JP2011006667A - Water-repellent film and method for producing the same - Google Patents
Water-repellent film and method for producing the same Download PDFInfo
- Publication number
- JP2011006667A JP2011006667A JP2010118245A JP2010118245A JP2011006667A JP 2011006667 A JP2011006667 A JP 2011006667A JP 2010118245 A JP2010118245 A JP 2010118245A JP 2010118245 A JP2010118245 A JP 2010118245A JP 2011006667 A JP2011006667 A JP 2011006667A
- Authority
- JP
- Japan
- Prior art keywords
- film
- water
- compound
- repellent film
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000005871 repellent Substances 0.000 title claims abstract description 160
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 49
- 150000001875 compounds Chemical class 0.000 claims abstract description 145
- 239000000203 mixture Substances 0.000 claims abstract description 95
- 229920000642 polymer Polymers 0.000 claims abstract description 77
- 230000000379 polymerizing effect Effects 0.000 claims abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 78
- 230000003746 surface roughness Effects 0.000 claims description 55
- 125000004432 carbon atom Chemical group C* 0.000 claims description 28
- 125000000217 alkyl group Chemical group 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 22
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 15
- 230000002940 repellent Effects 0.000 claims description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 9
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 8
- 229920006395 saturated elastomer Polymers 0.000 claims description 8
- 238000002834 transmittance Methods 0.000 claims description 8
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 6
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 6
- 150000001335 aliphatic alkanes Chemical class 0.000 claims description 5
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 claims description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 4
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 claims description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 3
- 229920001577 copolymer Polymers 0.000 claims description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- 229920006243 acrylic copolymer Polymers 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 238000006116 polymerization reaction Methods 0.000 abstract description 21
- 238000005191 phase separation Methods 0.000 abstract description 13
- 238000002156 mixing Methods 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 218
- 239000000758 substrate Substances 0.000 description 70
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 57
- 238000005259 measurement Methods 0.000 description 51
- 238000004458 analytical method Methods 0.000 description 25
- 239000011521 glass Substances 0.000 description 21
- 229920006254 polymer film Polymers 0.000 description 21
- 238000000576 coating method Methods 0.000 description 19
- -1 polypropylene Polymers 0.000 description 18
- 239000000463 material Substances 0.000 description 17
- 239000011248 coating agent Substances 0.000 description 15
- NUKZAGXMHTUAFE-UHFFFAOYSA-N methyl hexanoate Chemical compound CCCCCC(=O)OC NUKZAGXMHTUAFE-UHFFFAOYSA-N 0.000 description 14
- 239000011148 porous material Substances 0.000 description 14
- 239000002904 solvent Substances 0.000 description 13
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- YRHYCMZPEVDGFQ-UHFFFAOYSA-N methyl decanoate Chemical compound CCCCCCCCCC(=O)OC YRHYCMZPEVDGFQ-UHFFFAOYSA-N 0.000 description 12
- 229920000205 poly(isobutyl methacrylate) Polymers 0.000 description 11
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- 239000000178 monomer Substances 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 238000000089 atomic force micrograph Methods 0.000 description 8
- 239000002585 base Substances 0.000 description 8
- 238000001723 curing Methods 0.000 description 8
- 238000005406 washing Methods 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- 239000005640 Methyl decanoate Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000001000 micrograph Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000003505 polymerization initiator Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- FLIACVVOZYBSBS-UHFFFAOYSA-N Methyl palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC FLIACVVOZYBSBS-UHFFFAOYSA-N 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000006087 Silane Coupling Agent Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 239000003999 initiator Substances 0.000 description 4
- ZAZKJZBWRNNLDS-UHFFFAOYSA-N methyl tetradecanoate Chemical compound CCCCCCCCCCCCCC(=O)OC ZAZKJZBWRNNLDS-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000004381 surface treatment Methods 0.000 description 4
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 230000001588 bifunctional effect Effects 0.000 description 3
- ISAOCJYIOMOJEB-UHFFFAOYSA-N desyl alcohol Natural products C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 3
- 229920001483 poly(ethyl methacrylate) polymer Polymers 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 239000002562 thickening agent Substances 0.000 description 3
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 2
- QUKRIOLKOHUUBM-UHFFFAOYSA-N 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl prop-2-enoate Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)CCOC(=O)C=C QUKRIOLKOHUUBM-UHFFFAOYSA-N 0.000 description 2
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 2
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- UUIQMZJEGPQKFD-UHFFFAOYSA-N Methyl butyrate Chemical compound CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 description 2
- HPEUJPJOZXNMSJ-UHFFFAOYSA-N Methyl stearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC HPEUJPJOZXNMSJ-UHFFFAOYSA-N 0.000 description 2
- 235000000126 Styrax benzoin Nutrition 0.000 description 2
- 244000028419 Styrax benzoin Species 0.000 description 2
- 235000008411 Sumatra benzointree Nutrition 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229960002130 benzoin Drugs 0.000 description 2
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 2
- 239000012965 benzophenone Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 125000004386 diacrylate group Chemical group 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- OBNCKNCVKJNDBV-UHFFFAOYSA-N ethyl butyrate Chemical compound CCCC(=O)OCC OBNCKNCVKJNDBV-UHFFFAOYSA-N 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 235000019382 gum benzoic Nutrition 0.000 description 2
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 2
- HNBDRPTVWVGKBR-UHFFFAOYSA-N methyl pentanoate Chemical compound CCCCC(=O)OC HNBDRPTVWVGKBR-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000007870 radical polymerization initiator Substances 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- BGHCVCJVXZWKCC-UHFFFAOYSA-N tetradecane Chemical compound CCCCCCCCCCCCCC BGHCVCJVXZWKCC-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- OYDNMGZCIANYBE-UHFFFAOYSA-N (1-hydroxy-3-prop-2-enoyloxypropan-2-yl) 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(CO)COC(=O)C=C OYDNMGZCIANYBE-UHFFFAOYSA-N 0.000 description 1
- HHQAGBQXOWLTLL-UHFFFAOYSA-N (2-hydroxy-3-phenoxypropyl) prop-2-enoate Chemical compound C=CC(=O)OCC(O)COC1=CC=CC=C1 HHQAGBQXOWLTLL-UHFFFAOYSA-N 0.000 description 1
- ZOKCNEIWFQCSCM-UHFFFAOYSA-N (2-methyl-4-phenylpent-4-en-2-yl)benzene Chemical compound C=1C=CC=CC=1C(C)(C)CC(=C)C1=CC=CC=C1 ZOKCNEIWFQCSCM-UHFFFAOYSA-N 0.000 description 1
- ZFPTZRHYJDFANN-UHFFFAOYSA-N (4-hydroxy-5-prop-2-enoyloxypentyl) prop-2-enoate Chemical compound C=CC(=O)OCC(O)CCCOC(=O)C=C ZFPTZRHYJDFANN-UHFFFAOYSA-N 0.000 description 1
- KUGVQHLGVGPAIZ-UHFFFAOYSA-N 1,1,1,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-henicosafluorodecan-2-yl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(F)(C(F)(F)F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F KUGVQHLGVGPAIZ-UHFFFAOYSA-N 0.000 description 1
- JLIDRDJNLAWIKT-UHFFFAOYSA-N 1,2-dimethyl-3h-benzo[e]indole Chemical compound C1=CC=CC2=C(C(=C(C)N3)C)C3=CC=C21 JLIDRDJNLAWIKT-UHFFFAOYSA-N 0.000 description 1
- MSAHTMIQULFMRG-UHFFFAOYSA-N 1,2-diphenyl-2-propan-2-yloxyethanone Chemical compound C=1C=CC=CC=1C(OC(C)C)C(=O)C1=CC=CC=C1 MSAHTMIQULFMRG-UHFFFAOYSA-N 0.000 description 1
- DKEGCUDAFWNSSO-UHFFFAOYSA-N 1,8-dibromooctane Chemical compound BrCCCCCCCCBr DKEGCUDAFWNSSO-UHFFFAOYSA-N 0.000 description 1
- ALVZNPYWJMLXKV-UHFFFAOYSA-N 1,9-Nonanediol Chemical compound OCCCCCCCCCO ALVZNPYWJMLXKV-UHFFFAOYSA-N 0.000 description 1
- IMDHDEPPVWETOI-UHFFFAOYSA-N 1-(4-tert-butylphenyl)-2,2,2-trichloroethanone Chemical compound CC(C)(C)C1=CC=C(C(=O)C(Cl)(Cl)Cl)C=C1 IMDHDEPPVWETOI-UHFFFAOYSA-N 0.000 description 1
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 1
- XLPJNCYCZORXHG-UHFFFAOYSA-N 1-morpholin-4-ylprop-2-en-1-one Chemical compound C=CC(=O)N1CCOCC1 XLPJNCYCZORXHG-UHFFFAOYSA-N 0.000 description 1
- BRLVZIYXQOFFAW-UHFFFAOYSA-N 2-(1-prop-2-enoyloxypropan-2-yloxycarbonyl)benzoic acid Chemical compound C=CC(=O)OCC(C)OC(=O)C1=CC=CC=C1C(O)=O BRLVZIYXQOFFAW-UHFFFAOYSA-N 0.000 description 1
- IEQWWMKDFZUMMU-UHFFFAOYSA-N 2-(2-prop-2-enoyloxyethyl)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)CCOC(=O)C=C IEQWWMKDFZUMMU-UHFFFAOYSA-N 0.000 description 1
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 1
- ZCDADJXRUCOCJE-UHFFFAOYSA-N 2-chlorothioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(Cl)=CC=C3SC2=C1 ZCDADJXRUCOCJE-UHFFFAOYSA-N 0.000 description 1
- MRDMGGOYEBRLPD-UHFFFAOYSA-N 2-ethoxy-1-(2-ethoxyphenyl)ethanone Chemical compound CCOCC(=O)C1=CC=CC=C1OCC MRDMGGOYEBRLPD-UHFFFAOYSA-N 0.000 description 1
- YJQMXVDKXSQCDI-UHFFFAOYSA-N 2-ethylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(CC)=CC=C3SC2=C1 YJQMXVDKXSQCDI-UHFFFAOYSA-N 0.000 description 1
- XMLYCEVDHLAQEL-UHFFFAOYSA-N 2-hydroxy-2-methyl-1-phenylpropan-1-one Chemical compound CC(C)(O)C(=O)C1=CC=CC=C1 XMLYCEVDHLAQEL-UHFFFAOYSA-N 0.000 description 1
- BQZJOQXSCSZQPS-UHFFFAOYSA-N 2-methoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OC)C(=O)C1=CC=CC=C1 BQZJOQXSCSZQPS-UHFFFAOYSA-N 0.000 description 1
- CRWNQZTZTZWPOF-UHFFFAOYSA-N 2-methyl-4-phenylpyridine Chemical compound C1=NC(C)=CC(C=2C=CC=CC=2)=C1 CRWNQZTZTZWPOF-UHFFFAOYSA-N 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- MYISVPVWAQRUTL-UHFFFAOYSA-N 2-methylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(C)=CC=C3SC2=C1 MYISVPVWAQRUTL-UHFFFAOYSA-N 0.000 description 1
- SEILKFZTLVMHRR-UHFFFAOYSA-N 2-phosphonooxyethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOP(O)(O)=O SEILKFZTLVMHRR-UHFFFAOYSA-N 0.000 description 1
- KTALPKYXQZGAEG-UHFFFAOYSA-N 2-propan-2-ylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(C(C)C)=CC=C3SC2=C1 KTALPKYXQZGAEG-UHFFFAOYSA-N 0.000 description 1
- WJQOZHYUIDYNHM-UHFFFAOYSA-N 2-tert-Butylphenol Chemical compound CC(C)(C)C1=CC=CC=C1O WJQOZHYUIDYNHM-UHFFFAOYSA-N 0.000 description 1
- SXFJDZNJHVPHPH-UHFFFAOYSA-N 3-methylpentane-1,5-diol Chemical compound OCCC(C)CCO SXFJDZNJHVPHPH-UHFFFAOYSA-N 0.000 description 1
- CYUZOYPRAQASLN-UHFFFAOYSA-N 3-prop-2-enoyloxypropanoic acid Chemical compound OC(=O)CCOC(=O)C=C CYUZOYPRAQASLN-UHFFFAOYSA-N 0.000 description 1
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 1
- SAPGBCWOQLHKKZ-UHFFFAOYSA-N 6-(2-methylprop-2-enoyloxy)hexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCCCOC(=O)C(C)=C SAPGBCWOQLHKKZ-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 235000015256 Chionanthus virginicus Nutrition 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- ICMAFTSLXCXHRK-UHFFFAOYSA-N Ethyl pentanoate Chemical compound CCCCC(=O)OCC ICMAFTSLXCXHRK-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 241000234271 Galanthus Species 0.000 description 1
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical group [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- QYTDEUPAUMOIOP-UHFFFAOYSA-N TEMPO Chemical group CC1(C)CCCC(C)(C)N1[O] QYTDEUPAUMOIOP-UHFFFAOYSA-N 0.000 description 1
- KGPFCNUNFSXYOR-UHFFFAOYSA-N [Cu].C(CCC)C=1C(=NC=CC1)C1=NC=CC=C1 Chemical compound [Cu].C(CCC)C=1C(=NC=CC1)C1=NC=CC=C1 KGPFCNUNFSXYOR-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 150000008062 acetophenones Chemical class 0.000 description 1
- HFBMWMNUJJDEQZ-UHFFFAOYSA-N acryloyl chloride Chemical compound ClC(=O)C=C HFBMWMNUJJDEQZ-UHFFFAOYSA-N 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 238000010539 anionic addition polymerization reaction Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000003373 anti-fouling effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- DULCUDSUACXJJC-UHFFFAOYSA-N benzeneacetic acid ethyl ester Natural products CCOC(=O)CC1=CC=CC=C1 DULCUDSUACXJJC-UHFFFAOYSA-N 0.000 description 1
- SNBMGLUIIGFNFE-UHFFFAOYSA-N benzyl n,n-diethylcarbamodithioate Chemical compound CCN(CC)C(=S)SCC1=CC=CC=C1 SNBMGLUIIGFNFE-UHFFFAOYSA-N 0.000 description 1
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical group C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000010538 cationic polymerization reaction Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- BMFYCFSWWDXEPB-UHFFFAOYSA-N cyclohexyl(phenyl)methanone Chemical compound C=1C=CC=CC=1C(=O)C1CCCCC1 BMFYCFSWWDXEPB-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- RTSGGMFUZJAJCM-UHFFFAOYSA-N diazonio-(2,5-dioxo-3-phenylpyrrol-1-yl)sulfonylazanide Chemical compound O=C1N(S(=O)(=O)[N-][N+]#N)C(=O)C=C1C1=CC=CC=C1 RTSGGMFUZJAJCM-UHFFFAOYSA-N 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010981 drying operation Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000003682 fluorination reaction Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 238000010559 graft polymerization reaction Methods 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 125000006289 hydroxybenzyl group Chemical group 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- KXUHSQYYJYAXGZ-UHFFFAOYSA-N isobutylbenzene Chemical compound CC(C)CC1=CC=CC=C1 KXUHSQYYJYAXGZ-UHFFFAOYSA-N 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- STIABRLGDKHASC-UHFFFAOYSA-N phthalic acid;prop-2-enoic acid Chemical class OC(=O)C=C.OC(=O)C1=CC=CC=C1C(O)=O STIABRLGDKHASC-UHFFFAOYSA-N 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920001490 poly(butyl methacrylate) polymer Polymers 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920000196 poly(lauryl methacrylate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920001481 poly(stearyl methacrylate) Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000129 polyhexylmethacrylate Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 230000003075 superhydrophobic effect Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- SJMYWORNLPSJQO-UHFFFAOYSA-N tert-butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C)(C)C SJMYWORNLPSJQO-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000012719 thermal polymerization Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004634 thermosetting polymer Substances 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Landscapes
- Polymerisation Methods In General (AREA)
- Graft Or Block Polymers (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
本発明は、撥水性膜とその製造方法に関し、より詳細には、表面に微細な凹凸構造を有するポリマーからなる撥水性膜、及びその製造方法に関する。 The present invention relates to a water-repellent film and a method for producing the same, and more particularly to a water-repellent film made of a polymer having a fine concavo-convex structure on the surface and a method for producing the same.
近年、水をきわめて強くはじく表面(超撥水性表面)が注目されている。超撥水性表面に科学的な定義はないが、一般的には、水接触角が150°以上の、きわめて水に濡れにくい表面を指す。超撥水性表面は、水との接触面積を著しく小さくすることができることから、水を介した各種の化学反応の進行や化学結合の形成を抑えることができる。このため、防汚、防錆、着雪雨滴防止、電気絶縁性などさまざまな目的に対して、従来の撥水性表面(水接触角90〜120°程度)に較べ高い効果が期待できる。その応用範囲は、住設・自動車の外装・内装、キッチン・浴室・洗面所などの住設水回り内装、電化製品、靴や鞄などの皮革製品、スポーツ用途を含む衣料品、医療器具や歯科用品や、その他、鉄塔・アンテナ・電線などの屋外設備、傘・レインコート・ヘルメット・紙・カーテン・絨毯などの生活用品などの表面コート材等、広範囲に及ぶ。 In recent years, a surface that repels water very strongly (super water-repellent surface) has attracted attention. Although there is no scientific definition of a super water-repellent surface, it generally refers to a surface that has a water contact angle of 150 ° or more and is extremely difficult to wet. Since the super water-repellent surface can significantly reduce the contact area with water, the progress of various chemical reactions and the formation of chemical bonds via water can be suppressed. For this reason, higher effects can be expected compared to conventional water-repellent surfaces (water contact angles of about 90 to 120 °) for various purposes such as antifouling, rust prevention, snowdrop prevention, and electrical insulation. The range of applications includes exteriors and interiors of housing and automobiles, interiors of residential waters such as kitchens, bathrooms, and washrooms, electrical appliances, leather products such as shoes and bags, clothing including sports applications, medical instruments, and dentistry. It covers a wide range of equipment, and other outdoor equipment such as steel towers, antennas, and electric wires, and surface coating materials such as household goods such as umbrellas, raincoats, helmets, paper, curtains, and carpets.
ちなみに、撥水性材料の技術分野では、上記の通り水接触角がおよそ150°以上の表面を超撥水性表面といい、およそ120〜150°の範囲の水接触角を示す表面を高撥水性表面といい、およそ90〜120°の範囲の水接触角を示す表面を通常の撥水性表面といっている。 Incidentally, in the technical field of water repellent materials, as described above, a surface having a water contact angle of approximately 150 ° or more is referred to as a super water repellent surface, and a surface exhibiting a water contact angle in the range of approximately 120 to 150 ° is a highly water repellent surface. A surface showing a water contact angle in the range of approximately 90 to 120 ° is referred to as a normal water-repellent surface.
固体表面の濡れ現象は、表面の化学的性質と粗さ(幾何学的な形態、トポロジー)によって決まる。したがって、その両者を巧みに制御することができれば、所望の濡れ性を有する表面を手にすることができる。超撥水性膜は、低エネルギー素材からなる表面に対して、微細構造(凹凸構造)を付与することにより実現できる。超撥水性膜を得るために、これでまでに多くの表面微細構造形成手段がとられてきたが、その中で、物質間の相分離現象、特にポリマーの相分離現象を利用した手法は、例は少ないが、製造の簡便性の観点において優れている。 The wetting phenomenon of a solid surface is determined by the surface chemistry and roughness (geometric morphology, topology). Therefore, if both of them can be skillfully controlled, a surface having a desired wettability can be obtained. The super water-repellent film can be realized by imparting a fine structure (uneven structure) to a surface made of a low energy material. In order to obtain a super water-repellent film, many surface fine structure forming means have been taken so far, and among them, a method utilizing a phase separation phenomenon between substances, particularly a polymer phase separation phenomenon, Although there are few examples, it is excellent in terms of manufacturing simplicity.
特許文献1においては、高温で溶融した熱可塑性エラストマー材料で構成された三次元連続網状骨格間に、低分子有機材料が保持されたポリマー網状構造体を基材表面にコートし、冷却することによりポリマー/低分子の相分離状態を形成させ、低分子成分を溶剤抽出により除去することにより、膜表面に微細な凹凸構造を形成した。このようにして得た膜は、水接触角150°以上を示し、超撥水性膜であることが示された。 In Patent Document 1, a base material surface is coated with a polymer network structure in which a low molecular organic material is held between three-dimensional continuous network skeletons composed of a thermoplastic elastomer material melted at high temperature, and then cooled. The polymer / low molecular phase separation state was formed, and the low molecular component was removed by solvent extraction to form a fine concavo-convex structure on the film surface. The film thus obtained showed a water contact angle of 150 ° or more, indicating that it was a super water-repellent film.
また、非特許文献1においては、イソタクチックポリプロピレン(i-PP)を混合溶剤(i-PPに対する良溶剤と非溶剤を含む)に溶解させた後、比較的高温状態で基材上にキャスト、その後、溶剤の蒸発過程を制御することにより、相分離状態を誘起し、微細凹凸構造を有するi-PP膜を形成した。この膜の水接触角値は、約160°であった。 In Non-Patent Document 1, isotactic polypropylene (i-PP) is dissolved in a mixed solvent (including a good solvent and a non-solvent for i-PP) and then cast on a substrate at a relatively high temperature. Then, by controlling the evaporation process of the solvent, a phase separation state was induced, and an i-PP film having a fine concavo-convex structure was formed. The water contact angle value of this membrane was about 160 °.
以上2例の発明において、ポリマー材料と低分子材料または溶剤との相分離状態は、該混合物の高温状態を経ることにより達成できており、超撥水性膜を得るために比較的煩雑な操作を必要とする。 In the inventions of the above two examples, the phase separation state between the polymer material and the low molecular weight material or the solvent can be achieved by passing through the high temperature state of the mixture, and a relatively complicated operation is required to obtain a super water-repellent film. I need.
一方、特許文献2および非特許文献2においては、エネルギー線照射により重合可能なモノマー、エネルギー線に対して不活性なオリゴマーまたはポリマー、および溶剤からなる組成物を基材表面にコートし、これにエネルギー線を照射してモノマーを重合させることにより、室温付近の温度域で相分離状態を誘起し、これから該オリゴマーまたはポリマー、および溶剤を除去することにより、微細凹凸構造を有するポリマー膜を形成した。しかしながら、これらは、主に親水性の高いモノマーが使用されており、超撥水性膜を形成することを意図した発明ではない。 On the other hand, in Patent Document 2 and Non-Patent Document 2, a composition comprising a monomer that can be polymerized by irradiation with energy rays, an oligomer or polymer that is inert to energy rays, and a solvent is coated on the surface of the substrate. By irradiating energy rays to polymerize the monomer, a phase separation state is induced in the temperature range near room temperature, and from this, the oligomer or polymer and solvent are removed to form a polymer film having a fine concavo-convex structure. . However, these are mainly inventions using highly hydrophilic monomers and are not inventions intended to form a super water-repellent film.
特許文献3においては、アクリル系紫外線重合硬化塗料と、シリコーン系耐摩耗熱重合硬化塗料と、フッ素を有するシランカップリング剤とを有する混合塗料からなる塗膜に対して、紫外線硬化と熱硬化を併用することにより撥水性膜を得ているが、膜表面の水接触角値は最大で98°であり、超撥水性を示すには至っていない。 In Patent Document 3, ultraviolet curing and heat curing are performed on a coating film made of a mixed coating material having an acrylic ultraviolet polymerization curing coating, a silicone-based abrasion-resistant thermal polymerization curing coating, and a silane coupling agent having fluorine. Although the water repellent film is obtained by the combined use, the water contact angle value on the film surface is 98 ° at the maximum, and it does not show super water repellency.
本発明が解決しようとする課題は、エネルギー線照射による重合反応が引き起こすポリマーの相分離現象を利用した、簡便且つ常温プロセスによる撥水性膜、特に、水接触角が150°以上の超撥水性膜の製造方法、及び該製造方法によって形成した超撥水性膜を提供することにある。 The problem to be solved by the present invention is to provide a water-repellent film by a simple and normal temperature process, particularly a super-water-repellent film having a water contact angle of 150 ° or more, utilizing the phase separation phenomenon of a polymer caused by a polymerization reaction caused by energy beam irradiation. And a super water-repellent film formed by the manufacturing method.
本発明者等は、種々検討した結果、エネルギー線の照射により重合可能な重合性化合物と、エネルギー線に対して不活性な添加物とを混合した膜形成用組成物の層を基材上に形成し、エネルギー線照射により重合させ相分離状態を誘起し、その後、可溶性添加物の一部を除去することにより上記課題を解決できることを見出し、本発明を完成させた。 As a result of various studies, the present inventors have found that a layer of a film-forming composition in which a polymerizable compound that can be polymerized by irradiation with energy rays and an additive that is inert to energy rays is mixed is formed on a substrate. It was formed and polymerized by irradiation with energy rays to induce a phase separation state, and then it was found that the above problems could be solved by removing a part of the soluble additive, and the present invention was completed.
即ち、本発明は、エネルギー線の照射により重合可能な重合性化合物(A)と、
該重合性化合物(A)とは相溶するが、該重合性化合物(A)の重合体ポリマー(PA)とは相溶せず、且つエネルギー線に対して不活性な化合物(B)と、
該重合性化合物(A)と該化合物(B)と相溶し、且つエネルギー線に対して不活性なポリマー(C)とを混合した膜形成用組成物(X)を製造する工程、
該膜形成用組成物(X)の層を形成する工程、
エネルギー線の照射により該膜形成用組成物(X)中の重合性化合物(A)を重合させた後、化合物(B)を除去する工程を有することを特徴とする撥水性膜の製造方法を提供する。
That is, the present invention comprises a polymerizable compound (A) that can be polymerized by irradiation with energy rays,
A compound (B) that is compatible with the polymerizable compound (A) but is not compatible with the polymer polymer (P A ) of the polymerizable compound ( A ) and is inactive with respect to energy rays. ,
A step of producing a film-forming composition (X) in which the polymerizable compound (A) and the compound (B) are compatible with each other and a polymer (C) that is inert to energy rays is mixed;
Forming a layer of the film-forming composition (X);
A method for producing a water-repellent film comprising the step of polymerizing the polymerizable compound (A) in the film-forming composition (X) by irradiation with energy rays and then removing the compound (B). provide.
また、本発明は、上記の製造方法により製造されたことを特徴とする撥水性膜を提供するものである。 The present invention also provides a water-repellent film produced by the above production method.
更に、本発明は、エネルギー線の照射により重合可能な重合性化合物(A)の重合体、及び該重合性化合物(A)と相溶し、且つエネルギー線に対して不活性なポリマー(C)とを含有し、平均表面粗さ(Ra)が30nmを超えて、1000nmまでの範囲であることを特徴とする撥水性膜を提供するものである。 Furthermore, the present invention provides a polymer of a polymerizable compound (A) that can be polymerized by irradiation with energy rays, and a polymer (C) that is compatible with the polymerizable compound (A) and is inert to energy rays. And having a mean surface roughness (Ra) of more than 30 nm and up to 1000 nm.
本発明の製造方法によれば、前記特許文献1及び非特許文献1で開示された高温で溶融した樹脂を取り扱うことなく、エネルギー線の照射により重合可能な重合性化合物を含む膜形成用組成物の塗膜に対するエネルギー線硬化により、簡便で且つ常温のプロセスにより撥水性膜を製造することができる。また、本発明の製造方法によると、表面微細構造を有し、且つ、1.0μm以下の厚みのポリマー薄膜が容易に得られ、透明性の高い撥水性膜が提供できる。 According to the production method of the present invention, a film-forming composition comprising a polymerizable compound that can be polymerized by irradiation with energy rays without handling the resin melted at a high temperature disclosed in Patent Document 1 and Non-Patent Document 1. By the energy ray curing of the coating film, a water-repellent film can be produced by a simple and normal temperature process. Further, according to the production method of the present invention, a polymer thin film having a surface fine structure and a thickness of 1.0 μm or less can be easily obtained, and a highly transparent water-repellent film can be provided.
以下、本発明について説明する。 The present invention will be described below.
なお、撥水性材料の技術分野では、学術上、技術上の明確な区別、及び定義はないが、一般的に、水接触角がおよそ150°以上の表面を超撥水性表面といい、およそ120〜150°の範囲の水接触角を示す表面を高撥水性表面といい、およそ90〜120°の範囲の水接触角を示す表面を通常の撥水性表面と区別している。 In the technical field of water repellent materials, there is no scientific distinction and definition in terms of science, but in general, a surface having a water contact angle of approximately 150 ° or more is referred to as a super water repellent surface, and approximately 120 A surface showing a water contact angle in the range of ˜150 ° is called a highly water-repellent surface, and a surface showing a water contact angle in the range of about 90-120 ° is distinguished from a normal water-repellent surface.
本明細書では、上記の一般的な区別を採用し、水接触角が150°以上の表面を「超撥水性」表面と定義し、120°以上〜150°未満の範囲の水接触角を示す表面を「高撥水性」表面と定義し、90°〜120°未満の範囲の水接触角を示す表面を「通常の撥水性」表面と定義し、表記する。但し、単に「撥水性表面」と記載した場合は、「超撥水性表面」、「高撥水性表面」及び「通常の撥水性表面」の全てを含むものとする。 In the present specification, the above general distinction is adopted, and a surface having a water contact angle of 150 ° or more is defined as a “super-water-repellent” surface, and indicates a water contact angle in a range of 120 ° to less than 150 °. A surface is defined as a “high water repellency” surface, and a surface exhibiting a water contact angle in the range of 90 ° to less than 120 ° is defined as a “normal water repellency” surface. However, the simple description of “water-repellent surface” includes all of “super-water-repellent surface”, “highly water-repellent surface” and “normal water-repellent surface”.
本発明の製造方法では、「超撥水性」、「高撥水性」及び「通常の撥水性」表面を有する膜の製造まで、原料の選択、配合量の調整、製膜条件の調整等で制御可能であるが、特に、「超撥水性」、及び「高撥水性」表面を有する膜の製造に適しており、「超撥水性」表面を有する膜の製造に最も適している。したがって、以下では超撥水性表面を有する膜の製造方法を主体に説明を行う。 In the production method of the present invention, control is performed by selection of raw materials, adjustment of blending amount, adjustment of film formation conditions, etc., until production of a film having “super water repellency”, “high water repellency” and “normal water repellency” Although possible, it is particularly suitable for the production of membranes having “super water repellency” and “high water repellency” surfaces, and is most suitable for the production of membranes having “super water repellency” surfaces. Therefore, the following description will be mainly focused on a method for manufacturing a film having a super water-repellent surface.
本発明の超撥水性膜は、エネルギー線の照射により重合可能な重合性化合物(A)、該重合性化合物(A)とは相溶するが、該重合性化合物(A)の重合体ポリマー(PA)とは相溶せず、且つエネルギー線に対して不活性な化合物(B)、及び、該重合性化合物(A)と該化合物(B)と相溶し、且つエネルギー線に対して不活性なポリマー(C)とを混合した膜形成用組成物(X)の薄層を形成し、エネルギー線の照射により重合させた後、化合物(B)を除去することにより製造することができる。 The super water-repellent film of the present invention is compatible with the polymerizable compound (A) that can be polymerized by irradiation with energy rays and the polymerizable compound (A), but the polymer compound of the polymerizable compound (A) ( P A ) is not compatible with the compound (B) which is inactive with respect to the energy rays, and is compatible with the polymerizable compound (A) and the compound (B) and with respect to the energy rays. A thin layer of the film-forming composition (X) mixed with an inert polymer (C) is formed, polymerized by irradiation with energy rays, and then removed by removing the compound (B). .
この方法では、重合性化合物(A)の重合により生成した重合体ポリマー(PA)が、化合物(B)と相溶しなくなり、重合体ポリマー(PA)と化合物(B)との相分離状態が生じ、重合体ポリマー(PA)内部や重合体ポリマー(PA)間に化合物(B)が取り込まれた状態になる。この化合物(B)を除去することにより、化合物(B)が占めていた領域が孔となり、膜表面に微細凹凸構造が誘起され超撥水性膜を形成できる。ポリマー(C)は、本発明の効果を損なわない限り、膜形成用組成物(X)の硬化膜からその全てが除去されても構わないが、硬化膜の強度を確保する上で、少なくとも一部を硬化膜中に残留させることが好ましい。したがって、重合体ポリマー(PA)と化合物(B)との相分離状態において、ポリマー(C)は重合体ポリマー(PA)相にある程度分配されることが好ましく、その分配率が高ければ高いほど、硬化膜の強度は高くなる。 In this method, the polymer polymer (P A ) produced by polymerization of the polymerizable compound (A) becomes incompatible with the compound (B), and the phase separation between the polymer polymer (P A ) and the compound (B) occurs. state occurs, the polymer polymer (P a) or inside the polymer a polymer (P a) compounds during (B) is in a state incorporated. By removing the compound (B), the region occupied by the compound (B) becomes pores, and a fine concavo-convex structure is induced on the film surface, so that a super water-repellent film can be formed. The polymer (C) may be completely removed from the cured film of the film-forming composition (X) as long as the effects of the present invention are not impaired. However, at least one of the polymers (C) is required for ensuring the strength of the cured film. It is preferable to leave the part in the cured film. Therefore, in the phase separation state of the polymer polymer (P A ) and the compound (B), the polymer (C) is preferably distributed to some extent in the polymer polymer (P A ) phase, and the higher the distribution ratio, the higher The higher the strength of the cured film is.
重合性化合物(A)は、エネルギー線の照射により重合可能な重合性化合物(a)を単一成分で、または、その2種類以上を混合して用いることができる。重合性化合物(a)は、エネルギー線の照射により重合し、ポリマーとなる物質であれば特に制限はなく、ラジカル重合性、アニオン重合性、カチオン重合性など任意のものであってよい。例えば、ビニル基を含有する重合性化合物が用いられるが、なかでも、エネルギー線の照射による重合速度が速い(メタ)アクリル系化合物が好ましい。また、硬化後の強度も高くできることから、重合して架橋ポリマーを形成する化合物であることが好ましく、1分子中に2つ以上のビニル基を有する2官能以上の重合性化合物であることが特に好ましい。 As the polymerizable compound (A), a polymerizable compound (a) that can be polymerized by irradiation with energy rays can be used as a single component or a mixture of two or more thereof. The polymerizable compound (a) is not particularly limited as long as it is a substance that is polymerized by irradiation with energy rays and becomes a polymer, and may be any one such as radical polymerizable, anionic polymerizable, and cationic polymerizable. For example, a polymerizable compound containing a vinyl group is used, and among them, a (meth) acrylic compound having a high polymerization rate by irradiation with energy rays is preferable. Further, since the strength after curing can be increased, the compound is preferably a compound that forms a crosslinked polymer by polymerization, and is particularly preferably a bifunctional or more polymerizable compound having two or more vinyl groups in one molecule. preferable.
前記(メタ)アクリル系化合物としては、例えばエチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、2−イソシアナト−2−メチルプロピルジ(メタ)アクリレート、2−メタクリロイルオキシエチルアシッドホスフェート、3−メチル−1,5−ペンタンジオールジ(メタ)アクリレート、2−ブチル−2−エチル−1,3−プロパンジオールジ(メタ)アクリレート、2,2′−ビス(4−(メタ)アクリロイルオキシポリエチレンオキシフェニル)プロパン、2,2′−ビス(4−(メタ)アクリロイルオキシポリプロピレンオキシフェニル)プロパン、ヒドロキシジピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジアクリレート、ビス(アクロキシエチル)ヒドロキシエチルイソシアヌレート、N−メチレンビスアクリルアミドなどの2官能モノマー;トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(アクロキシエチル)イソシアヌレート、カプロラクトン変性トリス(アクロキシエチル)イソシアヌレートなどの3官能モノマー;ペンタエリスリトールテトラ(メタ)アクリレートなどの4官能モノマー;ジペンタエリスリトールヘキサ(メタ)アクリレートなどの6官能モノマーが挙げられる。 Examples of the (meth) acrylic compound include ethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and 1,9-nonanediol di. (Meth) acrylate, neopentyl glycol di (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, glycerin di (meth) acrylate, 2- Isocyanato-2-methylpropyl di (meth) acrylate, 2-methacryloyloxyethyl acid phosphate, 3-methyl-1,5-pentanediol di (meth) acrylate, 2-butyl-2-ethyl-1,3-propanedioe Di (meth) acrylate, 2,2'-bis (4- (meth) acryloyloxypolyethyleneoxyphenyl) propane, 2,2'-bis (4- (meth) acryloyloxypolypropyleneoxyphenyl) propane, hydroxydipivalic acid Bifunctional monomers such as neopentyl glycol di (meth) acrylate, dicyclopentanyl diacrylate, bis (acryloxyethyl) hydroxyethyl isocyanurate, N-methylenebisacrylamide; trimethylolpropane tri (meth) acrylate, trimethylolethane Trifunctional compounds such as tri (meth) acrylate, pentaerythritol tri (meth) acrylate, tris (acryloxyethyl) isocyanurate, caprolactone-modified tris (acryloxyethyl) isocyanurate Mer; tetrafunctional monomers such as pentaerythritol tetra (meth) acrylate; hexafunctional monomers such as dipentaerythritol hexa (meth) acrylate.
また、分子鎖に(メタ)アクリロイル基を有する重合性のオリゴマーとして、重量平均分子量が500〜50,000のものが挙げられ、例えば、エポキシ樹脂の(メタ)アクリル酸エステル、ポリエーテル樹脂の(メタ)アクリル酸エステル、ビスフェノールA骨格を有するポリエーテル樹脂の(メタ)アクリル酸エステル、ポリブタジエン樹脂の(メタ)アクリル酸エステル、ポリジメチルシロキサン樹脂の(メタ)アクリル酸エステル、分子末端に(メタ)アクリロイル基を有するポリウレタン樹脂などが挙げられる。 Examples of the polymerizable oligomer having a (meth) acryloyl group in the molecular chain include those having a weight average molecular weight of 500 to 50,000. For example, (meth) acrylic acid ester of epoxy resin, ( (Meth) acrylic acid ester, (meth) acrylic acid ester of polyether resin having bisphenol A skeleton, (meth) acrylic acid ester of polybutadiene resin, (meth) acrylic acid ester of polydimethylsiloxane resin, (meth) at the molecular end Examples thereof include a polyurethane resin having an acryloyl group.
以上挙げた重合性化合物および重合性オリゴマーの中でも、疎水性が高く、且つ、重合後に架橋密度が高く、表面微細構造の発達したポリマー膜を与えやすいという観点から、エチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレートが好ましく用いられる。 Among the above-mentioned polymerizable compounds and polymerizable oligomers, ethylene glycol di (meth) acrylate is highly hydrophobic and has a high crosslinking density after polymerization and is easy to give a polymer film having a developed surface microstructure. 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate, trimethylolpropane tri (meth) ) Acrylate is preferably used.
また、重合性化合物(a)としては、ビニル基を1つ有する単官能重合性化合物、特に、ビニル基を1つ有する(メタ)アクリル化合物などを用いることができる。ただし、単官能重合性化合物は、2官能以上の重合性化合物とともに用いることが好ましい。 Moreover, as the polymerizable compound (a), a monofunctional polymerizable compound having one vinyl group, particularly a (meth) acrylic compound having one vinyl group can be used. However, the monofunctional polymerizable compound is preferably used together with a bifunctional or higher polymerizable compound.
ビニル基を1つ有する(メタ)アクリル系化合物としては、例えば、メチル(メタ)アクリレート、アルキル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アルコキシポリエチレングリコール(メタ)アクリレート、フェノキシジアルキル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、アルキルフェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリプロピレングリコール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、グリセロールアクリレートメタクリレート、ブタンジオールモノ(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピルアクリレート、2−アクリロイルオキシエチル−2−ヒドロキシプロピルアクリレート、エチレンオキサイド変性フタル酸アクリレート、ω−カルボキシカプロラクトンモノアクリレート、2−アクリロイルオキシプロピルハイドロジェンフタレート、2−アクリロイルオキシエチルコハク酸、アクリル酸ダイマー、2−アクリロイルオキシプロピルヘキサヒドロハイドロジェンフタレート、フッ素置換アルキル(メタ)アクリレート、塩素置換アルキル(メタ)アクリレート、スルホン酸ソーダエトキシ(メタ)アクリレート、スルホン酸−2−メチルプロパン−2−アクリルアミド、燐酸エステル基含有(メタ)アクリレート、グリシジル(メタ)アクリレート、2−イソシアナトエチル(メタ)アクリレート、(メタ)アクリロイルクロライド、(メタ)アクリルアルデヒド、スルホン酸エステル基含有(メタ)アクリレート、シラノ基含有(メタ)アクリレート、((ジ)アルキル)アミノ基含有(メタ)アクリレート、4級((ジ)アルキル)アンモニウム基含有(メタ)アクリレート、(N−アルキル)アクリルアミド、(N、N−ジアルキル)アクリルアミド、アクリロイルモルホリン、ポリジメチルシロキサン鎖含有(メタ)アクリレートなどが挙げられる。 Examples of (meth) acrylic compounds having one vinyl group include methyl (meth) acrylate, alkyl (meth) acrylate, isobornyl (meth) acrylate, alkoxy polyethylene glycol (meth) acrylate, phenoxydialkyl (meth) acrylate, Phenoxypolyethylene glycol (meth) acrylate, alkylphenoxypolyethylene glycol (meth) acrylate, nonylphenoxypolypropylene glycol (meth) acrylate, hydroxyalkyl (meth) acrylate, glycerol acrylate methacrylate, butanediol mono (meth) acrylate, 2-hydroxy-3 -Phenoxypropyl acrylate, 2-acryloyloxyethyl-2-hydroxypropyl acrylate, Tylene oxide modified phthalic acid acrylate, ω-carboxycaprolactone monoacrylate, 2-acryloyloxypropyl hydrogen phthalate, 2-acryloyloxyethyl succinic acid, acrylic acid dimer, 2-acryloyloxypropyl hexahydrohydrogen phthalate, fluorine-substituted alkyl ( (Meth) acrylate, chlorine-substituted alkyl (meth) acrylate, sulfonic acid sodaethoxy (meth) acrylate, sulfonic acid-2-methylpropane-2-acrylamide, phosphoric ester group-containing (meth) acrylate, glycidyl (meth) acrylate, 2- Isocyanatoethyl (meth) acrylate, (meth) acryloyl chloride, (meth) acrylaldehyde, sulfonate group-containing (meth) acrylate , Silano group-containing (meth) acrylate, ((di) alkyl) amino group-containing (meth) acrylate, quaternary ((di) alkyl) ammonium group-containing (meth) acrylate, (N-alkyl) acrylamide, (N, N -Dialkyl) acrylamide, acryloylmorpholine, polydimethylsiloxane chain-containing (meth) acrylate and the like.
これらの単官能重合性化合物の中でも、疎水性を高め、且つ、粘度調節を行う目的で、メチル(メタ)アクリレート、アルキル(メタ)アクリレート、イソボルニル(メタ)アクリレートが、また、重合後膜表面に偏在し、表面の自由エネルギーを低下させる目的で、フッ素置換アルキル(メタ)アクリレート、ポリジメチルシロキサン鎖含有(メタ)アクリレートなどが好ましく用いられる。 Among these monofunctional polymerizable compounds, methyl (meth) acrylate, alkyl (meth) acrylate, and isobornyl (meth) acrylate are also used on the film surface after polymerization for the purpose of increasing hydrophobicity and adjusting viscosity. Fluorine-substituted alkyl (meth) acrylate, polydimethylsiloxane chain-containing (meth) acrylate, and the like are preferably used for the purpose of uneven distribution and lowering the free energy of the surface.
化合物(B)は、化合物(D)を単一成分で、または、その2種類以上を混合して用いることができる。化合物(D)は、化合物(B)の構成成分として、重合性化合物(A)とは相溶するが、重合性化合物(A)の重合体ポリマー(PA)とは相溶せず、且つエネルギー線に対して不活性であれば、特に制限はない。ただし、化合物(B)は、重合性化合物(A)の重合プロセスにおいては、基材上にとどまり、且つ、重合性化合物(A)の重合後は主に溶剤洗浄により除去され、表面微細構造を有する超撥水性膜を与える必要があるため、化合物(D)は揮発性が低く、且つ、溶剤への溶解性が高い化合物であることが好ましい。したがって、化合物(D)は、分子量が500以下であり、25℃における飽和蒸気圧が600Pa以下である液体または固体であることが好ましい。また、分子量が300以下であることが、より好ましい。更に、化合物(D)が疎水性の高い化合物であることは、重合体ポリマー(PA)と相分離状態を形成した際、表面近傍に存在し、除去後、膜表面に微細凹凸構造が誘起され超撥水性膜を形成しやすいため好ましい。したがって、化合物(b)は、水酸基、アミノ基、カルボキシ基、イソシアネート基、メルカプト基、シアノ基、アミド結合、及び、ウレア結合等の極性化学単位を含まない化合物であることが好ましい。 As the compound (B), the compound (D) can be used as a single component or as a mixture of two or more thereof. Compound (D) is compatible with the polymerizable compound (A) as a component of the compound (B), but is not compatible with the polymer polymer (P A ) of the polymerizable compound (A), and There is no particular limitation as long as it is inert to energy rays. However, the compound (B) stays on the substrate in the polymerization process of the polymerizable compound (A), and is removed mainly by washing with a solvent after the polymerization of the polymerizable compound (A), and the surface microstructure is reduced. Since it is necessary to provide the super water-repellent film having the compound (D), the compound (D) is preferably a compound having low volatility and high solubility in a solvent. Therefore, the compound (D) is preferably a liquid or solid having a molecular weight of 500 or less and a saturated vapor pressure at 25 ° C. of 600 Pa or less. The molecular weight is more preferably 300 or less. Furthermore, when the compound (D) is a highly hydrophobic compound, it exists in the vicinity of the surface when forming a phase separation state with the polymer polymer (P A ), and after removal, a fine uneven structure is induced on the film surface. It is preferable because it is easy to form a super water-repellent film. Therefore, the compound (b) is preferably a compound that does not contain a polar chemical unit such as a hydroxyl group, an amino group, a carboxy group, an isocyanate group, a mercapto group, a cyano group, an amide bond, and a urea bond.
そのような用件を満たし、且つ、疎水性の高い化合物として、前記化合物(D)が、式(1)、式(2)、式(3)及び式(4)で表される化合物、並びに炭素数10〜20の分岐していてもよいアルカンが挙げられる。 As a highly hydrophobic compound that satisfies such requirements, the compound (D) is a compound represented by the formula (1), the formula (2), the formula (3), and the formula (4), and An alkane having 10 to 20 carbon atoms which may be branched is exemplified.
式(1)及び式(2)中、R1及びR4は炭素数が7〜18のアルキル基であることが好ましく、8〜16のアルキル基であることがより好ましい。また、式(3)中、R5〜R10は、少なくとも1つが炭素数3〜7のアルキル基であることが好ましく、3〜6のアルキル基であることがより好ましい。この場合、残りの他の基は水素原子であることが好ましい。また、R5〜R10中の炭素数の合計は10以下であることが好ましい。更に、式(4)中、R11及びR12は、それぞれ独立して炭素数2〜7のアルキル基であることが好ましく、2〜6のアルキル基であることがより好ましい。そして、アルカンとしては炭素数12〜20のアルカンであることが好ましく、12〜18のアルカンであることがより好ましい。 In Formula (1) and Formula (2), R 1 and R 4 are preferably an alkyl group having 7 to 18 carbon atoms, and more preferably an 8 to 16 alkyl group. In formula (3), at least one of R 5 to R 10 is preferably an alkyl group having 3 to 7 carbon atoms, and more preferably an alkyl group having 3 to 6 carbon atoms. In this case, the remaining other groups are preferably hydrogen atoms. Further, it is preferable that the total number of carbon atoms in R 5 to R 10 is 10 or less. Furthermore, in formula (4), R 11 and R 12 are each independently preferably an alkyl group having 2 to 7 carbon atoms, and more preferably an alkyl group having 2 to 6 carbon atoms. The alkane is preferably an alkane having 12 to 20 carbon atoms, and more preferably an alkane having 12 to 18 carbon atoms.
これらの中でも、25℃における飽和蒸気圧が150Pa以下である液体または固体を用いる場合は、その揮発性が低いため、より薄い膜を形成することができ、透明性の高い超撥水性膜を作製するのに有利である。そのような化合物として、テトラデカン酸メチル、ヘキサデカン酸メチル、オクタデカン酸メチル等の長鎖脂肪族カルボン酸のメチルエステルが好ましく用いられる。 Among these, when a liquid or solid having a saturated vapor pressure at 25 ° C. of 150 Pa or less is used, a thin film can be formed because of its low volatility, and a highly transparent super water-repellent film is produced. It is advantageous to do. As such a compound, methyl esters of long-chain aliphatic carboxylic acids such as methyl tetradecanoate, methyl hexadecanoate and methyl octadecanoate are preferably used.
また、化合物(B)中に、上記化合物(D)とともに、揮発性の高い液体状の化合物(E)を構成成分として共存させることは、調製する超撥水性膜の膜厚を小さくし、その透明度を上げる上で有用である。この場合、膜形成用組成物の基材上への塗布後、重合性化合物(A)の重合プロセスを通して、化合物(D)は基材上にとどまるが、一方、化合物(E)は揮発するため、結果として、膜厚は薄くなる。そのような化合物(E)としては、25℃における飽和蒸気圧が600Pa以上である液体であることが好ましい。そのような用件を満たし、且つ、疎水性の高い化合物として、ペンタン、ヘキサン、ヘプタン、R13COOR14(式中R13及びR14は、それぞれ独立して炭素数1〜5のアルキル基を表すが、R13とR14の炭素数の合計は6以下である。)、R15COR16(式中R15及びR16は、それぞれ独立して炭素数1〜5のアルキル基を表すが、R15とR16の炭素数の合計は6以下である。)、R17OR18(式中R17及びR18は、それぞれ独立して炭素数1〜6のアルキル基を表すが、R17とR18の炭素数の合計は7以下である。)、ベンゼン、トルエン、ジクロロメタン、クロロホルム、四塩化炭素が好ましく用いられる。R13COOR14の具体例としては、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、ブタン酸メチル、ブタン酸エチル、ペンタン酸メチル、ペンタン酸エチル、ヘキサン酸メチル等が、R15COR16の具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン等が、R17OR18の具体例としては、ジエチルエーテルがある。 Moreover, coexistence of the highly volatile liquid compound (E) as a constituent component together with the compound (D) in the compound (B) reduces the film thickness of the superhydrophobic film to be prepared. Useful for increasing transparency. In this case, after coating the film-forming composition on the substrate, the compound (D) remains on the substrate through the polymerization process of the polymerizable compound (A), whereas the compound (E) volatilizes. As a result, the film thickness is reduced. Such a compound (E) is preferably a liquid having a saturated vapor pressure at 25 ° C. of 600 Pa or more. As a highly hydrophobic compound that satisfies such requirements, pentane, hexane, heptane, R 13 COOR 14 (wherein R 13 and R 14 each independently represents an alkyl group having 1 to 5 carbon atoms). The total number of carbon atoms of R 13 and R 14 is 6 or less.), R 15 COR 16 (wherein R 15 and R 16 each independently represents an alkyl group having 1 to 5 carbon atoms). , R 15 and R 16 have a total carbon number of 6 or less.), R 17 OR 18 (wherein R 17 and R 18 each independently represents an alkyl group having 1 to 6 carbon atoms, The total number of carbon atoms of 17 and R 18 is 7 or less.), Benzene, toluene, dichloromethane, chloroform, and carbon tetrachloride are preferably used. Specific examples of R 13 COOR 14 include ethyl acetate, methyl propionate, ethyl propionate, methyl butanoate, ethyl butanoate, methyl pentanoate, ethyl pentanoate, methyl hexanoate and the like. Specific examples of R 15 COR 16 As acetone, methyl ethyl ketone, methyl isobutyl ketone and the like, and specific examples of R 17 OR 18 include diethyl ether.
化合物(D)と化合物(E)の混合割合は、超撥水性膜の目的性能、特に透明性に応じて、任意の割合で適宜設定することができる。 The mixing ratio of the compound (D) and the compound (E) can be appropriately set at an arbitrary ratio depending on the target performance of the super water-repellent film, particularly transparency.
ポリマー(C)は、ポリマーを単一成分で、または、その2種類以上を混合して用いることができる。ポリマー(C)の構成成分として、重合性化合物(A)と化合物(B)と相溶し、且つエネルギー線に対して不活性であれば、特に制限はない。ポリマー(C)は、本発明の効果を損なわない限り、膜形成用組成物(X)の硬化膜からその全てが除去されても構わないが、硬化膜の強度を確保する上で、少なくとも一部を硬化膜中に残留させることが好ましい。したがって、重合体ポリマー(PA)と化合物(B)との相分離状態において、ポリマー(C)は重合体ポリマー(PA)相にある程度分配されることが好ましく、その分配率が高ければ高いほど、硬化膜の強度は高くなる。このような観点から、ポリマー(C)は、超撥水性膜を構成する成分となるために疎水性が高いことが好ましく、アクリル系(共)重合体又はスチレン系(共)重合体が好ましく用いられる。中でも、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート、ポリイソプロピル(メタ)アクリレート、ポリブチル(メタ)アクリレート、ポリイソブチル(メタ)アクリレート、ポリtert−ブチル(メタ)アクリレート、ポリヘキシル(メタ)アクリレート、ポリドデシル(メタ)アクリレート、ポリステアリル(メタ)アクリレート、ポリイソボルニル(メタ)アクリレート、ポリスチレン、ポリα−メチルスチレンが特に好ましく用いられる。また、ポリマー(C)の役割の1つとして、膜形成用組成物(X)の粘度を高めることによる、相分離条件の拡大が挙げられる。すなわち、膜形成用組成物(X)の粘度が高いほど、組成物に用いることのできる重合性化合物(A)および化合物(B)の種類が増える。また、後述するように、膜形成用組成物(X)の粘度は、超撥水性膜の孔径、表面凹凸性に影響を与える。したがって、該ポリマーの分子量は、超撥水性膜の目的性能に応じて適宜設定することが重要である。該ポリマーの分子量は10,000〜1,000,000の範囲において設定することが好ましい。 As the polymer (C), a polymer can be used as a single component or a mixture of two or more thereof. As a constituent component of the polymer (C), there is no particular limitation as long as it is compatible with the polymerizable compound (A) and the compound (B) and is inactive with respect to energy rays. The polymer (C) may be completely removed from the cured film of the film-forming composition (X) as long as the effects of the present invention are not impaired. However, at least one of the polymers (C) is required for ensuring the strength of the cured film. It is preferable to leave the part in the cured film. Therefore, in the phase separation state of the polymer polymer (P A ) and the compound (B), the polymer (C) is preferably distributed to some extent in the polymer polymer (P A ) phase, and the higher the distribution ratio, the higher The higher the strength of the cured film is. From such a viewpoint, the polymer (C) is preferably highly hydrophobic because it becomes a component constituting the super water-repellent film, and an acrylic (co) polymer or a styrene (co) polymer is preferably used. It is done. Among them, polymethyl (meth) acrylate, polyethyl (meth) acrylate, polyisopropyl (meth) acrylate, polybutyl (meth) acrylate, polyisobutyl (meth) acrylate, poly tert-butyl (meth) acrylate, polyhexyl (meth) acrylate, polydodecyl (Meth) acrylate, polystearyl (meth) acrylate, polyisobornyl (meth) acrylate, polystyrene, and poly α-methylstyrene are particularly preferably used. One of the roles of the polymer (C) is to expand the phase separation conditions by increasing the viscosity of the film-forming composition (X). That is, the higher the viscosity of the film-forming composition (X), the more types of polymerizable compounds (A) and compounds (B) that can be used in the composition. Further, as will be described later, the viscosity of the film-forming composition (X) affects the pore diameter and surface irregularity of the super water-repellent film. Therefore, it is important that the molecular weight of the polymer is appropriately set according to the target performance of the super water-repellent film. The molecular weight of the polymer is preferably set in the range of 10,000 to 1,000,000.
膜形成用組成物(X)に含まれる重合性化合物(A)と化合物(B)及びポリマー(C)の相対含有量によって、超撥水性膜の孔径、表面凹凸性や強度が変化する。重合性化合物(A)の含有量が多いほど膜の強度が向上するが、膜内部の孔径や表面凹凸は小さくなり、撥水性が低下する傾向にある。重合性化合物(A)の好ましい含有量としては30〜80質量%の範囲、特に好ましくは40〜70質量%の範囲が挙げられる。重合性化合物(A)の含有量が30質量%以下になると、膜の強度が低くなり、重合性化合物(A)の含有量が80質量%以上になると、膜内部の孔径や表面凹凸の調整が難しくなる。 Depending on the relative contents of the polymerizable compound (A), the compound (B) and the polymer (C) contained in the film-forming composition (X), the pore diameter, surface irregularity and strength of the super water-repellent film change. As the content of the polymerizable compound (A) increases, the strength of the film improves, but the pore diameter and surface irregularities inside the film become smaller, and the water repellency tends to decrease. The preferable content of the polymerizable compound (A) is in the range of 30 to 80% by mass, particularly preferably in the range of 40 to 70% by mass. When the content of the polymerizable compound (A) is 30% by mass or less, the strength of the film is lowered, and when the content of the polymerizable compound (A) is 80% by mass or more, the pore diameter and surface unevenness inside the film are adjusted. Becomes difficult.
また、膜形成用組成物(X)の粘度は、膜の細孔形状に影響を与える。膜形成用組成物(X)が低粘度であると、細孔の形状が、互いに接着した粒状ポリマーの間隙として与えられることが多く、逆に高粘度であると網状に析出したポリマーの間隙として与えられることが多い。すなわち、高粘度であるほど塗工性、膜厚の均質性は向上するが、孔径や表面凹凸が細かくなり、撥水性が低下する傾向にある。したがって、透明性等、超撥水性膜の目的性能に応じ、重合性化合物(A)と化合物(B)及びポリマー(C)の相対含有量、化合物(B)に対するポリマー(C)の相対含有量を変化させ、膜形成用組成物(X)の粘度を適宜設定することは重要である。 The viscosity of the film forming composition (X) affects the pore shape of the film. When the film-forming composition (X) has a low viscosity, the shape of the pores is often given as a gap between the granular polymers adhered to each other. Often given. That is, the higher the viscosity, the better the coatability and the uniformity of the film thickness, but the pore diameter and surface irregularities become finer and the water repellency tends to decrease. Accordingly, the relative content of the polymerizable compound (A), the compound (B) and the polymer (C), the relative content of the polymer (C) with respect to the compound (B), depending on the target performance of the super water-repellent film such as transparency. It is important to appropriately set the viscosity of the film-forming composition (X) by changing.
膜形成用組成物(X)には、重合速度や重合度、あるいは膜の孔径、表面凹凸性などを調整するために、重合開始剤、重合禁止剤、重合遅延剤、あるいは、増粘剤などの各種添加剤を添加してもよい。 In the film-forming composition (X), a polymerization initiator, a polymerization inhibitor, a polymerization retarder, a thickener, etc. are used to adjust the polymerization rate and degree of polymerization, the pore diameter of the film, the surface irregularity, etc. Various additives may be added.
重合開始剤としては、エネルギー線の照射により、重合性化合物(A)を重合させることが可能なものであれば、特に制限はなく、ラジカル重合開始剤、アニオン重合開始剤、カチオン重合開始剤などが使用できる。例えば、p−tert−ブチルトリクロロアセトフェノン、2,2′−ジエトキシアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オンなどのアセトフェノン類、ベンゾフェノン、4,4′−ビスジメチルアミノベンゾフェノン、2−クロロチオキサントン、2−メチルチオキサントン、2−エチルチオキサントン、2−イソプロピルチオキサントンなどのケトン類、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテルなどのベンゾインエーテル類、ベンジルジメチルケタール、ヒドロキシシクロヘキシルフェニルケトンなどのベンジルケタール類、N−アジドスルフォニルフェニルマレイミドなどのアジドが挙げられる。また、マレイミド系化合物などの重合性光重合開始剤を使用することもできる。また、ここに挙げた重合開始剤を、テトラエチルチイラムジスルフィドなどのジスルフィド系化合物、2,2,6,6−テトラメチルピペリジン−1−オキシルなどのニトロキシド化合物、4,4’−ジ−t−ブチル−2,2’−ビピリジン銅錯体−トリクロロ酢酸メチル複合体、ベンジルジエチルジチオカルバメートなどの化合物と併用して、リビングラジカル重合開始剤として用いることもできる。 The polymerization initiator is not particularly limited as long as it can polymerize the polymerizable compound (A) by irradiation with energy rays, and includes a radical polymerization initiator, an anionic polymerization initiator, a cationic polymerization initiator, and the like. Can be used. For example, acetophenones such as p-tert-butyltrichloroacetophenone, 2,2′-diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzophenone, 4,4′-bisdimethylamino Ketones such as benzophenone, 2-chlorothioxanthone, 2-methylthioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone, benzoin ethers such as benzoin, benzoin methyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzyldimethyl ketal, hydroxy Benzyl ketals such as cyclohexyl phenyl ketone, and azides such as N-azidosulfonylphenylmaleimide. A polymerizable photopolymerization initiator such as a maleimide compound can also be used. Further, the polymerization initiators listed here are disulfide compounds such as tetraethylthiilam disulfide, nitroxide compounds such as 2,2,6,6-tetramethylpiperidine-1-oxyl, 4,4′-di-t- It can also be used as a living radical polymerization initiator in combination with a compound such as butyl-2,2′-bipyridine copper complex-methyl trichloroacetate complex or benzyldiethyldithiocarbamate.
重合遅延剤や重合禁止剤は、α−メチルスチレン、2,4−ジフェニル−4−メチル−1−ペンテンなどの重合速度の低いビニル系モノマーやtert−ブチルフェノールなどのヒンダントフェノール類などが挙げられる。 Examples of the polymerization retarder and polymerization inhibitor include vinyl monomers having a low polymerization rate such as α-methylstyrene and 2,4-diphenyl-4-methyl-1-pentene, and hindant phenols such as tert-butylphenol. .
増粘剤は、塗工性、膜厚の均質性を向上させる目的、及び、膜内部の孔径、表面の凹凸性を制御する目的で、公知慣用のものを用いることができる。前記のように、膜形成用組成物(X)の粘度は、膜の細孔形状に影響を与えるため、膜形成用組成物(X)を構成する素材の組合せや膜の目的性能により、増粘剤の選択やその使用量を適宜設定することは重要である。 As the thickener, known and commonly used thickeners can be used for the purpose of improving the coating property and the uniformity of the film thickness, and for controlling the pore diameter inside the film and the unevenness of the surface. As described above, since the viscosity of the film-forming composition (X) affects the pore shape of the film, it increases depending on the combination of materials constituting the film-forming composition (X) and the target performance of the film. It is important to select a sticky agent and set the amount used appropriately.
本発明における撥水性膜は、膜単独の自立膜であっても良いが、基材(S)と積層した積層体として用いることができる。本発明の撥水性膜と積層する基材(S)は、膜形成用組成物(X)や使用するエネルギー線によって実質的に侵されず、例えば、溶解、分解、重合などが生じず、かつ、膜形成用組成物(X)を実質的に侵さないものであればよい。そのような基材としては、例えば、樹脂、ガラス、石英などの結晶、セラミックス、シリコンなどの半導体、金属、金属酸化物などが挙げられるが、これらの中でも、透明性が高いこと、および、安価であることより、樹脂、または、ガラスが好ましい。基材に使用する樹脂は、単一モノマーの重合体ポリマーであっても、複数モノマーの共重合体ポリマーであってもよく、熱可塑性ポリマーであっても、熱硬化性ポリマーであってもよい。また、基材は、ポリマーブレンドやポリマーアロイで構成されていてもよいし、積層体その他の複合体であってもよい。更に、基材は、改質剤、着色剤、充填材、強化材などの添加物を含有してもよい。 The water-repellent film in the present invention may be a self-supporting film of a single film, but can be used as a laminate laminated with a base material (S). The base material (S) to be laminated with the water-repellent film of the present invention is not substantially affected by the film-forming composition (X) or the energy rays used, for example, dissolution, decomposition, polymerization, etc. do not occur, and Any film that does not substantially invade the film-forming composition (X) may be used. Examples of such a substrate include resins, crystals such as glass and quartz, semiconductors such as ceramics and silicon, metals, and metal oxides. Among these, high transparency and low cost Therefore, a resin or glass is preferable. The resin used for the substrate may be a single-monomer polymer polymer, a multi-monomer copolymer polymer, a thermoplastic polymer, or a thermosetting polymer. . The substrate may be composed of a polymer blend or a polymer alloy, or may be a laminate or other complex. Furthermore, the base material may contain additives such as a modifier, a colorant, a filler, and a reinforcing material.
基材の形状は特に限定されず、使用目的に応じて任意の形状のものを使用できる。例えば、シート状(フィルム状、リボン状、ベルト状を含む)、板状、ロール状、球状などの形状が挙げられるが、膜形成用組成物(X)をその上に塗布し易く、また、エネルギー線を照射し易いという観点から、塗工面が平面状または2次曲面状の形状であることが好ましい。 The shape of the substrate is not particularly limited, and any shape can be used according to the purpose of use. For example, a sheet shape (including a film shape, a ribbon shape, a belt shape), a plate shape, a roll shape, a spherical shape and the like can be mentioned, but the film-forming composition (X) can be easily applied thereon, From the viewpoint that it is easy to irradiate energy rays, it is preferable that the coated surface has a planar shape or a quadric surface shape.
基材はまた、樹脂の場合もそれ以外の素材の場合も、表面処理されていてよい。表面処理は、膜形成用組成物(X)による基材の溶解防止を目的としたもの、膜形成用組成物(X)の濡れ性向上及び超撥水性膜の接着性向上を目的としたものなどが挙げられる。 The substrate may be surface-treated both in the case of resin and in the case of other materials. Surface treatment is for the purpose of preventing dissolution of the substrate by the film-forming composition (X), and for the purpose of improving the wettability of the film-forming composition (X) and improving the adhesion of the super water-repellent film. Etc.
基材の表面処理方法は任意であり、例えば、前記重合性化合物(A)を基材の表面に塗布し、エネルギー線を照射して硬化させる処理、コロナ処理、プラズマ処理、火炎処理、酸又はアルカリ処理、スルホン化処理、フッ素化処理、シランカップリング剤等によるプライマー処理、表面グラフト重合、界面活性剤や離型剤等の塗布、ラビングやサンドブラストなどの物理的処理などが挙げられる。また、超撥水性膜が有する官能基や上記の表面処理方法によって導入された官能基と反応して表面に固定される化合物を反応させる方法が挙げられる。この中で、基材としてガラス、または、石英を用いた場合、例えば、トリメトキシシリルプロピル(メタ)アクリレートやトリエトキシシリルプロピル(メタ)アクリレート等のシランカップリング剤によって処理する方法は、これらのシランカップリング剤の有する重合基が膜形成用組成物(X)と共重合できることより、超撥水性膜の基材上への接着性を向上させる上で有用である。 The surface treatment method of the base material is arbitrary. For example, the polymerizable compound (A) is applied to the surface of the base material and irradiated with energy rays to be cured, corona treatment, plasma treatment, flame treatment, acid or Examples include alkali treatment, sulfonation treatment, fluorination treatment, primer treatment with a silane coupling agent, surface graft polymerization, application of a surfactant or a release agent, physical treatment such as rubbing or sandblasting, and the like. Moreover, the method of reacting with the functional group which a super water-repellent film has, or the functional group introduced by said surface treatment method, and reacting the compound fixed on the surface is mentioned. Among these, when glass or quartz is used as the base material, for example, a method of treating with a silane coupling agent such as trimethoxysilylpropyl (meth) acrylate or triethoxysilylpropyl (meth) acrylate, Since the polymerization group of the silane coupling agent can be copolymerized with the film-forming composition (X), it is useful for improving the adhesion of the super water-repellent film to the substrate.
膜形成用組成物(X)の基材への塗布方法は公知慣用の方法であればいずれの方法でもよく、例えば、ディップ法、ロ−ルコ−ト法、ドクタ−ブレ−ド法、スピンコ−ト法、スプレ−法等による塗布方法が好ましく挙げられる。 The coating method for the film forming composition (X) may be any known method as long as it is a publicly known method. For example, a dipping method, a roll coating method, a doctor blade method, a spin coating method. A coating method such as a coating method or a spray method is preferred.
重合過程において照射するエネルギー線としては、紫外線、可視光線、赤外線、レーザー光線、放射光などの光線;エックス線、ガンマ線、放射光などの電離放射線;電子線、イオンビーム、ベータ線、重粒子線などの粒子線が挙げられる。これらの中でも、取り扱い性や硬化速度の面から紫外線及び可視光が好ましく、紫外線が特に好ましい。硬化速度を速め、硬化を完全に行う目的で、エネルギー線の照射を低酸素濃度雰囲気で行うことが好ましい。低酸素濃度雰囲気としては、窒素気流中、二酸化炭素気流中、アルゴン気流中、真空又は減圧雰囲気中が好ましい。 Energy rays irradiated in the polymerization process include ultraviolet rays, visible rays, infrared rays, laser rays, radiation rays, etc .; ionizing radiations such as X-rays, gamma rays, radiation rays; electron rays, ion beams, beta rays, heavy particle rays, etc. An example is particle beam. Among these, ultraviolet rays and visible light are preferable from the viewpoint of handleability and curing speed, and ultraviolet rays are particularly preferable. For the purpose of accelerating the curing rate and complete curing, it is preferable to irradiate energy rays in a low oxygen concentration atmosphere. As the low oxygen concentration atmosphere, a nitrogen stream, a carbon dioxide stream, an argon stream, a vacuum or a reduced pressure atmosphere is preferable.
膜形成用組成物(X)の重合により生成した、重合体ポリマー(PA)と化合物(B)及びポリマー(C)の一部が相分離された膜から化合物(B)及びポリマー(C)の一部を除去する方法は、溶剤を用いた洗浄により行うことができる。その際、化合物(B)及びポリマー(C)の一部が占めていた領域が溶剤により置換され、その後、乾燥過程において溶剤が蒸発することにより、膜内部の孔や表面の凹凸構造が形成され、超撥水性膜の製造が完結する。溶剤は、化合物(B)及びポリマー(C)と相溶するものであれば、制限なく用いることができる。ただし、乾燥操作を容易にするために、メタノール、エタノール、アセトン、ヘキサン、酢酸エチル、ジエチルエーテル、クロロホルムなどの揮発性の高い汎用溶剤を用いることが好ましい。 The compound (B) and the polymer (C) produced from the polymerization of the film-forming composition (X) are separated from the polymer polymer (P A ), the compound (B), and a part of the polymer (C). A method for removing a part of the film can be performed by washing with a solvent. At that time, a region occupied by a part of the compound (B) and the polymer (C) is replaced with a solvent, and then the solvent evaporates in the drying process, thereby forming pores in the film and a concavo-convex structure on the surface. Thus, the production of the super water-repellent film is completed. The solvent can be used without limitation as long as it is compatible with the compound (B) and the polymer (C). However, in order to facilitate the drying operation, it is preferable to use a general-purpose solvent having high volatility such as methanol, ethanol, acetone, hexane, ethyl acetate, diethyl ether and chloroform.
本発明の方法により製造した超撥水性膜は、直径約0.05μm〜10μmの粒子状のポリマーが互いに凝集し、この粒子間の隙間が細孔となる凝集粒子構造の多孔性膜や、ポリマーが網目状に凝集した三次元網目構造の多孔性膜である。得られた超撥水性膜の膜厚は0.02〜100μm、平均表面粗さ(Ra)は30nmを超えて、1000nmまでの範囲である。また、超撥水性膜としては平均表面粗さ(Ra)が、40nm〜1000nmであることが好ましく、40nm〜500nmであることがより好ましい。この範囲であれば、表面の水接触角値は、150°以上をしめし易く、好ましい。 The super water-repellent membrane produced by the method of the present invention comprises a porous membrane or polymer having an agglomerated particle structure in which particulate polymers having a diameter of about 0.05 μm to 10 μm agglomerate with each other and gaps between the particles become pores. Is a porous film having a three-dimensional network structure in which the particles are aggregated in a network. The obtained super water-repellent film has a thickness of 0.02 to 100 μm and an average surface roughness (Ra) in the range of more than 30 nm to 1000 nm. Moreover, as a super water-repellent film, it is preferable that average surface roughness (Ra) is 40 nm-1000 nm, and it is more preferable that it is 40 nm-500 nm. Within this range, the water contact angle value on the surface is preferably 150 ° or more, which is preferable.
なお、上記の如く規定する平均表面粗さ(Ra)は下記の機器(I)で測定した値であり、特許請求の範囲で規定する平均表面粗さ(Ra)の数値は機器(I)で測定した値である。 The average surface roughness (Ra) specified as described above is a value measured by the following equipment (I), and the numerical value of the average surface roughness (Ra) specified in the claims is the equipment (I). It is a measured value.
機器(I):走査型プローブ顕微鏡(SPI3800N/SPA400):エスアイアイ・ナノテクノロジーズ株式会社製
測定モード:AFM
走査エリア:10μm×10μm
また、上記測定装置と同様な原理にて平均表面粗さを測定する下記の機器(II)で測定したデータも下記の実施例の項で参考値として併記する。
Instrument (I): Scanning probe microscope (SPI3800N / SPA400): manufactured by SII Nano Technologies Inc. Measurement mode: AFM
Scanning area: 10 μm × 10 μm
Further, data measured by the following apparatus (II) that measures the average surface roughness on the same principle as the above measuring apparatus are also shown as reference values in the section of the following examples.
機器(II):ナノスケールハイブリッド顕微鏡VN−8000:株式会社キーエンス製
測定モード:AFM
走査エリア:10μm×10μm
上記機器(II)で測定した場合、若干の機差により、本発明の製造方法で得られる超撥水性膜の平均表面粗さ(Ra)は、20nm〜1000nmの範囲である。
Equipment (II): Nanoscale hybrid microscope VN-8000: Keyence Corporation Measurement mode: AFM
Scanning area: 10 μm × 10 μm
When measured with the above device (II), the average surface roughness (Ra) of the super water-repellent film obtained by the production method of the present invention is in the range of 20 nm to 1000 nm due to slight differences.
また、本発明の製造方法によると、前記のように、透明性の高い超撥水性膜を容易に得ることができる。例えば、波長600nmの可視光の透過率が80%以上である透明性超撥水性膜は、膜厚が0.02〜1.00μm、平均表面粗さ(Ra)は30nmを超えて〜100nmの範囲にあることが特徴である。なお、平均表面粗さ(Ra)は40nm〜100nmの範囲にあることが好ましい。 Moreover, according to the manufacturing method of the present invention, as described above, a highly transparent super water-repellent film can be easily obtained. For example, a transparent super water-repellent film having a visible light transmittance of 80% or more at a wavelength of 600 nm has a film thickness of 0.02 to 1.00 μm and an average surface roughness (Ra) exceeding 30 nm to ˜100 nm. It is characteristic that it is in range. The average surface roughness (Ra) is preferably in the range of 40 nm to 100 nm.
また、本発明の製造方法の工程を繰り返し行うことにより、耐久性に優れた超撥水性膜を得ることができる。この場合、積層を行うにつれ、下位層の膜の孔が、上位層の膜を構成するポリマーの侵入により部分的に埋められるため、構造が補強され、結果として、膜の機会安定性や表面の耐摩耗性が向上する。 Moreover, a super water-repellent film excellent in durability can be obtained by repeating the steps of the production method of the present invention. In this case, as the lamination is performed, the pores of the lower layer film are partially filled by the intrusion of the polymer constituting the upper layer film, so that the structure is reinforced and, as a result, the opportunity stability of the film and the surface stability are increased. Abrasion resistance is improved.
以下、実施例を用いて本発明を更に詳しく説明するが、本発明は、以下の実施例の範囲に限定されるものではない。
(実施例1)
〔基材の調製〕
松浪硝子工業株式会社製ガラス製平板S−1111(26mm×76mm、厚さ1mm)を、東京化成工業株式会社製メタクリル酸3−(トリメトキシシリル)プロピルエステル「M0725」の5mmol/Lのメタノール溶液に50℃にて3時間浸漬した後、メタノール中で超音波洗浄し、100℃の恒温槽で減圧下(0.01Pa以下)1時間加熱し、基材[S−1]を調製した。
〔超撥水性膜の作製〕
共栄社化学株式会社製エチレングリコールジメタクリレート「ライトエステルEG」6.94g、共栄社化学株式会社製tert−ブチルメタクリレート「ライトエステルTB」1.14g、共栄社化学株式会社製パーフロロオクチルエチルメタクリレート「ライトエステルFM−108」0.16g、及び、光重合開始剤としてチバガイギー社製1−ヒドロキシシクロヘキシルフェニルケトン「イルガキュア184」0.18gを均一に混合して重合性化合物[A−1]を調製した。これを、デカン酸メチル4.64g及びAldrich社製ポリイソブチルメタクリレート(重量平均分子量300,000)0.52gと均一に混合して膜形成用組成物[X−1]を調製した。
EXAMPLES Hereinafter, although this invention is demonstrated in more detail using an Example, this invention is not limited to the range of a following example.
Example 1
(Preparation of substrate)
A glass plate S-1111 (26 mm × 76 mm, thickness 1 mm) manufactured by Matsunami Glass Industry Co., Ltd. was converted into a 5 mmol / L methanol solution of 3- (trimethoxysilyl) propyl methacrylate “M0725” manufactured by Tokyo Chemical Industry Co., Ltd. Was immersed in methanol at 50 ° C. for 3 hours, then ultrasonically washed in methanol, and heated in a constant temperature bath at 100 ° C. under reduced pressure (0.01 Pa or less) for 1 hour to prepare a substrate [S-1].
[Production of super water-repellent film]
Kyoeisha Chemical Co., Ltd. ethylene glycol dimethacrylate “Light Ester EG” 6.94 g, Kyoeisha Chemical Co., Ltd. tert-butyl methacrylate “Light Ester TB” 1.14 g, Kyoeisha Chemical Co., Ltd. perfluorooctylethyl methacrylate “Light Ester FM” 0.18 g of -108 "and 0.18 g of 1-hydroxycyclohexyl phenyl ketone" Irgacure 184 "manufactured by Ciba Geigy as a photopolymerization initiator were uniformly mixed to prepare a polymerizable compound [A-1]. This was uniformly mixed with 4.64 g of methyl decanoate and 0.52 g of polyisobutyl methacrylate (weight average molecular weight 300,000) manufactured by Aldrich to prepare a film forming composition [X-1].
前記の表面処理を施した基材[S−1]上に、スピンコーターを用いて、1000rpm、10秒間の条件で膜形成用組成物[X−1]を塗工した。該塗膜に3000Wメタルハライドランプを光源とするアイグラフィックス株式会社製のUE031−353CHC型UV照射装置を用い、365nmにおける紫外線強度が40mW/cm2の紫外線を、室温、窒素気流下で3分間照射して膜形成用組成物[X−1]を重合させ、その後、エタノールおよびヘキサンを用いて洗浄することにより、基材上に形成された厚さ18μmの超撥水性膜[SH−1]を得た。 The film forming composition [X-1] was applied on the substrate [S-1] subjected to the surface treatment using a spin coater under the conditions of 1000 rpm and 10 seconds. Using a UE031-353CHC type UV irradiation device manufactured by Eye Graphics Co., Ltd., which uses a 3000 W metal halide lamp as a light source, the coating film is irradiated with ultraviolet rays having an ultraviolet intensity of 40 mW / cm 2 at 365 nm for 3 minutes in a nitrogen stream at room temperature. Then, the film-forming composition [X-1] is polymerized and then washed with ethanol and hexane to form a super-water-repellent film [SH-1] having a thickness of 18 μm formed on the substrate. Obtained.
〔超撥水性膜の分析〕
(1) 水接触角:160°(転落角:1°)
測定装置:協和界面化学自動接触角計DM500
水滴量:4.0μl(水滴写真を図1に示す。)
(2) 表面形態:膜表面の走査型電子顕微鏡像を図2に示す。
測定装置:キーエンスリアルサーフェスビュー顕微鏡VE−9800
加速電圧:20kV
(3) 平均表面粗さ(Ra):390nm
測定装置(機器(I)):エスアイアイ・ナノテクノロジーズ走査型プローブ顕微鏡(SPI3800N/SPA400)
測定モード:AFM
走査エリア:10μm×10μm
(4)参考値 平均表面粗さ(Ra):360nm(膜表面の原子間力顕微鏡像を図3に示す。)
測定装置(機器(II)):キーエンスナノスケールハイブリッド顕微鏡VN−8000
以上の結果から、ガラス基材上に、表面に微細な凹凸構造を有する超撥水性ポリマー膜が形成できたことが確認された。
[Analysis of super water-repellent film]
(1) Water contact angle: 160 ° (falling angle: 1 °)
Measuring device: Kyowa Interface Chemical Automatic Contact Angle Meter DM500
Water droplet volume: 4.0 μl (water droplet photograph is shown in FIG. 1)
(2) Surface morphology: A scanning electron microscope image of the film surface is shown in FIG.
Measuring device: Keyence Real Surface View Microscope VE-9800
Acceleration voltage: 20 kV
(3) Average surface roughness (Ra): 390 nm
Measuring device (Equipment (I)): SII Nano Technologies Scanning Probe Microscope (SPI3800N / SPA400)
Measurement mode: AFM
Scanning area: 10 μm × 10 μm
(4) Reference value Average surface roughness (Ra): 360 nm (atomic force microscope image of film surface is shown in FIG. 3)
Measuring device (equipment (II)): Keyence nanoscale hybrid microscope VN-8000
From the above results, it was confirmed that a super water-repellent polymer film having a fine uneven structure on the surface could be formed on the glass substrate.
(実施例2)
〔基材の調製〕
日東樹脂工業株式会社メタアクリル樹脂板クラレックスS0(厚さ1mm)を切り出して(53mm×80mm)、基材[S−2]とした。
〔超撥水性膜の作製〕
基材として、[S−1]の代わりに[S−2]を用いる以外は実施例1と同様にして、基材上に形成された厚さ19μmの超撥水性膜[SH−2]を得た。
(Example 2)
(Preparation of substrate)
Nitto Resin Kogyo Co., Ltd. Methacrylic resin board Clarex S0 (thickness 1 mm) was cut out (53 mm × 80 mm) to obtain a substrate [S-2].
[Production of super water-repellent film]
A super-water-repellent film [SH-2] having a thickness of 19 μm formed on the substrate was prepared in the same manner as in Example 1 except that [S-2] was used instead of [S-1] as the substrate. Obtained.
〔超撥水性膜の分析〕
水接触角:161°(転落角:1°)
表面形態:走査型電子顕微鏡を用いて評価した。
(機器(I))平均表面粗さ(Ra):350nm
(機器(II))平均表面粗さ(Ra):330nm
測定装置、測定条件等は、実施例1に記載の通り。
以上の結果から、メタアクリル基材上に、表面に微細な凹凸構造を有する超撥水性ポリマー膜が形成できたことが確認された。
[Analysis of super water-repellent film]
Water contact angle: 161 ° (Falling angle: 1 °)
Surface morphology: Evaluated using a scanning electron microscope.
(Equipment (I)) Average surface roughness (Ra): 350 nm
(Equipment (II)) Average surface roughness (Ra): 330 nm
The measurement apparatus, measurement conditions, etc. are as described in Example 1.
From the above results, it was confirmed that a super water-repellent polymer film having a fine concavo-convex structure on the surface could be formed on the methacrylic substrate.
(実施例3)
〔基材の調製〕
東洋紡績株式会社二軸延伸ポリエステルフィルムコスモシャインA4300(厚さ125μm)を切り出して(40mm×50mm)、基材[S−3]とした。
〔超撥水性膜の作製〕
基材として、[S−1]の代わりに[S−3]を用いる以外は実施例1と同様にして、基材上に形成された厚さ18μmの超撥水性膜[SH−3]を得た。
(Example 3)
(Preparation of substrate)
Toyobo Co., Ltd. Biaxially stretched polyester film Cosmo Shine A4300 (thickness 125 μm) was cut out (40 mm × 50 mm) to obtain a substrate [S-3].
[Production of super water-repellent film]
A super-water-repellent film [SH-3] having a thickness of 18 μm formed on the substrate was prepared in the same manner as in Example 1 except that [S-3] was used instead of [S-1]. Obtained.
〔超撥水性膜の分析〕
水接触角:162°(転落角:1°)
表面形態:走査型電子顕微鏡を用いて評価した。
(機器(I))平均表面粗さ(Ra):360nm
(機器(II))平均表面粗さ(Ra):340nm
測定装置、測定条件等は、実施例1に記載の通り。
以上の結果から、ポリエステル基材上に、表面に微細な凹凸構造を有する超撥水性ポリマー膜が形成できたことが確認された。
[Analysis of super water-repellent film]
Water contact angle: 162 ° (Falling angle: 1 °)
Surface morphology: Evaluated using a scanning electron microscope.
(Equipment (I)) Average surface roughness (Ra): 360 nm
(Equipment (II)) Average surface roughness (Ra): 340 nm
The measurement apparatus, measurement conditions, etc. are as described in Example 1.
From the above results, it was confirmed that a super water-repellent polymer film having a fine uneven structure on the surface could be formed on the polyester base material.
(実施例4)
〔超撥水性膜の作製〕
実施例1と同様の方法により、重合性化合物[A−1]を調製した。これを、オクタン酸メチル4.60g及びAldrich社製ポリイソブチルメタクリレート(重量平均分子量300,000)0.52gと均一に混合して膜形成用組成物[X−2]を調製した。
続いて、膜形成用組成物[X−1]の代わりに、[X−2]を用いる以外は実施例1と同様にして、基材上に形成された厚さ20μmの超撥水性膜[SH−4]を得た。
Example 4
[Production of super water-repellent film]
In the same manner as in Example 1, polymerizable compound [A-1] was prepared. This was uniformly mixed with 4.60 g of methyl octoate and 0.52 g of polyisobutyl methacrylate (weight average molecular weight 300,000) manufactured by Aldrich to prepare a film forming composition [X-2].
Subsequently, a super water-repellent film having a thickness of 20 μm formed on the substrate in the same manner as in Example 1 except that [X-2] is used instead of the film forming composition [X-1] [ SH-4] was obtained.
〔超撥水性膜の分析〕
水接触角:152°(転落角:1°)
表面形態:走査型電子顕微鏡を用いて評価した。
(機器(I))平均表面粗さ(Ra):310nm
(機器(II))平均表面粗さ(Ra):300nm
測定装置、測定条件等は、実施例1に記載の通り。
以上の結果から、ガラス基材上に、表面に微細な凹凸構造を有する超撥水性ポリマー膜が形成できたことが確認された。
[Analysis of super water-repellent film]
Water contact angle: 152 ° (Falling angle: 1 °)
Surface morphology: Evaluated using a scanning electron microscope.
(Equipment (I)) Average surface roughness (Ra): 310 nm
(Equipment (II)) Average surface roughness (Ra): 300 nm
The measurement apparatus, measurement conditions, etc. are as described in Example 1.
From the above results, it was confirmed that a super water-repellent polymer film having a fine uneven structure on the surface could be formed on the glass substrate.
(実施例5)
〔超撥水性膜の作製〕
実施例1と同様の方法により、重合性化合物[A−1]を調製した。これを、フェニル酢酸エチル4.59g及びAldrich社製ポリイソブチルメタクリレート(重量平均分子量300,000)0.52gと均一に混合して膜形成用組成物[X−3]を調製した。
続いて、膜形成用組成物[X−1]の代わりに、[X−3]を用いる以外は実施例1と同様にして、基材上に形成された厚さ22μmの超撥水性膜[SH−5]を得た。
(Example 5)
[Production of super water-repellent film]
In the same manner as in Example 1, polymerizable compound [A-1] was prepared. This was uniformly mixed with 4.59 g of ethyl phenylacetate and 0.52 g of polyisobutyl methacrylate (weight average molecular weight 300,000) manufactured by Aldrich, to prepare a film forming composition [X-3].
Subsequently, a 22 μm-thick super water-repellent film formed on the substrate in the same manner as in Example 1 except that [X-3] was used instead of the film-forming composition [X-1] [ SH-5] was obtained.
〔超撥水性膜の分析〕
水接触角:157°(転落角:1°)
表面形態:走査型電子顕微鏡を用いて評価した。
(機器(I))平均表面粗さ(Ra):330nm
(機器(II))平均表面粗さ(Ra):320nm
測定装置、測定条件等は、実施例1に記載の通り。
以上の結果から、ガラス基材上に、表面に微細な凹凸構造を有する超撥水性ポリマー膜が形成できたことが確認された。
[Analysis of super water-repellent film]
Water contact angle: 157 ° (Falling angle: 1 °)
Surface morphology: Evaluated using a scanning electron microscope.
(Equipment (I)) Average surface roughness (Ra): 330 nm
(Equipment (II)) Average surface roughness (Ra): 320 nm
The measurement apparatus, measurement conditions, etc. are as described in Example 1.
From the above results, it was confirmed that a super water-repellent polymer film having a fine uneven structure on the surface could be formed on the glass substrate.
(実施例6)
〔超撥水性膜の作製〕
実施例1と同様の方法により、重合性化合物[A−1]を調製した。これを、テトラデカン4.72g及びAldrich社製ポリイソブチルメタクリレート(重量平均分子量300,000)0.52gと均一に混合して膜形成用組成物[X−4]を調製した。
続いて、膜形成用組成物[X−1]の代わりに、[X−4]を用いる以外は実施例1と同様にして、基材上に形成された厚さ21μmの超撥水性膜[SH−6]を得た。
(Example 6)
[Production of super water-repellent film]
In the same manner as in Example 1, polymerizable compound [A-1] was prepared. This was uniformly mixed with 4.72 g of tetradecane and 0.52 g of polyisobutyl methacrylate (weight average molecular weight 300,000) manufactured by Aldrich to prepare a film forming composition [X-4].
Subsequently, a super water-repellent film having a thickness of 21 μm formed on a substrate in the same manner as in Example 1 except that [X-4] is used instead of the film-forming composition [X-1]. SH-6] was obtained.
〔超撥水性膜の分析〕
水接触角:153°(転落角:1°)
表面形態:走査型電子顕微鏡を用いて評価した。
(機器(I))平均表面粗さ(Ra):420nm
(機器(II))平均表面粗さ(Ra):390nm
測定装置、測定条件等は、実施例1に記載の通り。
以上の結果から、ガラス基材上に、表面に微細な凹凸構造を有する超撥水性ポリマー膜が形成できたことが確認された。
[Analysis of super water-repellent film]
Water contact angle: 153 ° (fall angle: 1 °)
Surface morphology: Evaluated using a scanning electron microscope.
(Equipment (I)) Average surface roughness (Ra): 420 nm
(Equipment (II)) Average surface roughness (Ra): 390 nm
The measurement apparatus, measurement conditions, etc. are as described in Example 1.
From the above results, it was confirmed that a super water-repellent polymer film having a fine uneven structure on the surface could be formed on the glass substrate.
(実施例7)
〔超撥水性膜の作製〕
実施例1と同様の方法により、重合性化合物[A−1]を調製した。これを、イソブチルベンゼン4.65g及びAldrich社製ポリイソブチルメタクリレート(重量平均分子量300,000)0.52gと均一に混合して膜形成用組成物[X−5]を調製した。
続いて、膜形成用組成物[X−1]の代わりに、[X−5]を用いる以外は実施例1と同様にして、基材上に形成された厚さ25μmの超撥水性膜[SH−7]を得た。
(Example 7)
[Production of super water-repellent film]
In the same manner as in Example 1, polymerizable compound [A-1] was prepared. This was uniformly mixed with 4.65 g of isobutylbenzene and 0.52 g of polyisobutyl methacrylate (weight average molecular weight 300,000) manufactured by Aldrich to prepare a film forming composition [X-5].
Subsequently, a super water-repellent film having a thickness of 25 μm formed on a substrate in the same manner as in Example 1 except that [X-5] was used instead of the film forming composition [X-1] [ SH-7] was obtained.
〔超撥水性膜の分析〕
水接触角:161°(転落角:1°)
表面形態:走査型電子顕微鏡を用いて評価した。
(機器(I))平均表面粗さ(Ra):370nm
(機器(II))平均表面粗さ(Ra):350nm
測定装置、測定条件等は、実施例1に記載の通り。
以上の結果から、ガラス基材上に、表面に微細な凹凸構造を有する超撥水性ポリマー膜が形成できたことが確認された。
[Analysis of super water-repellent film]
Water contact angle: 161 ° (Falling angle: 1 °)
Surface morphology: Evaluated using a scanning electron microscope.
(Equipment (I)) Average surface roughness (Ra): 370 nm
(Equipment (II)) Average surface roughness (Ra): 350 nm
The measurement apparatus, measurement conditions, etc. are as described in Example 1.
From the above results, it was confirmed that a super water-repellent polymer film having a fine uneven structure on the surface could be formed on the glass substrate.
(実施例8)
〔超撥水性膜の作製〕
実施例1と同様の方法により、重合性化合物[A−1]を調製した。これを、ジエチレングリコールジブチルエーテル4.64g及びAldrich社製ポリイソブチルメタクリレート(重量平均分子量300,000)0.52gと均一に混合して膜形成用組成物[X−6]を調製した。
続いて、膜形成用組成物[X−1]の代わりに、[X−6]を用いる以外は実施例1と同様にして、基材上に形成された厚さ20μmの超撥水性膜[SH−8]を得た。
(Example 8)
[Production of super water-repellent film]
In the same manner as in Example 1, polymerizable compound [A-1] was prepared. This was uniformly mixed with 4.64 g of diethylene glycol dibutyl ether and 0.52 g of polyisobutyl methacrylate (weight average molecular weight 300,000) manufactured by Aldrich to prepare a film forming composition [X-6].
Subsequently, a super water-repellent film having a thickness of 20 μm formed on a substrate in the same manner as in Example 1 except that [X-6] is used instead of the film-forming composition [X-1] [ SH-8] was obtained.
〔超撥水性膜の分析〕
水接触角:159°(転落角:1°)
表面形態:走査型電子顕微鏡を用いて評価した。
(機器(I))平均表面粗さ(Ra):370nm
(機器(II))平均表面粗さ(Ra):340nm
測定装置、測定条件等は、実施例1に記載の通り。
以上の結果から、ガラス基材上に、表面に微細な凹凸構造を有する超撥水性ポリマー膜が形成できたことが確認された。
[Analysis of super water-repellent film]
Water contact angle: 159 ° (fall angle: 1 °)
Surface morphology: Evaluated using a scanning electron microscope.
(Equipment (I)) Average surface roughness (Ra): 370 nm
(Equipment (II)) Average surface roughness (Ra): 340 nm
The measurement apparatus, measurement conditions, etc. are as described in Example 1.
From the above results, it was confirmed that a super water-repellent polymer film having a fine uneven structure on the surface could be formed on the glass substrate.
(実施例9)
〔超撥水性膜の作製〕
実施例1と同様の方法により、重合性化合物[A−1]を調製した。これを、デカン酸メチル4.64g及びAldrich社製ポリエチルメタクリレート(重量平均分子量340,000)0.52gと均一に混合して膜形成用組成物[X−7]を調製した。
続いて、膜形成用組成物[X−1]の代わりに、[X−7]を用いる以外は実施例1と同様にして、基材上に形成された厚さ17μmの超撥水性膜[SH−9]を得た。
Example 9
[Production of super water-repellent film]
In the same manner as in Example 1, polymerizable compound [A-1] was prepared. This was uniformly mixed with 4.64 g of methyl decanoate and 0.52 g of polyethyl methacrylate (weight average molecular weight 340,000) manufactured by Aldrich, to prepare a film forming composition [X-7].
Subsequently, a super-water-repellent film having a thickness of 17 μm formed on the substrate in the same manner as in Example 1 except that [X-7] is used instead of the film-forming composition [X-1] [ SH-9] was obtained.
〔超撥水性膜の分析〕
水接触角:155°(転落角:1°)
表面形態:走査型電子顕微鏡を用いて評価した。
(機器(I))平均表面粗さ(Ra):310nm
(機器(II))平均表面粗さ(Ra):300nm
測定装置、測定条件等は、実施例1に記載の通り。
以上の結果から、ガラス基材上に、表面に微細な凹凸構造を有する超撥水性ポリマー膜が形成できたことが確認された。
[Analysis of super water-repellent film]
Water contact angle: 155 ° (fall angle: 1 °)
Surface morphology: Evaluated using a scanning electron microscope.
(Equipment (I)) Average surface roughness (Ra): 310 nm
(Equipment (II)) Average surface roughness (Ra): 300 nm
The measurement apparatus, measurement conditions, etc. are as described in Example 1.
From the above results, it was confirmed that a super water-repellent polymer film having a fine uneven structure on the surface could be formed on the glass substrate.
(実施例10)
〔超撥水性膜の作製〕
実施例1と同様の方法により、重合性化合物[A−1]を調製した。これを、デカン酸メチル4.64g及びAldrich社製ポリイソボルニルメタクリレート(重量平均分子量554,000)0.50gと均一に混合して膜形成用組成物[X−8]を調製した。
続いて、膜形成用組成物[X−1]の代わりに、[X−8]を用いる以外は実施例1と同様にして、基材上に形成された厚さ20μmの超撥水性膜[SH−10]を得た。
(Example 10)
[Production of super water-repellent film]
In the same manner as in Example 1, polymerizable compound [A-1] was prepared. This was uniformly mixed with 4.64 g of methyl decanoate and 0.50 g of polyisobornyl methacrylate (weight average molecular weight 554,000) manufactured by Aldrich to prepare a film forming composition [X-8].
Subsequently, a super water-repellent film having a thickness of 20 μm formed on the substrate in the same manner as in Example 1 except that [X-8] is used instead of the film-forming composition [X-1]. SH-10] was obtained.
〔超撥水性膜の分析〕
水接触角:153°(転落角:1°)
表面形態:走査型電子顕微鏡を用いて評価した。
[Analysis of super water-repellent film]
Water contact angle: 153 ° (fall angle: 1 °)
Surface morphology: Evaluated using a scanning electron microscope.
(機器(I))平均表面粗さ(Ra):320nm
(機器(II))平均表面粗さ(Ra):310nm
測定装置、測定条件等は、実施例1に記載の通り。
以上の結果から、ガラス基材上に、表面に微細な凹凸構造を有する超撥水性ポリマー膜が形成できたことが確認された。
(Equipment (I)) Average surface roughness (Ra): 320 nm
(Equipment (II)) Average surface roughness (Ra): 310 nm
The measurement apparatus, measurement conditions, etc. are as described in Example 1.
From the above results, it was confirmed that a super water-repellent polymer film having a fine uneven structure on the surface could be formed on the glass substrate.
(実施例11)
〔超撥水性膜の作製〕
実施例1と同様の方法により、重合性化合物[A−1]を調製した。これを、デカン酸メチル4.64g及びAldrich社製ポリスチレン(重量平均分子量280,000)0.48gと均一に混合して膜形成用組成物[X−9]を調製した。
続いて、膜形成用組成物[X−1]の代わりに、[X−9]を用いる以外は実施例1と同様にして、基材上に形成された厚さ19μmの超撥水性膜[SH−11]を得た。
(Example 11)
[Production of super water-repellent film]
In the same manner as in Example 1, polymerizable compound [A-1] was prepared. This was uniformly mixed with 4.64 g of methyl decanoate and 0.48 g of polystyrene (weight average molecular weight 280,000) manufactured by Aldrich to prepare a film forming composition [X-9].
Subsequently, a super water-repellent film having a thickness of 19 μm formed on the substrate in the same manner as in Example 1 except that [X-9] is used instead of the film forming composition [X-1] [ SH-11] was obtained.
〔超撥水性膜の分析〕
水接触角:150°(転落角:2°)
表面形態:走査型電子顕微鏡を用いて評価した。
[Analysis of super water-repellent film]
Water contact angle: 150 ° (Falling angle: 2 °)
Surface morphology: Evaluated using a scanning electron microscope.
(機器(I))平均表面粗さ(Ra):300nm
(機器(II))平均表面粗さ(Ra):290nm
測定装置、測定条件等は、実施例1に記載の通り。
以上の結果から、ガラス基材上に、表面に微細な凹凸構造を有する超撥水性ポリマー膜が形成できたことが確認された。
(Equipment (I)) Average surface roughness (Ra): 300 nm
(Equipment (II)) Average surface roughness (Ra): 290 nm
The measurement apparatus, measurement conditions, etc. are as described in Example 1.
From the above results, it was confirmed that a super water-repellent polymer film having a fine uneven structure on the surface could be formed on the glass substrate.
(実施例12)
〔超撥水性膜の作製〕
共栄社化学株式会社製1,6−ヘキサンジオールジメタクリレート「ライトエステル1,6HX」6.87g、共栄社化学株式会社製n−ラウリルメタクリレート「ライトエステルL」1.27g、前記「ライトエステルFM−108」0.16g、及び、光重合開始剤として前記「イルガキュア184」0.18gを均一に混合して重合性化合物[A−2]を調製した。これを、デカン酸メチル4.64g及びAldrich社製ポリイソブチルメタクリレート(重量平均分子量300,000)0.52gと均一に混合して膜形成用組成物[X−10]を調製した。
膜形成用組成物[X−1]の代わりに、[X−10]を用いる以外は実施例1と同様にして、基材上に形成された厚さ19μmの超撥水性膜[SH−12]を得た。
(Example 12)
[Production of super water-repellent film]
Kyoeisha Chemical Co., Ltd. 1,6-hexanediol dimethacrylate “Light Ester 1,6HX” 6.87 g, Kyoeisha Chemical Co., Ltd. n-lauryl methacrylate “Light Ester L” 1.27 g, “Light Ester FM-108” 0.16 g and 0.18 g of “Irgacure 184” as a photopolymerization initiator were uniformly mixed to prepare a polymerizable compound [A-2]. This was uniformly mixed with 4.64 g of methyl decanoate and 0.52 g of polyisobutyl methacrylate (weight average molecular weight 300,000) manufactured by Aldrich to prepare a film forming composition [X-10].
A super water-repellent film [SH-12] having a thickness of 19 μm formed on a substrate in the same manner as in Example 1 except that [X-10] is used instead of the film-forming composition [X-1]. ] Was obtained.
〔超撥水性膜の分析〕
水接触角:158°(転落角:1°)
表面形態:走査型電子顕微鏡を用いて評価した。
(機器(I))平均表面粗さ(Ra):320nm
(機器(II))平均表面粗さ(Ra):310nm
測定装置、測定条件等は、実施例1に記載の通り。
以上の結果から、ガラス基材上に、表面に微細な凹凸構造を有する超撥水性ポリマー膜が形成できたことが確認された。
[Analysis of super water-repellent film]
Water contact angle: 158 ° (Falling angle: 1 °)
Surface morphology: Evaluated using a scanning electron microscope.
(Equipment (I)) Average surface roughness (Ra): 320 nm
(Equipment (II)) Average surface roughness (Ra): 310 nm
The measurement apparatus, measurement conditions, etc. are as described in Example 1.
From the above results, it was confirmed that a super water-repellent polymer film having a fine uneven structure on the surface could be formed on the glass substrate.
(実施例13)
〔超撥水性膜の作製〕
共栄社化学株式会社製ジメチロールトリシクロデカンジアクリレート「ライトアクリレートDCP−A」7.00g、大阪有機化学工業株式会社製イソブチルアクリレート「AIB」1.02g、共栄社化学株式会社製パーフロロオクチルエチルアクリレート「ライトアクリレートFA−108」0.15g、及び、光重合開始剤として前記「イルガキュア184」0.18gを均一に混合して重合性化合物[A−3]を調製した。これを、デカン酸メチル4.64g及びAldrich社製ポリイソブチルメタクリレート(重量平均分子量300,000)0.52gと均一に混合して膜形成用組成物[X−11]を調製した。
膜形成用組成物[X−1]の代わりに、[X−11]を用いる以外は実施例1と同様にして、基材上に形成された厚さ24μmの超撥水性膜[SH−13]を得た。
(Example 13)
[Production of super water-repellent film]
Kyoeisha Chemical Co., Ltd. dimethylol tricyclodecane diacrylate “Light acrylate DCP-A” 7.00 g, Osaka Organic Chemical Co., Ltd. isobutyl acrylate “AIB” 1.02 g, Kyoeisha Chemical Co., Ltd. perfluorooctylethyl acrylate “ 0.15 g of light acrylate FA-108 ”and 0.18 g of“ Irgacure 184 ”as a photopolymerization initiator were uniformly mixed to prepare a polymerizable compound [A-3]. This was uniformly mixed with 4.64 g of methyl decanoate and 0.52 g of polyisobutyl methacrylate (weight average molecular weight 300,000) manufactured by Aldrich to prepare a film forming composition [X-11].
A super water-repellent film [SH-13] having a thickness of 24 μm formed on a substrate in the same manner as in Example 1 except that [X-11] is used instead of the film-forming composition [X-1]. ] Was obtained.
〔超撥水性膜の分析〕
水接触角:156°(転落角:1°)
表面形態:走査型電子顕微鏡を用いて評価した。
(機器(I))平均表面粗さ(Ra):410nm
(機器(II))平均表面粗さ(Ra):390nm
測定装置、測定条件等は、実施例1に記載の通り。
以上の結果から、ガラス基材上に、表面に微細な凹凸構造を有する超撥水性ポリマー膜が形成できたことが確認された。
[Analysis of super water-repellent film]
Water contact angle: 156 ° (Falling angle: 1 °)
Surface morphology: Evaluated using a scanning electron microscope.
(Equipment (I)) Average surface roughness (Ra): 410 nm
(Equipment (II)) Average surface roughness (Ra): 390 nm
The measurement apparatus, measurement conditions, etc. are as described in Example 1.
From the above results, it was confirmed that a super water-repellent polymer film having a fine uneven structure on the surface could be formed on the glass substrate.
(実施例14)
〔超撥水性膜の作製〕
実施例1と同様の方法により、重合性化合物[A−1]を調製した。これを、テトラデカン酸メチル4.72g及びAldrich社製ポリイソブチルメタクリレート(重量平均分子量300,000)0.52gと均一に混合して膜形成用組成物[X−12]を調製した。
実施例1と同様の方法により表面処理を施した基材[S−1]上に、スピンコーターを用いて、4000rpm、25秒間の条件で膜形成用組成物[X−12]を塗工した。該塗膜に対して、実施例1と同様の方法で重合、続いて、洗浄を行うことにより、基材上に形成された厚さ1.0μmの超撥水性膜[SH−14]を得た。
(Example 14)
[Production of super water-repellent film]
In the same manner as in Example 1, polymerizable compound [A-1] was prepared. This was uniformly mixed with 4.72 g of methyl tetradecanoate and 0.52 g of polyisobutyl methacrylate (weight average molecular weight 300,000) manufactured by Aldrich, to prepare a film forming composition [X-12].
The film-forming composition [X-12] was coated on the substrate [S-1] that had been surface-treated by the same method as in Example 1 using a spin coater under the conditions of 4000 rpm and 25 seconds. . The coating film is polymerized in the same manner as in Example 1, followed by washing to obtain a 1.0 μm-thick super water-repellent film [SH-14] formed on the substrate. It was.
〔超撥水性膜の分析〕
水接触角:155°(転落角:1°)(水滴写真を図4に示す。)
表面形態:膜表面の走査型電子顕微鏡像を図5に示す。
(機器(I))平均表面粗さ(Ra):52nm(膜表面の原子間力顕微鏡像を図16に示す。)
(機器(II))平均表面粗さ(Ra):43nm(膜表面の原子間力顕微鏡像を図6に示す。)
以上、測定装置、測定条件等は、実施例1に記載の通り。
可視光透過率:92.0%(波長540nm)、95.3%(波長600nm)
測定装置:日立紫外可視吸光光度計U−4100
以上の結果から、ガラス基材上に、表面に微細な凹凸構造を有し、且つ、透明性に優れた超撥水性ポリマー膜が形成できたことが確認された。
[Analysis of super water-repellent film]
Water contact angle: 155 ° (falling angle: 1 °) (Water droplet photograph is shown in FIG. 4)
Surface morphology: A scanning electron microscope image of the film surface is shown in FIG.
(Equipment (I)) Average surface roughness (Ra): 52 nm (Atomic force microscope image of film surface is shown in FIG. 16)
(Equipment (II)) Average surface roughness (Ra): 43 nm (Atomic force microscope image of film surface is shown in FIG. 6)
The measurement apparatus, measurement conditions, and the like are as described in Example 1.
Visible light transmittance: 92.0% (wavelength 540 nm), 95.3% (wavelength 600 nm)
Measuring apparatus: Hitachi UV-visible spectrophotometer U-4100
From the above results, it was confirmed that a super-water-repellent polymer film having a fine concavo-convex structure on the surface and excellent in transparency could be formed on the glass substrate.
(実施例15)
〔超撥水性膜の作製〕
実施例13と同様の方法により、重合性化合物[A−3]を調製した。これを、ヘキサデカン酸メチル4.75g及びAldrich社製ポリイソブチルメタクリレート(重量平均分子量300,000)0.52gと均一に混合して膜形成用組成物[X−13]を調製した。
(Example 15)
[Production of super water-repellent film]
A polymerizable compound [A-3] was prepared in the same manner as in Example 13. This was uniformly mixed with 4.75 g of methyl hexadecanoate and 0.52 g of polyisobutyl methacrylate (weight average molecular weight 300,000) manufactured by Aldrich to prepare a film forming composition [X-13].
実施例1と同様の方法により表面処理を施した基材[S−1]上に、スピンコーターを用いて、7000rpm、25秒間の条件で膜形成用組成物[X−13]を塗工した。該塗膜に対して、実施例1と同様の方法で重合、続いて、洗浄を行うことにより、基材上に形成された厚さ0.7μmの超撥水性膜[SH−15]を得た。 The film-forming composition [X-13] was applied on the substrate [S-1] that had been surface-treated by the same method as in Example 1 using a spin coater under the conditions of 7000 rpm and 25 seconds. . The coating film is polymerized in the same manner as in Example 1, followed by washing to obtain a super-water-repellent film [SH-15] having a thickness of 0.7 μm formed on the substrate. It was.
〔超撥水性膜の分析〕
水接触角:154°(転落角:1°)
表面形態:走査型電子顕微鏡を用いて評価した。
(機器(I))平均表面粗さ(Ra):50nm
(機器(II))平均表面粗さ(Ra):35nm
可視光透過率:95.4%(波長540nm)、98.0%(波長600nm)
測定装置、測定条件等は、実施例1及び実施例14に記載の通り。
以上の結果から、ガラス基材上に、表面に微細な凹凸構造を有し、且つ、透明性に優れた超撥水性ポリマー膜が形成できたことが確認された。
[Analysis of super water-repellent film]
Water contact angle: 154 ° (Falling angle: 1 °)
Surface morphology: Evaluated using a scanning electron microscope.
(Equipment (I)) Average surface roughness (Ra): 50 nm
(Equipment (II)) Average surface roughness (Ra): 35 nm
Visible light transmittance: 95.4% (wavelength 540 nm), 98.0% (wavelength 600 nm)
The measurement apparatus, measurement conditions, etc. are as described in Example 1 and Example 14.
From the above results, it was confirmed that a super-water-repellent polymer film having a fine concavo-convex structure on the surface and excellent in transparency could be formed on the glass substrate.
(実施例16)
〔超撥水性膜の作製〕
実施例1と同様の方法により、膜形成用組成物[X−1]を調製した。これを、酢酸エチル50.5gと均一に混合して膜形成用組成物[X−14]を調製した。
実施例1と同様の方法により表面処理を施した基材[S−1]上に、スピンコーターを用いて、2000rpm、180秒間の条件で膜形成用組成物[X−14]を塗工した。該塗膜に対して、実施例1と同様の方法で重合、続いて、洗浄を行うことにより、基材上に形成された厚さ0.5μmの超撥水性膜[SH−16]を得た。
(Example 16)
[Production of super water-repellent film]
A film-forming composition [X-1] was prepared in the same manner as in Example 1. This was uniformly mixed with 50.5 g of ethyl acetate to prepare a film forming composition [X-14].
The film forming composition [X-14] was applied on the substrate [S-1] that had been surface-treated by the same method as in Example 1 using a spin coater under the conditions of 2000 rpm and 180 seconds. . The coating film is polymerized in the same manner as in Example 1, followed by washing to obtain a 0.5 μm-thick super water-repellent film [SH-16] formed on the substrate. It was.
〔超撥水性膜の分析〕
水接触角:151°(転落角:2°)(水滴写真を図7に示す。)
表面形態:膜表面の走査型電子顕微鏡像を図8に示す。
[Analysis of super water-repellent film]
Water contact angle: 151 ° (falling angle: 2 °) (Water droplet photograph is shown in FIG. 7)
Surface morphology: A scanning electron microscope image of the film surface is shown in FIG.
(機器(I))平均表面粗さ(Ra):46nm(膜表面の原子間力顕微鏡像を図19に示す。)
(機器(II))平均表面粗さ(Ra):30nm(膜表面の原子間力顕微鏡像を図9に示す。)
可視光透過率:95.9%(波長540nm)、98.0%(波長600nm)
測定装置、測定条件等は、実施例1及び実施例14に記載の通り。
以上の結果から、ガラス基材上に、表面に微細な凹凸構造を有し、且つ、透明性に優れた超撥水性ポリマー膜が形成できたことが確認された。
(Equipment (I)) Average surface roughness (Ra): 46 nm (Atomic force microscope image of film surface is shown in FIG. 19)
(Equipment (II)) Average surface roughness (Ra): 30 nm (Atomic force microscope image of film surface is shown in FIG. 9)
Visible light transmittance: 95.9% (wavelength 540 nm), 98.0% (wavelength 600 nm)
The measurement apparatus, measurement conditions, etc. are as described in Example 1 and Example 14.
From the above results, it was confirmed that a super-water-repellent polymer film having a fine concavo-convex structure on the surface and excellent in transparency could be formed on the glass substrate.
(実施例17)
〔超撥水性膜の作製〕
実施例1と同様の方法により、膜形成用組成物[X−1]を調製した。これを、ヘキサン9.23gと均一に混合して膜形成用組成物[X−15]を調製した。
実施例1と同様の方法により表面処理を施した基材[S−1]上に、スピンコーターを用いて、2000rpm、180秒間の条件で膜形成用組成物[X−15]を塗工した。該塗膜に対して、実施例1と同様の方法で重合、続いて、洗浄を行うことにより、基材上に形成された厚さ0.6μmの超撥水性膜[SH−17]を得た。
(Example 17)
[Production of super water-repellent film]
A film-forming composition [X-1] was prepared in the same manner as in Example 1. This was uniformly mixed with 9.23 g of hexane to prepare a film-forming composition [X-15].
The film-forming composition [X-15] was applied on the substrate [S-1] that had been surface-treated by the same method as in Example 1 using a spin coater under the conditions of 2000 rpm and 180 seconds. . The coating film is polymerized in the same manner as in Example 1, followed by washing to obtain a 0.6 μm-thick super water-repellent film [SH-17] formed on the substrate. It was.
〔超撥水性膜の分析〕
水接触角:150°(転落角:2°)
表面形態:走査型電子顕微鏡を用いて評価した。
(機器(I))平均表面粗さ(Ra):53nm
(機器(II))平均表面粗さ(Ra):38nm
可視光透過率:95.9%(波長540nm)、99.2%(波長600nm)
測定装置、測定条件等は、実施例1及び実施例14に記載の通り。
[Analysis of super water-repellent film]
Water contact angle: 150 ° (Falling angle: 2 °)
Surface morphology: Evaluated using a scanning electron microscope.
(Equipment (I)) Average surface roughness (Ra): 53 nm
(Equipment (II)) Average surface roughness (Ra): 38 nm
Visible light transmittance: 95.9% (wavelength 540 nm), 99.2% (wavelength 600 nm)
The measurement apparatus, measurement conditions, etc. are as described in Example 1 and Example 14.
以上の結果から、ガラス基材上に、表面に微細な凹凸構造を有し、且つ、透明性に優れた超撥水性ポリマー膜が形成できたことが確認された。 From the above results, it was confirmed that a super-water-repellent polymer film having a fine concavo-convex structure on the surface and excellent in transparency could be formed on the glass substrate.
(実施例18)
〔超撥水性膜の作製〕
実施例1と同様の方法により、膜形成用組成物[X−1]を調製した。これを、トルエン9.25gと均一に混合して膜形成用組成物[X−16]を調製した。
実施例1と同様の方法により表面処理を施した基材[S−1]上に、スピンコーターを用いて、2000rpm、180秒間の条件で膜形成用組成物[X−16]を塗工した。該塗膜に対して、実施例1と同様の方法で重合、続いて、洗浄を行うことにより、基材上に形成された厚さ0.5μmの超撥水性膜[SH−18]を得た。
(Example 18)
[Production of super water-repellent film]
A film-forming composition [X-1] was prepared in the same manner as in Example 1. This was uniformly mixed with 9.25 g of toluene to prepare a film forming composition [X-16].
The film-forming composition [X-16] was applied on the substrate [S-1] that had been surface-treated by the same method as in Example 1 using a spin coater under the conditions of 2000 rpm and 180 seconds. . The coating film is polymerized in the same manner as in Example 1, followed by washing to obtain a 0.5 μm thick super water-repellent film [SH-18] formed on the substrate. It was.
〔超撥水性膜の分析〕
水接触角:152°(転落角:2°)
表面形態:走査型電子顕微鏡を用いて評価した。
(機器(I))平均表面粗さ(Ra):51nm
(機器(II))平均表面粗さ(Ra):33nm
可視光透過率:98.1%(波長540nm)、99.0%(波長600nm)
測定装置、測定条件等は、実施例1及び実施例14に記載の通り。
以上の結果から、ガラス基材上に、表面に微細な凹凸構造を有し、且つ、透明性に優れた超撥水性ポリマー膜が形成できたことが確認された。
[Analysis of super water-repellent film]
Water contact angle: 152 ° (Tumble angle: 2 °)
Surface morphology: Evaluated using a scanning electron microscope.
(Equipment (I)) Average surface roughness (Ra): 51 nm
(Equipment (II)) Average surface roughness (Ra): 33 nm
Visible light transmittance: 98.1% (wavelength 540 nm), 99.0% (wavelength 600 nm)
The measurement apparatus, measurement conditions, etc. are as described in Example 1 and Example 14.
From the above results, it was confirmed that a super-water-repellent polymer film having a fine concavo-convex structure on the surface and excellent in transparency could be formed on the glass substrate.
(実施例19)
〔超撥水性膜の作製〕
実施例1と同様の方法により、膜形成用組成物[X−1]を調製した。これを、クロロホルム50.4gと均一に混合して膜形成用組成物[X−17]を調製した。
実施例1と同様の方法により表面処理を施した基材[S−1]上に、スピンコーターを用いて、2000rpm、180秒間の条件で膜形成用組成物[X−17]を塗工した。該塗膜に対して、実施例1と同様の方法で重合、続いて、洗浄を行うことにより、基材上に形成された厚さ0.6μmの超撥水性膜[SH−19]を得た。
(Example 19)
[Production of super water-repellent film]
A film-forming composition [X-1] was prepared in the same manner as in Example 1. This was uniformly mixed with 50.4 g of chloroform to prepare a film forming composition [X-17].
The film forming composition [X-17] was coated on the substrate [S-1] that had been surface-treated by the same method as in Example 1 using a spin coater under the conditions of 2000 rpm and 180 seconds. . The coating film is polymerized in the same manner as in Example 1, and then washed to obtain a 0.6 μm-thick super water-repellent film [SH-19] formed on the substrate. It was.
〔超撥水性膜の分析〕
水接触角:151°(転落角:2°)
表面形態:走査型電子顕微鏡を用いて評価した。
[Analysis of super water-repellent film]
Water contact angle: 151 ° (fall angle: 2 °)
Surface morphology: Evaluated using a scanning electron microscope.
(機器(I))平均表面粗さ(Ra):43nm
(機器(II))平均表面粗さ(Ra):28nm
可視光透過率:96.1%(波長540nm)、98.7%(波長600nm)
測定装置、測定条件等は、実施例1及び実施例14に記載の通り。
以上の結果から、ガラス基材上に、表面に微細な凹凸構造を有し、且つ、透明性に優れた超撥水性ポリマー膜が形成できたことが確認された。
(Equipment (I)) Average surface roughness (Ra): 43 nm
(Equipment (II)) Average surface roughness (Ra): 28 nm
Visible light transmittance: 96.1% (wavelength 540 nm), 98.7% (wavelength 600 nm)
The measurement apparatus, measurement conditions, etc. are as described in Example 1 and Example 14.
From the above results, it was confirmed that a super-water-repellent polymer film having a fine concavo-convex structure on the surface and excellent in transparency could be formed on the glass substrate.
(比較例1)
〔エネルギー線硬化膜の作製〕
実施例1と同様の方法により、重合性化合物[A−1]を調製した。これを、ヘキサン酸メチル4.65gと均一に混合して膜形成用組成物[XR−1]を調製した。
続いて、膜形成用組成物[X−1]の代わりに、[XR−1]を用いる以外は実施例1と同様にして、基材上に形成された厚さ14μmのエネルギー線硬化膜[R−1]を得た。
(Comparative Example 1)
[Preparation of energy-ray cured film]
In the same manner as in Example 1, polymerizable compound [A-1] was prepared. This was uniformly mixed with 4.65 g of methyl hexanoate to prepare a film forming composition [XR-1].
Subsequently, an energy ray cured film having a thickness of 14 μm formed on a substrate in the same manner as in Example 1 except that [XR-1] is used instead of the film-forming composition [X-1]. R-1] was obtained.
〔エネルギー線硬化膜の分析〕
水接触角:65°
表面形態:走査型電子顕微鏡を用いて評価した。
(機器(I))平均表面粗さ(Ra):3.2nm
測定装置、測定条件等は、実施例1に記載の通り。
このように、25℃における飽和蒸気圧が670Paであるヘキサン酸メチルを化合物(B)として含む膜形成用組成物を用いて調製したエネルギー線硬化膜は、超撥水性を示さなかった。
[Analysis of energy ray cured film]
Water contact angle: 65 °
Surface morphology: Evaluated using a scanning electron microscope.
(Equipment (I)) Average surface roughness (Ra): 3.2 nm
The measurement apparatus, measurement conditions, etc. are as described in Example 1.
Thus, the energy ray cured film prepared using the film-forming composition containing methyl hexanoate having a saturated vapor pressure at 25 ° C. of 670 Pa as the compound (B) did not exhibit super water repellency.
(比較例2)
〔エネルギー線硬化膜の作製〕
実施例11と同様の方法により、重合性化合物[A−2]を調製した。これを、ヘキサン酸メチル4.65gと均一に混合して膜形成用組成物[XR−2]を調製した。
続いて、膜形成用組成物[X−1]の代わりに、[XR−2]を用いる以外は実施例1と同様にして、基材上に形成された厚さ16μmのエネルギー線硬化膜[R−2]を得た。
(Comparative Example 2)
[Preparation of energy-ray cured film]
In the same manner as in Example 11, polymerizable compound [A-2] was prepared. This was uniformly mixed with 4.65 g of methyl hexanoate to prepare a film forming composition [XR-2].
Subsequently, an energy ray cured film having a thickness of 16 μm formed on a substrate in the same manner as in Example 1 except that [XR-2] is used instead of the film-forming composition [X-1]. R-2] was obtained.
〔エネルギー線硬化膜の分析〕
水接触角:68°
表面形態:走査型電子顕微鏡を用いて評価した。
(機器(I))平均表面粗さ(Ra):2.5nm
測定装置、測定条件等は、実施例1に記載の通り。
このように、25℃における飽和蒸気圧が670Paであるヘキサン酸メチルを化合物(B)として含む膜形成用組成物を用いて調製したエネルギー線硬化膜は、超撥水性を示さなかった。
[Analysis of energy ray cured film]
Water contact angle: 68 °
Surface morphology: Evaluated using a scanning electron microscope.
(Equipment (I)) Average surface roughness (Ra): 2.5 nm
The measurement apparatus, measurement conditions, etc. are as described in Example 1.
Thus, the energy ray cured film prepared using the film-forming composition containing methyl hexanoate having a saturated vapor pressure at 25 ° C. of 670 Pa as the compound (B) did not exhibit super water repellency.
(比較例3)
〔エネルギー線硬化膜の作製〕
実施例12と同様の方法により、重合性化合物[A−3]を調製した。これを、ヘキサン酸メチル4.65gと均一に混合して膜形成用組成物[XR−3]を調製した。
続いて、膜形成用組成物[X−1]の代わりに、[XR−3]を用いる以外は実施例1と同様にして、基材上に形成された厚さ14μmのエネルギー線硬化膜[R−3]を得た。
(Comparative Example 3)
[Preparation of energy-ray cured film]
In the same manner as in Example 12, polymerizable compound [A-3] was prepared. This was uniformly mixed with 4.65 g of methyl hexanoate to prepare a film forming composition [XR-3].
Subsequently, an energy ray cured film having a thickness of 14 μm formed on the substrate in the same manner as in Example 1 except that [XR-3] is used instead of the film-forming composition [X-1]. R-3] was obtained.
〔エネルギー線硬化膜の分析〕
水接触角:65°
(機器(I))平均表面粗さ(Ra):1.9nm
表面形態:走査型電子顕微鏡を用いて評価した。
測定装置、測定条件等は、実施例1に記載の通り。
このように、25℃における飽和蒸気圧が670Paであるヘキサン酸メチルを化合物(B)として含む膜形成用組成物を用いて調製したエネルギー線硬化膜は、超撥水性を示さなかった。
[Analysis of energy ray cured film]
Water contact angle: 65 °
(Equipment (I)) Average surface roughness (Ra): 1.9 nm
Surface morphology: Evaluated using a scanning electron microscope.
The measurement apparatus, measurement conditions, etc. are as described in Example 1.
Thus, the energy ray cured film prepared using the film-forming composition containing methyl hexanoate having a saturated vapor pressure at 25 ° C. of 670 Pa as the compound (B) did not exhibit super water repellency.
(比較例4)
〔エネルギー線硬化膜の作製〕
実施例1と同様の方法により、重合性化合物[A−1]を調製した。これを、Aldrich社製ポリイソブチルメタクリレート(重量平均分子量300,000)0.52gと均一に混合して膜形成用組成物[XR−4]を調製した。
続いて、膜形成用組成物[X−1]の代わりに、[XR−4]を用いる以外は実施例1と同様にして、基材上に形成された厚さ19μmのエネルギー線硬化膜[R−4]を得た。
(Comparative Example 4)
[Preparation of energy-ray cured film]
In the same manner as in Example 1, polymerizable compound [A-1] was prepared. This was uniformly mixed with 0.52 g of polyisobutyl methacrylate (weight average molecular weight 300,000) manufactured by Aldrich to prepare a film forming composition [XR-4].
Subsequently, an energy ray cured film having a thickness of 19 μm formed on a substrate in the same manner as in Example 1 except that [XR-4] is used instead of the film forming composition [X-1] [ R-4] was obtained.
〔エネルギー線硬化膜の分析〕
水接触角:108°
表面形態:走査型電子顕微鏡を用いて評価した。
(機器(I))平均表面粗さ(Ra):17nm
測定装置、測定条件等は、実施例1に記載の通り。
このように、化合物(B)を含まない膜形成用組成物を用いて調製したエネルギー線硬化膜は、超撥水性を示さなかった。
[Analysis of energy ray cured film]
Water contact angle: 108 °
Surface morphology: Evaluated using a scanning electron microscope.
(Equipment (I)) Average surface roughness (Ra): 17 nm
The measurement apparatus, measurement conditions, etc. are as described in Example 1.
Thus, the energy ray cured film prepared using the film-forming composition containing no compound (B) did not exhibit super water repellency.
(比較例5)
〔エネルギー線硬化膜の作製〕
実施例1と同様の方法により、重合性化合物[A−1]を調製した。これを、Aldrich社製ポリエチルメタクリレート(重量平均分子量340,000)0.52gと均一に混合して膜形成用組成物[XR−5]を調製した。
続いて、膜形成用組成物[X−1]の代わりに、[XR−5]を用いる以外は実施例1と同様にして、基材上に形成された厚さ17μmのエネルギー線硬化膜[R−5]を得た。
(Comparative Example 5)
[Preparation of energy-ray cured film]
In the same manner as in Example 1, polymerizable compound [A-1] was prepared. This was uniformly mixed with 0.52 g of polyethyl methacrylate (weight average molecular weight 340,000) manufactured by Aldrich to prepare a film forming composition [XR-5].
Subsequently, an energy ray cured film having a thickness of 17 μm formed on a substrate in the same manner as in Example 1 except that [XR-5] is used instead of the film-forming composition [X-1]. R-5] was obtained.
〔エネルギー線硬化膜の分析〕
水接触角:98°
表面形態:走査型電子顕微鏡を用いて評価した。
[Analysis of energy ray cured film]
Water contact angle: 98 °
Surface morphology: Evaluated using a scanning electron microscope.
(機器(I))平均表面粗さ(Ra):20nm
測定装置、測定条件等は、実施例1に記載の通り。
このように、化合物(B)を含まない膜形成用組成物を用いて調製したエネルギー線硬化膜は、超撥水性を示さなかった。
(Equipment (I)) Average surface roughness (Ra): 20 nm
The measurement apparatus, measurement conditions, etc. are as described in Example 1.
Thus, the energy ray cured film prepared using the film-forming composition containing no compound (B) did not exhibit super water repellency.
(比較例6)
〔エネルギー線硬化膜の作製〕
実施例13と同様の方法により、重合性化合物[A−3]を調製した。これを、Aldrich社製ポリスチレン(重量平均分子量280,000)0.48gと均一に混合して膜形成用組成物[XR−6]を調製した。
続いて、膜形成用組成物[X−1]の代わりに、[XR−6]を用いる以外は実施例1と同様にして、基材上に形成された厚さ14μmのエネルギー線硬化膜[R−6]を得た。
(Comparative Example 6)
[Preparation of energy-ray cured film]
A polymerizable compound [A-3] was prepared in the same manner as in Example 13. This was uniformly mixed with 0.48 g of polystyrene (weight average molecular weight 280,000) manufactured by Aldrich to prepare a film forming composition [XR-6].
Subsequently, an energy ray cured film having a thickness of 14 μm formed on a substrate in the same manner as in Example 1 except that [XR-6] is used instead of the film forming composition [X-1]. R-6] was obtained.
〔エネルギー線硬化膜の分析〕
水接触角:78°
表面形態:走査型電子顕微鏡を用いて評価した。
(機器(I))平均表面粗さ(Ra):15nm
測定装置、測定条件等は、実施例1に記載の通り。
[Analysis of energy ray cured film]
Water contact angle: 78 °
Surface morphology: Evaluated using a scanning electron microscope.
(Equipment (I)) Average surface roughness (Ra): 15 nm
The measurement apparatus, measurement conditions, etc. are as described in Example 1.
このように、化合物(B)を含まない膜形成用組成物を用いて調製したエネルギー線硬化膜は、超撥水性を示さなかった。 Thus, the energy ray cured film prepared using the film-forming composition containing no compound (B) did not exhibit super water repellency.
Claims (12)
該重合性化合物(A)とは相溶するが、該重合性化合物(A)の重合体ポリマー(PA)とは相溶せず、且つエネルギー線に対して不活性な化合物(B)と、
該重合性化合物(A)と該化合物(B)と相溶し、且つエネルギー線に対して不活性なポリマー(C)とを混合した膜形成用組成物(X)を製造する工程、
該膜形成用組成物(X)の層を形成する工程、
エネルギー線の照射により該膜形成用組成物(X)中の重合性化合物(A)を重合させた後、化合物(B)を除去する工程を有することを特徴とする撥水性膜の製造方法。 A polymerizable compound (A) polymerizable by irradiation with energy rays;
A compound (B) that is compatible with the polymerizable compound (A) but is not compatible with the polymer polymer (P A ) of the polymerizable compound ( A ) and is inactive with respect to energy rays. ,
A step of producing a film-forming composition (X) in which the polymerizable compound (A) and the compound (B) are compatible with each other and a polymer (C) that is inert to energy rays is mixed;
Forming a layer of the film-forming composition (X);
A method for producing a water-repellent film comprising the step of polymerizing the polymerizable compound (A) in the film-forming composition (X) by irradiation with energy rays and then removing the compound (B).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010118245A JP4616415B2 (en) | 2009-05-25 | 2010-05-24 | Water-repellent film and method for producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009125248 | 2009-05-25 | ||
JP2010118245A JP4616415B2 (en) | 2009-05-25 | 2010-05-24 | Water-repellent film and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011006667A true JP2011006667A (en) | 2011-01-13 |
JP4616415B2 JP4616415B2 (en) | 2011-01-19 |
Family
ID=43563671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010118245A Active JP4616415B2 (en) | 2009-05-25 | 2010-05-24 | Water-repellent film and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4616415B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014038616A1 (en) * | 2012-09-05 | 2014-03-13 | デクセリアルズ株式会社 | Antifouling body, display device, input device, and electronic device |
JP2014077102A (en) * | 2012-10-12 | 2014-05-01 | Kawamura Institute Of Chemical Research | Organic-inorganic composite membrane and method for producing same |
JP2018053093A (en) * | 2016-09-28 | 2018-04-05 | 株式会社潤工社 | Polymer substrate having adsorption control surface and manufacturing method therefor |
CN112384656A (en) * | 2018-06-29 | 2021-02-19 | 国立大学法人大阪大学 | Method for producing paper |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5634329B2 (en) * | 1976-08-25 | 1981-08-10 | ||
JPS62146957A (en) * | 1985-12-20 | 1987-06-30 | Nippon Shokubai Kagaku Kogyo Co Ltd | Curable composition |
JPS6365220B2 (en) * | 1982-08-05 | 1988-12-15 | ||
JPH05271460A (en) * | 1992-03-26 | 1993-10-19 | Dainippon Ink & Chem Inc | Production of porous polymer film |
JPH11269287A (en) * | 1998-03-23 | 1999-10-05 | Mitsubishi Electric Corp | Water-repellent coating agent and method for forming high hardness water-repellent thin membrane using the same |
JP2005053104A (en) * | 2003-08-05 | 2005-03-03 | Bridgestone Corp | Ultra-water repellent member and its manufacturing method |
WO2006006682A1 (en) * | 2004-07-15 | 2006-01-19 | Ricoh Company, Ltd. | Liquid discharging head and method for manufacture thereof, image forming device, nozzle member of liquid discharging head, method for forming ink-repellent film, liquid discharging head, cartridge, and liquid discharging recording device |
-
2010
- 2010-05-24 JP JP2010118245A patent/JP4616415B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5634329B2 (en) * | 1976-08-25 | 1981-08-10 | ||
JPS6365220B2 (en) * | 1982-08-05 | 1988-12-15 | ||
JPS62146957A (en) * | 1985-12-20 | 1987-06-30 | Nippon Shokubai Kagaku Kogyo Co Ltd | Curable composition |
JPH05271460A (en) * | 1992-03-26 | 1993-10-19 | Dainippon Ink & Chem Inc | Production of porous polymer film |
JPH11269287A (en) * | 1998-03-23 | 1999-10-05 | Mitsubishi Electric Corp | Water-repellent coating agent and method for forming high hardness water-repellent thin membrane using the same |
JP2005053104A (en) * | 2003-08-05 | 2005-03-03 | Bridgestone Corp | Ultra-water repellent member and its manufacturing method |
WO2006006682A1 (en) * | 2004-07-15 | 2006-01-19 | Ricoh Company, Ltd. | Liquid discharging head and method for manufacture thereof, image forming device, nozzle member of liquid discharging head, method for forming ink-repellent film, liquid discharging head, cartridge, and liquid discharging recording device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014038616A1 (en) * | 2012-09-05 | 2014-03-13 | デクセリアルズ株式会社 | Antifouling body, display device, input device, and electronic device |
JP2014052432A (en) * | 2012-09-05 | 2014-03-20 | Dexerials Corp | Antifouling body, display device, input device, and electric device |
JP2014077102A (en) * | 2012-10-12 | 2014-05-01 | Kawamura Institute Of Chemical Research | Organic-inorganic composite membrane and method for producing same |
JP2018053093A (en) * | 2016-09-28 | 2018-04-05 | 株式会社潤工社 | Polymer substrate having adsorption control surface and manufacturing method therefor |
CN112384656A (en) * | 2018-06-29 | 2021-02-19 | 国立大学法人大阪大学 | Method for producing paper |
Also Published As
Publication number | Publication date |
---|---|
JP4616415B2 (en) | 2011-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120121858A1 (en) | Hydrophobic film, patterned film having hydrophobic and hydrophilic regions, and method for producing the same | |
Xiong et al. | Preparation and characterization of fluorinated acrylate copolymer latexes by miniemulsion polymerization under microwave irradiation | |
Butoi et al. | Deposition of highly ordered CF2-rich films using continuous wave and pulsed hexafluoropropylene oxide plasmas | |
Xue et al. | Super-hydrophobicity of silica nanoparticles modified with vinyl groups | |
US10533110B2 (en) | Coating composition, and super water-repellent film | |
Cui et al. | Preparation and characterization of emulsifier-free core–shell interpenetrating polymer network-fluorinated polyacrylate latex particles | |
JP4616415B2 (en) | Water-repellent film and method for producing the same | |
US10465087B2 (en) | Methods of making crosslinked copolymer films from inimer-containing random copolymers | |
Zhou et al. | Cationic fluorinated polyacrylate emulsifier-free emulsion mediated by poly (2-(dimethylamino) ethyl methacrylate)-b-poly (hexafluorobutyl acrylate) trithiocarbonate via ab initio RAFT emulsion polymerization | |
KR20190039427A (en) | Hollow particles and uses thereof | |
JP4616414B2 (en) | Water-repellent film and method for producing the same | |
Zhang et al. | Preparation of superhydrophobic films based on the diblock copolymer P (TFEMA-r-Sty)-b-PCEMA | |
US9097979B2 (en) | Block copolymer-based mask structures for the growth of nanopatterned polymer brushes | |
Shinohara et al. | Molecular aggregation states and wetting behavior of a poly {2-(perfluorooctyl) ethyl acrylate} brush-immobilized nano-imprinted surface | |
JP2013071118A (en) | Coating film having super-hydrophilic surface area, and method for producing the same | |
Ito et al. | Organic–Inorganic Hybrid Replica Molds with High Mechanical Strength for Step-and-Repeat Ultraviolet Nanoimprinting | |
JP5430396B2 (en) | Method for producing surface-modified polymer structure | |
JP2012046840A (en) | Water-repellent fiber sheet and method for manufacturing the same | |
JP4616416B1 (en) | Patterned film having water-repellent and hydrophilic regions and method for producing the same | |
JP2013234242A (en) | Water-repellent film and method for producing the same | |
Zang et al. | Synthesis and characterization of fluorine‐containing polyacrylate latex with core–shell structure by UV‐initiated seeded emulsion polymerization | |
JP6120249B2 (en) | Element | |
Han et al. | Superhydrophobic surface fabricated by bulk photografting of acrylic acid onto high-density polyethylene | |
Chen et al. | Patterning nanocluster polystyrene brushes grafted from initiator cores on silicon surfaces by lithography processing | |
KR102709863B1 (en) | Method for manufacturing a coating solution for film formation and a substrate on which a film is formed |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101019 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101021 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4616415 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131029 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131029 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |