindrical portion 12 of the first shaft member 10 and the wide protrusion 23 of the shaft portion 21 of the second shaft member 20.

なお、第二軸部材20の高トルク伝達部40の内接円径d4〔図3(c)参照〕を第二軸部材20の軸状部24の外径d2より大きくする。このようにすることで、高トルク伝達部40の強度と耐久性を確保する点で有効となる。 In addition, the inscribed circle diameter d 4 of the high torque transmission portion 40 of the second shaft member 20 (see FIG. 3C) is made larger than the outer diameter d 2 of the shaft-like portion 24 of the second shaft member 20. By doing in this way, it becomes effective at the point which ensures the intensity | strength and durability of the high torque transmission part 40. FIG.

また、第二軸部材20の低トルク伝達部30の内接円径d3〔図3(b)参照〕に対する第一軸部材10の筒状部12の外径d1の比d1/d3を1.8〜2.8とする。このようにすれば、弾性体の捩り剛性と車両への組付け性の点で有効である。なお、第二軸部材20の低トルク伝達部30の内接円径d3に対する第一軸部材10の筒状部12の外径d1の比d1/d3が1.8より小さいと弾性体の捩り剛性が低くなり衝撃トルクによる振動を低減できなくなり、その比が2.8より大きいと車両に組み付ける時に他の部品と干渉することになる。 Further, the ratio d 1 / d of the outer diameter d 1 of the cylindrical portion 12 of the first shaft member 10 to the inscribed circle diameter d 3 of the low torque transmission portion 30 of the second shaft member 20 (see FIG. 3B). 3 is set to 1.8 to 2.8. This is effective in terms of torsional rigidity of the elastic body and ease of assembly to the vehicle. When the ratio d 1 / d 3 of the outer diameter d 1 of the cylindrical portion 12 of the first shaft member 10 to the inscribed circle diameter d 3 of the low torque transmission portion 30 of the second shaft member 20 is smaller than 1.8. The torsional rigidity of the elastic body becomes low and vibration due to impact torque cannot be reduced. If the ratio is larger than 2.8, it interferes with other parts when assembled to the vehicle.

低トルク伝達部30では、図5に示すように第一軸部材10の筒状部12の凹溝11の幅寸法Wよりも、第二軸部材20の軸状部21の突条22の幅寸法W1を小さく設定し、第一軸部材10の凹溝11の側壁面16と第二軸部材20の突条22の側壁面27との間に弾性体31を介在させている。この弾性体31としては、シャフト1の使用環境において劣化せずに弾性機能を発揮するものであればよく、例えばニトリルゴム、アクリルゴム、天然ゴムまたはシリコーンゴム等の種々のゴム、混合ゴムや樹脂を使用することが可能である。なお、この実施形態では、第一軸部材10の凹溝11の底面17と第二軸部材20の突条22の先端面26とは、弾性体31を介在させずシャフトに曲げ荷重が作用する際に接触する構造としているが、ゴムのバリ除去等のコストがかかるため弾性体を介在させてもよい。 In the low torque transmission portion 30, the width of the protrusion 22 of the shaft portion 21 of the second shaft member 20 is larger than the width dimension W of the concave groove 11 of the tubular portion 12 of the first shaft member 10 as shown in FIG. The dimension W 1 is set small, and an elastic body 31 is interposed between the side wall surface 16 of the concave groove 11 of the first shaft member 10 and the side wall surface 27 of the protrusion 22 of the second shaft member 20. The elastic body 31 only needs to exhibit an elastic function without being deteriorated in the usage environment of the shaft 1. For example, various rubbers such as nitrile rubber, acrylic rubber, natural rubber, or silicone rubber, mixed rubber, and resin Can be used. In this embodiment, the bottom surface 17 of the groove 11 of the first shaft member 10 and the tip surface 26 of the protrusion 22 of the second shaft member 20 are subjected to a bending load on the shaft without the elastic body 31 interposed. Although it is configured to come into contact with it, an elastic body may be interposed because of the cost of removing burrs from the rubber.

高トルク伝達部40では、図6に示すように第一軸部材10の筒状部12の凹溝11の幅寸法Wよりも、第二軸部材20の軸状部21の突条23の幅寸法W2を僅かに小さく設定し、凹溝11の側壁面16と突条23の側壁面29との間に僅かな隙間41を形成している。なお、この実施形態では、第一軸部材10の凹溝11の底面17と第二軸部材20の突条23の先端面28とは、隙間を形成し、シャフトに曲げ荷重が作用する際、接触して曲げを抑制する構造となっている。 In the high torque transmission part 40, the width of the protrusion 23 of the shaft part 21 of the second shaft member 20 is larger than the width dimension W of the groove 11 of the cylindrical part 12 of the first shaft member 10 as shown in FIG. The dimension W 2 is set to be slightly small, and a slight gap 41 is formed between the side wall surface 16 of the groove 11 and the side wall surface 29 of the ridge 23. In this embodiment, the bottom surface 17 of the concave groove 11 of the first shaft member 10 and the tip surface 28 of the protrusion 23 of the second shaft member 20 form a gap, and when a bending load acts on the shaft, It has a structure that suppresses bending by contact.

なお、図1に示すように筒状部12の端部に軸状部材13を摩擦圧接により接合一体化した構造では、その筒状部12の端部に位置する摩擦圧接部位mを低トルク伝達部30から30mm以上離間させている(図中の軸方向寸法L>30mm)。これにより、低トルク伝達部30の弾性体31が軸状部材13の摩擦圧接時に生じる熱の悪影響を受けることを抑制できる。   As shown in FIG. 1, in the structure in which the shaft-like member 13 is joined and integrated to the end of the cylindrical portion 12 by friction welding, the friction welding portion m located at the end of the cylindrical portion 12 is transmitted with low torque. 30 mm or more away from the portion 30 (axial dimension L> 30 mm in the figure). Thereby, it can suppress that the elastic body 31 of the low torque transmission part 30 receives the bad influence of the heat which arises at the time of the friction welding of the shaft-shaped member 13. FIG.

以上の構成からなる等速自在継手用シャフト1において、高トルク伝達部40における第一軸部材10の凹溝11と第二軸部材20の突条23との間に形成された隙間41を維持できるトルク作用時、つまり、低トルク作用時には、低トルク伝達部30で第一軸部材10の凹溝11の側壁面16と第二軸部材20の突条22の側壁面27との間の弾性体31を介してトルクが伝達される。この時、高トルク伝達部40では、第一軸部材10の凹溝11の側壁面16と第二軸部材20の突条23の側壁面29との間に隙間41が形成された状態であるため、トルクは伝達されない。   In the constant velocity universal joint shaft 1 configured as described above, the gap 41 formed between the concave groove 11 of the first shaft member 10 and the protrusion 23 of the second shaft member 20 in the high torque transmission unit 40 is maintained. At the time of the torque action that can be performed, that is, at the time of low torque action, the elasticity between the side wall surface 16 of the concave groove 11 of the first shaft member 10 and the side wall surface 27 of the protrusion 22 of the second shaft member 20 is reduced. Torque is transmitted through the body 31. At this time, in the high torque transmission unit 40, a gap 41 is formed between the side wall surface 16 of the concave groove 11 of the first shaft member 10 and the side wall surface 29 of the ridge 23 of the second shaft member 20. Therefore, torque is not transmitted.

一方、自動車の発進時などにおいて高トルクが入力されると、低トルク伝達部30における第一軸部材10の凹溝11と第二軸部材20の突条22との間に介在する弾性体31が扁平状に変形して高トルク伝達部40の隙間41を維持できなくなる。このように弾性体31が変形して前述の隙間41を維持できないトルク作用時、つまり、高トルク作用時には、高トルク伝達部40で第一軸部材10の凹溝11の側壁面16と第二軸部材20の突条23の側壁面29とが直接的に接触してトルクが伝達される。このようにして高トルクは、高トルク伝達部40で凹溝11の側壁面16と突条23の側壁面29とが圧接した状態で伝達されるため、低トルク伝達部30の弾性体31に伝達されることはない。   On the other hand, when a high torque is input at the time of starting the automobile, the elastic body 31 interposed between the concave groove 11 of the first shaft member 10 and the protrusion 22 of the second shaft member 20 in the low torque transmission unit 30. Is deformed into a flat shape and the gap 41 of the high torque transmission unit 40 cannot be maintained. As described above, when the elastic body 31 is deformed so that the above-described gap 41 cannot be maintained, that is, when the torque is high, that is, when the high torque is applied, the high torque transmission portion 40 and the side wall surface 16 of the concave groove 11 of the first shaft member 10 Torque is transmitted by direct contact with the side wall surface 29 of the protrusion 23 of the shaft member 20. In this way, high torque is transmitted in a state where the side wall surface 16 of the groove 11 and the side wall surface 29 of the ridge 23 are in pressure contact with each other by the high torque transmission unit 40, and thus the elastic body 31 of the low torque transmission unit 30. It is never transmitted.

以上のように、低トルク作用時には弾性体31を介して低トルク伝達部30でトルクが伝達されるので、その弾性体31により振動を低減することができる。また、トルク作用時の初期振動や衝撃トルクによる振動に対してもその振動を低減することができる。また、高トルク作用時には、低トルク伝達部30の弾性体31を介さずに高トルク伝達部40でトルクを伝達するため、高トルクが弾性体31に伝達されないので弾性体31の強度および耐久性を確保することが容易となる。   As described above, since the torque is transmitted by the low torque transmission unit 30 via the elastic body 31 during the low torque operation, the elastic body 31 can reduce vibration. Moreover, the vibration can be reduced even with respect to the initial vibration at the time of the torque action and the vibration due to the impact torque. In addition, when high torque is applied, torque is transmitted by the high torque transmission unit 40 without passing through the elastic body 31 of the low torque transmission unit 30, and thus high torque is not transmitted to the elastic body 31, so that the strength and durability of the elastic body 31 are increased. It becomes easy to ensure.

前述した低トルク伝達部30では低トルクが負荷されるのみであるため、高周波焼入れ等の熱処理による硬化処理を行わなくても、等速自在継手用シャフト1としての機能を損なわない。そのため、この実施形態では、低トルク伝達部30における第一軸部材10の凹溝11および第二軸部材20の突条22を硬化処理せずにその凹溝11の側壁面16および突条22の側壁面27に表面硬化層を形成しないようにしている。   Since the low torque transmission unit 30 is only loaded with a low torque, the function as the constant velocity universal joint shaft 1 is not impaired even without performing a hardening process by heat treatment such as induction hardening. Therefore, in this embodiment, the concave groove 11 of the first shaft member 10 and the protrusion 22 of the second shaft member 20 in the low torque transmission unit 30 are not subjected to hardening treatment, and the side wall surface 16 and the protrusion 22 of the recess groove 11. Thus, a hardened surface layer is not formed on the side wall surface 27.

これにより、硬化処理による熱で凹溝11の側壁面16および突条22の側壁面27が変形することはないので、シャフト1の組立時に低トルク伝達部30における第一軸部材10の凹溝11と第二軸部材20の突条22との間に弾性体31を挿入することが容易となり、弾性体31の組み付け性が向上し、シャフト1の生産性の向上が図れる。また、第一軸部材10の凹溝11と第二軸部材20の突条22との間に弾性体31を均等に介在させることができ、安定した品質のシャフト1を提供できる。さらに、弾性体31を挿入するに際してスケールが発生し難くなってスケール除去工程が不要となり、製品のコスト低減が図れる。   Accordingly, the side wall surface 16 of the concave groove 11 and the side wall surface 27 of the protrusion 22 are not deformed by heat due to the curing process. Therefore, the concave groove of the first shaft member 10 in the low torque transmission unit 30 is assembled when the shaft 1 is assembled. It becomes easy to insert the elastic body 31 between 11 and the protrusion 22 of the 2nd shaft member 20, the assembly property of the elastic body 31 improves, and the improvement of the productivity of the shaft 1 can be aimed at. Further, the elastic body 31 can be evenly interposed between the concave groove 11 of the first shaft member 10 and the protrusion 22 of the second shaft member 20, and the shaft 1 with stable quality can be provided. Further, when the elastic body 31 is inserted, a scale is hardly generated and a scale removing step is not necessary, so that the cost of the product can be reduced.

また同様に、第一軸部材10の筒状部12の開口端部12aについても、高周波焼入れ等の熱処理による硬化処理を行わなくても、等速自在継手用シャフト1としての機能を損なわないので、この第一軸部材10の筒状部12の開口端部12aを硬化処理せず、その開口端部12aに表面硬化層を形成しないようにしている。   Similarly, the opening end portion 12a of the cylindrical portion 12 of the first shaft member 10 does not impair the function as the constant velocity universal joint shaft 1 without performing a hardening process by heat treatment such as induction hardening. The opening end 12a of the cylindrical portion 12 of the first shaft member 10 is not cured, and a surface hardened layer is not formed on the opening end 12a.

これにより、硬化処理による熱で第一軸部材10の筒状部12の開口端部12aが変形することはないので、シャフト1の組立時に第二軸部材20を第一軸部材10に挿入することが容易となり、第一軸部材10に対する第二軸部材20の組み付け性が向上すると共に、筒状部12の開口端部12aでの焼き割れの発生を未然に防止することができて品質の向上が図れる。   Thereby, since the open end 12a of the cylindrical portion 12 of the first shaft member 10 is not deformed by heat due to the curing process, the second shaft member 20 is inserted into the first shaft member 10 when the shaft 1 is assembled. As a result, the assembly of the second shaft member 20 with respect to the first shaft member 10 is improved, and the occurrence of burning cracks at the open end 12a of the cylindrical portion 12 can be prevented in advance. Improvement can be achieved.

以上で述べた低トルク伝達部30および第一軸部材10の筒状部12の開口端部12aでは高周波焼入れ等の熱処理を行わないのに対して、高トルク伝達部40は、自動車の発進時などにおいて高トルクが負荷されることから、高トルク伝達部40に高周波焼入れ等の熱処理を行うことによりその高トルク伝達部40に硬化処理を施す。つまり、図7のクロスハッチングで示すように高トルク伝達部40における第一軸部材10の筒状部12の凹溝底部18および凹溝側壁部19を高周波焼入れにより熱処理する。なお、図示しないが、高トルク伝達部40における第二軸部材20の軸状部21の突条23も高周波焼入れにより熱処理する。これにより、高トルク伝達部40における第一軸部材10の凹溝11と第二軸部材20の突条23とが直接的に接触する部位の耐摩耗性を向上させることができる。   The low torque transmitting portion 30 and the opening end portion 12a of the cylindrical portion 12 of the first shaft member 10 are not subjected to heat treatment such as induction hardening, whereas the high torque transmitting portion 40 is used when the vehicle is started. Since high torque is applied in such a case, the high torque transmission unit 40 is subjected to a heat treatment such as induction hardening so that the high torque transmission unit 40 is cured. That is, as shown by cross hatching in FIG. 7, the groove bottom 18 and the groove sidewall 19 of the cylindrical portion 12 of the first shaft member 10 in the high torque transmission portion 40 are heat-treated by induction hardening. In addition, although not shown in figure, the protrusion 23 of the shaft-shaped part 21 of the 2nd shaft member 20 in the high torque transmission part 40 is also heat-processed by induction hardening. Thereby, the abrasion resistance of the site | part which the ditch | groove 11 of the 1st shaft member 10 in the high torque transmission part 40 and the protrusion 23 of the 2nd shaft member 20 contact directly can be improved.

この高周波焼入れは、第一軸部材10の筒状部12の外径側からの加熱により容易に達成することができ、350〜600HV程度の硬度を有する表面硬化層を形成する。この高周波焼入れでは、第一軸部材10の高トルク伝達部40における凹溝底部18での硬化比を凹溝側壁部19での硬化比よりも大きくする。これにより、シャフト1の捩り疲労強度を確保することができると共に、硬化処理を短い時間で完了させることができる。ここで、前述の「硬化比」とは、凹溝底部18および凹溝側壁部19での肉厚に対する有効硬化深さの比を意味する。   This induction hardening can be easily achieved by heating from the outer diameter side of the cylindrical portion 12 of the first shaft member 10, and forms a hardened surface layer having a hardness of about 350 to 600 HV. In this induction hardening, the curing ratio at the groove bottom 18 in the high torque transmission portion 40 of the first shaft member 10 is made larger than the curing ratio at the groove sidewall 19. Thereby, the torsional fatigue strength of the shaft 1 can be ensured and the curing process can be completed in a short time. Here, the above-mentioned “curing ratio” means the ratio of the effective curing depth to the thickness at the groove bottom 18 and the groove sidewall 19.

この実施形態では、例えば、第一軸部材10の高トルク伝達部40における凹溝底部18での硬化比を1とし、かつ、凹溝側壁部19での硬化比を0.3〜0.8とする。つまり、図7のクロスハッチングで示すように凹溝底部18を全硬化させ、凹溝側壁部19を最内径部分を残して硬化させる。これにより、シャフト1の捩り疲労強度の確保および硬化処理時間の短縮化がより一層容易となる。なお、凹溝底部18での硬化比が1よりも小さかったり、凹溝側壁部19での硬化比が0.3よりも小さいと、シャフト1の捩り疲労強度の確保が困難となる。また、凹溝側壁部19での硬化比が0.8よりも大きいと、硬化処理時間の短縮化が困難となる。   In this embodiment, for example, the curing ratio at the groove bottom 18 in the high torque transmission unit 40 of the first shaft member 10 is 1, and the curing ratio at the groove sidewall 19 is 0.3 to 0.8. And That is, as shown by cross hatching in FIG. 7, the groove bottom 18 is fully cured, and the groove sidewall 19 is cured leaving the innermost diameter portion. This makes it easier to ensure the torsional fatigue strength of the shaft 1 and shorten the curing processing time. If the curing ratio at the groove bottom 18 is smaller than 1 or the curing ratio at the groove sidewall 19 is smaller than 0.3, it is difficult to ensure the torsional fatigue strength of the shaft 1. Moreover, when the hardening ratio in the groove side wall part 19 is larger than 0.8, it becomes difficult to shorten the hardening processing time.

ここで、最適な高周波焼入れを達成するため、第一軸部材10および第二軸部材20の素材炭素量を0.15〜0.46%とする。これにより、素材コストを低減させることが容易となる。なお、素材炭素量が0.15%よりも小さいと、第一軸部材10および第二軸部材20の硬度が低下して摩耗が著しく進行し、素材炭素量が0.46%よりも大きいと、冷間加工性が著しく低下して第一軸部材10および第二軸部材20の製作が困難となる。   Here, in order to achieve optimal induction hardening, the carbon content of the first shaft member 10 and the second shaft member 20 is set to 0.15 to 0.46%. Thereby, it becomes easy to reduce material cost. When the material carbon content is less than 0.15%, the hardness of the first shaft member 10 and the second shaft member 20 is reduced, and wear progresses remarkably, and when the material carbon content is greater than 0.46%. As a result, the cold workability is remarkably lowered, making it difficult to manufacture the first shaft member 10 and the second shaft member 20.

なお、図1および図2(a)に示すように高トルク伝達部40が位置する第一軸部材10の筒状部12の開口端部12aの内径に、その開口端部12aに向けて拡径するテーパ部15を設けている。このテーパ部15により、第一軸部材10の筒状部12の開口側に高トルク伝達部40を配設した構造では、その高トルク伝達部40における第一軸部材10の凹溝11と第二軸部材20の突条23との接触部位が前述のテーパ部15に位置することから、トルク伝達時での応力集中を緩和することができる。   As shown in FIGS. 1 and 2 (a), the inner diameter of the open end 12a of the tubular portion 12 of the first shaft member 10 where the high torque transmitting portion 40 is located is expanded toward the open end 12a. A tapered portion 15 is provided. In the structure in which the high torque transmission portion 40 is disposed on the opening side of the tubular portion 12 of the first shaft member 10 by the taper portion 15, the concave groove 11 of the first shaft member 10 in the high torque transmission portion 40 and the second Since the contact part with the protrusion 23 of the biaxial member 20 is located in the above-mentioned taper part 15, the stress concentration at the time of torque transmission can be relieved.

また、前述の実施形態では、第一軸部材10の凹溝11および第二軸部材20の突条22,23を円周方向90°ピッチで4箇所に設けることにより、凹溝11の側壁面16および突条22,23の側壁面27,29に均等にトルクが掛かるようにしてトルク伝達の安定化を図っている。しかしながら、他の実施形態として、第一軸部材10の凹溝11および第二軸部材20の突条22,23を円周方向3箇所、5箇所あるいは6箇所に設けるようにしてもよい。これにより、第一軸部材10と第二軸部材20との間でのトルク伝達部にかかる荷重を緩和できると共に、第一軸部材10の凹溝11および第二軸部材20の突条22,23の形成が容易となる。   In the above-described embodiment, the concave groove 11 of the first shaft member 10 and the protrusions 22 and 23 of the second shaft member 20 are provided at four locations at a 90 ° pitch in the circumferential direction. 16 and the side walls 27 and 29 of the ridges 22 and 23 are evenly torqued to stabilize torque transmission. However, as another embodiment, the concave groove 11 of the first shaft member 10 and the protrusions 22 and 23 of the second shaft member 20 may be provided at three, five, or six locations in the circumferential direction. Thereby, while being able to relieve | moderate the load concerning the torque transmission part between the 1st shaft member 10 and the 2nd shaft member 20, the groove | channel 11 of the 1st shaft member 10 and the protrusion 22 of the 2nd shaft member 20, Formation of 23 becomes easy.

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the gist of the present invention. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.

10 第一軸部材
11 凹溝
12 筒状部
12a 開口端部
13 軸状部材
15 テーパ部
18 凹溝底部
19 凹溝側壁部
20 第二軸部材
21 軸状部
22,23 突条
24 軸状部
30 低トルク伝達部
31 弾性体
40 高トルク伝達部
41 隙間
DESCRIPTION OF SYMBOLS 10 1st shaft member 11 Groove | groove 12 Tubular part 12a Open end 13 Shaft-shaped member 15 Tapered part 18 Groove bottom part 19 Groove side wall part 20 Second shaft member 21 Shaft-like part 22, 23 Projection 24 Shaft-like part 30 Low torque transmission part 31 Elastic body 40 High torque transmission part 41 Crevice

Claims (12)

軸方向に延びる凹溝が筒状部の内径面の円周方向複数箇所に形成された第一軸部材と、その第一軸部材の筒状部に挿入配置される軸状部を有し、軸方向に延びる突条が前記軸状部の外径面の円周方向複数箇所に形成されて前記凹溝に収容された第二軸部材とを備え、前記第一軸部材の凹溝と前記第二軸部材の突条との間に弾性体を介在させた低トルク伝達部を前記筒状部と軸状部との間に設けると共に、前記筒状部と軸状部との間の前記低トルク伝達部と異なる軸方向位置に、第一軸部材の凹溝と第二軸部材の突条との間に隙間を形成した高トルク伝達部を設け、前記低トルク伝達部を未硬化処理の状態としたことを特徴とする等速自在継手用シャフト。   A first shaft member in which concave grooves extending in the axial direction are formed at a plurality of locations in the circumferential direction of the inner diameter surface of the cylindrical portion, and a shaft-shaped portion that is inserted and disposed in the cylindrical portion of the first shaft member; A protrusion extending in the axial direction includes a second shaft member formed at a plurality of locations in the circumferential direction of the outer diameter surface of the shaft-shaped portion and accommodated in the groove, and the groove of the first shaft member and the A low torque transmission part having an elastic body interposed between the protrusions of the second shaft member is provided between the cylindrical part and the shaft-like part, and between the cylindrical part and the shaft-like part, A high torque transmission part having a gap formed between the groove of the first shaft member and the protrusion of the second shaft member is provided at a different axial position from the low torque transmission part, and the low torque transmission part is uncured. A shaft for a constant velocity universal joint, characterized in that 前記第一軸部材の筒状部の開口端部を未硬化処理の状態とした請求項1に記載の等速自在継手用シャフト。   The constant velocity universal joint shaft according to claim 1, wherein the opening end portion of the cylindrical portion of the first shaft member is in an uncured state. 前記高トルク伝達部に硬化処理を施した請求項1又は2に記載の等速自在継手用シャフト。   The constant velocity universal joint shaft according to claim 1, wherein the high torque transmission portion is cured. 前記第一軸部材の高トルク伝達部における凹溝底部での硬化比を凹溝側壁部での硬化比よりも大きくした請求項3に記載の等速自在継手用シャフト。   The constant velocity universal joint shaft according to claim 3, wherein a curing ratio at the bottom of the concave groove in the high torque transmission portion of the first shaft member is larger than a curing ratio at the side wall of the concave groove. 前記第一軸部材の高トルク伝達部における凹溝底部での硬化比を1とし、かつ、凹溝側壁部での硬化比を0.3〜0.8とした請求項4に記載の等速自在継手用シャフト。   5. The constant velocity according to claim 4, wherein a curing ratio at the bottom of the groove in the high torque transmission portion of the first shaft member is 1 and a curing ratio at the side wall of the groove is 0.3 to 0.8. Universal joint shaft. 前記第一軸部材および第二軸部材の素材炭素量を0.15〜0.46%とした請求項1〜5のいずれか一項に記載の等速自在継手用シャフト。   The shaft for a constant velocity universal joint according to any one of claims 1 to 5, wherein a material carbon amount of the first shaft member and the second shaft member is 0.15 to 0.46%. 前記低トルク伝達部から30mm以上離間させた筒状部の端部に軸状部材を摩擦圧接した請求項1〜6のいずれか一項に記載の等速自在継手用シャフト。   The shaft for a constant velocity universal joint according to any one of claims 1 to 6, wherein a shaft-shaped member is friction-welded to an end portion of a cylindrical portion that is separated from the low torque transmission portion by 30 mm or more. 前記第一軸部材の筒状部の開口端部内径に、その開口端部に向けて拡径するテーパ部を設けた請求項1〜7のいずれか一項に記載の等速自在継手用シャフト。   The shaft for a constant velocity universal joint according to any one of claims 1 to 7, wherein a taper portion whose diameter is increased toward the opening end portion is provided on an inner diameter of the opening end portion of the cylindrical portion of the first shaft member. . 前記第一軸部材の凹溝および前記第二軸部材の突条を円周方向3〜6箇所に設けた請求項1〜8のいずれか一項に記載の等速自在継手用シャフト。   The shaft for constant velocity universal joints as described in any one of Claims 1-8 which provided the groove of the said 1st shaft member and the protrusion of the said 2nd shaft member in the circumferential direction 3-6 places. 前記第二軸部材の軸状部径d2に対する第一軸部材の筒状部の外径d1の比d1/d2を1.8〜2.4とした請求項1〜9のいずれか一項に記載の等速自在継手用シャフト。 The ratio d 1 / d 2 of the outer diameter d 1 of the cylindrical portion of the first shaft member to the shaft-shaped portion diameter d 2 of the second shaft member is set to 1.8 to 2.4. A shaft for a constant velocity universal joint according to claim 1. 前記第二軸部材の高トルク伝達部の内接円径を第二軸部材の軸状部径より大きくした請求項1〜10のいずれか一項に記載の等速自在継手用シャフト。   The shaft for constant velocity universal joints as described in any one of Claims 1-10 which made the inscribed circle diameter of the high torque transmission part of said 2nd shaft member larger than the shaft-shaped part diameter of a 2nd shaft member. 前記第二軸部材の低トルク伝達部の内接円径d3に対する第一軸部材の筒状部の外径d1の比d1/d3を1.8〜2.8とした請求項1〜11のいずれか一項に記載の等速自在継手用シャフト。 The ratio d 1 / d 3 of the outer diameter d 1 of the cylindrical portion of the first shaft member to the inscribed circle diameter d 3 of the low torque transmission portion of the second shaft member is set to 1.8 to 2.8. The shaft for constant velocity universal joints as described in any one of 1-11.
JP2009148671A 2009-06-23 2009-06-23 Shaft for constant velocity universal joint Pending JP2011007216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009148671A JP2011007216A (en) 2009-06-23 2009-06-23 Shaft for constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009148671A JP2011007216A (en) 2009-06-23 2009-06-23 Shaft for constant velocity universal joint

Publications (1)

Publication Number Publication Date
JP2011007216A true JP2011007216A (en) 2011-01-13

Family

ID=43564120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009148671A Pending JP2011007216A (en) 2009-06-23 2009-06-23 Shaft for constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP2011007216A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047643A1 (en) * 2014-09-26 2016-03-31 日本精工株式会社 Torque transmission joint and electric power steering device
WO2016047188A1 (en) * 2014-09-26 2016-03-31 日本精工株式会社 Torque transmitting joint and electric power steering device
CN105818613A (en) * 2016-05-17 2016-08-03 重庆帅昌机械制造有限公司 Self-aligning half shaft for drive axle
CN107940032A (en) * 2017-12-08 2018-04-20 曹樊德 A kind of constant temperature actuator and its control method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047643A1 (en) * 2014-09-26 2016-03-31 日本精工株式会社 Torque transmission joint and electric power steering device
WO2016047188A1 (en) * 2014-09-26 2016-03-31 日本精工株式会社 Torque transmitting joint and electric power steering device
JPWO2016047643A1 (en) * 2014-09-26 2017-04-27 日本精工株式会社 Torque transmission joint and electric power steering device
CN106795921A (en) * 2014-09-26 2017-05-31 日本精工株式会社 Torque transmission joint and electric steering-assisted device
US10288126B2 (en) 2014-09-26 2019-05-14 Nsk Ltd. Torque transmission joint and electric power steering device
CN105818613A (en) * 2016-05-17 2016-08-03 重庆帅昌机械制造有限公司 Self-aligning half shaft for drive axle
CN107940032A (en) * 2017-12-08 2018-04-20 曹樊德 A kind of constant temperature actuator and its control method

Similar Documents

Publication Publication Date Title
JP5349756B2 (en) Constant velocity universal joint
US20110209961A1 (en) Vehicle drive shaft and vehicle equipped with vehicle drive shaft
US10738834B2 (en) Joint for torque transmission and worm reduction gear
KR20090102746A (en) Constant velocity universal joint
US20090215543A1 (en) Slip yoke with internal splines having permanent coating and related method
JP5092913B2 (en) Universal joint yoke and universal joint
CN103380316A (en) Press-fit structure and press-fit method
JP2011007216A (en) Shaft for constant velocity universal joint
JP6528902B2 (en) shaft
KR101664682B1 (en) Hollow drive shaft for vehicle and manufacturing meathod of the same
JP2007064264A (en) Fixed type constant velocity universal joint
JP2010036821A (en) Vehicular power transmission member
WO2011046019A1 (en) Power-transmission shaft and assembly
JP2009255729A (en) Bearing device for wheel
KR20080030821A (en) Drive shaft for vehicle
JP2007154984A (en) Power transmission mechanism
JP2000074081A (en) Spline device
JP2008286308A (en) Constant velocity universal joint
JP2011220351A (en) Power transmission shaft
JP2007198401A (en) Spline interconnecting structure, power transmission shaft and outer ring stem of constant velocity universal joint
JP7217587B2 (en) power transmission shaft
JP2008256022A (en) Constant velocity universal joint
CN109210144B (en) Preloading part, preloading assembly, dual mass flywheel and motor vehicle
JP2009085381A (en) Power-transmission shaft
JPH07248025A (en) Propeller shaft