JP2011007164A - Method for determining operation parameter for piston cylinder liner unit in low speed compression ignition two cycle engine - Google Patents

Method for determining operation parameter for piston cylinder liner unit in low speed compression ignition two cycle engine Download PDF

Info

Publication number
JP2011007164A
JP2011007164A JP2009154349A JP2009154349A JP2011007164A JP 2011007164 A JP2011007164 A JP 2011007164A JP 2009154349 A JP2009154349 A JP 2009154349A JP 2009154349 A JP2009154349 A JP 2009154349A JP 2011007164 A JP2011007164 A JP 2011007164A
Authority
JP
Japan
Prior art keywords
temperature
cylinder liner
air
determining
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009154349A
Other languages
Japanese (ja)
Inventor
Frantisek Sedlacek
フランティセク・セドラセク
Jacek Wyszynski
ジャセク・ウィスジンスキー
Konrad Heppel
コンラド・ヘッペル
Marek Kulesza
マレク・クレスザ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
H Cegielski-Service Sp Z O O
Original Assignee
H Cegielski-Service Sp Z O O
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by H Cegielski-Service Sp Z O O filed Critical H Cegielski-Service Sp Z O O
Priority to JP2009154349A priority Critical patent/JP2011007164A/en
Publication of JP2011007164A publication Critical patent/JP2011007164A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for determining an operation parameter for a piston cylinder liner unit in a low speed compression ignition two cycle engine.SOLUTION: The method for determining the operation parameter for the piston cylinder liner unit in the low speed compression ignition two cycle engine includes: a step for removing all heat insulating element from a cylinder liner; a step for measuring temperature and relative humidity of supercharging air before a turbocharger, supercharging air pressure after a cooler, and atmospheric pressure in an engine room; a step for determining temperature of dew-point of the supercharging air after the cooler; a step for determining the minimum temperature of air cooling water at an inlet for keeping temperature of supercharging air slightly higher than the dew-point; a step for continuously monitoring temperature of a contact surface of the cylinder liner; and a step for adjusting temperature of cylinder cooling water at the inlet for keeping temperature of the contact surface of the cylinder liner lower than temperature of a flash point of cylinder oil.

Description

本発明の主題は、低速圧縮点火2サイクルエンジン、特に船舶用エンジン内のピストンシリンダライナユニット用の動作パラメータを定める方法である。   The subject of the present invention is a method for determining operating parameters for a low speed compression ignition two cycle engine, in particular a piston cylinder liner unit in a marine engine.

上記に示されたエンジンは、空気を空気冷却器を通して誘導するターボ過給器から給気(charging air)を供給され、空気から凝縮水を分離するように設計されたウォータミスト捕集器(water mist catcher)を組み込まれる。硫黄腐食(sulphur corrosion)の形成を回避する目的で、最大可能量の凝縮水が空気から分離される。   The engine shown above is supplied with a charging air from a turbocharger that directs air through an air cooler and is designed to separate water from the water mist collector (water). Mist catcher). In order to avoid the formation of sulfur corrosion, the maximum possible amount of condensate is separated from the air.

しかし、これまでに得られた経験によれば、分離器が故障することがあるので、空気から凝縮水を完全に分離することは不可能であることが分かっている。したがって、腐食の危険を低下させるために、圧縮行程中にシリンダライナの上方部分における壁の温度は、露点のわずかに上に保たれ、すなわち270℃に達する。ユニットの接触する要素を潤滑するために使用されるシリンダオイルは、約240℃でその引火点に達するので、その後、より高い温度で、オイルの部分燃焼(partial burning)が起こる。その結果として、シリンダライナの表面上のシリンダ潤滑オイルの一部分のみが潤滑に使用されるのに対して、その残りの部分が炭化過程に曝される。それによって生じるピストンリングとシリンダライナの間の煤およびカーボンデポジットの形の不純物により、接触状態の劣化が生じる。そのような状態により、ピストンリングおよびシリンダ表面が急速に摩耗し、それによって結局は焼き付きが起こるおそれもある。   However, experience gained so far has shown that it is impossible to completely separate the condensed water from the air, since the separator can fail. Thus, in order to reduce the risk of corrosion, the wall temperature in the upper part of the cylinder liner is kept slightly above the dew point during the compression stroke, i.e. reaches 270 ° C. Since the cylinder oil used to lubricate the contacting elements of the unit reaches its flash point at about 240 ° C., then, at a higher temperature, partial burning of the oil occurs. As a result, only a portion of the cylinder lubricating oil on the surface of the cylinder liner is used for lubrication, while the remaining portion is exposed to the carbonization process. The resulting contact ring degradation is caused by impurities in the form of soot and carbon deposits between the piston ring and the cylinder liner. Such a condition can cause rapid wear on the piston ring and cylinder surfaces, which can eventually cause seizure.

そのような現象に対処する試みが行われた。シリンダライナの表面の標準的な摩耗率は、上部において最も高く、したがってその上部には、より高いシリンダオイルの配分(dosage)が必要になるにも関わらず、シリンダライナの上方の潤滑溝にはシリンダ潤滑オイルの30%しか供給されない。シリンダ潤滑オイルの残りの部分は、カーボンの堆積を低下させるために下方の潤滑溝の領域に供給される。   Attempts have been made to deal with such phenomena. The standard wear rate on the surface of the cylinder liner is highest in the upper part, so that the upper part of the lubrication groove above the cylinder liner requires a higher cylinder oil dose. Only 30% of cylinder lubricating oil is supplied. The remaining portion of the cylinder lubricating oil is supplied to the region of the lower lubricating groove to reduce carbon deposition.

多くの場合、疑わしい質、最適でない材料構造、または粗悪な仕上げ加工を特徴とする、様々な生産元からの保証されないピストンリングおよび/または予備のシリンダライナが適用される場合に、不具合がより激しくなる可能性がある。   Often the failure is more severe when unwarranted piston rings and / or spare cylinder liners from various manufacturers are applied, which are characterized by suspicious quality, sub-optimal material structure, or poor finish There is a possibility.

本発明の本質は、シリンダライナカラー内の断熱チューブまたは外側の断熱バンデージのような全ての断熱要素によって、ターボ過給器の前の給気の温度と相対湿度、空気冷却器の後の給気の圧力、ならびにエンジンルーム内の大気圧の測定値が取得されることである。図に例として示された圧力、温度、空気湿度の間の既知の物理的な相関関係を根拠として、空気冷却器の後の給気の露点温度を定めることが可能になる。これは、給気の温度を露点のわずかに上にするために、空気冷却器への入口での最小の水温を定める基準を形成する。同時に、シリンダライナ壁の表面の温度は絶えず監視され、既知の測定装置によって、シリンダ冷却用の入口の水の温度は、シリンダライナ壁の表面の温度をシリンダオイルの引火点の温度より低くなることが確実になるように適切に調整される。   The essence of the invention is that the temperature and relative humidity of the air supply before the turbocharger, the air supply after the air cooler, by all insulating elements such as the insulating tube in the cylinder liner collar or the outer insulating bandage And a measured value of the atmospheric pressure in the engine room. Based on the known physical correlation between pressure, temperature and air humidity shown as an example in the figure, it becomes possible to determine the dew point temperature of the supply air after the air cooler. This forms the basis for determining the minimum water temperature at the inlet to the air cooler in order to bring the charge air temperature slightly above the dew point. At the same time, the temperature of the surface of the cylinder liner wall is constantly monitored, and by means of a known measuring device, the temperature of the water at the inlet of the cylinder cooling will make the temperature of the surface of the cylinder liner wall lower than the temperature of the flash point of the cylinder oil. Is adjusted appropriately to ensure

そのような手順により、シリンダライナ壁の温度を約200℃のレベルに設定することが可能になる。これにより、シリンダライナ壁の温度がシリンダオイルの引火点より低いので、シリンダオイルの適切な利用が可能になり、それによって下方および上方の潤滑レベルにおいてのシリンダ潤滑オイルの分布を50/50%から40/60%の比率に設定することが可能になる。シリンダライナの空間に供給される、凝縮水を全く含まない給気により、腐食の原因である硫酸の形成が大幅に防止される。この場合、腐食速度(corrosion rate)は低い。そのような解決策を適用することによって得られる利点により、ピストンリングおよびシリンダライナの表面を焼き付きから保護することが可能になる。さらに、これにより、シリンダライナの平均摩耗率(mean wear rate)を低下させ、特により多くの供給業者が低くかつ異なる質のシリンダライナを提供する場合にシリンダライナ‐ピストンユニットの動作をより確実にすることが可能になる。   Such a procedure allows the temperature of the cylinder liner wall to be set to a level of about 200 ° C. This allows proper use of the cylinder oil because the cylinder liner wall temperature is lower than the flash point of the cylinder oil, thereby reducing the distribution of the cylinder lubricant oil at the lower and upper lubrication levels from 50/50%. A ratio of 40/60% can be set. The supply of air containing no condensed water supplied to the space of the cylinder liner greatly prevents the formation of sulfuric acid that causes corrosion. In this case, the corrosion rate is low. The advantages obtained by applying such a solution make it possible to protect the surfaces of the piston ring and cylinder liner from seizure. In addition, this reduces the average wear rate of the cylinder liner, and ensures more reliable operation of the cylinder liner-piston unit, especially when more suppliers offer low and different quality cylinder liners. It becomes possible to do.

外側の断熱バンデージおよびシリンダライナカラー内の断熱チューブが除去された。エンジンは定格出力の83%で作動し、入口のシリンダライナ冷却水の温度は70℃に設定され、上方部の潤滑レベルと下方部潤滑レベルとの間のシリンダ潤滑オイルの分布は比率50/50%に設定された。使用された標準のシリンダ潤滑オイルは約240℃の引火点を有していた。ターボ過給器の前の空気パラメータが測定された。温度は27℃、相対湿度は42%であった。さらに、空気冷却器の後の給気圧力は170kPa(1.7バール)に定められ、それに対して、エンジンルーム内の大気圧は1024hPaに定められた。温度、湿度、圧力の間の相関関係を示す図を根拠として、空気冷却器の後の給気の露点の温度は30℃に定められた。使用された図は従来からディーゼルエンジンに使用されている。それは、給気温度が露点よりもわずかに高いように、空気冷却器の入口での最小の水温を35℃のレベルに定めるための論拠としての役割を果たした。同時に、シリンダライナの各カラーに装着された2つの熱電対により、シリンダライナの表面の温度が絶えず監視された。これにより、入口のシリンダ冷却水の温度を調整し、シリンダライナの表面の温度を160〜190℃のレベルに維持できるようになった。   The outer insulating bandage and the insulating tube in the cylinder liner collar were removed. The engine operates at 83% of rated power, the inlet cylinder liner coolant temperature is set at 70 ° C., and the distribution of cylinder lubricating oil between the upper and lower lubrication levels is a ratio 50/50. % Was set. The standard cylinder lubricating oil used had a flash point of about 240 ° C. The air parameters before the turbocharger were measured. The temperature was 27 ° C. and the relative humidity was 42%. Furthermore, the supply pressure after the air cooler was set at 170 kPa (1.7 bar), whereas the atmospheric pressure in the engine room was set at 1024 hPa. Based on the diagram showing the correlation between temperature, humidity and pressure, the temperature of the dew point of the air supply after the air cooler was set to 30 ° C. The figure used is traditionally used for diesel engines. It served as a rationale for setting the minimum water temperature at the inlet of the air cooler to a level of 35 ° C. so that the charge air temperature was slightly above the dew point. At the same time, the temperature of the surface of the cylinder liner was constantly monitored by two thermocouples mounted on each collar of the cylinder liner. Thereby, the temperature of the cylinder cooling water at the inlet can be adjusted, and the temperature of the surface of the cylinder liner can be maintained at a level of 160 to 190 ° C.

Claims (2)

低速圧縮点火2サイクルエンジン、特に船舶用エンジン内のピストンシリンダライナユニット用の動作パラメータを定める方法であって、
前記シリンダライナから、シリンダライナカラー内の断熱チューブおよび断熱外側バンデージなど、全ての断熱要素を除去するステップと、
ターボ過給器の前の過給気の温度と相対湿度、および空気冷却器の後の過給気圧力、ならびにエンジンルーム内の大気圧を測定するステップと、
圧力、温度、空気湿度の間の既知の物理的な相関関係を根拠として、前記空気冷却器の後の過給気の露点温度を決定するステップと、
前記給気の温度が前記露点よりもわずかに高く維持されるように、入口における空気冷却水の最小温度を決定するステップと、
シリンダライナの当接面の温度を連続的に監視するステップと、
前記シリンダライナの当接面の温度がシリンダオイルの引火点の温度より低く保たれるように、上記を根拠として、また既知の測定装置によって、前記入口のシリンダ冷却水の温度を調整するステップとを含むことを特徴とする方法。
A method for determining operating parameters for a low speed compression ignition two cycle engine, in particular a piston cylinder liner unit in a marine engine, comprising:
Removing all thermal insulation elements from the cylinder liner, such as a thermal insulation tube and a thermal insulation outer bandage in the cylinder liner collar;
Measuring the temperature and relative humidity of the supercharger before the turbocharger, the supercharged pressure after the air cooler, and the atmospheric pressure in the engine room;
Determining the dew point temperature of the supercharged air after the air cooler based on a known physical correlation between pressure, temperature and air humidity;
Determining a minimum temperature of air cooling water at the inlet such that the temperature of the charge air is maintained slightly above the dew point;
Continuously monitoring the temperature of the contact surface of the cylinder liner;
Adjusting the temperature of the cylinder cooling water at the inlet on the basis of the above and by a known measuring device so that the temperature of the contact surface of the cylinder liner is kept lower than the temperature of the flash point of cylinder oil; A method comprising the steps of:
前記空気冷却器の後の前記過給気の前記露点の温度を決定するステップが、従来からディーゼルエンジンに使用された図によって実現されることを特徴とする、請求項1に記載の方法。   The method according to claim 1, characterized in that the step of determining the temperature of the dew point of the supercharged air after the air cooler is realized by a diagram conventionally used for diesel engines.
JP2009154349A 2009-06-29 2009-06-29 Method for determining operation parameter for piston cylinder liner unit in low speed compression ignition two cycle engine Pending JP2011007164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009154349A JP2011007164A (en) 2009-06-29 2009-06-29 Method for determining operation parameter for piston cylinder liner unit in low speed compression ignition two cycle engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009154349A JP2011007164A (en) 2009-06-29 2009-06-29 Method for determining operation parameter for piston cylinder liner unit in low speed compression ignition two cycle engine

Publications (1)

Publication Number Publication Date
JP2011007164A true JP2011007164A (en) 2011-01-13

Family

ID=43564091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009154349A Pending JP2011007164A (en) 2009-06-29 2009-06-29 Method for determining operation parameter for piston cylinder liner unit in low speed compression ignition two cycle engine

Country Status (1)

Country Link
JP (1) JP2011007164A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128711A (en) * 1984-07-18 1986-02-08 Mitsubishi Heavy Ind Ltd Automatic control device of charging temperature
JPS62210214A (en) * 1986-03-11 1987-09-16 Mitsubishi Heavy Ind Ltd Temperature controller for cylinder liner
JPH1193761A (en) * 1997-09-19 1999-04-06 Ishikawajima Harima Heavy Ind Co Ltd Cylinder liner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128711A (en) * 1984-07-18 1986-02-08 Mitsubishi Heavy Ind Ltd Automatic control device of charging temperature
JPS62210214A (en) * 1986-03-11 1987-09-16 Mitsubishi Heavy Ind Ltd Temperature controller for cylinder liner
JPH1193761A (en) * 1997-09-19 1999-04-06 Ishikawajima Harima Heavy Ind Co Ltd Cylinder liner

Similar Documents

Publication Publication Date Title
US8025041B2 (en) Method of removing the fuel contained in the lubricating oil of an internal-combustion engine and engine using same
US20170320129A1 (en) Method for producing a cooling channel piston and cooling channel piston produced by such a method
CN112377319B (en) Oil injection pressure control method for improving cold starting performance of diesel engine
JP2011007164A (en) Method for determining operation parameter for piston cylinder liner unit in low speed compression ignition two cycle engine
EP2278134B1 (en) Method of defining the operating parameters for the piston-cyclinder liner unit in the low-speed compression-ignition two-stroke engines
GB2415469A (en) Turbocharger compressor cooling
KR101385792B1 (en) Method of defining the operating parameters for the piston-cylinder liner unit in the low-speed compression-ignition two-stroke engines
JP2014101863A (en) Abnormal combustion determination device for internal combustion engine
CN106948904B (en) Cylinder liner for two-stroke cross head engine
CN103541885A (en) Fixed-point cooling system of totally-enclosed compressor and using method thereof
CN101936235B (en) Method for defining operation parameters of piston-cylinder jacket unit
JP2011231741A (en) Control device for internal combustion engine
RU2727819C2 (en) Working on exhaust gases turbosupercharger for vehicle, drive device with such turbosupercharger and vehicle
RU2551046C1 (en) Method of repair of internal combustion engine cylinders
CN109083730B (en) Internal and external double circulation type diesel engine water cooling device
EP2881560B1 (en) Method and apparatus for indicating a risk of corrosion or scuffing of components of a combustion chamber of a turbocharged engine arrangement, in particular for vessels, and turbocharged engine arrangements for vessels
JP7226416B2 (en) Piston temperature estimation device, piston temperature control device, piston temperature estimation method, and piston temperature control method
Kochenov et al. Life and wear of frictional couplings and improved compression measurements in internal combustion engines
CN110390114A (en) A kind of lifetime estimation method of engine component of machine
JP7230853B2 (en) Diagnostic device and diagnostic method
RU2793640C1 (en) Internal combustion engine turbocharge system
CN213743591U (en) Engine crankcase exhaust-gas treatment detection device
EP4023867B1 (en) System comprising an internal combustion engine
Choudhary et al. The effect of engine temperature on multi cylinder SI engine performance with gasoline as a fuel
US20230133765A1 (en) Engine controller and engine controlling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140310