JP2011005428A - Desalination apparatus - Google Patents

Desalination apparatus Download PDF

Info

Publication number
JP2011005428A
JP2011005428A JP2009151766A JP2009151766A JP2011005428A JP 2011005428 A JP2011005428 A JP 2011005428A JP 2009151766 A JP2009151766 A JP 2009151766A JP 2009151766 A JP2009151766 A JP 2009151766A JP 2011005428 A JP2011005428 A JP 2011005428A
Authority
JP
Japan
Prior art keywords
water
distillation chamber
heat transfer
transfer plate
distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009151766A
Other languages
Japanese (ja)
Inventor
Toshihiro Tamai
俊洋 玉井
Takashi Osugi
高志 大杉
Haruki Sato
春樹 佐藤
Kazumi Morikawa
和己 森川
Yasuyuki Okada
泰之 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Sekisui Chemical Co Ltd
Original Assignee
Keio University
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University, Sekisui Chemical Co Ltd filed Critical Keio University
Priority to JP2009151766A priority Critical patent/JP2011005428A/en
Publication of JP2011005428A publication Critical patent/JP2011005428A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a desalination apparatus which can be manufactured inexpensively, is less in energy loss than heretofore, and can efficiently obtain distilled water from raw water such as seawater and contaminated water.SOLUTION: In the desalination apparatus, the inside of an evaporation can 2a is divided to the upper and lower directions via a heat conduction plate 22 so as to form two distillation chambers 20a, 20b, a heating means 3 of heating raw water W1 fed to the lower distillation chamber 20a is provided, the upper distillation chamber 20b is provided with a cooling means 4 condensing water vapor in the distillation chamber 20b, further, water vapor generated in the lower distillation chamber 20a is condensed at the lower face of the heat conduction plate 22 composing the ceiling face of the lower distillation chamber 20a so as to be recovered, and further, heat of condensation generated by the condensation of the water vapor is made to conduct to the raw water W1 received on the upper heat conduction plate 20b via the heat conduction plate 22.

Description

本発明は、海水・塩分を含んだ水・工業排水などの原水から蒸留法により淡水を得る淡水化装置に関する。   The present invention relates to a desalination apparatus for obtaining fresh water from raw water such as seawater, salt-containing water, and industrial wastewater by a distillation method.

水資源の枯渇問題を受け、全世界的に淡水化技術への関心が高まっている。現在工業的に主流となっている淡水化方法は、熱源によって原水を蒸発させ、発生した水蒸気を凝縮させることによって凝縮水、すなわち、蒸留水を得るいわゆる蒸発法と、逆浸透膜を通して原水を高圧でろ過することによって脱塩された淡水を得るいわゆる膜ろ過法が存在する。蒸発法のうち、容器内を減圧し、蒸留室を多重化したいわゆる多重効用減圧蒸留方式(MED)は太陽熱のエネルギーを直接的に利用できるほか、ヒートポンプなどの熱源を利用して効率的に淡水化できる可能性があることから、近年盛んに研究されている(特許文献1、非特許文献1参照)。   In response to the problem of depletion of water resources, interest in desalination technology is increasing worldwide. Currently, the desalination method that has become the mainstream in the industry is the so-called evaporation method in which condensed water, that is, distilled water, is obtained by condensing the generated water by evaporating the raw water using a heat source, and the raw water is pressurized through a reverse osmosis membrane. There is a so-called membrane filtration method that obtains fresh water desalted by filtration with a slag. Among the evaporation methods, the so-called multiple effect vacuum distillation method (MED), which decompresses the inside of the vessel and multiplexes the distillation chamber, can directly use the energy of solar heat, and efficiently uses fresh water using a heat source such as a heat pump. In recent years, it has been actively studied (see Patent Document 1 and Non-Patent Document 1).

ところで、多重効用減圧蒸留においてエネルギー効率の指標として、蒸留成績係数(Coefficient Of Performance of Distillation、以下、「COPD」と記す)がある。
すなわち、COPDとは、以下の式(1)で求めることができ、2重効用(蒸発缶が2つ)の場合、最大で2となる。
By the way, as an index of energy efficiency in multi-effect vacuum distillation, there is a coefficient of performance of distillation (hereinafter referred to as “COPD”).
That is, COPD can be obtained by the following formula (1), and is 2 at maximum in the case of double effect (two evaporators).

Figure 2011005428
(式(1)中、Lは蒸発潜熱 [kJ・kg-1] 、ΣMoutは蒸留水量 [kg]、ΣQinは供給熱量 [kJ]をあらわす。)
Figure 2011005428
(In formula (1), L represents the latent heat of vaporization [kJ · kg -1 ], ΣM out represents the amount of distilled water [kg], and ΣQ in represents the amount of heat supplied [kJ].)

しかしながら、非特許文献1や特許文献1のようなシェルアンドチューブ型の熱交換器を用いて高いエネルギー効率を実現するためには、チューブの全長を長くとるとともに、チューブには高価なチタンを用いる必要があり、装置が複雑になるとともに装置の製造コストの面で問題がある。   However, in order to achieve high energy efficiency using a shell-and-tube heat exchanger such as Non-Patent Document 1 and Patent Document 1, the entire length of the tube is increased and expensive titanium is used for the tube. Therefore, the apparatus becomes complicated and there is a problem in the manufacturing cost of the apparatus.

特許第3698730号公報Japanese Patent No. 3698730

K. Uda et al., 1994 ASME/JSME/JSES International Solar Energy Conf, ASME Book, No.00837, 513-519 (1994)K. Uda et al., 1994 ASME / JSME / JSES International Solar Energy Conf, ASME Book, No.00837, 513-519 (1994)

本発明は、上記事情に鑑みて、従来に比べ、低コストで製造することができるとともに、エネルギーロスが少なく、海水や汚染水等の原水から効率のよく蒸留水を得ることができる淡水化装置を提供することを目的としている。   In view of the above circumstances, the present invention provides a desalination apparatus that can be produced at a lower cost than conventional ones, has less energy loss, and can efficiently obtain distilled water from raw water such as seawater or contaminated water. The purpose is to provide.

上記目的を達成するために、本発明にかかる淡水化装置は、2つ以上の蒸留室を備え、各蒸留室内に原水を供給するとともに減圧状態にして、1つの蒸留室内の原水を加熱手段によって加熱して、原水中の水を蒸発させる一方、前記1つの蒸留室以外の蒸留室内に設けられた原水の加熱源として他の蒸留室で発生した水蒸気の凝縮によって放出される凝縮熱を用いるようにした淡水化装置であって、蒸発缶の内部を、伝熱板を介して上下方向に仕切ることによって複数の蒸留室を形成し、最下段の蒸留室に供給された原水を加熱する加熱手段を設け、最上段の蒸留室にこの蒸留室内の水蒸気を凝縮させる冷却手段を設けるとともに、下段の蒸留室で発生した水蒸気を下段の蒸留室の天井面を構成する伝熱板の下面で凝縮させて回収するとともに、水蒸気の凝縮によって発生した凝縮熱が伝熱板を介して上段の伝熱板上で受けられた原水に伝わるようにしたことを特徴としている。   In order to achieve the above object, a desalination apparatus according to the present invention comprises two or more distillation chambers, supplies raw water into each distillation chamber and reduces the pressure in a reduced pressure state by heating means. While heating to evaporate the water in the raw water, the heat of condensation released by the condensation of water vapor generated in the other distillation chamber is used as a heating source for the raw water provided in the distillation chamber other than the one distillation chamber. A heating device that heats raw water supplied to the lowermost distillation chamber by forming a plurality of distillation chambers by partitioning the inside of the evaporator vertically through a heat transfer plate. The uppermost distillation chamber is provided with a cooling means for condensing the water vapor in the distillation chamber, and the water vapor generated in the lower distillation chamber is condensed on the lower surface of the heat transfer plate constituting the ceiling surface of the lower distillation chamber. And collect It is characterized in that condensation heat generated by the condensation of water vapor was so transferred to the raw water received on the upper heat transfer plate through the heat transfer plate.

本発明において、蒸発缶の材質は、特に限定されないが、蒸留室内が外部雰囲気の影響を受けないように、断熱性のできるだけ高い方が好ましいこと、また、装置の軽量化や低コスト化を考慮すると、樹脂が好ましい。
蒸発缶を形成する樹脂としては、特に限定されないが、例えば、塩化ビニル樹脂、ポリエチレン、ポリプロピレン、ABS樹脂、ポリエステル樹脂、ポリウレタン樹脂、これらの発泡体、繊維強化体、これらの複合体が挙げられ、補強材として金属材料を組み合わせても構わない。
In the present invention, the material of the evaporator is not particularly limited, but it is preferable that the heat insulation is as high as possible so that the inside of the distillation chamber is not affected by the external atmosphere, and the weight and cost of the apparatus are reduced. Then, resin is preferable.
The resin forming the evaporator is not particularly limited, and examples thereof include vinyl chloride resin, polyethylene, polypropylene, ABS resin, polyester resin, polyurethane resin, foams thereof, fiber reinforced bodies, and composites thereof. A metal material may be combined as a reinforcing material.

伝熱板の材質としては、熱伝導性の高いものが好ましく、銅、アルミニウム、銀、これらの合金が挙げられ、コスト及び熱伝導性を考慮すると銅が好ましい。
伝熱板は、特に限定されないが、その下面が水平面に対し傾斜していることが好ましい。すなわち、傾斜によって伝熱板の下面で凝縮した凝縮水が伝熱板の下面に沿って下流側に流れる。そして、下流側に凝縮水の受けを設けておくことによって容易に凝縮水を回収することができる。
The material of the heat transfer plate is preferably a material having high thermal conductivity, such as copper, aluminum, silver, and alloys thereof. Copper is preferable in consideration of cost and thermal conductivity.
The heat transfer plate is not particularly limited, but its lower surface is preferably inclined with respect to the horizontal plane. That is, the condensed water condensed on the lower surface of the heat transfer plate due to the inclination flows downstream along the lower surface of the heat transfer plate. And the condensed water can be easily recovered by providing a receiver of the condensed water on the downstream side.

伝熱板は、伝熱面積を大きくするために、波板状としてもよいし湾曲させるようにしても構わない。
伝熱板は、伝熱面積を大きくするため、あるいは、伝熱板上面に受けられた原水の沸騰を促進させるために粗面化しても構わない。
The heat transfer plate may be corrugated or curved in order to increase the heat transfer area.
The heat transfer plate may be roughened to increase the heat transfer area or to promote boiling of raw water received on the upper surface of the heat transfer plate.

また、伝熱板の下面は、親水化されていることが好ましい。すなわち、凝縮した水の水滴が、伝熱板の下面を覆ってしまうと、凝縮により発生する凝縮熱が伝熱板上面に受けられた上の段の蒸留室内の原水に伝わりにくくなる。そこで、凝縮して発生した水滴が伝熱板の下面からすぐに流れ落ちるよう、凝縮面は親水化する。
伝熱板を親水化する方法としては、金属板を親水化できる方法であれば、特に限定されないが、例えば、コロナ処理、プラズマ処理、レーザー照射、電子線照射、化学処理(エッチング)、コーティング(無機親水化処理剤、有機親水化処理剤、光触媒塗料)などが挙げられる。
Moreover, it is preferable that the lower surface of the heat transfer plate is made hydrophilic. That is, if the condensed water droplets cover the lower surface of the heat transfer plate, the condensation heat generated by the condensation is less likely to be transferred to the raw water in the upper distillation chamber received by the upper surface of the heat transfer plate. Therefore, the condensed surface becomes hydrophilic so that water droplets generated by condensation immediately flow down from the lower surface of the heat transfer plate.
The method for hydrophilizing the heat transfer plate is not particularly limited as long as the metal plate can be hydrophilized. For example, corona treatment, plasma treatment, laser irradiation, electron beam irradiation, chemical treatment (etching), coating ( Inorganic hydrophilic treatment agent, organic hydrophilic treatment agent, photocatalyst paint) and the like.

なお、伝熱板の下面は、水平面に対して傾斜していることが好ましい。すなわち、凝縮して発生した水滴が傾斜により伝熱板の下面に沿って傾斜の下流側に流れ、凝縮した水の水滴が、伝熱板の下面を覆ってしまうことを防止できる。また、凝縮した水滴が傾斜の下流側で纏まるため、凝縮水を回収しやすくなる。
伝熱板の下面を傾斜させる方法としては、特に限定されず、蒸発缶そのものを傾斜させる方法、伝熱板として、下面が傾斜構造(例えば、中央から周壁に向かって、徐々に下がる湾曲面なども含む)となったものを用いる方法、伝熱板が傾斜した状態で蒸発缶内を伝熱板によって仕切る方法などが挙げられる。
In addition, it is preferable that the lower surface of a heat exchanger plate inclines with respect to a horizontal surface. That is, it is possible to prevent water droplets generated by condensation from flowing along the lower surface of the heat transfer plate to the downstream side of the inclination due to the inclination, and the condensed water droplets covering the lower surface of the heat transfer plate. Moreover, since the condensed water droplets are collected on the downstream side of the inclination, it is easy to collect the condensed water.
The method of inclining the lower surface of the heat transfer plate is not particularly limited, and the method of inclining the evaporator itself, as the heat transfer plate, the lower surface has an inclined structure (for example, a curved surface that gradually decreases from the center toward the peripheral wall, etc. And a method of partitioning the inside of the evaporator with the heat transfer plate in a state where the heat transfer plate is inclined.

伝熱板の上面は、撥水処理されていることが好ましい。すなわち、伝熱板の上面が撥水化処理されていると、伝熱板の上面での原水の沸騰が活発におこり、よりエネルギー効率よく水蒸気を発生させることができる。
撥水処理の方法としては、特に限定されないが、フッ素系処理、有機ケイ素化合物処理、電子線照射などが挙げられる。
The upper surface of the heat transfer plate is preferably subjected to water repellent treatment. That is, when the upper surface of the heat transfer plate is subjected to water repellent treatment, boiling of raw water on the upper surface of the heat transfer plate occurs actively, and water vapor can be generated more efficiently.
The method for the water repellent treatment is not particularly limited, and examples thereof include fluorine treatment, organosilicon compound treatment, and electron beam irradiation.

本発明の淡水化装置は、特に限定されないが、各蒸留室の原水溜まり部と、伝熱板との間に原水の沸騰によって発生する原水飛沫が、凝縮水に混入することを防止するトラップを設けることが好ましい。
トラップの構造は、不純物を含む原水飛沫が、凝縮水に混入することを防止できれば特に限定されないが、水蒸気が効率よく伝熱板に到達して、伝熱板で凝縮した水滴を効率よく回収できることから、例えば、中央に通気孔を有する上に向かって凸の略傘形をしていて、トラップ上面が凝縮水の受け部となっている構造とすることが好ましい。
Although the desalination apparatus of the present invention is not particularly limited, a trap that prevents raw water droplets generated by boiling of raw water between the raw water reservoirs of each distillation chamber and the heat transfer plate from mixing into the condensed water is provided. It is preferable to provide it.
The structure of the trap is not particularly limited as long as the raw water droplets containing impurities can be prevented from being mixed into the condensed water, but water vapor can efficiently reach the heat transfer plate and efficiently recover water droplets condensed on the heat transfer plate. Therefore, for example, it is preferable to have a structure that has a vent hole at the center and has an upward convex convex umbrella shape, and the trap upper surface serves as a condensate receiving portion.

上記通気孔の孔径は、孔径が大きすぎると伝熱板で凝縮した液滴が再び原水に戻ってしまう可能性があり、逆に小さすぎると原水から発生した水蒸気が伝熱板側に移動することを阻害する。しかし、蒸発缶の口径やトラップの傘形の傾斜角度等によって、最適な径が異なるため、最適な口径は、適宜経験的に求められる。
また、トラップの通気孔と原水の水面との間隔が狭く、原水の飛沫が凝縮水に混入する可能性がある場合、上記トラップの通気孔部分には、さらに、デミスタを設けるようにしてもよい。
If the hole diameter is too large, droplets condensed on the heat transfer plate may return to the raw water again. If it is too small, water vapor generated from the raw water moves to the heat transfer plate side. To inhibit that. However, since the optimum diameter varies depending on the diameter of the evaporator and the inclination angle of the umbrella shape of the trap, the optimum diameter is appropriately determined empirically.
Further, when the gap between the trap vent and the surface of the raw water is narrow and there is a possibility that the splash of the raw water may be mixed into the condensed water, a demister may be further provided in the trap vent portion. .

本発明の淡水化装置は、各蒸留室内が減圧されるようになっているが、蒸留室内の圧力は、特に限定されないが、不凝縮ガスが排気され、5kPa程度の水の飽和蒸気圧力に程度まで減圧することが好ましい。
本発明の淡水化装置は、最も下段の蒸留室の原水は、加熱手段によって加熱される。この加熱手段の熱源としては、特に限定されないが、例えば、電気ヒーター、太陽熱、廃熱、ヒートポンプ、等が挙げられ、エネルギーコストを考慮すると太陽熱、廃熱やヒートポンプが好ましい。
ちなみに、ヒートポンプの場合、下段の蒸留室に加熱側を配置し、上段の蒸留室に冷却側を配置すれば、冷却装置を別途設ける必要がなくなる。
In the desalination apparatus of the present invention, each distillation chamber is depressurized, but the pressure in the distillation chamber is not particularly limited, but non-condensable gas is exhausted, and the saturated vapor pressure of water is about 5 kPa. The pressure is preferably reduced to
In the desalination apparatus of the present invention, the raw water in the lowermost distillation chamber is heated by a heating means. Although it does not specifically limit as a heat source of this heating means, For example, an electric heater, solar heat, waste heat, a heat pump, etc. are mentioned, Solar energy, waste heat, and a heat pump are preferable when energy cost is considered.
Incidentally, in the case of a heat pump, if the heating side is arranged in the lower distillation chamber and the cooling side is arranged in the upper distillation chamber, there is no need to separately provide a cooling device.

本発明にかかる淡水化装置は、以上のように、蒸発缶の内部を、伝熱板を介して上下方向に仕切ることによって複数の蒸留室を形成しただけの単純な構造であるため、低コストで製造できる。
そして、下段の蒸留室で発生した水蒸気を下段の蒸留室の天井面を構成する伝熱板の下面で凝縮させて回収するとともに、水蒸気の凝縮によって放出される凝縮熱が伝熱板を介して上段の伝熱板上で受けられた原水に伝わるようにしたので、凝縮熱が効率よく直上の蒸留室内の原水に伝わり、少ない消費エネルギーで原水を高効率に蒸留できる。
As described above, the desalination apparatus according to the present invention has a simple structure in which a plurality of distillation chambers are simply formed by partitioning the inside of the evaporator in the vertical direction via a heat transfer plate. Can be manufactured.
Then, the water vapor generated in the lower distillation chamber is condensed and recovered on the lower surface of the heat transfer plate constituting the ceiling surface of the lower distillation chamber, and the condensation heat released by the condensation of the water vapor passes through the heat transfer plate. Since the heat is transferred to the raw water received on the upper heat transfer plate, the heat of condensation is efficiently transferred to the raw water in the distillation chamber directly above, and the raw water can be distilled with low energy consumption and high efficiency.

本発明にかかる淡水化装置の1つの実施の形態を模式的にあらわす図である。It is a figure showing typically one embodiment of a desalinator concerning the present invention. 本発明にかかる淡水化装置の1つの実施の形態を模式的にあらわす図である。It is a figure showing typically one embodiment of a desalinator concerning the present invention. 試験例1において測定した蒸発収量を対比してあらわすグラフである。4 is a graph showing the evaporation yield measured in Test Example 1 in comparison. 試験例1において測定した蒸発収量から求めたCOPDを対比してあらわすグラフである。4 is a graph showing COPD obtained by comparison with the evaporation yield measured in Test Example 1. 試験例2において測定した蒸発収量を対比してあらわすグラフである。6 is a graph showing the evaporation yield measured in Test Example 2 in comparison. 試験例2において測定した蒸発収量から求めたCOPDを対比してあらわすグラフである。6 is a graph showing COPD obtained by comparison with the evaporation yield measured in Test Example 2. 試験例3において測定した蒸発収量から求めたCOPDを対比してあらわすグラフである。10 is a graph showing COPD calculated from the evaporation yield measured in Test Example 3 in comparison.

以下に、本発明を、その実施の形態をあらわす図面を参照しつつ詳しく説明する。
図1は、本発明にかかる淡水化装置の1つの実施の形態をあらわしている。
図1に示すように、この淡水化装置1aは、蒸発缶2aと、加熱手段3と、冷却手段4と、減圧手段5と、を備えている。
Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments thereof.
FIG. 1 shows one embodiment of a desalination apparatus according to the present invention.
As shown in FIG. 1, the desalination apparatus 1 a includes an evaporator 2 a, a heating unit 3, a cooling unit 4, and a decompression unit 5.

蒸発缶2aは、上下が天板21aと底板21bとによって閉じられた円筒状をしている合成樹脂製の本体21が、その内部を伝熱板22によって蒸留室20aと蒸留室20bに仕切られている。
伝熱板22は、銅などの高熱伝導材料からなり、上下面が粗面化されているとともに上面が撥水処理され、下面が親水化処理されている。
各蒸留室20a,20bは、トラップ23によって上下が仕切られている。
The evaporator 2a has a cylindrical synthetic resin body 21 whose upper and lower sides are closed by a top plate 21a and a bottom plate 21b, and the inside thereof is partitioned by a heat transfer plate 22 into a distillation chamber 20a and a distillation chamber 20b. ing.
The heat transfer plate 22 is made of a high heat conductive material such as copper. The upper and lower surfaces are roughened, the upper surface is water-repellent, and the lower surface is hydrophilized.
The distillation chambers 20 a and 20 b are divided into upper and lower portions by a trap 23.

トラップ23は、特に限定されないが、例えば、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリエチレンテレフタラート等の合成樹脂で形成されていて、中央部に通気孔23aが穿設されるとともに中央部から周縁部に向かって徐々に低くなる略傘形状をしている。
トラップ23の通気孔23a部分は、デミスタ24が設けられている。
デミスタ24は、デミスタ本体24aと、邪魔板24bとを備えている。
デミスタ本体24aは、金属製の網から形成した通気孔23aと略同径の筒状をしている。
デミスタ本体24aを構成する網の目の大きさは、水蒸気がスムーズに通過するとともに、原水飛沫が通過できない大きさに設定されている。
邪魔板24bは、デミスタ本体24aの筒の下端を塞ぎ、原水W1の沸騰によって発生する原水W1の飛沫がデミスタ本体24a内に入り込まないように邪魔するようになっている。
なお、トラップの通気孔と原水の水面との間隔が広いなど、原水の飛沫が凝縮水に混入する可能性がない場合には設けなくても構わない。
The trap 23 is not particularly limited. For example, the trap 23 is formed of a synthetic resin such as polyvinyl chloride, polyethylene, polypropylene, polycarbonate, polyethylene terephthalate, and the like. It has a substantially umbrella shape that gradually decreases toward the part.
A demister 24 is provided in the vent hole 23 a of the trap 23.
The demister 24 includes a demister main body 24a and a baffle plate 24b.
The demister main body 24a has a cylindrical shape having substantially the same diameter as the vent hole 23a formed from a metal net.
The mesh size of the demister main body 24a is set to a size that allows water vapor to pass smoothly and prevents raw water droplets from passing.
The baffle plate 24b blocks the lower end of the cylinder of the demister main body 24a, and prevents the splash of the raw water W1 generated by the boiling of the raw water W1 from entering the demister main body 24a.
In addition, it may not be provided when there is no possibility that the splash of the raw water is mixed into the condensed water, for example, because the gap between the trap vent and the surface of the raw water is wide.

各蒸留室20a,20bのトラップ23より下側の周壁には、原水供給管7aとドレン管7bとが接続されている。
原水供給管7aは、図示していないが、原水タンクに接続されていて、原水タンクから海水や汚濁水等の原水W1を蒸留室20a,20b内に供給するようになっている。
ドレン管7bは、蒸留によって濃縮された濃縮水及びこの濃縮水に含まれる固形物を蒸留室20a,20bから排出するようになっている。
The raw water supply pipe 7a and the drain pipe 7b are connected to the peripheral wall below the trap 23 of each distillation chamber 20a, 20b.
Although not shown, the raw water supply pipe 7a is connected to the raw water tank, and supplies raw water W1 such as seawater or polluted water from the raw water tank into the distillation chambers 20a and 20b.
The drain pipe 7b discharges the concentrated water concentrated by distillation and the solids contained in the concentrated water from the distillation chambers 20a and 20b.

加熱手段3は、最下段の蒸留室20aの底に沿って設けられた熱交換用配管31と、この熱交換用配管に熱媒体を供給する熱媒体供給手段(図示せず)とを備えている。
熱交換用配管31は、ステンレス鋼などの耐食性に優れた金属材料から形成されていて、蒸留室20aの底に沿って蛇行するように、あるいは、渦状に設けられている。
The heating means 3 includes a heat exchange pipe 31 provided along the bottom of the lowermost distillation chamber 20a and a heat medium supply means (not shown) for supplying a heat medium to the heat exchange pipe. Yes.
The heat exchanging pipe 31 is made of a metal material having excellent corrosion resistance such as stainless steel, and is provided so as to meander along the bottom of the distillation chamber 20a or spirally.

冷却手段4は、最上段の蒸留室(この実施の形態では、2段目の蒸留室)20bの天井に沿って設けられた冷却管41と、この冷却管41に冷媒を循環させるチラーユニット(図示せず)とを備えている。
冷却管41は、ステンレス鋼などの耐食性に優れた金属材料から形成されていて、蒸留室20bの天井に沿って蛇行するように、あるいは、渦状に設けられている。
The cooling means 4 includes a cooling pipe 41 provided along the ceiling of the uppermost distillation chamber (in this embodiment, the second-stage distillation chamber) 20b, and a chiller unit that circulates refrigerant through the cooling pipe 41 ( (Not shown).
The cooling pipe 41 is made of a metal material having excellent corrosion resistance, such as stainless steel, and is provided so as to meander along the ceiling of the distillation chamber 20b or spirally.

減圧手段5は、真空ポンプ5aと、吸引配管5bとを備えている。
吸引配管5bは、2つの分岐管路51,51に分岐されている。
一方の分岐管路51は、下段の蒸留室20aのトラップ23の最も低くなった部分を臨む位置で、その一端が蒸留室20aと接続されている。
他方の分岐管路51は、上段の蒸留室20bのトラップ23の最も低くなった部分を臨む位置で、その一端が蒸留室20bと接続されている。
The decompression means 5 includes a vacuum pump 5a and a suction pipe 5b.
The suction pipe 5 b is branched into two branch pipes 51 and 51.
One branch pipe 51 faces the lowest part of the trap 23 of the lower distillation chamber 20a, and one end thereof is connected to the distillation chamber 20a.
The other branch pipe 51 faces the lowest part of the trap 23 of the upper distillation chamber 20b, and one end thereof is connected to the distillation chamber 20b.

そして、両分岐管路51は、それぞれ上流側(蒸留室20a,20b側)と、下流側(真空ポンプ5a側)とが中間に設けられた凝縮水溜め容器51aを介して分離されていて、蒸留室20a,20bのトラップ23の上に溜まった凝縮水W2が蒸留室20a,20bから吸引されて凝縮水溜め容器51aに溜まるが、蒸留室20a,20b内から吸引された空気は凝縮水溜め容器51aの上部空間を通り、真空ポンプ5a側へ排気されるようになっている。
図1中、6は圧力計である。
The two branch pipes 51 are separated via a condensed water reservoir 51a provided in the middle between the upstream side (distillation chambers 20a and 20b side) and the downstream side (vacuum pump 5a side), The condensed water W2 collected on the trap 23 of the distillation chambers 20a and 20b is sucked from the distillation chambers 20a and 20b and collected in the condensed water reservoir 51a. It passes through the upper space of the container 51a and is evacuated to the vacuum pump 5a side.
In FIG. 1, 6 is a pressure gauge.

つぎに、この淡水化装置1aを用いた原水W1の淡水化方法の原理を詳しく説明する。
この淡水化装置1aを用いた原水W1の淡水化方法は、まず、原水供給管7aを介して蒸留室20a,20b内にそれぞれ所定のレベルまで原水W1を供給する。
そして、真空ポンプ5aを稼働して各蒸留室20a,20b内を不凝縮ガスが排気され、5kPa程度の水の環境温度付近における飽和蒸気圧力になるまで減圧する。
また、同時に加熱手段3によって下段の蒸留室20a内の原水W1を加熱する。この加熱によって、蒸留室20a内は、不凝縮ガスが排気され、5kPa程度の水の環境温度付近における飽和蒸気圧力に減圧されているため、蒸留室20a内の原水W1は環境温度付近かつ小温度差で容易に沸騰が起こり、蒸留室20a内の原水W1中の水が水蒸気となって蒸発する。
蒸留室20a内で、蒸発した水蒸気は、図1において矢印で示すように、デミスタ24を介してトラップ23の中央に設けられた通気孔23aを通り、蒸留室20aのトラップ23の上方空間内で拡散して伝熱板22の下面全体に接触する。
伝熱板22の下面に接触した水蒸気は、伝熱板22の下面で凝縮する。そして、凝縮水W2がトラップ23上面に受けられ、トラップ23の傾斜によって蒸発缶2aの内壁面に沿う部分に溜まる。
トラップ23上面に溜まった凝縮水W2は、分岐管路51を介して凝縮水溜め容器51aに吸引されて溜められる。
Next, the principle of the desalination method of the raw water W1 using the desalination apparatus 1a will be described in detail.
In the desalination method of the raw water W1 using the desalination apparatus 1a, first, the raw water W1 is supplied into the distillation chambers 20a and 20b through the raw water supply pipe 7a to a predetermined level.
Then, the vacuum pump 5a is operated so that the non-condensable gas is exhausted in each of the distillation chambers 20a and 20b, and the pressure is reduced until the saturated vapor pressure near the environmental temperature of water of about 5 kPa is reached.
At the same time, the raw water W1 in the lower distillation chamber 20a is heated by the heating means 3. By this heating, the non-condensable gas is exhausted in the distillation chamber 20a and the pressure is reduced to the saturated vapor pressure in the vicinity of the environmental temperature of water of about 5 kPa. Therefore, the raw water W1 in the distillation chamber 20a is near the environmental temperature and a small temperature. Boiling easily occurs due to the difference, and water in the raw water W1 in the distillation chamber 20a evaporates as water vapor.
In the distillation chamber 20a, the evaporated water vapor passes through a vent hole 23a provided in the center of the trap 23 via the demister 24 as shown by an arrow in FIG. 1, and in the space above the trap 23 in the distillation chamber 20a. It diffuses and contacts the entire lower surface of the heat transfer plate 22.
The water vapor contacting the lower surface of the heat transfer plate 22 condenses on the lower surface of the heat transfer plate 22. Then, the condensed water W2 is received on the upper surface of the trap 23, and accumulates on a portion along the inner wall surface of the evaporator 2a due to the inclination of the trap 23.
The condensed water W2 collected on the upper surface of the trap 23 is sucked into the condensed water reservoir 51a via the branch pipe 51 and stored.

一方、水蒸気の凝縮によって、凝縮熱が発生するが、この凝縮熱は、伝熱板22を介して伝熱板22の上面に受けられた上段の蒸留室20bの原水W1に伝わる。
上段の蒸留室20b側の原水W1は、伝熱板22を介して伝わる凝縮熱によって加熱され、下段の蒸留室20aの原水W1と同様に、環境温度付近かつ小温度差で容易に沸騰して、原水W1中の水が水蒸気となって蒸発する。
このようにして上段の蒸留室20bで発生した水蒸気は、図1において矢印で示すように、デミスタ24を介してトラップ23の中央に設けられた通気孔23aを通り、蒸留室20bのトラップ23の上方空間内で拡散し、冷却手段4によって冷却されて凝縮する。そして、凝縮水W2がトラップ23上面に受けられ、トラップ23の傾斜によって蒸発缶2aの内壁面に沿う部分に溜まる。
トラップ23上面に溜まった凝縮水W2は、分岐管路51を介して凝縮水溜め容器51aに吸引されて溜められる。
On the other hand, the condensation heat is generated by the condensation of water vapor, and this condensation heat is transferred to the raw water W1 in the upper distillation chamber 20b received on the upper surface of the heat transfer plate 22 via the heat transfer plate 22.
The raw water W1 on the upper distillation chamber 20b side is heated by the condensation heat transmitted through the heat transfer plate 22, and like the raw water W1 in the lower distillation chamber 20a, the raw water W1 is easily boiled near the environmental temperature and with a small temperature difference. The water in the raw water W1 evaporates as water vapor.
The water vapor generated in the upper distillation chamber 20b in this way passes through a vent hole 23a provided in the center of the trap 23 via the demister 24 as shown by an arrow in FIG. 1, and flows into the trap 23 of the distillation chamber 20b. It diffuses in the upper space and is cooled and condensed by the cooling means 4. Then, the condensed water W2 is received on the upper surface of the trap 23, and accumulates on a portion along the inner wall surface of the evaporator 2a due to the inclination of the trap 23.
The condensed water W2 collected on the upper surface of the trap 23 is sucked into the condensed water reservoir 51a via the branch pipe 51 and stored.

この淡水化装置1aは、以上のように、蒸発缶2a内を伝熱板22で上下方向に仕切るだけの簡単な構造であるので、低コストで製造できる。
しかも、下段の蒸留室20a内で発生した水蒸気が凝縮することのよって発生する凝縮熱が伝熱板22を介して直ちに上段の蒸留室20bの原水W1の加熱に用いられるのでエネルギー効率がよい。
また、不凝縮ガスが排気されるとともに、5kPa程度の水の飽和蒸気圧力に減圧され、蒸留室20a内の原水W1は環境温度付近かつ小温度差で容易に沸騰が起こるので、蒸発缶2aを熱に弱い合成樹脂で形成しても蒸発缶2aが熱変形を起こすといった問題がない。
また、蒸発缶2aを合成樹脂で形成したので、金属材料に比べ、熱伝導性が低く、環境への熱損失および温度上昇による顕熱損失を抑制することができるとともに、装置全体の軽量化を図ることができる。
Since the desalination apparatus 1a has a simple structure in which the inside of the evaporator 2a is simply partitioned in the vertical direction by the heat transfer plate 22 as described above, it can be manufactured at low cost.
In addition, the heat of condensation generated by the condensation of water vapor generated in the lower distillation chamber 20a is immediately used for heating the raw water W1 in the upper distillation chamber 20b via the heat transfer plate 22, so that energy efficiency is good.
Further, the non-condensable gas is exhausted and the saturated steam pressure of water of about 5 kPa is reduced, and the raw water W1 in the distillation chamber 20a is easily boiled near the environmental temperature and with a small temperature difference. There is no problem that the evaporator 2a undergoes thermal deformation even if it is made of a heat-sensitive synthetic resin.
In addition, since the evaporator 2a is made of synthetic resin, it has lower thermal conductivity than metal materials, can suppress heat loss to the environment and sensible heat loss due to temperature rise, and reduce the overall weight of the device. Can be planned.

図2は本発明にかかる淡水化装置の第2の実施の形態をあらわしている。
図2に示すように、この淡水化装置1bは、蒸発缶2b内が2つの伝熱板22を介して3つの蒸発室20c〜20e に仕切られていて、最下段の蒸発室20cに加熱手段3を備え、最上段の蒸発室20eに冷却手段4が設けられ、中段の蒸発室20dには加熱手段3及び冷却手段4が設けられていないとともに、蒸発缶2bが蒸発缶2bの底板21bの下方にスペーサ8を設けて、伝熱板22の下面が水平面に対して一方向(この実施の形態では、図2で左方向に)に向かって5度程度の下り勾配となるように保持されている以外は、上記淡水化装置1aと同様になっている。
FIG. 2 shows a second embodiment of the desalination apparatus according to the present invention.
As shown in FIG. 2, the desalination apparatus 1b includes an evaporator 2b that is partitioned into three evaporation chambers 20c to 20e via two heat transfer plates 22, and a heating means is provided in the lowermost evaporation chamber 20c. 3, the cooling means 4 is provided in the uppermost evaporation chamber 20 e, the heating means 3 and the cooling means 4 are not provided in the middle evaporation chamber 20 d, and the evaporator 2 b is provided on the bottom plate 21 b of the evaporator 2 b. A spacer 8 is provided below, and the lower surface of the heat transfer plate 22 is held so as to have a downward gradient of about 5 degrees in one direction with respect to the horizontal plane (in this embodiment, leftward in FIG. 2). Except that, it is the same as the desalination apparatus 1a.

この淡水化装置1bは、上記のように伝熱板22の下面が水平面に対して一方向に向かって5度程度の下り勾配となるように保持されているので、伝熱板22の下面で凝縮した凝縮水W2は、伝熱板22の下面に沿って下り方向側に直ちに流れる。したがって、伝熱板22の下面において常に安定して水蒸気の凝縮が行われる。   Since the desalination apparatus 1b is held so that the lower surface of the heat transfer plate 22 has a downward slope of about 5 degrees in one direction with respect to the horizontal plane as described above, the lower surface of the heat transfer plate 22 The condensed condensed water W <b> 2 immediately flows in the downward direction along the lower surface of the heat transfer plate 22. Accordingly, the water vapor is always stably condensed on the lower surface of the heat transfer plate 22.

本発明は、上記の実施の形態に限定されない。例えば、上記の実施の形態では、加熱手段として、熱交換器を最下段の蒸留室内に設けているが、最下段の蒸留室の底を伝熱板として、この伝熱板と蒸発缶の底との間に加熱媒体の充填可能な空間を設け、この空間内に加熱媒体を循環させて加熱するようにしても構わない。また、蒸留室は3段以上設けるようにしても構わない。   The present invention is not limited to the above embodiment. For example, in the above embodiment, the heat exchanger is provided in the lowermost distillation chamber as the heating means, but the bottom of the lowermost distillation chamber is used as the heat transfer plate, and the heat transfer plate and the bottom of the evaporator are used. A space that can be filled with a heating medium may be provided between and a heating medium may be circulated in the space for heating. Further, three or more distillation chambers may be provided.

以下に、本発明の具体的な実施例を詳しく説明する。
〔試験ユニットの作製〕
デミスタ24を設けなかった以外は、図1に示す淡水化装置1aと同様の形状をした上下2段の蒸留室20a,20bを備え、各部が以下の材質及び寸法条件の淡水化装置の試験ユニットA〜Jを作製した。
Hereinafter, specific examples of the present invention will be described in detail.
[Production of test unit]
Except for not providing the demister 24, the test apparatus of the desalination apparatus is provided with two upper and lower distillation chambers 20a and 20b having the same shape as the desalination apparatus 1a shown in FIG. A to J were prepared.

(試験ユニットA)
〔蒸発缶2a〕
材質:透明塩化ビニル樹脂
形状及び大きさ:肉厚10mm、内径400mmの円筒状で、底板21b上面から天板21a下面までの高さが500mmである円筒形状
〔伝熱板22〕
材質:銅平板
大きさ:伝熱面積0.13 m2、肉厚0.5 mm
仕切り位置:蒸発缶2aの底板上面から200mmの高さ位置
〔下段の蒸留室20aのトラップ23〕
材質:ポリ塩化ビニル
傾斜角度:10°
通気孔径:内径100mm
最下端の高さ位置:蒸発缶2aの底板21b上面から100mmの高さ位置
〔上段の蒸留室20bのトラップ23〕
材質:ポリ塩化ビニル
傾斜角度:10°
通気孔径:内径100mm
最下端の高さ位置:伝熱板22から100mmの高さ位置
〔加熱手段3〕
最大出力3kWの電気ヒーター
〔冷却手段4〕
伝熱面積0.12 m2、冷却水循環量2.3 L/minのクーラー
(Test unit A)
[Evaporator 2a]
Material: Transparent vinyl chloride resin Shape and size: Cylindrical shape with a wall thickness of 10 mm, an inner diameter of 400 mm, and a height of 500 mm from the upper surface of the bottom plate 21b to the lower surface of the top plate 21a [Heat transfer plate 22]
Material: Copper flat plate Size: Heat transfer area 0.13 m 2 , Wall thickness 0.5 mm
Partition position: Height position of 200 mm from the upper surface of the bottom plate of the evaporator 2a [Trap 23 of the lower distillation chamber 20a]
Material: Polyvinyl chloride Tilt angle: 10 °
Vent diameter: 100mm inside diameter
Lowermost height position: 100 mm height position from the upper surface of the bottom plate 21b of the evaporator 2a [trap 23 of the upper distillation chamber 20b]
Material: Polyvinyl chloride Tilt angle: 10 °
Vent diameter: 100mm inside diameter
Lowermost height position: 100 mm height position from the heat transfer plate 22 [Heating means 3]
Electric heater with maximum output of 3kW [Cooling means 4]
Cooler with heat transfer area of 0.12 m 2 and cooling water circulation rate of 2.3 L / min

(試験ユニットB)
伝熱板22として、下面(下段の蒸留室20a側の面)を150番の紙やすりで研磨して粗面化した平銅板を用いた以外は、試験ユニットAと同様にした。
(Test unit B)
The test unit A was the same as the heat transfer plate 22 except that a flat copper plate whose bottom surface (surface on the lower distillation chamber 20a side) was ground with a No. 150 sandpaper and was roughened was used.

(試験ユニットC)
伝熱板22として、下面(下段の蒸留室20a側の面)を150番の紙やすりで研磨して粗面化するとともに、粗面化後さらに下面に撥水ワックス(協和興材社の商品名Permaluxe Super Compound)を、表面を完全に被覆するように適量塗布した平銅板を用いた以外は、試験ユニットAと同様にした。
(Test unit C)
As the heat transfer plate 22, the lower surface (surface on the lower distillation chamber 20 a side) is polished by sanding with No. 150 sandpaper, and after the surface is roughened, water repellent wax (Kyowa Kogyo Co., Ltd. No. Permaluxe Super Compound) was the same as test unit A except that a flat copper plate coated with an appropriate amount so as to completely cover the surface was used.

(試験ユニットD)
伝熱板22として、下面(下段の蒸留室20a側の面)に撥水ワックス撥水ワックス(協和興材社の商品名Permaluxe Super Compound)を、表面を完全に被覆するように適量塗布した平銅板を用いた以外は、試験ユニットAと同様にした。
(Test unit D)
As a heat transfer plate 22, a water-repellent wax / water-repellent wax (trade name Permaluxe Super Compound) of Kyowa Kogyo Co., Ltd. is applied to the lower surface (the surface on the lower distillation chamber 20 a side) in an appropriate amount so as to completely cover the surface. The test unit A was the same as the test unit A except that a copper plate was used.

(試験ユニットE)
伝熱板22として、下面(下段の蒸留室20a側の面)に親水ワックス(錦之堂社の商品名WATER・X)を、表面を完全に被覆するように適量塗布した平銅板を用いた以外は、試験ユニットAと同様にした。
(Test unit E)
As the heat transfer plate 22, a flat copper plate coated with an appropriate amount of hydrophilic wax (trade name WATER · X of Nishinodo Co., Ltd.) on the lower surface (the surface on the lower distillation chamber 20 a side) was used so as to completely cover the surface. Except for the above, the test unit A was the same as the test unit A.

(試験ユニットF)
伝熱板22として、下面(下段の蒸留室20a側の面)を150番の紙やすりで研磨して粗面化するとともに、粗面化後さらに下面に親水ワックス(錦之堂社の商品名WATER・X)を、表面を完全に被覆するように適量平銅板を用いた以外は、試験ユニットAと同様にした。
(Test unit F)
As the heat transfer plate 22, the lower surface (surface on the lower distillation chamber 20 a side) is roughened by polishing with No. 150 sandpaper, and after the roughening, hydrophilic wax (trade name of Nishinodo Co., Ltd.) is further formed on the lower surface. WATER.X) was the same as test unit A except that an appropriate amount of flat copper plate was used to completely cover the surface.

(試験ユニットG)
伝熱板22として、上面(上段の蒸留室20b側の面)を150番の紙やすりで研磨して粗面化した平銅板を用いた以外は、試験ユニットAと同様にした。
(Test unit G)
The test unit A was the same as the heat transfer plate 22 except that a flat copper plate whose upper surface (surface on the upper distillation chamber 20b side) was polished with a No. 150 sandpaper and roughened was used.

(試験ユニットH)
伝熱板22として、上面(上段の蒸留室20b側の面)に撥水ワックス(協和興材社の商品名Permaluxe Super Compound)を、表面を完全に被覆するように適量塗布した平銅板を用いた以外は、試験ユニットAと同様にした。
(Test unit H)
As the heat transfer plate 22, a flat copper plate coated with an appropriate amount of water-repellent wax (Kyowa Kogyo Co., Ltd. trade name Permaluxe Super Compound) on the upper surface (the surface on the upper distillation chamber 20b side) is used. Except that, it was the same as test unit A.

(試験ユニットI)
伝熱板22として、上面(上段の蒸留室20b側の面)を150番の紙やすりで研磨して粗面化するとともに、粗面化後さらに上面に撥水ワックス(協和興材社の商品名Permaluxe Super Compound)を、表面を完全に被覆するように適量塗布した平銅板を用いた以外は、試験ユニットAと同様にした。
(Test unit I)
As the heat transfer plate 22, the upper surface (the surface on the upper distillation chamber 20 b side) is polished by sanding with No. 150 sandpaper, and after the surface is roughened, water repellent wax (Kyowa Kogyo Co., Ltd. No. Permaluxe Super Compound) was the same as test unit A except that a flat copper plate coated with an appropriate amount so as to completely cover the surface was used.

(試験ユニットJ)
伝熱板22として、下面(下段の蒸留室20a側の面)を150番の紙やすりで研磨して粗面化するとともに、粗面化後さらに下面に親水ワックス(錦之堂社の商品名WATER・X)を、表面を完全に被覆するように適量塗布し、かつ、上面(上段の蒸留室20b側の面)を150番の紙やすりで研磨して粗面化するとともに、粗面化後さらに上面に撥水ワックス(協和興材社の商品名Permaluxe Super Compound)を、表面を完全に被覆するように適量塗布した平銅板を用いた以外は、試験ユニットAと同様にした。
(Test unit J)
As the heat transfer plate 22, the lower surface (surface on the lower distillation chamber 20 a side) is roughened by polishing with No. 150 sandpaper, and after the roughening, hydrophilic wax (trade name of Nishinodo Co., Ltd.) is further formed on the lower surface. Apply an appropriate amount of WATER · X) so that the surface is completely covered, and the upper surface (the surface on the upper distillation chamber 20b side) is polished with sandpaper No. 150 and roughened. Thereafter, the same procedure as in Test Unit A was performed, except that a flat copper plate coated with an appropriate amount of water-repellent wax (trade name Permaluxe Super Compound, manufactured by Kyowa Kogyo Co., Ltd.) on the upper surface was applied to completely cover the surface.

(試験例1)
上記試験ユニットA〜Fのそれぞれの試験ユニットについて、下段の蒸留室20aに原水としての水道水5L、上段の蒸留室20bに原水としての水道水8Lを注入し、真空ポンプ5aを作動させて各蒸留室20a,20b内を水の飽和蒸気圧力まで減圧した後、スライダックを用いて500Wの出力に調整した上記電気ヒーターを用いて下段の蒸留室20a内の原水を加熱するとともに、クーラーを作動させ、各部の温度が一定になったのを確認してから凝縮水の回収を始め、1時間後に試験ユニットを止めて蒸留収量(凝縮水収量)を測定する試験をそれぞれ3回行った。
そして、上記試験例1で求めた各蒸留収量を比較して図3に示すとともに、各蒸留収量から求めたCOPDを比較して図4に示した。
なお、図3及び図4において、ノーマルは試験ユニットA,ヤスリは試験ユニットB,ヤスリ+撥水ワックスは試験ユニットC,撥水ワックスは試験ユニットD,親水ワックスは試験ユニットE,ヤスリ+親水ワックスは試験ユニットFをそれぞれあらわす。
図3及び図4から、本発明の淡水化装置は、COPDの値が大きくエネルギー効率が高いことがよくわかる。
また、伝熱板の下面を粗面化するあるいは親水化すればよりエネルギー効率があがり、粗面化及び親水化を併用すれば安定したエネルギー効率の向上が見られることがよくわかる。
さらに、各試験ユニットB〜Fの伝熱板22の下面側(凝縮側)の状態を蒸発缶2aの外側から目視により観察したところ、粗面化した試験ユニットB、親水化した試験ユニットE、粗面化するとともに親水化した試験ユニットFについては下面が膜凝縮の様相を呈し、凝縮した水がスムーズに落ち、凝縮が促進されていた。一方、撥水化した試験ユニットC,Dについては下面が滴状凝縮であった。本来、滴状凝縮は水滴離脱の際に伝熱板22の下面の凝縮水W2が拭い去られ、伝熱板22の下面が露出するというのが特徴であるが、今回の実験では、水滴が発生した場に停滞したままで、離脱することがあまり見受けられなかった。
このことから、伝熱板22の下面は、粗面化、親水化あるいは粗面化及び親水化することが好ましいと考えられる。
(Test Example 1)
For each of the test units A to F, 5 L of tap water as raw water is injected into the lower distillation chamber 20a, and 8 L of tap water as raw water is injected into the upper distillation chamber 20b, and the vacuum pump 5a is operated to operate each of the test units A to F. After reducing the inside of the distillation chambers 20a and 20b to the saturated vapor pressure of water, the raw water in the lower distillation chamber 20a is heated using the electric heater adjusted to 500 W output using a slidac and the cooler is operated. After confirming that the temperature of each part became constant, collection of condensed water was started, and after 1 hour, the test unit was stopped and the test for measuring the distillation yield (condensed water yield) was performed three times.
And while comparing each distillation yield calculated | required in the said Experimental example 1 and showing in FIG. 3, COPD calculated | required from each distillation yield was compared and shown in FIG.
3 and 4, normal is test unit A, file is test unit B, file + water repellent wax is test unit C, water repellent wax is test unit D, hydrophilic wax is test unit E, file + hydrophilic wax. Represents each test unit F.
3 and 4 that the desalination apparatus of the present invention has a high COPD value and high energy efficiency.
In addition, it is well understood that the energy efficiency can be improved by roughening or hydrophilizing the lower surface of the heat transfer plate, and a stable improvement in energy efficiency can be seen by combining the roughening and hydrophilization.
Furthermore, when the state of the lower surface side (condensation side) of the heat transfer plate 22 of each test unit B to F was visually observed from the outside of the evaporator 2a, the roughened test unit B, the hydrophilized test unit E, The test unit F, which was roughened and hydrophilized, had a film condensation aspect on the lower surface, and the condensed water fell smoothly and the condensation was promoted. On the other hand, the lower surfaces of the water-repellent test units C and D were droplet condensation. Originally, the drop condensation is characterized in that the condensed water W2 on the lower surface of the heat transfer plate 22 is wiped off when the water droplet is detached, and the lower surface of the heat transfer plate 22 is exposed. They remained stagnant in the place where they occurred and were not seen to leave very much.
From this, it is considered that the lower surface of the heat transfer plate 22 is preferably roughened, hydrophilized, or roughened and hydrophilized.

(試験例2)
上記試験ユニットA及び試験ユニットG〜Iのそれぞれの試験ユニットについて、下段の蒸留室20aに原水としての水道水5L、上段の蒸留室20bに原水としての水道水8Lを注入し、真空ポンプ5aを作動させて各蒸留室20a,20b内を水の飽和蒸気圧力まで減圧した後、スライダックを用いて500Wの出力に調整した上記電気ヒーターを用いて下段の蒸留室20a内の原水を加熱するとともに、クーラーを作動させ、各部の温度が一定になったのを確認してから凝縮水の回収を始め、1時間後に試験ユニットを止めて蒸留収量(凝縮水終了)を測定する試験をそれぞれ3回行った。
そして、上記試験例2で求めたで求めた各蒸留収量を比較して図5に示すとともに、各蒸留収量から求めたCOPDを比較して図6に示した。
なお、図5及び図6において、ノーマルは試験ユニットA,ヤスリは試験ユニットG,撥水ワックスは試験ユニットH,ヤスリ+撥水ワックスは試験ユニットIをそれぞれあらわす。
図5及び図6から、本発明の淡水化装置が、COPDの値が大きくエネルギー効率が高いことがよくわかる。
また、伝熱板の上面を粗面化するあるいは撥水化すればよりエネルギー効率があがり、粗面化及び撥水化を併用すれば安定したエネルギー効率の向上が見られることがよくわかる。
さらに、上記試験ユニットG〜Iのそれぞれの試験ユニットについて、各試験ユニットの伝熱板22の上面側(沸騰側)の状態を蒸発缶2aの外側から目視により観察したところ、粗面化した試験ユニットGの場合、沸騰開始直後の気泡の数は少ないものの、定常状態になった際に他に比べて表面上の多くの場所から気泡が発生した。また、撥水化した試験ユニットHの場合、沸騰開始直後から他と比較して気泡の発生量が多かった。しかし、原水温度が定常状態に達すると沸騰が起こる場所が限られていた。粗面化及び撥水化した試験ユニットIの場合、上記2つの特徴が現れ、活発に沸騰が起きた。
このことから伝熱板22の上面は、粗面化及び撥水化することが好ましいと考えられる。
(Test Example 2)
For each of the test units A and G to I, 5 L of tap water as raw water is injected into the lower distillation chamber 20a, and 8 L of tap water as raw water is injected into the upper distillation chamber 20b. After operating and depressurizing each distillation chamber 20a, 20b to the saturated vapor pressure of water, the raw water in the lower distillation chamber 20a is heated using the electric heater adjusted to an output of 500 W using a slidac, Start the cooler and confirm that the temperature of each part has become constant, start collecting condensed water, stop the test unit one hour later, and measure the distillation yield (condensed water end) three times each It was.
Then, the respective distillation yields obtained in the test example 2 were compared and shown in FIG. 5, and the COPD obtained from each distillation yield was compared and shown in FIG.
5 and 6, normal represents the test unit A, file represents the test unit G, water repellent wax represents the test unit H, and file + water repellent wax represents the test unit I.
5 and 6 that the desalination apparatus of the present invention has a high COPD value and high energy efficiency.
In addition, it can be seen that if the upper surface of the heat transfer plate is roughened or water repellent, the energy efficiency is improved, and if the surface roughening and water repellent are used in combination, stable energy efficiency is improved.
Furthermore, about each test unit of said test unit GI, when the state of the upper surface side (boiling side) of the heat-transfer plate 22 of each test unit was observed visually from the outer side of the evaporator 2a, the test roughened In the case of unit G, although the number of bubbles immediately after the start of boiling was small, bubbles were generated from many places on the surface compared to others when the steady state was reached. In addition, in the case of the test unit H with water repellency, the amount of bubbles generated was larger than immediately after the start of boiling compared to the others. However, when the raw water temperature reaches a steady state, the places where boiling occurs are limited. In the case of the test unit I having a roughened surface and water repellency, the above two characteristics appeared and boiling occurred actively.
From this, it is considered that the upper surface of the heat transfer plate 22 is preferably roughened and water repellent.

(試験例3)
上記試験ユニットA及び試験ユニットJのそれぞれの試験ユニットについて、下段の蒸留室20aに原水としての水道水5L、上段の蒸留室20bに原水としての水道水8Lを注入し、真空ポンプ5aを作動させて各蒸留室20a,20b内を水の飽和蒸気圧力まで減圧した後、スライダックを用いて300W〜1000Wまで、100W刻みで出力を変化させて上記電気ヒーターを用いて下段の蒸留室20a内の原水を加熱するとともに、クーラーを作動させ、各部の温度が一定になったのを確認してから凝縮水の回収を始め、1時間後に試験ユニットを止めて蒸留収量(凝縮水終了)を測定する試験をそれぞれ行った。
そして、求められた蒸留収量を元にCOPDを演算し、その結果を図7に示した。なお、図7中、non−treated surfaseは、試験ユニットAを、treated surfaseは、試験ユニットJをそれぞれあらわす。
図7に示すように、900Wの熱量を加えた系においては、試験ユニットJはもちろんのこと、試験ユニットAにおいてもかなり高いエネルギー効率を得られるとともに、特に試験ユニットJにおいては、COPDが1.86と、効率100%であるCOPDが2の最大値に略近い高いエネルギー効率が得られることがわかる。また、試験ユニットJについては、900Wの熱量を加えた系において、蒸留収量が約2.7 L/hで、試験ユニットAに比べ33%も蒸留収量が向上していた。
さらに、試験ユニットJの900Wの熱量を加えた系において、クーラーの入口冷却水温度、クーラーの出口冷却水温度、下段の蒸留室20aの原水温度、下段の蒸留室20aの水蒸気温度、上段の蒸留室20bの原水温度、上段の蒸留室20bの水蒸気温度、伝熱板22の下面温度、及び伝熱板22の上面温度のそれぞれの試験開始から終了までの温度変化を調べたところ、最も高温の下段の蒸留室20aの原水温度と、最も低温のクーラー内の冷却水との温度差が最大で約20℃しかなく、比較的小温度差で高効率な蒸留が行われたと判断できる。
(Test Example 3)
For each of the test units A and J, tap water 5L as raw water is injected into the lower distillation chamber 20a, and tap water 8L as raw water is injected into the upper distillation chamber 20b, and the vacuum pump 5a is operated. After reducing the inside of each distillation chamber 20a, 20b to the saturated vapor pressure of water, the raw water in the lower distillation chamber 20a is changed using the electric heater by changing the output in increments of 100W from 300W to 1000W using a slidac. Test to start distillation, collect condensed water after confirming that the temperature of each part became constant, and stop the test unit after 1 hour and measure the distillation yield (condensed water end) Went to each.
Then, COPD was calculated based on the obtained distillation yield, and the result is shown in FIG. In FIG. 7, “non-treated surface” represents the test unit A, and “tated surface” represents the test unit J.
As shown in FIG. 7, in the system to which a heat amount of 900 W is applied, not only the test unit J but also the test unit A can be obtained with considerably high energy efficiency. It can be seen that a high energy efficiency of 86 and a COPD of 100% efficiency is almost close to the maximum value of 2. For test unit J, the distillation yield was about 2.7 L / h in the system to which a heat of 900 W was applied, and the distillation yield was improved by 33% compared to test unit A.
Further, in the system to which the heat amount of 900 W of the test unit J was added, the temperature of the cooling water at the inlet of the cooler, the temperature of the cooling water at the outlet of the cooler, the raw water temperature of the lower distillation chamber 20a, the steam temperature of the lower distillation chamber 20a, the upper distillation When the temperature change from the test start to the end of each of the raw water temperature of the chamber 20b, the water vapor temperature of the upper distillation chamber 20b, the lower surface temperature of the heat transfer plate 22, and the upper surface temperature of the heat transfer plate 22 was examined, The maximum temperature difference between the raw water temperature in the lower distillation chamber 20a and the cooling water in the cooler cooler is only about 20 ° C., and it can be determined that highly efficient distillation was performed with a relatively small temperature difference.

本発明にかかる淡水化装置は、特に限定されないが、例えば、海水などの淡水化や砒素などに汚染された井戸水等の淡水化に使用することができる。   Although the desalination apparatus concerning this invention is not specifically limited, For example, it can be used for desalination of well water contaminated by desalination of seawater etc. or arsenic.

1a,1b 淡水化装置
2a,2b 蒸発缶
20a,20b,20c,20d,20e 蒸留室
22 伝熱板
23 トラップ
23a 通気孔
24 デミスタ
3 加熱手段
4 冷却手段
5 減圧手段
W1 原水
W2 凝縮水
1a, 1b Desalination devices 2a, 2b Evaporators 20a, 20b, 20c, 20d, 20e Distillation chamber 22 Heat transfer plate 23 Trap 23a Vent 24 Demister 3 Heating means 4 Cooling means 5 Decompression means W1 Raw water W2 Condensed water

Claims (8)

2つ以上の蒸留室を備え、各蒸留室内に原水を供給するとともに減圧状態にして、1つの蒸留室内の原水を加熱手段によって加熱して、原水中の水を蒸発させる一方、前記1つの蒸留室以外の蒸留室内に設けられた原水の加熱源として他の蒸留室で発生した水蒸気の凝縮によって放出される凝縮熱を用いるようにした淡水化装置であって、
蒸発缶の内部を、伝熱板を介して上下方向に仕切ることによって複数の蒸留室を形成し、最下段の蒸留室に供給された原水を加熱する加熱手段を設け、最上段の蒸留室にこの蒸留室内の水蒸気を凝縮させる冷却手段を設けるとともに、下段の蒸留室で発生した水蒸気を下段の蒸留室の天井面を構成する伝熱板の下面で凝縮させて回収するとともに、水蒸気の凝縮によって発生した凝縮熱が伝熱板を介して上段の伝熱板上で受けられた原水に伝わるようにしたことを特徴とする淡水化装置。
Two or more distillation chambers are provided, and raw water is supplied to each distillation chamber and the pressure is reduced, and the raw water in one distillation chamber is heated by heating means to evaporate the water in the raw water. A desalination apparatus that uses the heat of condensation emitted by condensation of water vapor generated in another distillation chamber as a heating source of raw water provided in a distillation chamber other than the chamber,
A plurality of distillation chambers are formed by partitioning the inside of the evaporator vertically with a heat transfer plate, and heating means for heating the raw water supplied to the lowermost distillation chamber is provided. In addition to providing a cooling means for condensing the water vapor in the distillation chamber, the water vapor generated in the lower distillation chamber is condensed and recovered on the lower surface of the heat transfer plate constituting the ceiling surface of the lower distillation chamber. The desalination apparatus characterized in that the generated condensation heat is transmitted to the raw water received on the upper heat transfer plate via the heat transfer plate.
蒸発缶が樹脂で形成されている請求項1に記載の淡水化装置。   The desalination apparatus according to claim 1, wherein the evaporator is formed of a resin. 伝熱板の下面が水平面に対し傾斜している請求項1または請求項2に記載の淡水化装置。   The desalination apparatus of Claim 1 or Claim 2 in which the lower surface of a heat exchanger plate inclines with respect to a horizontal surface. 伝熱板の上下面の少なくとも一方が粗面化されている請求項1〜請求項3のいずれかに記載の淡水化装置。   The desalination apparatus according to any one of claims 1 to 3, wherein at least one of the upper and lower surfaces of the heat transfer plate is roughened. 伝熱板の下面が親水処理されている請求項1〜請求項4のいずれかに記載の淡水化装置。   The desalination apparatus in any one of Claims 1-4 by which the lower surface of the heat exchanger plate was hydrophilically processed. 伝熱板の上面が撥水処理されている請求項1〜請求項5のいずれかに記載の淡水化装置。   The desalination apparatus according to any one of claims 1 to 5, wherein an upper surface of the heat transfer plate is subjected to water repellent treatment. 原水の沸騰によって発生する原水飛沫が凝縮水に混入することを防止するトラップが、蒸留室内に設けられている請求項1〜請求項6のいずれかに記載の淡水化装置。   The desalination apparatus in any one of Claims 1-6 with which the trap which prevents that the raw | natural water splash which generate | occur | produces by boiling of raw | natural water mixes in condensed water is provided in the distillation chamber. トラップが、中央に通気孔を有する上に向かって凸の略傘形をしていて、トラップ上面が凝縮水の受け部となっている請求項7に記載の淡水化装置。   The desalination apparatus according to claim 7, wherein the trap has a substantially umbrella shape having a vent hole in the center and is convex upward, and the trap upper surface serves as a condensate receiving portion.
JP2009151766A 2009-06-26 2009-06-26 Desalination apparatus Pending JP2011005428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009151766A JP2011005428A (en) 2009-06-26 2009-06-26 Desalination apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009151766A JP2011005428A (en) 2009-06-26 2009-06-26 Desalination apparatus

Publications (1)

Publication Number Publication Date
JP2011005428A true JP2011005428A (en) 2011-01-13

Family

ID=43562735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009151766A Pending JP2011005428A (en) 2009-06-26 2009-06-26 Desalination apparatus

Country Status (1)

Country Link
JP (1) JP2011005428A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101323160B1 (en) * 2012-02-06 2013-10-30 강희자 Marine vertical multistage desalinator
WO2015016432A1 (en) * 2013-07-29 2015-02-05 주식회사 더블유원 Fresh water generator for ship
WO2015072618A1 (en) * 2013-11-18 2015-05-21 주식회사 더블유원 Evaporative fresh water generator having removable fresh water collector
CN106517394A (en) * 2016-12-23 2017-03-22 广西大学 Automatic supplying device for laboratory distilled water
CN111233062A (en) * 2020-03-14 2020-06-05 北京结力能源科技有限公司 Solar photo-thermal seawater desalination integrated system and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101323160B1 (en) * 2012-02-06 2013-10-30 강희자 Marine vertical multistage desalinator
WO2015016432A1 (en) * 2013-07-29 2015-02-05 주식회사 더블유원 Fresh water generator for ship
WO2015072618A1 (en) * 2013-11-18 2015-05-21 주식회사 더블유원 Evaporative fresh water generator having removable fresh water collector
CN106517394A (en) * 2016-12-23 2017-03-22 广西大学 Automatic supplying device for laboratory distilled water
CN111233062A (en) * 2020-03-14 2020-06-05 北京结力能源科技有限公司 Solar photo-thermal seawater desalination integrated system and method

Similar Documents

Publication Publication Date Title
US20190352193A1 (en) Device for the Purification of Water Using a Heat Pump
JP2011167628A (en) Hollow fiber membrane module, membrane distillation type fresh water generator, and membrane distillation type desalination apparatus
US20090218210A1 (en) Energy-efficient distillation system
JP2011005428A (en) Desalination apparatus
WO2019053638A1 (en) Photothermal distillation apparatus
JP2016530096A (en) Systems including condensing devices such as bubble column condensers
JP6800957B2 (en) Liquid purification by membrane heating
JP2012091108A (en) Vacuum distillation apparatus using solar heat
Mu et al. An overview of solar still enhancement approaches for increased freshwater production rates from a thermal process perspective
JP2013523439A (en) Vapor absorption system
JP6160864B2 (en) Nanofiber membrane distillation equipment
Wen et al. Coupling droplets/bubbles with a liquid film for enhancing phase-change heat transfer
Wu et al. Bio-inspired salt-fouling resistant graphene evaporators for solar desalination of hypersaline brines
US8172988B2 (en) Distillation system with vertically oriented rotating plates
Deka et al. Multistage interfacial thermal desalination system with metallic evaporators
CN104129804B (en) A kind of integral type evaporation and crystallization system and technique
JP2014018736A (en) Fresh water generator
Jayakumar et al. Heat Transfer Enhancement and Scale Formation: Experimental Studies in Falling Film Evaporators Using Copper Metal Foam
KR20110080215A (en) Water furification plant adopting vacuum evaporation method
JP2009072734A (en) Seawater desalting apparatus using air stream circulation
US10065130B2 (en) Thin film systems and methods for using same
WO2010087042A1 (en) Pressure reduction device, distillation device and power generation device
US20210230023A1 (en) Submerged tubular membrane distillation (stmd) method and apparatus for desalination
US7470349B1 (en) Pressure desalination
KR101974014B1 (en) Evaporative Desalination Apparatus, Desalination Method and System therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120330

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20130827