JP2011006748A5 - - Google Patents

Download PDF

Info

Publication number
JP2011006748A5
JP2011006748A5 JP2009152438A JP2009152438A JP2011006748A5 JP 2011006748 A5 JP2011006748 A5 JP 2011006748A5 JP 2009152438 A JP2009152438 A JP 2009152438A JP 2009152438 A JP2009152438 A JP 2009152438A JP 2011006748 A5 JP2011006748 A5 JP 2011006748A5
Authority
JP
Japan
Prior art keywords
pressure
aluminum material
main
compression
pressurizing body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009152438A
Other languages
Japanese (ja)
Other versions
JP5311659B2 (en
JP2011006748A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2009152438A priority Critical patent/JP5311659B2/en
Priority claimed from JP2009152438A external-priority patent/JP5311659B2/en
Publication of JP2011006748A publication Critical patent/JP2011006748A/en
Publication of JP2011006748A5 publication Critical patent/JP2011006748A5/ja
Application granted granted Critical
Publication of JP5311659B2 publication Critical patent/JP5311659B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

以上のように、本発明では、主加圧体が原材料を所定密度より低い密度に圧縮し、該主加圧体による圧縮開始後に、副加圧体が該原材料を該所定密度に圧縮する。このように、主加圧体は、前段階として原材料を所定密度より低い密度に圧縮するに留めるので、その分、該主加圧体による圧縮に要する圧力は、一度に所定密度に圧縮する場合に比べて低くて済む。また、上記副加圧体は加圧面の外径がチャンバの内径より小さく前端が先細り形状をなしているので、主加圧体により圧縮された原材料に該副加圧体を容易に突き刺すことができる。したがって、さほど高い圧力で原材料を圧縮しなくとも高密度なブリケットを成形することが可能となる。その結果、成形装置の駆動源は従来のような高出力を必要とせず、消費エネルギそしてコストの低減ことができる。さらには装置の小型化を図ることができる。   As described above, in the present invention, the main pressurizing body compresses the raw material to a density lower than a predetermined density, and after the compression by the main pressurizing body is started, the sub-pressurizing body compresses the raw material to the predetermined density. In this way, the main pressurized body only compresses the raw material to a density lower than the predetermined density as a previous step, and accordingly, the pressure required for compression by the main pressurized body is compressed to the predetermined density at a time. Compared to In addition, since the auxiliary pressure member has an outer diameter smaller than the inner diameter of the chamber and has a tapered front end, the auxiliary pressure member can be easily pierced into the raw material compressed by the main pressure member. it can. Therefore, it is possible to form a high-density briquette without compressing the raw material with a very high pressure. As a result, the driving source of the molding apparatus does not require a high output as in the prior art, and energy consumption and cost can be reduced. Furthermore, the apparatus can be miniaturized.

ストックビン41は、上下方向に延び上下端で開口する筒状体をなしており、図1に示されているように、上部加圧装置20の右方に位置に形成された上部可動22の貫通孔22Aおよび上部固定板50の貫通孔50Aを上下方向に貫通して設けられている。本実施形態では、該ストックビン41は、上述のように上記各列のチャンバ11に対応して二つ設けられており、図2に示されている二つの供給カップ42の直上に設けられている。 The stock bin 41 has a cylindrical body that extends in the vertical direction and opens at the upper and lower ends. As shown in FIG. 1, the upper movable body 22 formed at a position to the right of the upper pressurizing device 20. The through holes 22A and the through holes 50A of the upper fixing plate 50 are provided so as to penetrate in the vertical direction. In the present embodiment, two stock bins 41 are provided corresponding to the respective chambers 11 as described above, and are provided immediately above the two supply cups 42 shown in FIG. Yes.

供給カップ42は、図1に示されているように、ストックビン41の下方で下端開口に近接して設けられている。本実施形態では、各ストックビン41に対応して供給カップ42は二つ設けられており、図2によく見られるように、同図における上側に配列されたチャンバ11および下側に配列されたチャンバ11にそれぞれ対応した位置で該チャンバ11の右方に位置している。供給カップ42は、上方へ向けて拡径した円錐筒状をなしていて上下に開口しており、図1によく見られるように、ストックビン41の下端と固定成形金型10の上面との間の距離とほぼ等しい高さ寸法で形成されている。該供給カップ42の上端開口の直径は上記ストックビンの下端開口の直径と等しくなっており、該供給カップ42の下端開口の直径はチャンバ11の上端開口の直径と等しくなっている。本実施形態では、該供給カップ42は、チャンバ11の容積の二倍の容積をもつように形成されている。 As shown in FIG. 1, the supply cup 42 is provided below the stock bin 41 and close to the lower end opening. In this embodiment, two supply cups 42 are provided corresponding to each stock bin 41, and as is often seen in FIG. 2, the supply cups 42 are arranged on the upper side and the lower side in FIG. It is located to the right of the chamber 11 at a position corresponding to each chamber 11. The supply cup 42 has a conical cylindrical shape whose diameter is expanded upward, and is open upward and downward. As can be seen in FIG. 1, the supply cup 42 is formed between the lower end of the stock bin 41 and the upper surface of the fixed mold 10. It is formed with a height dimension substantially equal to the distance between them. The diameter of the upper end opening of the supply cup 42 is equal to the diameter of the lower end opening of the stock bin, and the diameter of the lower end opening of the supply cup 42 is equal to the diameter of the upper end opening of the chamber 11. In the present embodiment, the supply cup 42 is formed to have a volume twice that of the chamber 11.

<圧縮工程>
図4は、圧縮工程を説明するための図であり、(A)はアルミ材Pが圧縮される前、すなわち圧縮工程が開始される前の状態、(B)はアルミ材Pが主加圧体21によって圧縮された状態、(C)はアルミ材Pがさらに副加圧体31によって圧縮された状態を示す図である。該図4(A)ないし(C)は、四つのチャンバ11のうちの一つにおけるアルミ材Pの圧縮を示している。圧縮工程は、四つのチャンバ11の全てにおいて同様に行われる。
<Compression process>
4A and 4B are diagrams for explaining the compression process, in which FIG. 4A is a state before the aluminum material P is compressed, that is, before the compression process is started, and FIG. The state compressed by the body 21, (C) is a view showing a state where the aluminum material P is further compressed by the sub-pressurized body 31. FIGS. 4A to 4C show the compression of the aluminum material P in one of the four chambers 11. In the compression process is performed in the same manner in all four chambers 11.

上述した原材料投入工程が完了した時点では、図4(A)に示されるように、主加圧体21は、まだチャンバ11内に進入しておらず、また、副加圧体31は先細り形状の頂部のみがチャンバ11内に下方から突出している。そして、圧縮工程が開始されると、まず、上部駆動部23の駆動により主加圧体21のみが下方へ移動し、図4(B)に示されるように、該主加圧体21がチャンバ11内に上方から進入する。この結果、チャンバ11内のアルミ材Pは、主加圧体21の下端面である加圧面21Aによって上方から圧縮される。   When the above-described raw material charging step is completed, as shown in FIG. 4A, the main pressurizing body 21 has not yet entered the chamber 11, and the sub-pressurizing body 31 is tapered. Only the top of each protrudes into the chamber 11 from below. When the compression process is started, first, only the main pressurizing body 21 is moved downward by driving the upper drive unit 23, and the main pressurizing body 21 is moved into the chamber as shown in FIG. 4B. 11 enters from above. As a result, the aluminum material P in the chamber 11 is compressed from above by the pressurizing surface 21 </ b> A that is the lower end surface of the main pressurizing body 21.

該主加圧体21は、アルミ材料Pの密度が完成品としてのブリケットの所定の密度に達
する前に加圧力をそのまま維持した状態で停止する。このように、主加圧体21によっては、後に副加圧体31による圧縮が行われる前段階としてアルミ材Pを上記所定の密度より低い密度に圧縮するように留めるので、その分、該主加圧体21による圧縮に要する圧力は、従来のように一度に所定密度まで圧縮してしまう場合に比べて低くて済む。
The main pressurizing body 21 stops in a state where the pressure is maintained as it is before the density of the aluminum material P reaches a predetermined density of the briquette as a finished product. In this way, depending on the main pressurizing body 21, the aluminum material P is stopped so as to be compressed to a density lower than the predetermined density as a pre-stage where the sub-pressurizing body 31 is compressed later. The pressure required for compression by the pressurizing body 21 may be lower than in the case where the pressure is compressed to a predetermined density at a time as in the prior art.

本実施形態では、主加圧体21は、例えば100MPaの圧力でアルミ材Pを圧縮する。従来の装置において、ブリケット成形時にアルミ材を圧縮する圧力は、例えば約200MPaであり、これと比較すると本実施形態の上記主加圧体21による圧力は大幅に低くできる。 In the present embodiment, the main pressurizing body 21 compresses the aluminum material P with a pressure of 100 MPa, for example. In conventional devices, the pressure for compressing the aluminum material at the time of briquetting is, for example, about 200 MPa, the pressure by the main pressing body 21 of the present embodiment when compared with this Ru greatly reduced.

副加圧体31により圧縮して得られるブリケットは、図5にも見られるように、鱗片状のアルミ材が副加圧体31の表面に沿って縦方向成分をもって向くようになり、単にピストンの面で圧縮して得られるブリケットでは全体にわたり鱗片状のアルミ材が横方向に向いて特に下面で崩れやすいのに比べ、上記縦方向成分をなすことにより該鱗片状のアルミ材が崩れにくくなる。   The briquette obtained by compressing with the sub-pressurizing body 31 is such that the scaly aluminum material is directed with a longitudinal component along the surface of the sub-pressing body 31 as shown in FIG. In the briquette obtained by compressing on the surface, the scaly aluminum material is less likely to collapse by forming the above-mentioned longitudinal component, compared to the scaly aluminum material that tends to collapse in the lateral direction, particularly on the lower surface. .

本実施形態では、副加圧体31は加圧面の外径がチャンバの内径より小さく前端が先細り形状をなしているので、主加圧体21により圧縮されたアルミ材Pに該副加圧体31を容易に突き刺すことができる。したがって、副加圧体31による圧縮の際の圧力はさほど大きくする必要がなく、本実施形態では、副加圧体31は、主加圧体21による圧縮に要する圧力よりも若干大きい程度の圧力、例えば約110MPaの圧力でアルミ材Pを圧縮する。つまり、該副加圧体31による圧縮に要する圧力も、主加圧体21の場合と同様に、従来の装置における圧力と比較して大幅に低くできる。 In the present embodiment, the auxiliary pressure member 31 has an outer diameter of the pressure surface smaller than the inner diameter of the chamber and has a tapered front end. 31 can be pierced easily. Therefore, it is not necessary to increase the pressure at the time of compression by the sub-pressurizing body 31. In this embodiment, the sub-pressurizing body 31 has a pressure slightly higher than the pressure required for the compression by the main pressurizing body 21. For example, the aluminum material P is compressed at a pressure of about 110 MPa. That is, the pressure required for compression by the sub pressure body 31, similarly to the case of the main pressure body 21, Ru can be significantly lower than the pressure in the conventional apparatus.

既述したように、本実施形態では、主加圧体21および副加圧体31を用いてアルミ材Pを順次圧縮することにより、さほど高い力でアルミ材Pを圧縮しなくとも高密度なブリケットを成形することができる。その結果、ブリケット成形装置1の駆動源は従来のような一度で圧縮するための高出力を必要とせず、消費エネルギそしてコストを低減することができる。さらには装置の小型化を図ることができる。 As already mentioned, in the present embodiment, by sequentially compressing the aluminum material P by using a primary pressure body 21 and FukuKa pressure body 31, a high density without compressing the aluminum material P at less high pressure Briquettes can be formed. As a result, the drive source of the briquetting apparatus 1 does not require a high output for compression at a time as in the conventional case, and energy consumption and cost can be reduced. Furthermore, the apparatus can be miniaturized.

JP2009152438A 2009-06-26 2009-06-26 Briquette forming equipment Expired - Fee Related JP5311659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009152438A JP5311659B2 (en) 2009-06-26 2009-06-26 Briquette forming equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009152438A JP5311659B2 (en) 2009-06-26 2009-06-26 Briquette forming equipment

Publications (3)

Publication Number Publication Date
JP2011006748A JP2011006748A (en) 2011-01-13
JP2011006748A5 true JP2011006748A5 (en) 2012-03-15
JP5311659B2 JP5311659B2 (en) 2013-10-09

Family

ID=43563722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009152438A Expired - Fee Related JP5311659B2 (en) 2009-06-26 2009-06-26 Briquette forming equipment

Country Status (1)

Country Link
JP (1) JP5311659B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112940822A (en) * 2020-12-28 2021-06-11 宁夏亘峰嘉能能源科技股份有限公司 Briquette ball cooling device and briquette production system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118765A (en) * 1993-10-22 1995-05-09 Kawashima:Kk Production of aluminum deoxidized briquette lump
JP2003071594A (en) * 2001-08-31 2003-03-11 Ntn Corp Production device for solidified product of cutting sludge
JP2005014072A (en) * 2003-06-27 2005-01-20 Mori Tekko Kk Apparatus for manufacturing grinding sludge briquette

Similar Documents

Publication Publication Date Title
CN105283294B (en) Resin molding machine and resin molding method
JP2006175515A (en) Tool set
CN106216521A (en) Continuous bending mould up and down
CN100546708C (en) A kind of pressing ball forming method and device
US20110159137A1 (en) Tablet compression die
CN105881957B (en) Full-automatic multi-step powder product molding hydraulic press
JP2011006748A5 (en)
CN107897401A (en) Press the tea pressing method of tea machine
CN101898386B (en) Ceramic central spindle moulding mould and method for moulding ceramic shaft by dry type isostatic pressing process
JP2009001001A (en) Wood molding method and wood molding device
CN204122755U (en) A kind of mould of tantalum capacitor anodes tantalum block and the discharging ring of use thereof
CN101391435A (en) Multi-layer laminated plate
CN101269392A (en) Secondary deep-drawing composite mold
CN109080980B (en) The processing mold of packaging box for bottle-packed products with environment-friendly function
CN205622439U (en) Press forming machine
CN202368240U (en) Pasting and compressing device for packing materials
CN208197097U (en) A kind of magnetic ferrite magnetic core mold
CN203695760U (en) Ironing and thinning die structure
US20090257904A1 (en) Device and method for pressing a metal powder compact
CN104441746A (en) Three-dimensional scrap iron briquetting machine
CN204482893U (en) A kind of mould of post tea
CN104148487A (en) Punching die for punching of automobile parts, aluminum strips
JP5311659B2 (en) Briquette forming equipment
JP5098567B2 (en) Mold for powder molding
CN107927211A (en) Press tea machine