JP2011007168A - Fuel direct injection stratified charge internal combustion engine and stratified combustion technique - Google Patents

Fuel direct injection stratified charge internal combustion engine and stratified combustion technique Download PDF

Info

Publication number
JP2011007168A
JP2011007168A JP2009167248A JP2009167248A JP2011007168A JP 2011007168 A JP2011007168 A JP 2011007168A JP 2009167248 A JP2009167248 A JP 2009167248A JP 2009167248 A JP2009167248 A JP 2009167248A JP 2011007168 A JP2011007168 A JP 2011007168A
Authority
JP
Japan
Prior art keywords
fuel
combustion
combustion chamber
volume
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009167248A
Other languages
Japanese (ja)
Inventor
Shigeru Onishi
繁 大西
Hiroko Shikinami
弘子 敷波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Clean Engine Laboratory Co
Original Assignee
Nippon Clean Engine Laboratory Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Clean Engine Laboratory Co filed Critical Nippon Clean Engine Laboratory Co
Priority to JP2009167248A priority Critical patent/JP2011007168A/en
Publication of JP2011007168A publication Critical patent/JP2011007168A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve functions of an engine having a reasonable combustion atmosphere and provide a technique of emitting lower pollution from the engine, by creating an ideal stratified charge condition in which various physical and chemical conditions between an air and a fuel controlling a combustion reaction are made consistent with one another, and an appropriate configuration condition of a combustion chamber is also added.SOLUTION: A new stratified charge condition between a group of air-fuel mixtures and an air layer is provided. A main combustion volume part of a combustion chamber 4 is shaped into a conical cylinder in a central axis area. A combustion chamber volume part 5 having a conical cylinder shape is made to serve as a fuel mixture combustion volume part using a circuit configuration of a lower volume part connected thereto and using action of collision and turbulence between a fuel injection system and a fuel jet. An end area 8 or a squish area 7 of a disk-shaped volume part 6 connected thereto is filled with air or burned gas. The stratified charge condition is constituted by a matrix circuit-like combustion volume part and action of collision, turbulence, and diffusion of a group of fuel jets.

Description

発明の詳細な説明Detailed Description of the Invention

本発明は内燃機関の層状給気燃焼技術と低公害化技術に関する。The present invention relates to a stratified charge combustion technique and a low pollution technique for an internal combustion engine.

文明社会構築の源動力として活躍してきたガソリンやディーゼルエンジン等の内燃機関は大きな利便性と同時に地球の資源を消費しており近時は地球資源の保護や大気汚染や温暖化防止のために更にCO2の少ない高効率な燃焼技術や省エネ低公害技術の開発が国際的課題として緊急に求められている。Internal combustion engines such as gasoline and diesel engines that have played an active role in the creation of civilized societies are consuming great resources as well as consuming the resources of the earth. Development of high-efficiency combustion technology with low CO2 and energy-saving and low-pollution technology is urgently required as an international issue.

本技術の発明者は石油系や水酸化系燃料による燃焼反応で動力を得る現在の火花点火式機関や圧縮着火によるディーゼル機関は何れも既成概念や生産性が優先され新技術の開発が遅れていることからこのままの推移では地球の資源保護も環境保全も手遅れとならないよう早期な抜本的対策の必要な事を啓発しその具体的技術対策を提示してきた。The inventor of this technology is the current spark ignition type engine that obtains power by combustion reaction with petroleum or hydroxide fuel and the diesel engine by compression ignition give priority to existing concepts and productivity, and development of new technology is delayed. As a result, we have been enlightening the need for early drastic measures to prevent the earth's resource protection and environmental protection from being too late, and have presented specific technical measures.

先ず自動車エンジンに代表されているEFI方式では燃料が吸気と共に燃焼室の端域までに供給されるのでこれに因るエンドガスノッキング現象を避けることができない。従ってEFI方式では圧縮比を高めることや高過給比化が利用出来なく、更に軽負荷運転時には吸気を絞る必要があることから燃費の経済性が大きく損なわれている。First, in the EFI system represented by the automobile engine, the fuel is supplied to the end region of the combustion chamber together with the intake air, so the end gas knocking phenomenon due to this cannot be avoided. Therefore, in the EFI system, it is not possible to use a compression ratio or a high supercharging ratio, and further, it is necessary to throttle the intake air at the time of light load operation.

又高い熱効率の動力源として使われている直噴ディーゼル機関も燃焼室中心域から多噴孔ノズルで周端域に噴霧を拡散する燃焼方式を基本とし噴射系の超高圧化や噴流の分割技術等に頼り燃焼の改善を図っているが、中心部から多噴孔で燃焼室端域に向けて噴射する方法では燃料群を高圧高温雰囲気の各端域で同時的に反応する特性を変える事ができず、この急激な燃焼圧力に因るノッキング状の燃焼騒音と共にNOxが多発する。Direct injection diesel engines, which are used as a power source with high thermal efficiency, are based on a combustion system that diffuses spray from the center area of the combustion chamber to the peripheral area with a multi-hole nozzle. Reliable combustion is being improved, but the method of injecting fuel from the center toward the end of the combustion chamber with multiple injection holes can change the characteristics of the fuel group that reacts simultaneously in each end of the high-pressure and high-temperature atmosphere. However, NOx occurs frequently along with the knocking combustion noise caused by this rapid combustion pressure.

更に噴射燃料流の後続分は先行燃料の反応によって酸素の減じた熱雰囲気中での反応を余儀なくされ燻蒸化が進むことになり排気中のPM2・5の始末も後処理技術に依存せざるをえないのが現在の直噴ディーゼルエンジンの大きな欠点でありディーゼルの開発以来130年以上経った現在でも排気煤塵やNOx低減問題は未解決なのである。Furthermore, the subsequent portion of the injected fuel flow must be reacted in a hot atmosphere with reduced oxygen due to the reaction of the preceding fuel, and fumigation will proceed, and the end of PM2 · 5 in the exhaust will not depend on the post-processing technology. What is not possible is a major drawback of the current direct-injection diesel engine, and exhaust dust and NOx reduction problems are still unsolved even after 130 years since the development of diesel.

本技術の発明者は火花点火方式や直噴ディーゼル方式に共通する機能の向上と低公害化を図るには、先ず燃焼反応を阻害するノッキングやこれに近い急激な圧力上昇率を抑制する技術手段が必要でありノッキングによる破壊的圧力や騒音を制御することによれば内燃機関の高過給化や高圧縮比の採用が可能となり結果的に静かでNOxが少なく燃費の経済的なCO2排出抑制に有利なエンジンを実現し得ると確信している。In order to improve the functions common to the spark ignition system and the direct injection diesel system and to reduce pollution, the inventor of this technology firstly knocks to inhibit the combustion reaction and technical means for suppressing a rapid pressure increase rate close to this. By controlling the destructive pressure and noise caused by knocking, it is possible to increase the internal combustion engine's supercharging and adopt a high compression ratio, resulting in quiet, low NOx and economical fuel economy and CO2 emission suppression We are confident that we can realize an engine that is advantageous to

発明者はこれまでのエンジン開発実験経験の知見を踏まえ燃焼反応を支配する燃料と空気と燃焼室や池の物理的整合に有利な条件を見出すべく燃焼室の構成と燃料の噴射条件や燃焼室中心域を起点とした均等的火炎伝播反応や拡散燃焼条件の構築とノッキング現象を抑制しうる燃料の層状給気条件を燃料直噴方式により構成する事に傾注してきた。Based on the knowledge of previous engine development experiments, the inventor has found the combustion chamber configuration, the fuel injection conditions, and the combustion chamber to find conditions that are advantageous for the physical alignment of the fuel, air, combustion chamber, and pond that govern the combustion reaction. We have been focusing on constructing uniform flame propagation reaction and diffusion combustion conditions starting from the central region and stratified fuel supply conditions that can suppress the knocking phenomenon by direct fuel injection.

その例としてシリンダーヘッド部とピストンキャビテイ間との燃焼室内中心軸域に燃料噴流の衝突部を設け、ヘッド部の燃料噴射ノズルより燃料を軸状噴流として衝突部に衝突させ燃料噴流の衝突拡散作用により燃焼室中心軸域と衝突部近傍に燃料混合気密度が濃く、スキッシュ域や端域に燃料の展開を抑制した直噴式衝突拡散層状給気エンジンシステムを構成しその運転結果と作用効果について発表してきた。As an example, a collision part of a fuel jet is provided in the central axis region of the combustion chamber between the cylinder head and the piston cavity, and fuel collides with the collision part as an axial jet from the fuel injection nozzle of the head part. Has formed a direct injection type collision diffusion layered air supply engine system with a dense fuel mixture density in the central axis of the combustion chamber and in the vicinity of the collision part, and restrained the fuel development in the squish area and the end area, and announced its operation results and effects I have done it.

参考論文Reference paper

SAE技術レポート871689
SAE技術レポート881241
SAE技術レポート900608
SAE技術レポート911469
SAE技術レポート921645
SAE技術レポート940667
自動車技術会学術講演前刷集No・114−08−2008年Nagoya秋季大会(松岡信)
SAE Technical Report 871689
SAE Technical Report 881241
SAE Technical Report 9000060
SAE Technical Report 91114
SAE Technical Report 921645
SAE Technical Report 940667
Automobile Society of Japan Academic Lecture Preprint No. 114-08-2008 Nagaya Autumn Meeting (Shin Matsuoka)

特許文献Patent Literature

特開昭 62−139921JP-A-62-139921

OSKAと名称したこの燃焼システムは、当時より既に燃焼室中心域の多噴孔拡散ノズルによる直噴ディーゼル方式の噴霧到達端域の同時的反応に因るディーゼルノックと急激な圧力上昇に伴うNOxや燻蒸煤塵の弊害について明確に原因を指摘しこの欠点を抜本的に改革しうる基本燃焼システムとしての資質を20年前既に提示しているのである。This combustion system, named OSKA, has already been equipped with NOx and NOx associated with a sudden increase in diesel pressure due to the simultaneous reaction of the direct injection diesel spray end region with a multi-hole diffusion nozzle in the center of the combustion chamber. He clearly pointed out the cause of the fouling of fumigation dust and has already presented the qualities as a basic combustion system that can drastically reform this drawback 20 years ago.

本技術は燃料を燃焼室内で燃焼せしめ空気の熱膨張作用を利用してピストンをサイクル的に作動し動力を得る内燃機関の燃焼熱効率や排気の有害性制御に関わる重要事であり、燃焼反応を支配する燃料と空気との多様な物理的化学的条件の整合に更に燃焼室の構成条件などを加えることにより理想的層状給気条件を構成し、合理的な燃焼雰囲気の構成による機関の機能向上と排気の低公害化技術の提示を目的としている。This technology is important for combustion thermal efficiency and exhaust emission control of an internal combustion engine that produces power by burning the fuel in the combustion chamber and using the thermal expansion action of the air to cycle the piston. An ideal stratified charge condition is created by adding the combustion chamber configuration conditions to the alignment of the various physical and chemical conditions of the controlling fuel and air, and the engine function is improved by the rational combustion atmosphere configuration. The purpose is to present technology for reducing pollution of exhaust.

燃焼室中央部に配備した多噴孔ホールノズルより、燃焼室端域に向けて燃料を高圧によって噴射する従来の直噴方法は各噴孔燃料群が到達域で同時的爆発的に反応する高い圧力上昇率や燃焼騒音を避けることが出来なく、超高圧燃料噴射や多噴孔ノズル技術でも騒音と共に高NOxや燻蒸煤塵の発生因を物理的に解決することは至難なのである。The conventional direct injection method, in which fuel is injected at a high pressure toward the end of the combustion chamber from the multi-hole nozzle located in the center of the combustion chamber, is high in which each fuel group reacts explosively at the arrival zone. The rate of pressure increase and combustion noise cannot be avoided, and it is difficult to physically solve the causes of high NOx and fumigation dust as well as noise even with ultra-high pressure fuel injection and multi-hole nozzle technology.

本発明は火花点火のEFI方式でも給気内の端域燃料分によるノッキングが原因となり、直噴ディーゼル方式でも燃焼室中心より外周端域に高圧多噴孔ノズルによって拡散噴射する方法では各燃料噴流到達点での同時的反応に因る急激で高い圧力の燃焼騒音に加えNOxや燻蒸煤塵の発生因を避けることができず、これらが相乗して機関の高過給化や高圧縮比化を阻害している事からこれらの原因を燃料直噴層状給気方式と新しい層状給気に基づく燃焼方式によって抜本的に解決することにある。In the spark ignition EFI system, knocking due to fuel in the end region in the supply air is caused by knocking. In the direct injection diesel system, each fuel jet is diffused by a high-pressure multi-hole nozzle from the center of the combustion chamber to the outer peripheral end region. In addition to the sudden and high pressure combustion noise caused by the simultaneous reaction at the destination, it is impossible to avoid the cause of NOx and fumigation dust, which synergizes to increase the engine's turbocharging and compression ratio. In view of the obstacles, these causes are to be fundamentally solved by a fuel direct injection stratified charge system and a new stratified charge combustion system.

各種燃焼方式内燃機関の機能を更に高め排気ガス成分の低公害化を図るために開発した本発明の一番目の発明は、火花点火機関においては予混合的にEFIで燃料混合気を供給する方法では吸気と共に燃料が燃焼室の端域迄に達するのでEFI自動車エンジンではエンドガスノッキング原因が排除出来なく高過給や高圧縮比の採用ができない。The first invention of the present invention, which was developed to further enhance the functions of various combustion-type internal combustion engines and to reduce the pollution of exhaust gas components, is a method of supplying a fuel mixture by EFI in a spark ignition engine in a premixed manner. In the EFI automobile engine, the cause of the end gas knocking cannot be eliminated and the high supercharging or the high compression ratio cannot be adopted because the fuel reaches the end of the combustion chamber together with the intake air.

本発明はEFIや気化器等で燃料と給気の予混合を図る燃料の供給方法ではエンジンの破壊にまでに到るエンドガスノッキング現象を回避解決出来ないことから燃料の供給方法を燃焼室中心軸上部よりの直噴方式とし、燃焼室中心軸の主燃焼容積部を円筒又は円推筒状に構成し、シリンダーヘッド部の吸排気弁間の中心部に位置付けしている。In the present invention, the fuel supply method for premixing the fuel and the supply air by using an EFI or a carburetor cannot avoid and solve the end gas knocking phenomenon leading to the destruction of the engine. A direct injection system from the upper part of the shaft is used, and the main combustion volume part of the central axis of the combustion chamber is formed in a cylindrical or circular cylinder, and is positioned at the center part between the intake and exhaust valves of the cylinder head part.

また円錐筒状主容積部の下部はピストン面間で構成する円盤吠の容積と連通して回路的な燃焼室容積部を構成する仕組みである。円推筒状主容積部内には混合気に点火・着火するための電極が配備され、円錐筒下部の連通部には燃料噴流衝突部が設けられ燃料噴流群の衝突拡散展開により燃焼室中心軸部や衝突部近傍に燃料混合密度が濃く、円盤状容積部端域に燃料群の到達を抑制した燃料群の層状給気条件を構築したことにある。The lower part of the conical cylindrical main volume part is a mechanism for composing a circuit-like combustion chamber volume part in communication with the volume of the disk soot formed between the piston surfaces. An electrode for igniting and igniting the air-fuel mixture is provided in the circular cylindrical main volume part, a fuel jet collision part is provided in the communicating part at the lower part of the conical cylinder, and the center axis of the combustion chamber is obtained by collision diffusion development of the fuel jet group The fuel mixture density is high in the vicinity of the part and the collision part, and the stratified air supply condition of the fuel group is established in which the arrival of the fuel group is suppressed in the end area of the disk-like volume part.

即ち燃料と空気との混合条件を燃焼室中心域に任意とし円盤状周端域部を空気や既燃ガス域とする燃料群の層状給気条件を構成するために燃焼室の形状を上下の回路的容積部構造とし、燃料の噴射条件を燃焼室の上部ノズルより中空の環状円推状の拡散展開パターンとしてピストン面に向けて噴射供給し、燃焼室雰囲気温度や空気密度との接触条件を時系的に促進し燃料群の気化活性化条件を合理的に構成したことにある。In other words, the combustion chamber is shaped like an upper and lower circuit in order to construct a layered air supply condition for a fuel group in which the mixing condition of the fuel and air is arbitrarily set in the center region of the combustion chamber and the disk-shaped peripheral end region is the air or burned gas region. It has a volumetric structure, and fuel injection conditions are injected and supplied from the upper nozzle of the combustion chamber toward the piston surface as a hollow annular circular diffusion expansion pattern, and the contact conditions with the combustion chamber atmosphere temperature and air density are timed. The reason is that the fuel group vaporization activation conditions are rationally configured.

燃料噴射ノズルとピストン間との間隔を離し噴射燃料群の気化混合や燃焼条件の促進を図り噴流の慣到抑制と燃焼室中心軸域に濃い混合気群の層状展開を構成し端域に達する燃料を制御したことを特徴とした内燃機関の層状給気燃焼方式を燃焼室容積部の上下回路的な燃焼室構成と燃料噴霧流と衝突拡散条件との整合により構築した事にある。The gap between the fuel injection nozzle and the piston is separated to promote vaporization and mixing of the injected fuel group and combustion conditions, to suppress the conventional flow of the jet, and to form a stratified expansion of the rich mixture group in the central axis of the combustion chamber and reach the end region A stratified charge combustion system of an internal combustion engine characterized by controlling the fuel is constructed by matching the combustion chamber configuration in the upper and lower circuits of the combustion chamber volume, fuel spray flow, and collision diffusion conditions.

二番目の発明は内燃機関の熱効率向上と騒音や排気の低公害化を図りうる理想的燃焼条件の構築を燃料群の層状給気方式によって具現化しうる燃料衝突拡散部の構成である、如何なる機械加工技術を駆使しても燃料噴流の衝突拡散作用のごとく衝突部を起点として燃料群を多方向に分裂させ立体的に微細的に拡散展開させうる作用は衝突拡散以外に燃料噴射ノズルによって行なう事は出来ないのである。従って衝突部における燃料群の衝突攪乱や拡散混合による燃料活性化作用と貫徹性減衰作用とは本層状給気方式構成条件の重要事であり、衝突部の耐久性や衝突による攪乱混合効果を高めるために形成した多穴状の衝突部構造は超高圧を必要としない燃料群の衝突拡散展開技法である。The second invention is a construction of a fuel collision diffusion section capable of realizing ideal combustion conditions that can improve the thermal efficiency of an internal combustion engine and reduce the pollution of noise and exhaust by means of a layered charge system of a fuel group. Even if the processing technology is fully utilized, the fuel injection nozzle can perform the action of dividing the fuel group in multiple directions starting from the collision part and allowing it to diffuse and expand three-dimensionally finely, like the collision diffusion action of the fuel jet. Is not possible. Therefore, the fuel activation and penetration damping effect due to collision disturbance and diffusion mixing of the fuel group in the collision part are important in the configuration conditions of this layered air supply system, and enhance the durability of the collision part and the disturbance mixing effect due to the collision. Therefore, the multi-hole collision part structure formed for this purpose is a collision diffusion deployment technique for fuel groups that does not require ultra-high pressure.

三番目の発明は円筒又は円推筒状に構成した上部燃焼容積部内に複数の燃料噴流衝突拡散用突出部や邪魔棒部を設けて混合気群の気化活性化や着火火炎群の攪乱燃焼を促進し、燃料群の噴射慣到性や拡散火炎の端域慣到性を抑制した層状給気と層状燃焼の構築にあり燃料群の一部が邪魔棒部に衝突か接触する事で活性化し点火源を起点とした均等的火炎伝播燃焼が行なえる燃料衝突面部を有しない層状給気燃焼方法と着火技術にある。In the third aspect of the present invention, a plurality of fuel jet collision diffusion protrusions and baffle rods are provided in the upper combustion volume configured as a cylinder or a circular cylinder to activate the vaporization of the air-fuel mixture group and the turbulent combustion of the ignition flame group. It is activated by stratified charge and stratified combustion that promotes and suppresses the fuel group injection inertia and diffusion flame edge area inertia, and is activated when a part of the fuel group collides with or comes in contact with the baffle rod part There is a stratified charge combustion method and an ignition technique that do not have a fuel collision surface portion that can perform uniform flame propagation combustion starting from an ignition source.

四番目の発明は円筒又は円推筒状の上部燃焼容積頂部の燃料ノズルからの中空環状拡散燃料噴流群の供給燃料拡散パターンを制御する手段として、噴射ノズル芯弁の開閉リフトの可変的制御を電子制御によりおこない、無負荷時においても給気を絞る事無く運転しノッキングを抑制した高圧縮比着火拡散燃焼によって多種燃料の使用を可能とし機関の高過給化や高圧縮比の採用により省エネと低公害化の目的を達することにある。The fourth invention provides variable control of the opening / closing lift of the injection nozzle core valve as means for controlling the supply fuel diffusion pattern of the hollow annular diffusion fuel jet group from the fuel nozzle at the top of the upper combustion volume of a cylindrical or circular cylinder. Electronic control, operation without reducing the supply air even when there is no load, high compression ratio ignition diffusion combustion that suppresses knocking enables the use of various fuels and energy saving by adopting a high supercharging engine and adopting a high compression ratio And to achieve the goal of low pollution.

燃焼室中心域に燃料混合気密度を任意としその周域を空気層によって囲成してなる層状給気方法とその燃焼雰囲気の構成を具現化する手段と作用効果を図面によって説明する。A layered air supply method in which the fuel mixture density is arbitrarily set in the central region of the combustion chamber and the peripheral region thereof is surrounded by an air layer, means for realizing the configuration of the combustion atmosphere, and the operation and effect will be described with reference to the drawings.

第1図第2図第3図、第4図、図5、を参照に説明すると、1はシリンダーブロック、2はシリンダーヘッド、3は1内で往復運動するピストン、4はシリンダーヘッド2内に構成されている中心軸燃焼室容積部、5は燃料噴射ノズル、6は火花点火栓又は着火用グロープラグ、7は吸気バルブ、8は排気バルブ、9はピストン面の円盤状容積部、10は燃料噴射用ポンプ、11はピストンの燃料噴流衝突面、12はスロットルノズル、13は噴射燃料の円推状中空噴霧拡散形、14は燃焼室スキッシュ域、15は燃料噴射調整部16は多穴状衝突部、17は吸気口、18は排気口、19は動弁バネ、20は燃料加熱装置、21は中空拡散燃料パターン、小矢印は燃料噴流・大矢印は空気、排気の移動方向を示す。1, FIG. 2, FIG. 3, FIG. 4, and FIG. 5, 1 is a cylinder block, 2 is a cylinder head, 3 is a piston that reciprocates in 1, 4 is in the cylinder head 2 The central axis combustion chamber volume part, 5 is a fuel injection nozzle, 6 is a spark spark plug or an ignition glow plug, 7 is an intake valve, 8 is an exhaust valve, 9 is a disk-like volume part on the piston surface, 10 is Fuel injection pump, 11 is a fuel jet impingement surface of a piston, 12 is a throttle nozzle, 13 is a circularly propelled hollow spray diffusion type of injected fuel, 14 is a combustion chamber squish area, 15 is a multi-hole shaped fuel injection adjusting section 16 Collision part, 17 is an intake port, 18 is an exhaust port, 19 is a valve operating spring, 20 is a fuel heating device, 21 is a hollow diffusion fuel pattern, a small arrow indicates a fuel jet, and a large arrow indicates the direction of movement of air and exhaust.

シリンダーヘッド部2の中心域に構成する主燃焼室容積部は吸排気弁7・8の間に構成する必要性から小径であり、上部に燃料噴射ノズル5とその左右に火花点火或いは燃料着荷用プラグ6を配備し、小径円錐筒状容積部4の下部はピストン面の円盤状容積部9に連通されて全燃焼室容積部が回路的に構成されピストン3の熱負荷を分担している。The main combustion chamber volume part formed in the central region of the cylinder head part 2 has a small diameter because it is necessary to be provided between the intake and exhaust valves 7 and 8, and the upper part is for the fuel injection nozzle 5 and the left and right thereof for spark ignition or fuel arrival. A plug 6 is provided, and the lower part of the small-diameter conical cylindrical volume part 4 communicates with a disk-like volume part 9 on the piston surface so that the entire combustion chamber volume part is configured in a circuit and shares the heat load of the piston 3.

第一図で示す火花点火方式エンジンにおける燃料の噴射供給時期はピストン3の吸気からの早期噴射も可能であるがEFIと同じく早期な噴射は広域に広がり端域迄に燃料を拡散し端域ノッキングの原因を構成することになる。この問題を回避し燃焼室端域に燃料の到達することを制御するには各周端域より最も離れた位置、即ち燃焼室中心軸域にピストン圧縮行程に合せて噴射すれば燃料群の層状展開に有利なことが理解できる。The fuel injection timing of the spark ignition engine shown in Fig. 1 allows early injection from the intake air of the piston 3, but as with EFI, the early injection spreads over a wide area and diffuses the fuel to the end region and knocks the end region. Will constitute the cause. In order to avoid this problem and control the arrival of fuel at the end of the combustion chamber, if the fuel is injected in the position farthest from each peripheral end, i.e., the central axis of the combustion chamber in accordance with the piston compression stroke, the fuel group will be layered. It can be seen that it is advantageous.

従ってシリンダー上部の中心軸主容積部4内の上部から下部に向かい燃料を噴射すればピストン面間で構成される上容積部内での主な燃料の拡散展開が実現されシリンダー周端域に燃料を配分する事が少なく中心軸域に燃料混合気密度を自在とする層状燃料の分布形態構成がピストン3の圧縮により高まりつつある燃焼室空間内で構成され端域に達する燃料は少なく燃料噴射タイミングの調整によって拡散展開の条件は変化するも燃焼室中心軸域に燃料展開密度の高い層状燃料域が構成される基本は変らず端域迄に達する燃料分の展開が抑制されるので端域ノッキング現象は起こらない。Therefore, if fuel is injected from the upper part to the lower part in the central axis main volume part 4 at the upper part of the cylinder, the main fuel is diffused and deployed in the upper volume part formed between the piston surfaces, and the fuel is distributed to the cylinder peripheral end region. The distribution configuration of the stratified fuel that allows the fuel mixture density to be freely controlled in the central axis region is configured in the combustion chamber space that is increasing by the compression of the piston 3, and the amount of fuel that reaches the end region is small. By adjusting the fuel injection timing Although the conditions of diffusion and expansion change, the basic structure of the stratified fuel region with high fuel expansion density in the central axis region of the combustion chamber does not change, and the expansion of the fuel reaching the end region is suppressed, so the end region knocking phenomenon does not occur. Absent.

このため機関のアイドリングや軽負荷時においても遅噴射や層状燃焼特性によって吸気を絞る事なく部分負荷運転が行なえ、高出力の必要時には排気タービン等による高過給や高圧縮比の採用が端ガスノッキングを抑制した層状給気燃焼によって実現される。この層状燃焼システムによれば燃料のオクタン価やセタン価に合せた圧縮比として低質燃料からガス燃料まで幅広い燃料がエンジン燃料として使われることになる。Therefore, even when the engine is idling or lightly loaded, it is possible to perform partial load operation without restricting the intake air due to slow injection and stratified combustion characteristics, and when high output is required, the use of a high supercharge or high compression ratio by an exhaust turbine etc. Realized by stratified charge combustion with reduced knocking. According to this stratified combustion system, a wide range of fuels from low quality fuel to gas fuel are used as engine fuels as compression ratios according to the octane number and cetane number of the fuel.

次に本層状給気方式による圧縮着火燃焼方式を従来の直噴ディーゼル燃焼方式と比較して説明する。Next, the compression ignition combustion method by this layered air supply method will be described in comparison with the conventional direct injection diesel combustion method.

燃焼室中心に多噴孔ノズルを配し燃焼室の端域に向けて燃料を多噴孔で拡散噴射する方式では如何に噴射を超高圧化しても細径多噴孔化しても燃料群が燃焼室端域に達し同時的に反応する物理の基本は変らない。この各端域における同時的反応に因る急激な直噴ディーゼル反応が騒音とNOxや排気煤塵問題因となり解決至難な問題となっている。With a multi-injection nozzle at the center of the combustion chamber and fuel is diffusely injected into the end region of the combustion chamber through the multi-injection holes, the fuel group can be produced no matter how the injection is made ultra-high pressure or small-diameter multi-injection. The basics of physics that reach the end of the combustion chamber and react simultaneously do not change. The rapid direct-injection diesel reaction due to the simultaneous reaction in each end region causes problems with noise, NOx and exhaust dust, making it difficult to solve.

その原因は直噴ディーゼルの多噴孔ノズルによる指向的端域噴射方法と燃料群が高圧高温の燃焼雰囲気で燃焼する物理的条件「液体燃料は微粒化しても高温に触れる外側から燃え始めるのでその内部は燻蒸化し炭化煤塵が生成する」に加え、着火遅れ現象で燃焼室端域迄に達する燃料群が同時的に反応することで生ずるノッキングに近い急激な圧力上昇率による燃焼騒音とNOxを増加させる直噴ディーゼル本来の特性にあります。The cause is the directional end region injection method with a multi-hole nozzle of direct injection diesel and the physical condition that the fuel group burns in a high-pressure and high-temperature combustion atmosphere. In addition to fumigation inside, carbonized dust is generated '', and combustion noise and NOx increase due to a sudden pressure increase rate close to knocking caused by simultaneous reaction of fuel groups reaching the end of the combustion chamber due to an ignition delay phenomenon It has the original characteristics of direct injection diesel.

従って直噴ディーゼルの機能を向上させ低公害化を図るには先ず直噴ディーゼルエンジンの基本とされてきた既成概念を考え直し、燃焼室中心域から多噴孔ノズルで燃焼室多端域の多方向に燃料を拡散噴射する従来の方法の限界と、発生する多くの矛盾と弊害を冷静に判断し燃焼を支配する燃料と空気や燃焼室構造を見究める必要があります。
燃料噴流群が各到達域で同時的に反応することに因る急激で破壊的な圧力上昇率と騒音の対策で機関の剛性を高める必要性がディーゼル機関を重くし価格を高くしています。
Therefore, in order to improve the function of direct injection diesel and reduce pollution, first consider the existing concept that has been the basis of direct injection diesel engine, and use the multi-hole nozzle from the combustion chamber center area in multiple directions of the combustion chamber multi-end area. It is necessary to look carefully at the limitations of the conventional method of diffusing and injecting fuel and the many contradictions and harmful effects that occur and to determine the fuel, air, and combustion chamber structure that govern combustion.
The need to increase the rigidity of the engine due to the rapid and destructive pressure increase rate and noise countermeasures due to the simultaneous reaction of the fuel jets in each reach area makes the diesel engine heavy and expensive.

さらに高い圧力上昇率は燃焼過程でNOxを増加し端域での空気利用率の低下によって燃料の燻蒸反応による炭化煤塵問題がいまも解決されることなく続いております。The higher pressure rise rate continues to increase NOx during the combustion process, and the problem of carbonization and dust caused by the fumigation reaction of the fuel continues due to the decrease in the air utilization rate in the end region.

これらの事からディーゼル機関の熱効率を高め低公害化を進めるには既成の燃焼方式を見直し人類の身近な動力として安易に経済的に使えるように静かで力強く安価で安心できる新燃焼技術の早期な実用化を促進する必要があります、その為には燃焼室の中心軸域を起点としたノッキングのない均等な火炎伝播や拡散火炎燃焼の行なえる燃料と空気との合理的整合条件を構成しうる層状的給気と燃焼条件の構築が必要なのであります。For these reasons, in order to increase the thermal efficiency of diesel engines and reduce pollution, the existing combustion method is reviewed and new combustion technology that can be used easily and economically as a familiar motive power for mankind is early in the new combustion technology that can be relieved quietly, powerfully and cheaply It is necessary to promote practical application. To that end, it is possible to construct a rational condition for fuel and air that can perform uniform flame propagation and diffusion flame combustion without knocking starting from the central axis of the combustion chamber. It is necessary to construct stratified charge and combustion conditions.

従って直噴燃料の衝突拡散展開を特徴とするOSKAシステムの応用によれば衝突拡散燃料群の拡散動向は資料写真のごとく如何なる機械工作技術でも不可能な立体的で微細な拡散混合展開パターンの構成と慣到性を抑制した展開作用で衝突部を設置した燃焼室中心域に濃い混合気域が構成される事になります。Therefore, according to the application of the OSKA system characterized by the collision diffusion development of direct injection fuel, the diffusion trend of the collision diffusion fuel group is a three-dimensional and fine diffusion mixture development pattern that is impossible with any machining technique as shown in the photograph. A rich air-fuel mixture region is formed in the center of the combustion chamber where the collision part is installed due to the expansion action that suppresses inertia.

この燃料噴流の衝突拡散作用や攪乱作用は多噴孔ノズル10の噴流と較べ慣到性が衝突拡散によって抑制されるので衝突部近傍の雰囲気中より離れた位置には燃料の供給が少なく、燃料の噴射供給条件もピントルやスロットルや茸弁タイプによる中空環状拡散噴霧として衝突部に衝突させて燃料の拡散燃料反応を促進する事によれば燃焼室中心域を起点とした静かな燃焼反応が高過給や高圧縮比化によって行なへるので機関の高効率化と低公害化の目的を超高圧噴射技術を用いることなく達成する事ができるのです。Since the collision diffusion and disturbance of the fuel jet are suppressed by the collision diffusion compared with the jet of the multi-hole nozzle 10, the supply of fuel is less at a position farther away from the atmosphere in the vicinity of the collision portion. As for the injection supply condition of the fuel, a quiet combustion reaction starting from the central region of the combustion chamber is enhanced by colliding with the collision part as a hollow annular diffusion spray of pintle, throttle or soot valve type to promote the diffusion fuel reaction of fuel. Because it is done by supercharging and high compression ratio, the purpose of high efficiency and low pollution of the engine can be achieved without using super high pressure injection technology.

図5に示すが如く本発明に用いる燃料噴射ノズルはスロットルタイプを用いているがこのノズル心弁リフトを制御する事によれば噴射される燃料の拡散展開パターンは円推状の中空環状拡散パターンとして小径の燃焼室容積部の頂部より狭角で噴射され容積部の空気と衝突しながら下部のピストン容積部に向かって進行し、容積部下部域に格子状に設けられた燃料衝突部により気化混合や高温既燃ガスの攪乱混合作用が促進されるのでNOxやPM2・5の低減と共に衝突部やピストン面の燃焼熱負担も軽減される。As shown in FIG. 5, the fuel injection nozzle used in the present invention uses a throttle type. By controlling the nozzle heart valve lift, the diffusion and deployment pattern of the injected fuel is a circular hollow annular diffusion pattern. As a small-diameter combustion chamber volume part is injected at a narrow angle from the top of the combustion chamber and collides with air in the volume part, proceeds toward the lower piston volume part, and is vaporized by a fuel collision part provided in a lattice shape in the lower part of the volume part Since mixing and disturbing mixing of high-temperature burned gas are promoted, NOx and PM2 · 5 are reduced, and the burden of combustion heat on the collision part and the piston surface is reduced.

従ってノズルからピストン容積部までに到る小径燃焼部の途中に着火源を配備する事によれば噴射燃料群の一部は確実に点火源に触れる事になり、この着火源を起点とした安定した燃焼反応が静粛急速に進行し目的とする比出力の向上と騒音・振動を含めたディーゼルエンジンの問題点のすべてが改善され排気の低公害化が実現されることになる。Therefore, if an ignition source is provided in the middle of the small-diameter combustion section extending from the nozzle to the piston volume, a part of the injected fuel group will surely come into contact with the ignition source. The stable and stable combustion reaction proceeds quietly and rapidly, and all of the problems of the diesel engine, including noise and vibration, are improved, and the low pollution of exhaust is realized.

発明の効果The invention's effect

本発明の燃料直噴方式による層状給気方式並びに燃焼方式による内燃機関の効果を説明すると次の如くである。The effects of the stratified charge system using the direct fuel injection system and the combustion system according to the present invention will be described as follows.

図1図2の如く燃焼室容積部側面図や正面図はシリンダー中心軸部を共有し上部を円推状容積部5とし、その下部に円盤状の容積部6をピストン面に構成して下部燃焼室とし、上部に燃料噴射ノズル11を有する構成である。As shown in FIG. 1, the combustion chamber volume side view and front view share the cylinder central shaft portion, the upper portion is a circular thrust volume portion 5, and the disk-shaped volume portion 6 is formed on the piston surface below the lower portion. The combustion chamber has a fuel injection nozzle 11 at the top.

ノズル11よりの噴射燃料群をスロットルノズルの開弁リフトを調整し狭角で中空の環状噴射パターン23として下部のピストン容積部に軸状に貫徹性を抑制して供給し、ピストン面或いは多穴状衝突部9で衝突拡散させれば、燃焼室中心軸域での燃料の気化・混合・活性化が進み燃焼室中心軸域に燃料密度が濃く、円盤状燃焼室端域に達する燃料群の流動エネルギーは減速され端域に燃料の達しない層状給気の展開が構成される。A group of injected fuel from the nozzle 11 is supplied as a narrow-angle, hollow annular injection pattern 23 by adjusting the valve opening lift of the throttle nozzle, and is supplied to the lower piston volume portion while suppressing the penetrability in the axial direction. If the collision is diffused at the cylindrical collision part 9, the fuel is vaporized, mixed and activated in the central axis region of the combustion chamber, the fuel density is high in the central axis region of the combustion chamber, and the fuel group reaching the disc-shaped combustion chamber end region The flow energy is decelerated, and the development of the stratified charge air that does not reach the end region is constituted.

また上部円筒状燃焼容積部5内に図5の如く拡散噴霧パターンの一部が接触するように複数の着火源部12・13や耐熱性邪魔棒24を配備する事によれば噴射燃料群中の粒子群は邪魔棒部に接触し攪乱される事で気化・活性化が促進されるので燃料噴流を衝突部の衝突拡散作用により微細化気化が図れるために燃料衝突部9は不要となる。Further, by arranging a plurality of ignition source parts 12 and 13 and a heat-resistant baffle rod 24 so that a part of the diffusion spray pattern is in contact with the upper cylindrical combustion volume part 5 as shown in FIG. Since the particles inside are in contact with the baffle rod and are disturbed, vaporization and activation are promoted, so the fuel jet can be atomized and vaporized by the collision diffusion action of the collision part, so the fuel collision part 9 becomes unnecessary. .

この様な層状給気方法と燃焼方法によれば従来の燃焼方式では改善出来なかった諸問題点が悉く改善解決される事になる。According to such a stratified air supply method and combustion method, various problems that could not be improved by the conventional combustion method can be improved and solved.

先ずディーゼルエンジンの特性とされてきたノッキングに近い急激な燃焼圧力上昇率の原因である多噴孔高圧噴射の端域同時反応による燃焼騒音が低減されることになると同時に高い燃焼圧力と温度とによって生成されるNOxが減少し機関が静かに軽量化する。First, the combustion noise due to the simultaneous reaction of the multi-hole high pressure injection, which is the cause of the rapid combustion pressure increase rate close to knocking, which has been the characteristic of diesel engines, is reduced, and at the same time, the high combustion pressure and temperature The generated NOx is reduced and the engine is quietly lightened.

この層状給気方式や層状燃焼方式によれば超高圧などの高動力を要しなく、高価な噴射系を必要としなく目的とする内燃機関の熱効率向上や高機能化や燃焼騒音や排気中の有害成分の低減目的が行へ、困難とされているNOxや煤塵・SOF・PM2・5などの後処理負担を軽減できるので機関の価格低減と共に大きな経済効果が期待できる。This layered air supply method and layered combustion method do not require high power such as ultra-high pressure, and do not require an expensive injection system, improving the thermal efficiency of the intended internal combustion engine, enhancing its functionality, combustion noise, The purpose of reducing harmful components can be reduced, and post-processing burdens such as NOx, soot, SOF, PM2, and 5 that are considered difficult can be reduced, so a great economic effect can be expected along with a reduction in the price of the engine.

特に機関熱効率の改善を阻害している火花点火機関のエンドガスノッキング現象や直噴ディーゼルの特性とされている多噴孔拡散ノズルに因る端域同時反応のノッキングに近い急激な圧力上昇率の騒音やNOx排気煤塵の問題が解決されるので高過給化や高圧縮比の採用が可能となり機関の比出力と低公害化課題が飛躍的に改善される効果は大きい。In particular, the end gas knocking phenomenon of spark ignition engines that hinders the improvement of engine thermal efficiency and the rapid pressure increase rate close to the knocking of the end region simultaneous reaction due to the multi-hole diffusion nozzle that is considered to be the characteristic of direct injection diesel Since the problems of noise and NOx exhaust dust are solved, it is possible to adopt a high supercharging and high compression ratio, and the effect of dramatically improving the specific output and low pollution problem of the engine is great.

即ち現用技術により実施可能な内燃機関の改善を本発明の層状給気方法と層状燃焼方式により改革すれば大きな設備投資や新技術の開発を待つまでもなく現用エンジンよりも燃費が格段に優れ低公害で地球環境の保全に有益なエンジンの早期実用化が出来る。In other words, if the improvement of the internal combustion engine that can be implemented by the current technology is reformed by the stratified charge method and the stratified combustion method of the present invention, the fuel efficiency is significantly lower than the current engine without waiting for a large capital investment and development of a new technology. Engines that are useful for environmental conservation due to pollution can be put to practical use at an early stage.

多穴状の燃料噴流衝突部9もインコネル等の耐熱線材で網状に構成することも有効自在であり、噴射弁や噴射燃料系の加熱22による効果も寒冷地などの運転時に有効である、高動力を要し高価な超高圧噴射技術を必要としなく直噴ディーゼルの問題とされて来た機能が改善・解決される本技術は地球と人類の未来に大きな利益をもたらす。The multi-hole fuel jet impinging portion 9 can also be effectively configured in a net shape with a heat-resistant wire such as Inconel, and the effect of the heating 22 of the injection valve and the injected fuel system is also effective during operation in a cold region, etc. This technology, which requires power and does not require expensive ultra-high pressure injection technology, improves and solves the functions that have been regarded as a problem of direct injection diesel, and will bring great benefits to the future of the earth and humanity.

第1図は本発明の1つの実施例を示す内燃機関の側面断面図と制御回路図、FIG. 1 is a side sectional view of an internal combustion engine and a control circuit diagram showing one embodiment of the present invention, 第2図はシリンダーヘッド部の平面図、Fig. 2 is a plan view of the cylinder head, 図3は別の実施例を示す側断面図、FIG. 3 is a side sectional view showing another embodiment, 図4は燃料噴射系および点火処理系のフローチャート、FIG. 4 is a flowchart of a fuel injection system and an ignition processing system. 第5図はスロットルノズル拡大図と噴射燃料群の狭角中空環状噴霧パターン、FIG. 5 is an enlarged view of the throttle nozzle and a narrow-angle hollow annular spray pattern of the injected fuel group, 多穴状燃料衝突部の平面図を示す。The top view of a multihole fuel collision part is shown.

1・・・シリンダー
2・・・ピストン
3・・・シリンダーヘッド
4・・・燃焼室
5・・・上円推筒状燃焼容積部
6・・・下円盤状燃焼容積部
7・・・燃焼室スキッシュ域
8・・・燃焼室端域
9・・・多穴状噴流衝突部
10・・・多噴孔燃料噴射ノズル
11・・・スロットルノズル
12・・・点火栓
13・・・グロープラグ
14・・・燃料噴射用カム
15・・・燃料ポンプ
16・・・電子制御ユニット
17・・・吸気弁
18・・・排気弁
19・・・吸気口
20・・・排気口
21・・・動弁用バネ
22・・・燃料加熱装置
23・・・中空拡散燃料噴射パターン
24・・・攪乱邪魔棒
小矢印は燃料噴流の移動方向
大矢印は空気・排気の移動方向を示す。
DESCRIPTION OF SYMBOLS 1 ... Cylinder 2 ... Piston 3 ... Cylinder head 4 ... Combustion chamber 5 ... Upper circular cylindrical combustion volume part 6 ... Lower disk shaped combustion volume part 7 ... Combustion chamber Squish area 8 ... Combustion chamber end area 9 ... Multi-hole jet collision part 10 ... Multi-hole fuel injection nozzle 11 ... Throttle nozzle 12 ... Spark plug 13 ... Glow plug 14 .... Fuel injection cam 15 ... Fuel pump 16 ... Electronic control unit 17 ... Intake valve 18 ... Exhaust valve 19 ... Intake port 20 ... Exhaust port 21 ... For valve actuation Spring 22 ... Fuel heating device 23 ... Hollow diffusion fuel injection pattern 24 ... Disturbing baffle Small arrow indicates the direction of fuel jet movement Large arrow indicates the direction of air / exhaust movement.

Claims (4)

ピストン式エンジンのシリンダーヘッド部中心域に円錐筒状の燃焼室容積部を構成して主燃焼容積部とし、その下部を扁平円盤状のピストン容積部に連通して全燃焼容積部を構成する内燃機関構造とし、円錐筒状容積部内に燃焼点火着火用プラグを配備し、下部に連通する円盤状容積部のピストン中心面に円錐筒状容積部上部の燃料噴射弁から噴射する燃料噴霧中の粗粒子分をピストン面に衝突させ、衝突作用と熱雰囲気作用によって燃料噴霧群の微細気化活性化を図り、燃焼室中心域と主燃焼容積部を起点とした燃焼反応域の構成を特徴とした層状給気条件の構成を直噴燃料群の中空環状拡散展開と慣到性を制御した燃料供給手段により円盤状容積部端域の燃料到達を抑制し燃焼室中心域に燃料混合気密度を任意とする層状給気燃焼条件を構成し、燃料群の気化・混合・活性化を促進した燃焼室中心域を主な燃焼反応域とした層状給気燃焼により燃焼室端域で発生するノッキング現象を排除して機関の高過給化や高圧縮比化を可能とし、比出力の向上と共に排気中の有害成分低減を図る内燃機関の層状給気燃焼方法。An internal combustion engine that forms a conical cylindrical combustion chamber volume in the central area of the cylinder head of a piston-type engine to serve as a main combustion volume, and a lower part thereof communicates with a flat disk-shaped piston volume. The engine structure has a combustion ignition ignition plug in the conical cylindrical volume part, and a rough surface in the fuel spray injected from the fuel injection valve on the upper part of the conical cylindrical volume part on the piston central surface of the disk-shaped volume part communicating with the lower part. The particles are collided with the piston surface, and the fuel spray group is activated by micro-evaporation by collision and thermal atmosphere, and the layer structure is characterized by the structure of the combustion reaction zone starting from the center of the combustion chamber and the main combustion volume The structure of the air supply condition is controlled by the fuel annular distribution of the direct injection fuel group and the fuel supply means that controls the inertia. Stratified charge air combustion conditions High-supercharging of the engine by eliminating the knocking phenomenon that occurs at the end of the combustion chamber due to stratified charge combustion with the central region of the combustion chamber that promotes vaporization, mixing, and activation of the fuel group as the main combustion reaction zone Stratified charge combustion method for an internal combustion engine that can achieve a higher compression ratio and lower specific components in exhaust gas while improving specific output. 燃焼室の中心域に燃焼容積部を円筒状と円盤状との連通構成として設けた燃焼室容積部を有する内燃機関において、円筒燃焼室内の上部より燃料を侠角中空環状拡散方式で下方に噴射し、円筒燃焼室内で任意な燃料混合気群の気化・混合・活性化条件を促進する手段として、円筒容積部内に供給する燃料噴射拡散噴流群の一部が接触や衝突や攪乱作用によって活性化が促進されるように、複数の耐熱材による邪魔棒部を配備する事を特徴とし、混合気群の気化活性化促進と燃焼膨張ガス流の熱混合作用の促進によって、連通する円盤状燃焼室端域部に達する燃料群の展開を空気または既燃ガス層を介して抑制する事とし、燃焼室中心域の燃焼容積部において反応し生成する燃焼ガス噴流を下部の円盤状容積部に展開する膨張行程においては円盤状容積部の空気や不活性ガス層で燃焼膨張ガス流動を囲成する如くに受け止める層状燃焼条件の構成を特徴とし、燃料の狭角中空環状拡散作用と円筒容積部の邪魔棒による衝突攪乱作用と熱雰囲気による微細化・気化・活性化の促進により燃焼室中心域の確実な層状給気条件と層状燃焼条件を構築する層状給気燃焼方式内燃機関。In an internal combustion engine having a combustion chamber volume portion in which the combustion volume portion is provided in a communication area of a cylindrical shape and a disk shape in the central region of the combustion chamber, fuel is injected downward from the upper portion of the cylindrical combustion chamber by the depression hollow annular diffusion method. However, as a means to promote the vaporization, mixing, and activation conditions of an arbitrary fuel mixture group in the cylindrical combustion chamber, a part of the fuel injection diffusion jet group supplied into the cylindrical volume is activated by contact, collision, or disturbance. It is characterized by arranging baffle rod parts made of a plurality of heat-resistant materials so as to promote the gasification, and the disk-like combustion chamber communicated by promoting the vaporization activation of the gas mixture and the heat mixing action of the combustion expansion gas flow The expansion of the fuel group reaching the end region is suppressed through the air or the burned gas layer, and the combustion gas jet that reacts and generates in the combustion volume in the central region of the combustion chamber is developed in the lower disk-shaped volume. Yen in the expansion stroke It is characterized by the structure of stratified combustion conditions that receive the flow of combustion expansion gas with air or inert gas layer in the volume of the volume, and the narrow angle hollow annular diffusion action of fuel and the impact disturbance action by the baffle rod of the cylinder volume Stratified charge combustion system internal combustion engine that builds reliable stratified charge condition and stratified condition in the central region of combustion chamber by promoting miniaturization, vaporization and activation by heat atmosphere. 燃料の直噴と燃焼室内の燃料衝突作用によって燃焼室内の空気と燃料の気化混合や燃焼反応を促進するOSKAシステム内燃機関において、燃焼室中心軸域容積部の上部燃料噴射弁から噴射する燃料群が容積部の下部に設けた燃料衝突部かピストン面迄に到達する時系的要素を大とする手段とし、燃焼室中心軸部の燃料噴射弁と下部の燃料噴流衝突部間との距離を広げるべく中心容積部を円推筒状に形成して主燃焼室部とし、この円推筒状主容積部の下域をヘッド部とピストン間で形成する円盤状の下部容積部に連通して両燃焼室部の連結を回路的に絞り部を有しない燃焼室の構成を特徴とした内燃機関において、噴射燃料群を中空の環状拡散噴霧パターンとして気化条件を促進し主に上部燃焼室中心軸域に燃料混合気密度が濃くピストン間で構成する円盤状容積部端域への燃料展開を抑制した層状給気条件を構築し、燃焼室容積部の回路的構成と、燃料噴射ノズルの中空環状拡散パターンと、燃料噴流の衝突部による攪乱混合作用と、ピストン上部面の耐熱処理と燃料系の加熱作用とにより、燃料群の気化混合や燃焼反応の構成に必要な時系的条件や物理化学的条件の整合を電子制御により行い、燃焼室中心域を起点とする層状燃焼反応条件を構築し、ディーゼル燃焼においては急激な燃焼に因る騒音とNOxや燻蒸煤塵の生成を抑制し、火花点火方式においてはエンドガスによるノッキング現象を解消する事により機関の高過給化や高圧縮比化を可能とし、機関の熱効率向上によるCO2の削減と省エネ目的を達し、超高圧噴射技術でも解決できなかったディーゼル排気の煤塵やNOx問題を100Mパスカル以下の噴射圧力とスロットルノズルによる直噴方式の電子制御技術により解決した内燃機関の層状給気燃焼方法。In an OSKA system internal combustion engine that promotes vaporization mixing and combustion reaction of air and fuel in the combustion chamber by direct fuel injection and fuel collision action in the combustion chamber, fuel group injected from the upper fuel injection valve in the combustion chamber central axial region Is a means to increase the systematic factor when the fuel collision part provided at the lower part of the volume part reaches the piston surface, and the distance between the fuel injection valve at the central axis of the combustion chamber and the fuel jet collision part at the lower part is determined. In order to expand, the central volume part is formed in a circular cylindrical shape to be a main combustion chamber part, and the lower region of the circular cylindrical main volume part communicates with a disk-like lower volume part formed between the head part and the piston. In an internal combustion engine characterized by the structure of a combustion chamber that does not have a throttle part in circuit connection between the two combustion chambers, mainly the central axis of the upper combustion chamber promotes the vaporization conditions with the injected fuel group as a hollow annular diffusion spray pattern Between the pistons with a dense fuel mixture density A layered air supply condition that suppresses fuel expansion to the end of the disk-shaped volume part is constructed, and the circuit configuration of the combustion chamber volume, the hollow annular diffusion pattern of the fuel injection nozzle, and the disturbance due to the collision part of the fuel jet The mixing action, heat treatment of the upper surface of the piston and the heating action of the fuel system are used to electronically control the time-series conditions and physicochemical conditions required for vaporization mixing of the fuel group and the composition of the combustion reaction. Establish stratified combustion reaction conditions starting from the center of the chamber, suppress noise and NOx and fumigation dust generation due to sudden combustion in diesel combustion, and eliminate knocking phenomenon due to end gas in spark ignition system Makes it possible to increase the turbocharging and compression ratio of the engine, reduce CO2 by improving the engine's thermal efficiency and achieve energy-saving objectives. Diesel exhaust dust that could not be solved by ultra-high pressure injection technology Stratified charge combustion method for an internal combustion engine which solves the NOx problem by electronic control technology straight 噴方 type by following the injection pressure and the throttle nozzle 100M Pascal. 燃焼室構造と燃料噴射形態と燃料加熱装置との整合により、如何なる液体や気体の燃料でもオクタン価・セタン価の壁を越え圧縮着火内燃機関の燃料として利用しうるように、燃料供給条件を高圧縮比化する燃焼室雰囲気の上部ノズルより分割的に噴射律則で調整した燃料群として燃焼室内に噴射供給することとし、燃焼室中心域を起点とする圧縮着火燃焼反応域の構成を高圧縮比による圧縮着火層状燃焼条件で構築し、高い圧縮比の採用や高過給による運転によって機関熱効率を向上し燃焼騒音や排気の低公害化目的を達しうる事を特徴とした前記特許請求項1・2・3記載の圧縮着火方式多種燃料内燃機関。The fuel supply conditions are highly compressed so that any liquid or gaseous fuel can be used as a fuel for compression ignition internal combustion engines, crossing the octane / cetane number wall by matching the combustion chamber structure, fuel injection configuration and fuel heating system. The combustion chamber atmosphere is to be injected and supplied into the combustion chamber as a fuel group that is divided and adjusted according to the injection law, and the structure of the compression ignition combustion reaction zone starting from the center region of the combustion chamber is set to a high compression ratio. The above-mentioned patent is characterized in that it is constructed under the compression-ignition stratified combustion conditions according to the above, and the engine thermal efficiency can be improved by adopting a high compression ratio and operation with high supercharging to achieve the purpose of reducing combustion noise and exhaust pollution. 2. A compression ignition type multi-fuel internal combustion engine according to 2.3.
JP2009167248A 2009-06-24 2009-06-24 Fuel direct injection stratified charge internal combustion engine and stratified combustion technique Pending JP2011007168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009167248A JP2011007168A (en) 2009-06-24 2009-06-24 Fuel direct injection stratified charge internal combustion engine and stratified combustion technique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009167248A JP2011007168A (en) 2009-06-24 2009-06-24 Fuel direct injection stratified charge internal combustion engine and stratified combustion technique

Publications (1)

Publication Number Publication Date
JP2011007168A true JP2011007168A (en) 2011-01-13

Family

ID=43564095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009167248A Pending JP2011007168A (en) 2009-06-24 2009-06-24 Fuel direct injection stratified charge internal combustion engine and stratified combustion technique

Country Status (1)

Country Link
JP (1) JP2011007168A (en)

Similar Documents

Publication Publication Date Title
CN109098835B (en) Combustion organization method of natural gas engine with low-pressure gas supply of precombustion chamber and high-pressure direct injection in cylinder
US6845746B2 (en) Internal combustion engine with injection of gaseous fuel
JP5118839B2 (en) In-cylinder direct injection internal combustion engine
JP4441620B2 (en) Gaseous fuel injection internal combustion engine and method of operating the same
KR101745005B1 (en) Diesel - Gasoline Complex Engine
JPH07332141A (en) Compressive ignition type gasoline engine
CN102734031B (en) The HCCI fuel injector propagated for sane spontaneous combustion and flame
US20190017477A1 (en) Multi-Fuel Combustion Methods, Devices and Engines Using the Same
CN110953067B (en) Engine and double-jet combustion method thereof
JP2008157197A (en) Cylinder injection type spark ignition internal combustion engine
JP2007162631A (en) Control device of internal combustion engine
JPS631710A (en) Spark ignition fuel injection stratified charge combustion system and various fuels high-compression stratified combustion engine
JP2011007168A (en) Fuel direct injection stratified charge internal combustion engine and stratified combustion technique
JP4023434B2 (en) Internal combustion engine capable of premixed compression self-ignition operation using two types of fuel
JPH07332140A (en) Compressive ignition type internal combustion engine
CN101368506A (en) Combustion system of directly jetting diesel engine
CN201554570U (en) Direct-injection gasoline engine piston
JP4145177B2 (en) Engine and operation method thereof
CN115750071B (en) Gasoline engine combustion system, engine and vehicle
Ganesan Combustion Aspects of Non-Conventional Reciprocating Internal Combustion Engines
JP2019082168A (en) Internal combustion engine directly injecting fuel in motion direction of intake air
JPS63129116A (en) Phase flow air charging system internal combustion engine
US20070261664A1 (en) Internal combustion engine with direct fuel injection
JP2011236882A (en) Method for combustion of fuel direct injection internal combustion engine, and direct injection compression ignition internal combustion engine
CN1218117C (en) Circumferential laminating combustion system of inside-cylinder direct injection for multi fuel internal combustion engine