JP2011003260A - Magnetic recording medium and magnetic recording and reproducing device - Google Patents

Magnetic recording medium and magnetic recording and reproducing device Download PDF

Info

Publication number
JP2011003260A
JP2011003260A JP2009147987A JP2009147987A JP2011003260A JP 2011003260 A JP2011003260 A JP 2011003260A JP 2009147987 A JP2009147987 A JP 2009147987A JP 2009147987 A JP2009147987 A JP 2009147987A JP 2011003260 A JP2011003260 A JP 2011003260A
Authority
JP
Japan
Prior art keywords
magnetic
layer
recording medium
magnetic recording
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009147987A
Other languages
Japanese (ja)
Inventor
Hirosuke Yoshida
裕亮 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2009147987A priority Critical patent/JP2011003260A/en
Publication of JP2011003260A publication Critical patent/JP2011003260A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic recording medium that can achieve high scratch resistance even when a carbon protective layer is thinned.SOLUTION: In the magnetic recording medium in which at least a vertical magnetic layer 4 in which an easy axis of magnetization is largely perpendicularly oriented to a nonmagnetic substrate 1, and a carbon protective layer 5 are superposed on the nonmagnetic substrate 1, an intermediate layer 9 including Ru and Co is provided between the vertical magnetic layer 4 and the carbon protective layer 5. This allows the surface of the magnetic recording medium to be protected without causing spacing loss as great as the carbon protective layer 5. Also it is possible to significantly increase scratch resistance of the magnetic recording medium by raising the coverage of the carbon protective layer 5 and firmly bonding the vertical magnetic layer 4 and the carbon protective layer 5.

Description

本発明は、磁気記録媒体及び磁気記録再生装置に関するものである。   The present invention relates to a magnetic recording medium and a magnetic recording / reproducing apparatus.

磁気記録再生装置の一種であるハードディスク装置(HDD)は、現在その記録密度が年率50%以上で増えており、今後もその傾向は続くと言われている。それに伴って高記録密度に適した磁気ヘッド及び磁気記録媒体の開発が進められている。   The recording density of a hard disk drive (HDD), which is a kind of magnetic recording / reproducing device, is currently increasing at an annual rate of 50% or more, and it is said that this trend will continue in the future. Along with this, development of magnetic heads and magnetic recording media suitable for high recording density is underway.

現在、市販されている磁気記録再生装置に搭載されている磁気記録媒体は、磁性膜内の磁化容易軸が主に垂直に配向した、いわゆる垂直磁気記録媒体である。垂直磁気記録媒体は、高記録密度化した際にも、記録ビット間の境界領域における反磁界の影響が小さく、鮮明なビット境界が形成されるため、ノイズの増加が抑えられる。しかも高記録密度化に伴う記録ビット体積の減少が少なくて済むため、熱揺らぎ効果にも強い。このため、近年大きな注目を集めており、垂直磁気記録に適した媒体の構造が提案されている。   Currently, a magnetic recording medium mounted on a commercially available magnetic recording / reproducing apparatus is a so-called perpendicular magnetic recording medium in which an easy axis of magnetization in a magnetic film is oriented mainly vertically. Even when the recording density of the perpendicular magnetic recording medium is increased, the influence of the demagnetizing field in the boundary region between the recording bits is small and a clear bit boundary is formed, so that an increase in noise can be suppressed. In addition, since the recording bit volume decreases with the increase in recording density, the thermal fluctuation effect is strong. For this reason, in recent years, much attention has been paid and a medium structure suitable for perpendicular magnetic recording has been proposed.

また、磁気記録媒体の更なる高記録密度化という要望に応えるべく、垂直磁性層に対する書き込み能力に優れた単磁極ヘッドを用いることが検討されている。このような単磁極ヘッドに対応するために、記録層である垂直磁性層と非磁性基板との間に、軟磁性材料からなる軟磁性下地層を設けることにより、単磁極ヘッドと磁気記録媒体との間における磁束の出入りの効率を向上させた、いわゆる2層磁気記録媒体が提案されている。   In order to meet the demand for higher recording density of magnetic recording media, it has been studied to use a single-pole head having excellent writing ability for the perpendicular magnetic layer. In order to deal with such a single magnetic pole head, a soft magnetic underlayer made of a soft magnetic material is provided between a perpendicular magnetic layer as a recording layer and a nonmagnetic substrate. A so-called two-layer magnetic recording medium has been proposed in which the efficiency of magnetic flux entry and exit between the two is improved.

ところで、HDDでは、磁気記録媒体を高速回転させ、磁気記録媒体と磁気ヘッドとの間に生ずる空気流を用いて、磁気記録媒体の表面上で磁気ヘッドを浮上走行させながら、この磁気ヘッドを用いて磁気記録媒体に対する情報の記録再生を行う。したがって、回転を停止した状態の磁気記録媒体では、このような空気流は生じず、磁気ヘッドを浮上走行させることはできない。   By the way, the HDD uses the magnetic head while rotating the magnetic recording medium at a high speed and using the air flow generated between the magnetic recording medium and the magnetic head to float the magnetic head on the surface of the magnetic recording medium. The information is recorded on and reproduced from the magnetic recording medium. Therefore, in the magnetic recording medium in a state where the rotation is stopped, such an air flow does not occur, and the magnetic head cannot fly.

また、HDDでは、回転停止状態の磁気記録媒体から磁気ヘッドを浮上走行させるまでの間、磁気ヘッドが磁気記録媒体の表面に損傷を与えることを防止するため、磁気ヘッドを磁気記録媒体の表面に形成したレーザーテクスチャゾーン(磁気ヘッドの退避位置)に設置するCSS(接触起動停止)方式や、磁気ヘッドを磁気記録媒体から完全に退避させるランプローディング方式などが採用されている。   Also, in the HDD, the magnetic head is placed on the surface of the magnetic recording medium in order to prevent the magnetic head from damaging the surface of the magnetic recording medium until the magnetic head is levitated from the rotation stopped magnetic recording medium. A CSS (contact activation stop) method installed in the formed laser texture zone (retraction position of the magnetic head), a ramp loading method for completely retracting the magnetic head from the magnetic recording medium, or the like is employed.

しかしながら、HDDでは、磁気ヘッドの浮上走行中に外部から衝撃等が加わることによって、磁気記録媒体の表面に磁気ヘッドが偶発的に接触し、この磁気記録媒体の表面に損傷を与えてしまうことがある。   However, in the HDD, when an impact or the like is applied from the outside while the magnetic head is flying, the magnetic head may accidentally contact the surface of the magnetic recording medium and damage the surface of the magnetic recording medium. is there.

このように、磁気ヘッドと磁気記録媒体との間のトライボロジーに関する問題は、宿命的な技術課題となって現在に至っており、磁気記録媒体の磁性層上に積層される保護層を改善する努力が営々と続けられている。また、媒体表面における耐衝撃性(スクラッチ耐性)、耐摩耗性及び耐摺動性が、磁気記録媒体の信頼性向上の大きな柱となっている。   As described above, the problem related to tribology between the magnetic head and the magnetic recording medium has become a fateful technical issue, and efforts have been made to improve the protective layer stacked on the magnetic layer of the magnetic recording medium. It has been continued. In addition, impact resistance (scratch resistance), wear resistance, and sliding resistance on the medium surface are major pillars for improving the reliability of magnetic recording media.

ここで、磁気記録媒体の保護層としては、従来より様々な材質からなるものが提案されているが、成膜性や耐久性等の総合的な見地から、主に炭素膜が採用されている。そして、この炭素膜の硬度、密度、動摩擦係数等は、磁気記録媒体のCSS特性、あるいは耐コロージョン特性に如実に反映されるため、非常に重要である。   Here, as a protective layer of a magnetic recording medium, materials made of various materials have been proposed, but a carbon film is mainly used from a comprehensive viewpoint such as film formability and durability. . The hardness, density, dynamic friction coefficient, etc. of the carbon film are very important because they are reflected in the CSS characteristics or corrosion resistance characteristics of the magnetic recording medium.

一方、磁気記録媒体の記録密度の向上を図るためには、磁気ヘッドの飛行高さ(フライングハイト)の低減、媒体回転数の増加等を行うことが好ましい。したがって、磁気記録媒体の表面に形成される保護層には、磁気ヘッドの偶発的な接触等に対応するため、より高い摺動耐久性や平坦性が要求されるようになってきている。加えて、磁気記録媒体と磁気ヘッドとのスペーシングロスを低減して記録密度を高めるためには、保護膜の厚さをできるだけ薄く、例えば30Å(3.0nm)以下の膜厚にすることが要求されるようになってきており、平滑性は勿論のこと、薄く、緻密で且つ強靭な保護膜が強く求められている。   On the other hand, in order to improve the recording density of the magnetic recording medium, it is preferable to reduce the flying height (flying height) of the magnetic head, increase the rotational speed of the medium, and the like. Accordingly, the protective layer formed on the surface of the magnetic recording medium is required to have higher sliding durability and flatness in order to cope with accidental contact of the magnetic head. In addition, in order to reduce the spacing loss between the magnetic recording medium and the magnetic head and increase the recording density, the thickness of the protective film should be as thin as possible, for example, 30 mm (3.0 nm) or less. There is a growing demand for thin, dense and tough protective films as well as smoothness.

磁気記録媒体の保護層に用いられる炭素膜は、スパッタリング法やCVD法、イオンビーム蒸着法等によって形成される。このうち、スパッタリング法で形成した炭素膜は、例えば100Å(10.0nm)以下の膜厚とした場合に、その耐久性が不十分となることがある。一方、CVD法で形成した炭素膜は、その表面の平滑性が低く、膜厚を薄くした場合に、磁気記録媒体の表面の被覆率が低下して、磁気記録媒体のコロージョンが発生する場合がある。一方、イオンビーム蒸着法は、上述したスパッタリング法やCVD法に比べて、高硬度で平滑性が高く、緻密な炭素膜を形成することが可能である(例えば、特許文献1を参照。)。   The carbon film used for the protective layer of the magnetic recording medium is formed by sputtering, CVD, ion beam evaporation or the like. Among these, the durability of the carbon film formed by the sputtering method may be insufficient when the film thickness is, for example, 100 mm (10.0 nm) or less. On the other hand, the carbon film formed by the CVD method has low surface smoothness, and when the film thickness is reduced, the coverage of the surface of the magnetic recording medium is lowered, and corrosion of the magnetic recording medium may occur. is there. On the other hand, the ion beam evaporation method can form a dense carbon film with higher hardness and higher smoothness than the above-described sputtering method and CVD method (see, for example, Patent Document 1).

特開2000−226659号公報JP 2000-226659 A

上述したように、磁気記録媒体の記録密度を更に向上させるためには、保護層となる炭素膜を今まで以上に薄膜化することが求められる。しかしながら、炭素膜と磁性層とは結晶構造や、熱膨張率などが異なるため、炭素膜を極度に薄膜化すると、炭素膜の被覆率や、密着性などが低下してしまい、極度にスクラッチ耐性が低下するといった問題が発生してしまう。   As described above, in order to further improve the recording density of the magnetic recording medium, it is required to make the carbon film serving as the protective layer thinner than ever. However, since the carbon film and the magnetic layer have different crystal structures, thermal expansion coefficients, etc., if the carbon film is made extremely thin, the coverage of the carbon film, adhesion, etc. will decrease, and it will be extremely scratch resistant. This causes a problem of lowering.

本発明は、このような従来の事情に鑑みて提案されたものであり、炭素保護層を薄膜化した場合でも、高いスクラッチ耐性が得られる磁気記録媒体、並びにそのような磁気記録媒体を備えた磁気記録再生装置を提供することを目的とする。   The present invention has been proposed in view of such conventional circumstances, and includes a magnetic recording medium capable of obtaining high scratch resistance even when the carbon protective layer is thinned, and such a magnetic recording medium. An object of the present invention is to provide a magnetic recording / reproducing apparatus.

本発明者は、上記課題を解決すべく鋭意研究を行った結果、垂直磁性層と炭素保護層との間にRu及びCoを含む中間層を設けることによって、炭素保護層ほどのスペーシングロスを生じさせずに、磁気記録媒体の表面を保護し、また、炭素保護層の被覆率を高め、垂直磁性層と炭素保護層とを強固に接着して、磁気記録媒体のスクラッチ耐性を著しく高めることが可能となることを見出し、本発明を完成するに至った。   As a result of earnest research to solve the above problems, the present inventor has provided an intermediate layer containing Ru and Co between the perpendicular magnetic layer and the carbon protective layer, thereby reducing the spacing loss as much as the carbon protective layer. Protect the surface of the magnetic recording medium without causing it, increase the coverage of the carbon protective layer, and firmly bond the perpendicular magnetic layer and the carbon protective layer to significantly increase the scratch resistance of the magnetic recording medium As a result, the present invention has been completed.

すなわち、本発明は、以下の手段を提供する。
(1) 少なくとも非磁性基板の上に、磁化容易軸が前記非磁性基板に対して主に垂直に配向した垂直磁性層と、炭素保護層とを積層してなる磁気記録媒体であって、
前記垂直磁性層と前記炭素保護層との間に、Ru及びCoを含む中間層が設けられていることを特徴とする磁気記録媒体。
(2) 前記中間層が、Ruを30原子%以上、Coを30原子%以上含む層であることを特徴とする前項(1)に記載の磁気記録媒体。
(3) 前記中間層の層厚が、0.2〜0.8nmの範囲内であることを特徴とする前項(1)又は(2)に記載の磁気記録媒体。
(4) 前項(1)〜(3)の何れか一項に記載の磁気記録媒体と、
前記磁気記録媒体に対する情報の記録再生を行う磁気ヘッドとを備えることを特徴とする磁気記録再生装置。
That is, the present invention provides the following means.
(1) A magnetic recording medium comprising a carbon protective layer and a perpendicular magnetic layer in which an easy axis is oriented mainly perpendicularly to the nonmagnetic substrate on at least a nonmagnetic substrate,
A magnetic recording medium, wherein an intermediate layer containing Ru and Co is provided between the perpendicular magnetic layer and the carbon protective layer.
(2) The magnetic recording medium as described in (1) above, wherein the intermediate layer is a layer containing 30 atomic% or more of Ru and 30 atomic% or more of Co.
(3) The magnetic recording medium as described in (1) or (2) above, wherein the thickness of the intermediate layer is in the range of 0.2 to 0.8 nm.
(4) The magnetic recording medium according to any one of (1) to (3) above,
A magnetic recording / reproducing apparatus comprising: a magnetic head for recording / reproducing information with respect to the magnetic recording medium.

以上のように、本発明によれば、高硬度で緻密な炭素保護層を形成することが可能となり、この炭素保護層の層厚を薄くすることが可能となるため、磁気記録媒体と磁気ヘッドとの距離を狭く設定することが可能となり、その結果、磁気記録媒体の記録密度を高めることが可能となる。   As described above, according to the present invention, a high-hardness and dense carbon protective layer can be formed, and the thickness of the carbon protective layer can be reduced. Can be set narrow, and as a result, the recording density of the magnetic recording medium can be increased.

本発明を適用した磁気記録媒体の一例を示す断面図である。It is sectional drawing which shows an example of the magnetic recording medium to which this invention is applied. 図1に示す磁気記録媒体の積層構造を拡大して示す断面図である。It is sectional drawing which expands and shows the laminated structure of the magnetic recording medium shown in FIG. 磁気記録再生装置の一例を示す斜視図である。It is a perspective view which shows an example of a magnetic recording / reproducing apparatus.

以下、本発明を適用した磁気記録媒体及び磁気記録再生装置について、図面を参照して詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らないものとする。   Hereinafter, a magnetic recording medium and a magnetic recording / reproducing apparatus to which the present invention is applied will be described in detail with reference to the drawings. In addition, in the drawings used in the following description, in order to make the features easy to understand, there are cases where the portions that become the features are enlarged for the sake of convenience, and the dimensional ratios of the respective components are not always the same as the actual ones. Make it not exist.

(磁気記録媒体)
本発明を適用した磁気記録媒体は、少なくとも非磁性基板の上に、磁化容易軸が非磁性基板に対して主に垂直に配向した垂直磁性層と、炭素保護層とを積層してなるものであって、垂直磁性層と炭素保護層との間に、Ru及びCoを含む中間層が設けられていることを特徴とする。
(Magnetic recording medium)
A magnetic recording medium to which the present invention is applied is formed by laminating at least a nonmagnetic substrate, a perpendicular magnetic layer having an easy axis of magnetization oriented perpendicularly to the nonmagnetic substrate, and a carbon protective layer. An intermediate layer containing Ru and Co is provided between the perpendicular magnetic layer and the carbon protective layer.

本発明を適用した磁気記録媒体では、このような構成を採用することにより、炭素保護層のみの場合に比べて磁気記録媒体のスクラッチ耐性及びコロージョン耐性を高めることができる。通常、磁気記録媒体のスクラッチ耐性を高めるためには、炭素保護層を厚くすることが考えられる。しかしながら、炭素保護層は、非磁性材料からなり、この層厚を厚くすると、垂直磁性層と磁気ヘッドとの距離が離れ(これをスペーシングロスと呼ぶ。)、磁気記録媒体の電磁変換特性が悪化することになる。   In the magnetic recording medium to which the present invention is applied, the scratch resistance and corrosion resistance of the magnetic recording medium can be enhanced by adopting such a configuration as compared with the case of using only the carbon protective layer. Usually, in order to increase the scratch resistance of the magnetic recording medium, it is conceivable to increase the thickness of the carbon protective layer. However, the carbon protective layer is made of a non-magnetic material. When the layer thickness is increased, the distance between the perpendicular magnetic layer and the magnetic head is increased (this is referred to as spacing loss), and the electromagnetic conversion characteristics of the magnetic recording medium are improved. It will get worse.

これに対して、本発明で用いられる中間層は、Ru及びCoが物性的には非磁性材料であるため、また、炭素保護層よりは硬度が低いが、強磁性材料であるCoを含むため、炭素保護層ほどのスペーシングロスが生じず、一方、垂直磁性層よりも硬度が高く、この垂直磁性層と同じhcp構造であるため、垂直磁性層の保護効果、垂直磁性層への被覆率、格子整合性も高い。   On the other hand, the intermediate layer used in the present invention includes Ru and Co, which are nonmagnetic materials in terms of physical properties, and includes Co, which is a ferromagnetic material, although the hardness is lower than that of the carbon protective layer. The spacing loss is not as high as that of the carbon protective layer, while the hardness is higher than that of the perpendicular magnetic layer and the hcp structure is the same as that of the perpendicular magnetic layer. Also, lattice matching is high.

これにより、本発明を適用した磁気記録媒体では、媒体表面での炭素保護層の被覆率を高め、垂直磁性層と炭素保護層とを強固に接着し、媒体表面の保護効果を高めることが可能である。   As a result, in the magnetic recording medium to which the present invention is applied, it is possible to increase the coverage of the carbon protective layer on the medium surface, firmly bond the perpendicular magnetic layer and the carbon protective layer, and enhance the protective effect of the medium surface It is.

また、本発明を適用した磁気記録媒体では、Ru及びCoを含む中間層を、Ruを30原子%以上、Coを30原子%以上含む層とすることが好ましい。すなわち、Ruを30原子%以上とすることにより、この中間層の硬度を高め、また、Coを30原子%以上とすることにより、この中間層を設けたことによるスペーシングロスを実際の層厚よりも低減することが可能である。   In the magnetic recording medium to which the present invention is applied, the intermediate layer containing Ru and Co is preferably a layer containing Ru at least 30 atomic% and Co at least 30 atomic%. That is, by setting Ru to 30 atomic% or more, the hardness of this intermediate layer is increased, and by setting Co to 30 atomic% or more, the spacing loss due to the provision of this intermediate layer is reduced to the actual layer thickness. Can be reduced.

また、本発明を適用した磁気記録媒体では、Ru及びCoを含む中間層の層厚を、2〜8Å(0.2nm〜0.8nm)の範囲内とすることが好ましい。中間層の層厚を2Å未満とすると、この中間層を設ける効果が低下することになる。これは、層厚が極度に薄くなると、垂直磁性層の全表面を覆うことができなくなるためと考えられる。一方、中間層のの層厚が8Åを超えると、この中間層によるスペーシングロスが大きくなり、磁気記録媒体の電磁変換特性が悪化することになる。   In the magnetic recording medium to which the present invention is applied, the thickness of the intermediate layer containing Ru and Co is preferably in the range of 2 to 8 mm (0.2 nm to 0.8 nm). If the thickness of the intermediate layer is less than 2 mm, the effect of providing this intermediate layer is reduced. This is presumably because when the layer thickness is extremely thin, the entire surface of the perpendicular magnetic layer cannot be covered. On the other hand, if the thickness of the intermediate layer exceeds 8 mm, the spacing loss due to the intermediate layer increases, and the electromagnetic conversion characteristics of the magnetic recording medium deteriorate.

以下、本発明を適用した磁気記録媒体の具体的な構成例について説明する。
本発明を適用した磁気記録媒体は、例えば図1に示すように、非磁性基板1の上に、軟磁性下地層2と、配向制御層3と、垂直磁性層4と、炭素保護層5と、潤滑層6とを順次積層した構造を有している。
Hereinafter, a specific configuration example of a magnetic recording medium to which the present invention is applied will be described.
A magnetic recording medium to which the present invention is applied includes a soft magnetic underlayer 2, an orientation control layer 3, a perpendicular magnetic layer 4, a carbon protective layer 5 on a nonmagnetic substrate 1, as shown in FIG. , And a lubricating layer 6 are sequentially laminated.

このうち、軟磁性下地層2と配向制御層3とが下地層を構成している。また、軟磁性下地層2は、スペーサ層2bを介してAFC(アンチ・フェロ・カップリング)結合された2層の軟磁性層2aを含む。垂直磁性層4は、下層の磁性層4aと、中層の磁性層4bと、上層の磁性層4cとの3層を含み、磁性層4aと磁性層4bの間で非磁性層7aを、磁性層4bと磁性層4cの間で非磁性層7bを挟み込むことで、これら磁性層4a〜4cと非磁性層7a,7bとが交互に積層された構造を有している。また、配向制御層3と垂直磁性層4の間には、非磁性下地層8が設けられている。そして、本発明を適用した磁気記録媒体は、垂直磁性層4と炭素保護層5との間に、Ru及びCoを含む中間層9が設けられた構成となっている。   Among these, the soft magnetic underlayer 2 and the orientation control layer 3 constitute an underlayer. The soft magnetic underlayer 2 includes two soft magnetic layers 2a that are AFC (anti-ferro-coupled) coupled via a spacer layer 2b. The perpendicular magnetic layer 4 includes three layers of a lower magnetic layer 4a, an intermediate magnetic layer 4b, and an upper magnetic layer 4c, and the nonmagnetic layer 7a is formed between the magnetic layer 4a and the magnetic layer 4b. By sandwiching the nonmagnetic layer 7b between 4b and the magnetic layer 4c, the magnetic layers 4a to 4c and the nonmagnetic layers 7a and 7b are alternately stacked. A nonmagnetic underlayer 8 is provided between the orientation control layer 3 and the perpendicular magnetic layer 4. The magnetic recording medium to which the present invention is applied has a configuration in which an intermediate layer 9 containing Ru and Co is provided between the perpendicular magnetic layer 4 and the carbon protective layer 5.

非磁性基板1としては、例えば、アルミニウムやアルミニウム合金などの金属材料からなる金属基板を用いてもよく、例えば、ガラスや、セラミック、シリコン、シリコンカーバイド、カーボンなどの非金属材料からなる非金属基板を用いてもよい。また、これら金属基板や非金属基板の表面に、例えばメッキ法やスパッタ法などを用いて、NiP層又はNiP合金層が形成されたものを用いることもできる。   As the nonmagnetic substrate 1, for example, a metal substrate made of a metal material such as aluminum or an aluminum alloy may be used. For example, a nonmetal substrate made of a nonmetal material such as glass, ceramic, silicon, silicon carbide, or carbon. May be used. In addition, it is also possible to use a substrate in which a NiP layer or a NiP alloy layer is formed on the surface of the metal substrate or nonmetal substrate by using, for example, a plating method or a sputtering method.

ガラス基板としては、例えば、アモルファスガラスや結晶化ガラスなどを用いることができ、アモルファスガラスとしては、例えば、汎用のソーダライムガラスや、アルミノシリケートガラスなどを用いることができる。また、結晶化ガラスとしては、例えば、リチウム系結晶化ガラスなどを用いることができる。セラミック基板としては、例えば、汎用の酸化アルミニウムや、窒化アルミニウム、窒化珪素などを主成分とする焼結体、又はこれらの繊維強化物などを用いることができる。   As the glass substrate, for example, amorphous glass or crystallized glass can be used, and as the amorphous glass, for example, general-purpose soda lime glass or aluminosilicate glass can be used. In addition, as the crystallized glass, for example, lithium-based crystallized glass can be used. As the ceramic substrate, for example, general-purpose aluminum oxide, a sintered body mainly composed of aluminum nitride, silicon nitride, or the like, or a fiber reinforced material thereof can be used.

非磁性基板1は、その平均表面粗さ(Ra)が2nm(20Å)以下、好ましくは1nm以下であるとことが、磁気ヘッドを低浮上させた高記録密度記録に適している点から好ましい。また、表面の微小うねり(Wa)が0.3nm以下(より好ましくは0.25nm以下。)であることが、磁気ヘッドを低浮上させた高記録密度記録に適している点から好ましい。また、端面のチャンファー部の面取り部と、側面部との少なくとも一方の表面平均粗さ(Ra)が10nm以下(より好ましくは9.5nm以下。)のものを用いることが、磁気ヘッドの飛行安定性にとって好ましい。なお、微少うねり(Wa)は、例えば、表面荒粗さ測定装置P−12(KLM−Tencor社製)を用い、測定範囲80μmでの表面平均粗さとして測定することができる。   The nonmagnetic substrate 1 preferably has an average surface roughness (Ra) of 2 nm (20 mm) or less, preferably 1 nm or less from the viewpoint of suitable for high recording density recording with a magnetic head flying low. Further, it is preferable that the surface fine waviness (Wa) is 0.3 nm or less (more preferably 0.25 nm or less) from the viewpoint of being suitable for high recording density recording with the magnetic head flying low. In addition, it is possible to use a magnetic head having a chamfered portion at the end face and a surface average roughness (Ra) of at least one of the side surface portion of 10 nm or less (more preferably 9.5 nm or less). Preferred for stability. In addition, microwaviness (Wa) can be measured as surface average roughness in a measuring range of 80 μm, for example, using a surface roughness measuring device P-12 (manufactured by KLM-Tencor).

また、非磁性基板1は、Co又はFeが主成分となる軟磁性下地層2と接することで、表面の吸着ガスや、水分の影響、基板成分の拡散などにより、腐食が進行する可能性がある。この場合、非磁性基板1と軟磁性下地層2の間に密着層を設けることが好ましく、これにより、これらを抑制することが可能となる。なお、密着層の材料としては、例えば、Cr、Cr合金、Ti、Ti合金など適宜選択することが可能である。また、密着層の厚みは2nm(30Å)以上であることが好ましい。   Further, when the nonmagnetic substrate 1 is in contact with the soft magnetic underlayer 2 mainly composed of Co or Fe, there is a possibility that the corrosion progresses due to the adsorption gas on the surface, the influence of moisture, the diffusion of the substrate components, and the like. is there. In this case, it is preferable to provide an adhesion layer between the nonmagnetic substrate 1 and the soft magnetic underlayer 2, thereby suppressing these. In addition, as a material of the adhesion layer, for example, Cr, Cr alloy, Ti, Ti alloy, or the like can be selected as appropriate. The thickness of the adhesion layer is preferably 2 nm (30 mm) or more.

軟磁性下地層2は、磁気ヘッドから発生する磁束の基板面に対する垂直方向成分を大きくするために、また情報が記録される垂直磁性層4の磁化の方向をより強固に非磁性基板1と垂直な方向に固定するために設けられている。この作用は、特に記録再生用の磁気ヘッドとして垂直記録用の単磁極ヘッドを用いる場合に、より顕著なものとなる。   The soft magnetic underlayer 2 increases the component of the magnetic flux generated from the magnetic head in the direction perpendicular to the substrate surface, and further strengthens the direction of magnetization of the perpendicular magnetic layer 4 on which information is recorded to be perpendicular to the nonmagnetic substrate 1. It is provided to fix in any direction. This effect becomes more conspicuous particularly when a single pole head for perpendicular recording is used as a magnetic head for recording and reproduction.

軟磁性下地層2としては、例えば、Feや、Ni、Coなどを含む軟磁性材料を用いることができる。具体的な軟磁性材料としては、例えば、CoFe系合金(CoFeTaZr、CoFeZrNbなど。)、FeCo系合金(FeCo、FeCoVなど。)、FeNi系合金(FeNi、FeNiMo、FeNiCr、FeNiSiなど。)、FeAl系合金(FeAl、FeAlSi、FeAlSiCr、FeAlSiTiRu、FeAlOなど。)、FeCr系合金(FeCr、FeCrTi、FeCrCuなど。)、FeTa系合金(FeTa、FeTaC、FeTaNなど。)、FeMg系合金(FeMgOなど。)、FeZr系合金(FeZrNなど。)、FeC系合金、FeN系合金、FeSi系合金、FeP系合金、FeNb系合金、FeHf系合金、FeB系合金などを挙げることができる。   As the soft magnetic underlayer 2, for example, a soft magnetic material containing Fe, Ni, Co, or the like can be used. Specific examples of soft magnetic materials include CoFe alloys (CoFeTaZr, CoFeZrNb, etc.), FeCo alloys (FeCo, FeCoV, etc.), FeNi alloys (FeNi, FeNiMo, FeNiCr, FeNiSi, etc.), and FeAl alloys. Alloys (FeAl, FeAlSi, FeAlSiCr, FeAlSiTiRu, FeAlO, etc.), FeCr alloys (FeCr, FeCrTi, FeCrCu, etc.), FeTa alloys (FeTa, FeTaC, FeTaN, etc.), FeMg alloys (FeMgO, etc.), Examples thereof include FeZr alloys (FeZrN, etc.), FeC alloys, FeN alloys, FeSi alloys, FeP alloys, FeNb alloys, FeHf alloys, FeB alloys, and the like.

また、軟磁性下地層2としては、Feを60at%(原子%)以上含有するFeAlO、FeMgO、FeTaN、FeZrN等の微結晶構造、又は微細な結晶粒子がマトリクス中に分散されたグラニュラー構造を有する材料を用いることができる。   Further, the soft magnetic underlayer 2 has a microcrystalline structure such as FeAlO, FeMgO, FeTaN, FeZrN, etc. containing Fe of 60 at% (atomic%) or more, or a granular structure in which fine crystal particles are dispersed in a matrix. Materials can be used.

その他にも、軟磁性下地層2としては、Coを80at%以上含有し、Zr、Nb、Ta、Cr、Mo等のうち少なくとも1種を含有し、アモルファス構造を有するCo合金を用いることができる。この具体的な材料としては、例えば、CoZr、CoZrNb、CoZrTa、CoZrCr、CoZrMo系合金などを好適なものとして挙げることができる。   In addition, as the soft magnetic underlayer 2, a Co alloy containing 80 at% or more of Co, containing at least one of Zr, Nb, Ta, Cr, Mo and the like and having an amorphous structure can be used. . Specific examples of the specific material include CoZr, CoZrNb, CoZrTa, CoZrCr, and CoZrMo-based alloys.

軟磁性下地層2の保磁力Hcは、100Oe以下(好ましくは20Oe以下。)とすることが好ましい。なお、1Oeは79A/mである。この保磁力Hcが上記範囲を超えると、軟磁気特性が不十分となり、再生波形がいわゆる矩形波から歪みをもった波形になるため好ましくない。   The coercive force Hc of the soft magnetic underlayer 2 is preferably 100 Oe or less (preferably 20 Oe or less). 1 Oe is 79 A / m. When the coercive force Hc exceeds the above range, the soft magnetic characteristics are insufficient, and the reproduced waveform is changed from a so-called rectangular wave to a distorted waveform, which is not preferable.

軟磁性下地層2の飽和磁束密度Bsは、0.6T以上(好ましくは1T以上)とすることが好ましい。このBsが上記範囲未満であると、再生波形がいわゆる矩形波から歪みをもった波形になるため好ましくない。   The saturation magnetic flux density Bs of the soft magnetic underlayer 2 is preferably 0.6 T or more (preferably 1 T or more). If this Bs is less than the above range, the reproduced waveform becomes a waveform having distortion from a so-called rectangular wave, which is not preferable.

また、軟磁性下地層2の飽和磁束密度Bs(T)と軟磁性下地層2の層厚t(nm)との積Bs・t(T・nm)は、15T・nm以上(好ましくは25T・nm以上)であることが好ましい。このBs・tが上記範囲未満であると、再生波形が歪みを持つようになり、OW(OverWrite)特性(記録特性)が悪化するため好ましくない。   The product Bs · t (T · nm) of the saturation magnetic flux density Bs (T) of the soft magnetic underlayer 2 and the layer thickness t (nm) of the soft magnetic underlayer 2 is 15 T · nm or more (preferably 25 T · nm). nm or more). If this Bs · t is less than the above range, the reproduced waveform will be distorted and the OW (OverWrite) characteristic (recording characteristic) will be deteriorated.

軟磁性下地層2は、2層の軟磁性層2aの間に、スペーサ層2bとしてRu膜が設けられている。また、Ru膜の膜厚を調整することで、2層の軟磁性層2aがAFC構造となり、このようなAFC構造を採用することで、いわゆるスパイクノイズを抑制することができる。なお、軟磁性下地層2は、少なくとも2層以上の軟磁性層2aから構成されて、これら軟磁性層2aの間に、スペーサ層2bとしてRu膜を設けることが好ましい。   In the soft magnetic underlayer 2, a Ru film is provided as a spacer layer 2b between two soft magnetic layers 2a. Further, by adjusting the film thickness of the Ru film, the two soft magnetic layers 2a have an AFC structure. By adopting such an AFC structure, so-called spike noise can be suppressed. The soft magnetic underlayer 2 is preferably composed of at least two or more soft magnetic layers 2a, and a Ru film is preferably provided as a spacer layer 2b between the soft magnetic layers 2a.

軟磁性下地層2の最表面(配向制御層3側の面)は、この軟磁性下地層2を構成する材料が、部分的又は完全に酸化されて構成されていることが好ましい。例えば、軟磁性下地層2の表面(配向制御層3側の面)及びその近傍に、軟磁性下地層2を構成する材料が部分的に酸化されるか、若しくは上記材料の酸化物を形成して配されていることが好ましい。これにより、軟磁性下地層2の表面の磁気的な揺らぎを抑えることができるため、この磁気的な揺らぎに起因するノイズを低減して、磁気記録媒体の記録再生特性を改善することができる。   The outermost surface (surface on the orientation control layer 3 side) of the soft magnetic underlayer 2 is preferably formed by partially or completely oxidizing the material constituting the soft magnetic underlayer 2. For example, the material constituting the soft magnetic underlayer 2 is partially oxidized on the surface of the soft magnetic underlayer 2 (surface on the orientation control layer 3 side) and its vicinity, or an oxide of the above material is formed. Are preferably arranged. Thereby, since the magnetic fluctuation of the surface of the soft magnetic underlayer 2 can be suppressed, the noise caused by the magnetic fluctuation can be reduced and the recording / reproducing characteristics of the magnetic recording medium can be improved.

配向制御層3は、垂直磁性層4の結晶粒を微細化して、記録再生特性を改善することができる。このような材料としては、特に限定されるものではないが、hcp構造、fcc構造、アモルファス構造を有するものが好ましい。特に、Ru系合金、Ni系合金、Co系合金、Pt系合金、Cu系合金が好ましく、またこれらの合金を多層化してもよい。例えば、基板側からNi系合金とRu系合金との多層構造、Co系合金とRu系合金との多層構造、Pt系合金とRu系合金との多層構造を採用することが好ましい。   The orientation control layer 3 can improve the recording / reproducing characteristics by refining the crystal grains of the perpendicular magnetic layer 4. Such a material is not particularly limited, but a material having an hcp structure, an fcc structure, or an amorphous structure is preferable. In particular, Ru-based alloys, Ni-based alloys, Co-based alloys, Pt-based alloys, and Cu-based alloys are preferable, and these alloys may be multilayered. For example, it is preferable to adopt a multilayer structure of Ni-based alloy and Ru-based alloy, a multilayer structure of Co-based alloy and Ru-based alloy, or a multilayer structure of Pt-based alloy and Ru-based alloy from the substrate side.

例えば、Ni系合金であれば、Niを33〜96at%含む、NiW合金、NiTa合金、NiNb合金、NiTi合金、NiZr合金、NiMn合金、NiFe合金の中から選ばれる少なくとも1種類の材料からなることが好ましい。また、Niを33〜96at%含み、Sc、Y、Ti、Zr、Hf、Nb、Ta、Cのうち少なくとも1種又は2種以上を含む非磁性材料であってもよい。この場合、配向制御層3としての効果を維持し、磁性を持たない範囲とするため、Niの含有量は33at%〜96at%の範囲とすることが好ましい。   For example, in the case of a Ni-based alloy, it is made of at least one material selected from NiW alloy, NiTa alloy, NiNb alloy, NiTi alloy, NiZr alloy, NiMn alloy and NiFe alloy containing 33 to 96 at% Ni. Is preferred. Further, it may be a nonmagnetic material containing 33 to 96 at% Ni and containing at least one or more of Sc, Y, Ti, Zr, Hf, Nb, Ta, and C. In this case, the Ni content is preferably in the range of 33 at% to 96 at% in order to maintain the effect as the orientation control layer 3 and to have a range without magnetism.

配向制御層3の厚みは、多層の場合は合計の厚みで、5〜40nmとすることが好ましく、より好ましくは8〜30nmである。配向制御層3の厚みが上記範囲にあるとき、垂直磁性層4の垂直配向性が特に高くなり、且つ記録時における磁気ヘッドと軟磁性下地層2との距離を小さくすることができるため、再生信号の分解能を低下させることなく記録再生特性を高めることができる。   The thickness of the orientation control layer 3 is preferably 5 to 40 nm, more preferably 8 to 30 nm, as the total thickness in the case of multiple layers. When the thickness of the orientation control layer 3 is within the above range, the perpendicular orientation of the perpendicular magnetic layer 4 is particularly high, and the distance between the magnetic head and the soft magnetic underlayer 2 during recording can be reduced. The recording / reproducing characteristics can be improved without reducing the signal resolution.

これに対して、配向制御層3の厚みが上記範囲未満であると、垂直磁性層4における垂直配向性が低下し、記録再生特性および熱揺らぎ耐性が劣化する。一方、配向制御層3の厚みが上記範囲を超えると、垂直磁性層4の磁性粒子径が大きくなり、ノイズ特性が劣化するおそれがあるため好ましくない。また、記録時における磁気ヘッドと軟磁性下地層2との距離が大きくなるため、再生信号の分解能や再生出力の低下することになる。   On the other hand, when the thickness of the orientation control layer 3 is less than the above range, the perpendicular orientation in the perpendicular magnetic layer 4 is lowered, and the recording / reproducing characteristics and the thermal fluctuation resistance are degraded. On the other hand, if the thickness of the orientation control layer 3 exceeds the above range, the magnetic particle diameter of the perpendicular magnetic layer 4 is increased, and noise characteristics may be deteriorated. In addition, since the distance between the magnetic head and the soft magnetic underlayer 2 during recording increases, the resolution of the reproduction signal and the reproduction output decrease.

配向制御層3の表面形状は、垂直磁性層4や保護層5の表面形状に影響を与えるため、磁気記録媒体の表面凹凸を小さくして、記録再生時における磁気ヘッド浮上高さを低くするためには、配向制御層3の表面平均粗さRaを2nm以下とすることが好ましい。これにより、磁気記録媒体の表面における凹凸を小さくし、記録再生時における磁気ヘッド浮上高さを十分に低くし、記録密度を高めることができる。   Since the surface shape of the orientation control layer 3 affects the surface shape of the perpendicular magnetic layer 4 and the protective layer 5, the surface irregularities of the magnetic recording medium are reduced to reduce the flying height of the magnetic head during recording and reproduction. For this, the surface average roughness Ra of the orientation control layer 3 is preferably 2 nm or less. Thereby, the unevenness on the surface of the magnetic recording medium can be reduced, the flying height of the magnetic head during recording and reproduction can be sufficiently lowered, and the recording density can be increased.

また、配向制御層3の成膜用のガスには、酸素や窒素などを導入してもよい。例えば、成膜法としてスパッタ法を用いる場合には、プロセスガスとしては、アルゴンに酸素を体積率で0.05〜50%(好ましくは0.1〜20%)程度混合したガス、アルゴンに窒素を体積率で0.01〜20%(好ましくは0.02〜10%)程度混合したガスが好適に用いられる。   Further, oxygen, nitrogen, or the like may be introduced into the gas for forming the orientation control layer 3. For example, when a sputtering method is used as the film forming method, the process gas is a gas in which oxygen is mixed in an amount of 0.05 to 50% (preferably 0.1 to 20%) by volume with argon, and nitrogen is added to argon. Is preferably used in a volume ratio of 0.01 to 20% (preferably 0.02 to 10%).

また、配向制御層3は、酸化物、金属窒化物、又は金属炭化物中に金属粒子が分散した構造であってもよい。このような構造とするためには、酸化物、金属窒化物、又は金属炭化物を含んだ合金材料を使用することが好ましい。具体的には、酸化物として、例えば、SiO、Al、Ta、Cr、MgO、Y、TiOなど、金属窒化物として、例えば、AlN、Si、TaN、CrNなど、金属炭化物として、例えば、TaC、BC、SiCなどをそれぞれ用いることができる。さらに、例えば、NiTa−SiO、RuCo−Ta、Ru−SiO、Pt−Si、Pd−TaCなどを用いることができる。 Further, the orientation control layer 3 may have a structure in which metal particles are dispersed in an oxide, a metal nitride, or a metal carbide. In order to obtain such a structure, it is preferable to use an alloy material containing an oxide, a metal nitride, or a metal carbide. Specifically, as the oxide, for example, SiO 2 , Al 2 O 3 , Ta 2 O 5 , Cr 2 O 3 , MgO, Y 2 O 3 , TiO 2, etc. As the metal nitride, for example, AlN, Si For example, TaC, BC, SiC, or the like can be used as the metal carbide such as 3 N 4 , TaN, or CrN. Furthermore, for example, NiTa—SiO 2 , RuCo—Ta 2 O 5 , Ru—SiO 2 , Pt—Si 3 N 4 , Pd—TaC, or the like can be used.

配向制御層3中の酸化物、金属窒化物、又は金属炭化物の含有量としては、合金に対して、1mol%以上12mol%以下であることが好ましい。配向制御層3中の酸化物、金属窒化物、又は金属炭化物の含有量が上記範囲を超える場合、金属粒子中に酸化物、金属窒化物、又は金属炭化物が残留し、金属粒子の結晶性及び配向性を損ねるほか、配向制御層3の上に形成された磁性層の結晶性及び配向性を損ねるおそれがあるため好ましくない。また、配向制御層3中の酸化物、金属窒化物、又は金属炭化物の含有量が上記範囲未満である場合、酸化物、金属窒化物、又は金属炭化物の添加による効果が得られないため好ましくない。   The content of the oxide, metal nitride, or metal carbide in the orientation control layer 3 is preferably 1 mol% or more and 12 mol% or less with respect to the alloy. When the content of oxide, metal nitride, or metal carbide in the orientation control layer 3 exceeds the above range, the oxide, metal nitride, or metal carbide remains in the metal particles, and the crystallinity of the metal particles and In addition to impairing the orientation, the crystallinity and orientation of the magnetic layer formed on the orientation control layer 3 may be impaired. Moreover, when the content of the oxide, metal nitride, or metal carbide in the orientation control layer 3 is less than the above range, it is not preferable because the effect of addition of the oxide, metal nitride, or metal carbide cannot be obtained. .

ここで、配向制御層3直上の垂直磁性層4の初期部には、結晶成長の乱れが生じ易く、これがノイズの原因となる。この初期部の乱れた部分を非磁性下地層8で置き換えることで、ノイズの発生を抑制することができる。このような理由から、配向制御層3と垂直磁性層4の間には、非磁性下地層8を設けることが好ましい。   Here, in the initial part of the perpendicular magnetic layer 4 immediately above the orientation control layer 3, disorder of crystal growth is likely to occur, which causes noise. The occurrence of noise can be suppressed by replacing the disturbed portion of the initial portion with the nonmagnetic underlayer 8. For this reason, it is preferable to provide a nonmagnetic underlayer 8 between the orientation control layer 3 and the perpendicular magnetic layer 4.

非磁性下地層8は、Coを主成分とし、さらに酸化物を含んだ材料からなることが好ましい。Crの含有量は、25at%(原子%)以上50at%以下とすることが好ましい。酸化物としては、例えばCr、Si、Ta、Al、Ti、Mg、Coなどの酸化物を用いることが好ましく、その中でも特に、TiO、Cr、SiOなどを好適に用いることができる。酸化物の含有量としては、磁性粒子を構成する、例えばCo、Cr、Pt等の合金を1つの化合物として算出したmol総量に対して、3mol%以上18mol%以下であることが好ましい。 The nonmagnetic underlayer 8 is preferably made of a material mainly containing Co and further containing an oxide. The Cr content is preferably 25 at% (atomic%) or more and 50 at% or less. As the oxide, for example, oxides such as Cr, Si, Ta, Al, Ti, Mg, and Co are preferably used, and among them, TiO 2 , Cr 2 O 3 , SiO 2, and the like are preferably used. it can. The content of the oxide is preferably 3 mol% or more and 18 mol% or less with respect to the total amount of mol calculated as one compound, for example, an alloy such as Co, Cr, and Pt constituting the magnetic particles.

また、非磁性下地層8は、酸化物を2種類以上添加した複合酸化物からなることが好ましい。その中でも特に、Cr−SiO、Cr−TiO、Cr−SiO−TiOなどを好適に用いることができる。さらに、CoCr−SiO、CoCr−TiO、CoCr−Cr−SiO、CoCr−TiO−Cr、CoCr−Cr−TiO−SiOなどを好適に用いることができる。また、結晶成長の観点からPtを添加してもよい。 The nonmagnetic underlayer 8 is preferably made of a complex oxide to which two or more kinds of oxides are added. Among these, Cr 2 O 3 —SiO 2 , Cr 2 O 3 —TiO 2 , Cr 2 O 3 —SiO 2 —TiO 2 and the like can be preferably used. Furthermore, CoCr—SiO 2 , CoCr—TiO 2 , CoCr—Cr 2 O 3 —SiO 2 , CoCr—TiO 2 —Cr 2 O 3 , CoCr—Cr 2 O 3 —TiO 2 —SiO 2 or the like is preferably used. Can do. Further, Pt may be added from the viewpoint of crystal growth.

非磁性下地層8の厚みは、0.2nm以上3nm以下であることが好ましい。3nmの厚さを超えると、Hc及びHnの低下が生じるために好ましくない。   The thickness of the nonmagnetic underlayer 8 is preferably 0.2 nm or more and 3 nm or less. If the thickness exceeds 3 nm, Hc and Hn decrease, which is not preferable.

磁性層4aは、図2に示すように、Coを主成分とし、さらに酸化物41を含んだ材料からなり、この酸化物41としては、例えばCr、Si、Ta、Al、Ti、Mg、Coなどの酸化物を用いることが好ましい。その中でも特に、TiO、Cr、SiOなどを好適に用いることができる。また、磁性層4aは、酸化物を2種類以上添加した複合酸化物からなることが好ましい。その中でも特に、Cr−SiO、Cr−TiO、Cr−SiO−TiOなどを好適に用いることができる。 As shown in FIG. 2, the magnetic layer 4a is made of a material containing Co as a main component and an oxide 41. Examples of the oxide 41 include Cr, Si, Ta, Al, Ti, Mg, and Co. It is preferable to use an oxide such as Among them, TiO 2, Cr 2 O 3 , SiO 2 or the like can be suitably used. The magnetic layer 4a is preferably made of a complex oxide to which two or more kinds of oxides are added. Among these, Cr 2 O 3 —SiO 2 , Cr 2 O 3 —TiO 2 , Cr 2 O 3 —SiO 2 —TiO 2 and the like can be preferably used.

磁性層4aは、層中に磁性粒子(磁性を有した結晶粒子)42が分散していることが好ましい。また、磁性粒子42は、磁性層4a,4b、更には磁性層4cを上下に貫いた柱状構造を形成していることが好ましい。このような構造を有することにより、磁性層4aの磁性粒子42の配向及び結晶性を良好なものとし、結果として高密度記録に適した信号/ノイズ比(S/N比)を得ることができる。   In the magnetic layer 4a, it is preferable that magnetic particles (crystal grains having magnetism) 42 are dispersed in the layer. The magnetic particles 42 preferably have a columnar structure that vertically penetrates the magnetic layers 4a and 4b and further the magnetic layer 4c. By having such a structure, the orientation and crystallinity of the magnetic particles 42 of the magnetic layer 4a are improved, and as a result, a signal / noise ratio (S / N ratio) suitable for high-density recording can be obtained. .

このような構造を得るためには、含有させる酸化物41の量及び磁性層4aの成膜条件が重要となる。すなわち、酸化物41の含有量としては、磁性粒子42を構成する、例えばCo、Cr、Pt等の合金を1つの化合物として算出したmol総量に対して、3mol%以上18mol%以下であることが好ましい。さらに好ましくは6mol%以上13mol%以下である。   In order to obtain such a structure, the amount of the oxide 41 to be contained and the film formation conditions of the magnetic layer 4a are important. That is, the content of the oxide 41 is 3 mol% or more and 18 mol% or less with respect to the total mol amount of the magnetic particles 42, for example, an alloy such as Co, Cr, and Pt calculated as one compound. preferable. More preferably, it is 6 mol% or more and 13 mol% or less.

磁性層4a中の酸化物41の含有量として上記範囲が好ましいのは、この磁性層4aを形成した際、磁性粒子42の周りに酸化物41が析出し、磁性粒子42の孤立化及び微細化が可能となるためである。一方、酸化物41の含有量が上記範囲を超えた場合には、酸化物41が磁性粒子42中に残留し、磁性粒子42の配向性及び結晶性を損ね、更には磁性粒子42の上下に酸化物41が析出し、結果として磁性粒子42が磁性層4a〜4cを上下に貫いた柱状構造が形成されなくなるため好ましくない。また、酸化物41の含有量が上記範囲未満である場合には、磁性粒子42の分離及び微細化が不十分となり、結果として記録再生時におけるノイズが増大し、高密度記録に適した信号/ノイズ比(S/N比)が得られなくなるため好ましくない。   The above range is preferable as the content of the oxide 41 in the magnetic layer 4a. When the magnetic layer 4a is formed, the oxide 41 is precipitated around the magnetic particles 42, and the magnetic particles 42 are isolated and refined. This is because it becomes possible. On the other hand, when the content of the oxide 41 exceeds the above range, the oxide 41 remains in the magnetic particle 42, impairs the orientation and crystallinity of the magnetic particle 42, and further above and below the magnetic particle 42. The oxide 41 is deposited, and as a result, a columnar structure in which the magnetic particles 42 penetrate through the magnetic layers 4a to 4c is not formed. In addition, when the content of the oxide 41 is less than the above range, separation and refinement of the magnetic particles 42 are insufficient, resulting in an increase in noise during recording and reproduction, and a signal / This is not preferable because the noise ratio (S / N ratio) cannot be obtained.

磁性層4a中のCrの含有量は、4at%以上19at%以下(さらに好ましくは6at%以上17at%以下)であることが好ましい。Crの含有量を上記範囲としたのは、磁性粒子42の磁気異方性定数Kuを下げ過ぎず、また、高い磁化を維持し、結果として高密度記録に適した記録再生特性と十分な熱揺らぎ特性が得られるからである。   The content of Cr in the magnetic layer 4a is preferably 4 at% or more and 19 at% or less (more preferably 6 at% or more and 17 at% or less). The reason why the Cr content is in the above range is that the magnetic anisotropy constant Ku of the magnetic particles 42 is not lowered too much, and high magnetization is maintained. As a result, recording / reproduction characteristics suitable for high-density recording and sufficient heat This is because fluctuation characteristics can be obtained.

一方、Crの含有量が上記範囲を超えた場合には、磁性粒子42の磁気異方性定数Kuが小さくなるため熱揺らぎ特性が悪化し、また、磁性粒子42の結晶性及び配向性が悪化することで、結果として記録再生特性が悪くなるため好ましくない。また、Crの含有量が上記範囲未満である場合には、磁性粒子42の磁気異方性定数Kuが高いため、垂直保磁力が高くなり過ぎ、データを記録する際、磁気ヘッドで十分に書き込むことができず、結果として高密度記録に適さない記録特性(OW)となるため好ましくない。   On the other hand, when the Cr content exceeds the above range, the magnetic anisotropy constant Ku of the magnetic particles 42 becomes small, so that the thermal fluctuation characteristics deteriorate, and the crystallinity and orientation of the magnetic particles 42 deteriorate. As a result, the recording / reproduction characteristics deteriorate, which is not preferable. Further, when the Cr content is less than the above range, the magnetic anisotropy constant Ku of the magnetic particles 42 is high, so that the perpendicular coercive force becomes too high and data is sufficiently written by a magnetic head when data is recorded. This is not preferable because the recording characteristics (OW) are unsuitable for high density recording.

磁性層4a中のPtの含有量は、8at%以上20at%以下であることが好ましい。Ptの含有量を上記範囲としたのは、8at%未満であると、垂直磁性層4に必要な磁気異方性定数Kuが低くなるためである。一方、20at%を超えると、磁性粒子42の内部に積層欠陥が生じ、その結果磁気異方性定数Kuが低くなる。したがって、高密度記録に適した熱揺らぎ特性及び記録再生特性を得るためには、Ptの含有量を上記範囲とすることが好ましい。   The content of Pt in the magnetic layer 4a is preferably 8 at% or more and 20 at% or less. The reason why the Pt content is within the above range is that the magnetic anisotropy constant Ku required for the perpendicular magnetic layer 4 is low when it is less than 8 at%. On the other hand, if it exceeds 20 at%, a stacking fault occurs inside the magnetic particle 42, and as a result, the magnetic anisotropy constant Ku decreases. Therefore, in order to obtain thermal fluctuation characteristics and recording / reproduction characteristics suitable for high-density recording, the Pt content is preferably set in the above range.

また、Ptの含有量が上記範囲を超えた場合には、磁性粒子42中にfcc構造の層が形成され、結晶性及び配向性が損なわれるおそれがあるため好ましくない。一方、Ptの含有量が上記範囲未満である場合には、高密度記録に適した熱揺らぎ特性を得るための磁気異方性定数Kuが得られないため好ましくない。   In addition, when the Pt content exceeds the above range, an fcc structure layer is formed in the magnetic particles 42, and the crystallinity and orientation may be impaired. On the other hand, if the Pt content is less than the above range, the magnetic anisotropy constant Ku for obtaining thermal fluctuation characteristics suitable for high-density recording cannot be obtained.

磁性層4aは、Co、Cr、Pt、酸化物41の他に、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Reの中から選ばれる1種類以上の元素を含むことができる。上記元素を含むことにより、磁性粒子42の微細化を促進、又は結晶性や配向性を向上させることができ、より高密度記録に適した記録再生特性、熱揺らぎ特性を得ることができる。   In addition to Co, Cr, Pt and oxide 41, the magnetic layer 4a contains one or more elements selected from B, Ta, Mo, Cu, Nd, W, Nb, Sm, Tb, Ru, and Re. Can be included. By including the above elements, the miniaturization of the magnetic particles 42 can be promoted or the crystallinity and orientation can be improved, and recording / reproduction characteristics and thermal fluctuation characteristics suitable for higher density recording can be obtained.

また、上記元素の合計の含有量は、8at%以下であることが好ましい。8at%を超えた場合、磁性粒子42中にhcp相以外の相が形成されるため、磁性粒子42の結晶性及び配向性が乱れ、結果として高密度記録に適した記録再生特性及び熱揺らぎ特性が得られないため好ましくない。   Further, the total content of the above elements is preferably 8 at% or less. If it exceeds 8 at%, a phase other than the hcp phase is formed in the magnetic particles 42, so that the crystallinity and orientation of the magnetic particles 42 are disturbed, resulting in recording / reproducing characteristics and thermal fluctuation characteristics suitable for high-density recording. Is not preferred because it cannot be obtained.

磁性層4aに適した材料としては、例えば、90(Co14Cr18Pt)−10(SiO){Cr含有量14at%、Pt含有量18at%、残部Coからなる磁性粒子を1つの化合物として算出したモル濃度が90mol%、SiOからなる酸化物組成が10mol%}、92(Co10Cr16Pt)−8(SiO)、94(Co8Cr14Pt4Nb)−6(Cr)の他、(CoCrPt)−(Ta)、(CoCrPt)−(Cr)−(TiO)、(CoCrPt)−(Cr)−(SiO)、(CoCrPt)−(Cr)−(SiO)−(TiO)、(CoCrPtMo)−(TiO)、(CoCrPtW)−(TiO)、(CoCrPtB)−(Al)、(CoCrPtTaNd)−(MgO)、(CoCrPtBCu)−(Y)、(CoCrPtRu)−(SiO)などを挙げることができる。 As a material suitable for the magnetic layer 4a, for example, 90 (Co14Cr18Pt) -10 (SiO 2 ) {Cr content 14at%, Pt content 18at%, molar concentration calculated as one compound with magnetic particles composed of the remaining Co. Is 90 mol%, the oxide composition of SiO 2 is 10 mol%}, 92 (Co10Cr16Pt) -8 (SiO 2 ), 94 (Co8Cr14Pt4Nb) -6 (Cr 2 O 3 ), and (CoCrPt)-(Ta 2 O 5), (CoCrPt) - ( Cr 2 O 3) - (TiO 2), (CoCrPt) - (Cr 2 O 3) - (SiO 2), (CoCrPt) - (Cr 2 O 3) - (SiO 2) - (TiO 2), (CoCrPtMo ) - (TiO), (CoCrPtW) - (TiO 2), (CoCrPtB) - (Al 2 O 3 ), (CoCrPtTaNd) — (MgO), (CoCrPtBCu) — (Y 2 O 3 ), (CoCrPtRu) — (SiO 2 ), and the like.

磁性層4bは、図2に示すように、Coを主成分とし、更に酸化物41を含んだ材料からなることが好ましい。酸化物41としては、Cr、Si、Ta、Al、Ti、Mg、Coの酸化物であることが好ましい。その中でも特に、TiO、Cr、SiOを好適に用いることができる。また、磁性層4bは、酸化物41を2種類以上添加した複合酸化物からなることが好ましい。その中でも特に、Cr−SiO、Cr−TiO、Cr−SiO−TiOなどを好適に用いることができる。 As shown in FIG. 2, the magnetic layer 4 b is preferably made of a material containing Co as a main component and further containing an oxide 41. The oxide 41 is preferably an oxide of Cr, Si, Ta, Al, Ti, Mg, and Co. Of these, TiO 2 , Cr 2 O 3 , and SiO 2 can be preferably used. The magnetic layer 4b is preferably made of a composite oxide to which two or more types of oxides 41 are added. Among these, Cr 2 O 3 —SiO 2 , Cr 2 O 3 —TiO 2 , Cr 2 O 3 —SiO 2 —TiO 2 and the like can be preferably used.

磁性層4bは、層中に磁性粒子(磁性を有した結晶粒子)42が分散していることが好ましい。この磁性粒子42は、磁性層4a,4b、更には磁性層4cを上下に貫いた柱状構造を形成していることが好ましい。このような構造を形成することにより、磁性層4bの磁性粒子42の配向及び結晶性を良好なものとし、結果として高密度記録に適した信号/ノイズ比(S/N比)が得ることができる。   In the magnetic layer 4b, it is preferable that magnetic particles (crystal particles having magnetism) 42 are dispersed in the layer. The magnetic particles 42 preferably form a columnar structure that vertically penetrates the magnetic layers 4a and 4b and further the magnetic layer 4c. By forming such a structure, the orientation and crystallinity of the magnetic particles 42 of the magnetic layer 4b are improved, and as a result, a signal / noise ratio (S / N ratio) suitable for high-density recording can be obtained. it can.

磁性層4b中の酸化物41の含有量は、磁性粒子42を構成する、例えばCo、Cr、Pt等の化合物の総量に対して、3mol%以上18mol%以下であることが好ましい。さらに好ましくは6mol%以上13mol%以下である。   The content of the oxide 41 in the magnetic layer 4b is preferably 3 mol% or more and 18 mol% or less with respect to the total amount of compounds such as Co, Cr, and Pt constituting the magnetic particles 42. More preferably, it is 6 mol% or more and 13 mol% or less.

磁性層4b中の酸化物41の含有量として上記範囲が好ましいのは、この磁性層4bを形成した際、磁性粒子42の周りに酸化物41が析出し、磁性粒子42の孤立化及び微細化が可能となるためである。一方、酸化物41の含有量が上記範囲を超えた場合には、酸化物41が磁性粒子42中に残留し、磁性粒子42の配向性及び結晶性を損ね、更には磁性粒子42の上下に酸化物41が析出し、結果として磁性粒子42が磁性層4a〜4cを上下に貫いた柱状構造が形成されなくなるため好ましくない。また、酸化物41の含有量が上記範囲未満である場合には、磁性粒子42の分離、微細化が不十分となり、結果として記録再生時におけるノイズが増大し、高密度記録に適した信号/ノイズ比(S/N比)が得られなくなるため好ましくない。   The above range is preferable as the content of the oxide 41 in the magnetic layer 4b. When the magnetic layer 4b is formed, the oxide 41 is precipitated around the magnetic particles 42, and the magnetic particles 42 are isolated and refined. This is because it becomes possible. On the other hand, when the content of the oxide 41 exceeds the above range, the oxide 41 remains in the magnetic particle 42, impairs the orientation and crystallinity of the magnetic particle 42, and further above and below the magnetic particle 42. The oxide 41 is deposited, and as a result, a columnar structure in which the magnetic particles 42 penetrate through the magnetic layers 4a to 4c is not formed. Further, when the content of the oxide 41 is less than the above range, separation and refinement of the magnetic particles 42 are insufficient, resulting in an increase in noise during recording / reproduction, and a signal / This is not preferable because the noise ratio (S / N ratio) cannot be obtained.

磁性層4b中のCrの含有量は、4at%以上18at%以下(さらに好ましくは8at%以上15at%以下。)であることが好ましい。Crの含有量が上記範囲としたのは、磁性粒子42の磁気異方性定数Kuを下げ過ぎず、また、高い磁化を維持し、結果として高密度記録に適した記録再生特性と十分な熱揺らぎ特性が得られるためである。   The content of Cr in the magnetic layer 4b is preferably 4 at% or more and 18 at% or less (more preferably 8 at% or more and 15 at% or less). The reason why the Cr content is in the above range is that the magnetic anisotropy constant Ku of the magnetic particles 42 is not lowered too much, and high magnetization is maintained, resulting in recording / reproduction characteristics suitable for high-density recording and sufficient heat. This is because fluctuation characteristics can be obtained.

一方、Crの含有量が上記範囲を超えた場合には、磁性粒子42の磁気異方性定数Kuが小さくなるため熱揺らぎ特性が悪化し、また、磁性粒子42の結晶性及び配向性が悪化することで、結果として記録再生特性が悪くなるため好ましくない。また、Crの含有量が上記範囲未満である場合には、磁性粒子42の磁気異方性定数Kuが高いため、垂直保磁力が高くなり過ぎ、データを記録する際、磁気ヘッドで十分に書き込むことができず、結果として高密度記録に適さない記録特性(OW)となるため好ましくない。   On the other hand, when the Cr content exceeds the above range, the magnetic anisotropy constant Ku of the magnetic particles 42 becomes small, so that the thermal fluctuation characteristics deteriorate, and the crystallinity and orientation of the magnetic particles 42 deteriorate. As a result, the recording / reproduction characteristics deteriorate, which is not preferable. Further, when the Cr content is less than the above range, the magnetic anisotropy constant Ku of the magnetic particles 42 is high, so that the perpendicular coercive force becomes too high and data is sufficiently written by a magnetic head when data is recorded. This is not preferable because the recording characteristics (OW) are unsuitable for high density recording.

磁性層4b中のPtの含有量は、10at%以上22at%以下であることが好ましい。Ptの含有量が上記範囲であるのは、10at%未満であると、垂直磁性層4に必要な磁気異方性定数Kuが低くなるために好ましくない。また、22at%を超えると、磁性粒子42の内部に積層欠陥が生じ、その結果磁気異方性定数Kuが低くなるために好ましくない。高密度記録に適した熱揺らぎ特性及び記録再生特性が得られるためには、Ptの含有量を上記範囲とすることが好ましい。   The Pt content in the magnetic layer 4b is preferably 10 at% or more and 22 at% or less. The content of Pt in the above range is less than 10 at% because the magnetic anisotropy constant Ku required for the perpendicular magnetic layer 4 is not preferable. On the other hand, if it exceeds 22 at%, a stacking fault occurs inside the magnetic particle 42, and as a result, the magnetic anisotropy constant Ku becomes low, which is not preferable. In order to obtain thermal fluctuation characteristics and recording / reproduction characteristics suitable for high-density recording, the Pt content is preferably set in the above range.

また、Ptの含有量が上記範囲を超えた場合には、磁性粒子42中にfcc構造の層が形成され、結晶性及び配向性が損なわれるおそれがあるため好ましくない。一方、Ptの含有量が上記範囲未満である場合には、高密度記録に適した熱揺らぎ特性を得るための磁気異方性定数Kuが得られないため好ましくない。   In addition, when the Pt content exceeds the above range, an fcc structure layer is formed in the magnetic particles 42, and the crystallinity and orientation may be impaired. On the other hand, if the Pt content is less than the above range, the magnetic anisotropy constant Ku for obtaining thermal fluctuation characteristics suitable for high-density recording cannot be obtained.

磁性層4bは、Co、Cr、Pt、酸化物41の他に、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Reの中から選ばれる1種類以上の元素を含むことができる。上記元素を含むことにより、磁性粒子42の微細化を促進、又は結晶性や配向性を向上させることができ、より高密度記録に適した記録再生特性、熱揺らぎ特性を得ることができる。   The magnetic layer 4b includes one or more elements selected from B, Ta, Mo, Cu, Nd, W, Nb, Sm, Tb, Ru, and Re in addition to Co, Cr, Pt, and the oxide 41. Can be included. By including the above elements, the miniaturization of the magnetic particles 42 can be promoted or the crystallinity and orientation can be improved, and recording / reproduction characteristics and thermal fluctuation characteristics suitable for higher density recording can be obtained.

また、上記元素の合計の含有量は、8at%以下であることが好ましい。8at%を超えた場合、磁性粒子42中にhcp相以外の相が形成されるため、磁性粒子42の結晶性及び配向性が乱れ、結果として高密度記録に適した記録再生特性及び熱揺らぎ特性が得られないため好ましくない。   Further, the total content of the above elements is preferably 8 at% or less. If it exceeds 8 at%, a phase other than the hcp phase is formed in the magnetic particles 42, so that the crystallinity and orientation of the magnetic particles 42 are disturbed, resulting in recording / reproducing characteristics and thermal fluctuation characteristics suitable for high-density recording. Is not preferred because it cannot be obtained.

磁性層4cは、図2に示すように、Coを主成分とするとともに酸化物41を含まない材料から構成することが好ましく、層中の磁性粒子42が磁性層4a中の磁性粒子42から柱状にエピタキシャル成長している構造であることが好ましい。この場合、磁性層4a〜4cの磁性粒子42が、各層において1対1に対応して、柱状にエピタキシャル成長することが好ましい。また、磁性層4bの磁性粒子42が磁性層4a中の磁性粒子42からエピタキシャル成長していることで、磁性層4bの磁性粒子42が微細化され、さらに結晶性及び配向性がより向上したものとなる。   As shown in FIG. 2, the magnetic layer 4c is preferably made of a material containing Co as a main component and not containing the oxide 41, and the magnetic particles 42 in the layer are columnar from the magnetic particles 42 in the magnetic layer 4a. Preferably, the structure is epitaxially grown. In this case, the magnetic particles 42 of the magnetic layers 4a to 4c are preferably epitaxially grown in a columnar shape in a one-to-one correspondence in each layer. Further, the magnetic particles 42 of the magnetic layer 4b are epitaxially grown from the magnetic particles 42 in the magnetic layer 4a, so that the magnetic particles 42 of the magnetic layer 4b are miniaturized and the crystallinity and orientation are further improved. Become.

磁性層4c中のCrの含有量は、10at%以上24at%以下であることが好ましい。Crの含有量を上記範囲とすることで、データの再生時における出力が十分確保でき、更に良好な熱揺らぎ特性を得ることができる。一方、Crの含有量が上記範囲を超える場合には、磁性層4cの磁化が小さくなり過ぎるため好ましくない。また、Cr含有量が上記範囲未満である場合には、磁性粒子42の分離及び微細化が十分に生じず、記録再生時のノイズが増大し、高密度記録に適した信号/ノイズ比(S/N比)が得られなくなるため好ましくない。   The content of Cr in the magnetic layer 4c is preferably 10 at% or more and 24 at% or less. By setting the Cr content in the above range, a sufficient output during data reproduction can be ensured, and even better thermal fluctuation characteristics can be obtained. On the other hand, when the content of Cr exceeds the above range, the magnetization of the magnetic layer 4c becomes too small, which is not preferable. When the Cr content is less than the above range, the magnetic particles 42 are not sufficiently separated and refined, noise during recording / reproduction increases, and a signal / noise ratio (S) suitable for high-density recording (S / N ratio) is not obtained.

また、磁性層4cは、Co、Crの他に、Ptを含んだ材料であってもよい。磁性層4c中のPtの含有量は、8at%以上20at%以下であることが好ましい。Ptの含有量が上記範囲にある場合には、高記録密度に適した十分な保磁力を得ることができ、更に記録再生時における高い再生出力を維持し、結果として高密度記録に適した記録再生特性および熱揺らぎ特性を得ることができる。   The magnetic layer 4c may be made of a material containing Pt in addition to Co and Cr. The content of Pt in the magnetic layer 4c is preferably 8 at% or more and 20 at% or less. When the Pt content is in the above range, a sufficient coercive force suitable for high recording density can be obtained, and a high reproduction output during recording and reproduction can be maintained, resulting in recording suitable for high density recording. Reproduction characteristics and thermal fluctuation characteristics can be obtained.

一方、Ptの含有量が上記範囲を超えた場合には、磁性層4c中にfcc構造の相が形成され、結晶性及び配向性が損なわれるおそれがあるため好ましくない。また、Ptの含有量が上記範囲未満である場合には、高密度記録に適した熱揺らぎ特性を得るための磁気異方性定数Kuが得られないため好ましくない。   On the other hand, when the content of Pt exceeds the above range, an fcc-structured phase is formed in the magnetic layer 4c, which is not preferable because the crystallinity and orientation may be impaired. On the other hand, if the Pt content is less than the above range, the magnetic anisotropy constant Ku for obtaining thermal fluctuation characteristics suitable for high-density recording cannot be obtained.

磁性層4cは、Co、Cr、Ptの他に、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Re、Mnの中から選ばれる1種類以上の元素を含むことができる。上記元素を含むことにより、磁性粒子42の微細化を促進、又は結晶性や配向性を向上させることができ、より高密度記録に適した記録再生特性及び熱揺らぎ特性を得ることができる。   The magnetic layer 4c contains one or more elements selected from B, Ta, Mo, Cu, Nd, W, Nb, Sm, Tb, Ru, Re, and Mn in addition to Co, Cr, and Pt. Can do. By including the above elements, it is possible to promote miniaturization of the magnetic particles 42 or improve crystallinity and orientation, and to obtain recording / reproducing characteristics and thermal fluctuation characteristics suitable for higher density recording.

また、上記元素の合計の含有量は、16at%以下であることが好ましい。一方、16at%を超えた場合には、磁性粒子42中にhcp相以外の相が形成されるため、磁性粒子42の結晶性及び配向性が乱れ、結果として高密度記録に適した記録再生特性、熱揺らぎ特性が得られないため好ましくない。   The total content of the above elements is preferably 16 at% or less. On the other hand, if it exceeds 16 at%, a phase other than the hcp phase is formed in the magnetic particles 42, so that the crystallinity and orientation of the magnetic particles 42 are disturbed, resulting in recording / reproduction characteristics suitable for high-density recording. This is not preferable because thermal fluctuation characteristics cannot be obtained.

磁性層4cに適した材料としては、特に、CoCrPt系、CoCrPtB系を挙げることできる。CoCrPtB系の場合、CrとBの合計の含有量は、18at%以上28at%以下であることが好ましい。   Examples of suitable materials for the magnetic layer 4c include CoCrPt and CoCrPtB. In the case of the CoCrPtB system, the total content of Cr and B is preferably 18 at% or more and 28 at% or less.

磁性層4cに適した材料としては、例えば、CoCrPt系では、Co14〜24Cr8〜22Pt{Cr含有量14〜24at%、Pt含有量8〜22at%、残部Co}、CoCrPtB系では、Co10〜24Cr8〜22Pt0〜16B{Cr含有量10〜24at%、Pt含有量8〜22at%、B含有量0〜16at%、残部Co}が好ましい。その他の系でも、CoCrPtTa系では、Co10〜24Cr8〜22Pt1〜5Ta{Cr含有量10〜24at%、Pt含有量8〜22at%、Ta含有量1〜5at%、残部Co}、CoCrPtTaB系では、Co10〜24Cr8〜22Pt1〜5Ta1〜10B{Cr含有量10〜24at%、Pt含有量8〜22at%、Ta含有量1〜5at%、B含有量1〜10at%、残部Co}の他にも、CoCrPtBNd系、CoCrPtTaNd系、CoCrPtNb系、CoCrPtBW系、CoCrPtMo系、CoCrPtCuRu系、CoCrPtRe系などの材料を挙げることができる。   Suitable materials for the magnetic layer 4c include, for example, Co14-24Cr8-22Pt {Cr content 14-24at%, Pt content 8-22at%, balance Co} in CoCrPt series, Co10-24Cr8 ~ in CoCrPtB series. 22Pt0-16B {Cr content: 10-24at%, Pt content: 8-22at%, B content: 0-16at%, balance Co} is preferable. In other systems, Co10-24Cr8-22Pt1-5Ta {Cr content 10-24at%, Pt content 8-22at%, Ta content 1-5at%, balance Co} in CoCrPtTa system, Co10 in CoCrPtTaB system In addition to -24Cr8-22Pt1-5Ta1-10B {Cr content 10-24at%, Pt content 8-22at%, Ta content 1-5at%, B content 1-10at%, balance Co}, CoCrPtBNd Examples thereof include materials such as a CoCrPtTaNd system, a CoCrPtNb system, a CoCrPtBW system, a CoCrPtMo system, a CoCrPtCuRu system, and a CoCrPtRe system.

垂直磁性層4の垂直保磁力(Hc)は、3000[Oe]以上とすることが好ましい。保磁力が3000[Oe]未満である場合には、記録再生特性、特に周波数特性が不良となり、また、熱揺らぎ特性も悪くなるため、高密度記録媒体として好ましくない。   The perpendicular coercive force (Hc) of the perpendicular magnetic layer 4 is preferably 3000 [Oe] or more. When the coercive force is less than 3000 [Oe], the recording / reproducing characteristics, particularly the frequency characteristics, are deteriorated, and the thermal fluctuation characteristics are also deteriorated, which is not preferable as a high-density recording medium.

垂直磁性層4の逆磁区核形成磁界(−Hn)は、1500[Oe]以上であることが好ましい。逆磁区核形成磁界(−Hn)が1500[Oe]未満である場合には、熱揺らぎ耐性に劣るため好ましくない。   The reverse magnetic domain nucleation magnetic field (-Hn) of the perpendicular magnetic layer 4 is preferably 1500 [Oe] or more. When the reverse domain nucleation magnetic field (-Hn) is less than 1500 [Oe], the thermal fluctuation resistance is poor, which is not preferable.

垂直磁性層4は、磁性粒子の平均粒径が3〜12nmであることが好ましい。この平均粒径は、例えば垂直磁性層4をTEM(透過型電子顕微鏡)で観察し、観察像を画像処理することにより求めることができる。   The perpendicular magnetic layer 4 preferably has an average particle diameter of magnetic particles of 3 to 12 nm. This average particle diameter can be obtained, for example, by observing the perpendicular magnetic layer 4 with a TEM (transmission electron microscope) and image-processing the observed image.

垂直磁性層4の厚みは、5〜20nmとすることが好ましい。垂直磁性層4の厚みが上記未満であると、十分な再生出力が得られず、熱揺らぎ特性も低下する。また、垂直磁性層4の厚さが上記範囲を超えた場合には、垂直磁性層4中の磁性粒子の肥大化が生じ、記録再生時におけるノイズが増大し、信号/ノイズ比(S/N比)や記録特性(OW)に代表される記録再生特性が悪化するため好ましくない。   The thickness of the perpendicular magnetic layer 4 is preferably 5 to 20 nm. If the thickness of the perpendicular magnetic layer 4 is less than the above, sufficient reproduction output cannot be obtained, and the thermal fluctuation characteristics also deteriorate. When the thickness of the perpendicular magnetic layer 4 exceeds the above range, the magnetic particles in the perpendicular magnetic layer 4 are enlarged, increasing noise during recording and reproduction, and a signal / noise ratio (S / N). Ratio) and recording / reproducing characteristics represented by recording characteristics (OW) are not preferable.

垂直磁性層4を構成する磁性層4a,4b,4c間に設ける非磁性層7a,7bとしては、hcp構造を有する材料を用いることが好ましい。具体的には、例えば、Ru、Ru合金、CoCr合金、CoCrX合金(Xは、Pt、Ta、Zr、Re,Ru、Cu、Nb、Ni、Mn、Ge、Si、O、N、W、Mo、Ti、V、Zr、Bの中から選ばれる少なくとも1種又は2種以上の元素を表す。)などを好適に用いることができる。また、hcp構造を有する合金として、Ru以外では、例えばRu、Re、Ti、Y、Hf、Znなどの合金も用いることができる。 As the nonmagnetic layers 7a and 7b provided between the magnetic layers 4a, 4b and 4c constituting the perpendicular magnetic layer 4, it is preferable to use a material having an hcp structure. Specifically, for example, Ru, Ru alloy, CoCr alloy, CoCrX 1 alloy (X 1 is, Pt, Ta, Zr, Re , Ru, Cu, Nb, Ni, Mn, Ge, Si, O, N, W , Mo, Ti, V, Zr, or B represents at least one element or two or more elements). Further, as an alloy having an hcp structure, an alloy such as Ru, Re, Ti, Y, Hf, or Zn can be used other than Ru.

また、非磁性層7a,7bとしてCoCr系合金を用いる場合には、Coの含有量は、30〜80at%の範囲であることが好ましい。この範囲であれば、磁性層4a,4b,4c間のカップリングを小さく調整することが可能であるからである。   In the case where a CoCr alloy is used as the nonmagnetic layers 7a and 7b, the Co content is preferably in the range of 30 to 80 at%. This is because within this range, the coupling between the magnetic layers 4a, 4b, and 4c can be adjusted to be small.

また、非磁性層7a,7bとしては、その上下の磁性層4a,4b,4cの結晶性や配向性を損ねない範囲で、他の構造をとる金属や合金などを使用することもできる。具体的には、例えば、Pd、Pt、Cu、Ag、Au、Ir、Mo、W、Ta、Nb、V、Bi、Sn、Si、Al、C、B、Cr又はそれらの合金を用いることができる。特に、Cr合金としては、CrX(Xは、Ti、W、Mo、Nb、Ta、Si、Al、B、C、Zrの中から選ばれる少なくとも1種又は2種以上の元素を表す。)などを好適に用いることが可能である。この場合のCrの含有量は60at%以上とすることが好ましい。 Further, as the nonmagnetic layers 7a and 7b, metals or alloys having other structures may be used as long as the crystallinity and orientation of the upper and lower magnetic layers 4a, 4b and 4c are not impaired. Specifically, for example, Pd, Pt, Cu, Ag, Au, Ir, Mo, W, Ta, Nb, V, Bi, Sn, Si, Al, C, B, Cr, or an alloy thereof is used. it can. In particular, as a Cr alloy, CrX 2 (X 2 represents at least one element selected from Ti, W, Mo, Nb, Ta, Si, Al, B, C, and Zr. ) And the like can be preferably used. In this case, the Cr content is preferably 60 at% or more.

また、非磁性層7a,7bとしては、上記合金の金属粒子が酸化物、金属窒化物、又は金属炭化物中に分散した構造のものを用いることが好ましい。さらに、この金属粒子が非磁性層7a,7bを上下に貫いた柱状構造を有することがより好ましい。このような構造とするためには、酸化物、金属窒化物、又は金属炭化物を含んだ合金材料を使用することが好ましい。具体的には、酸化物として、例えば、SiO、Al、Ta、Cr、MgO、Y、TiOなど、金属窒化物として、例えば、AlN、Si、TaN、CrNなど、金属炭化物として、例えば、TaC、BC、SiCなどをそれぞれ用いることができる。さらに、例えば、CoCr−SiO、CoCr−TiO、CoCr−Cr、CoCrPt−Ta、Ru−SiO、Ru−Si、Pd−TaCなどを用いることができる。 The nonmagnetic layers 7a and 7b preferably have a structure in which metal particles of the above alloy are dispersed in an oxide, metal nitride, or metal carbide. Furthermore, it is more preferable that the metal particles have a columnar structure that vertically penetrates the nonmagnetic layers 7a and 7b. In order to obtain such a structure, it is preferable to use an alloy material containing an oxide, a metal nitride, or a metal carbide. Specifically, as the oxide, for example, SiO 2 , Al 2 O 3 , Ta 2 O 5 , Cr 2 O 3 , MgO, Y 2 O 3 , TiO 2, etc. As the metal nitride, for example, AlN, Si For example, TaC, BC, SiC, or the like can be used as the metal carbide such as 3 N 4 , TaN, or CrN. Furthermore, for example, CoCr—SiO 2 , CoCr—TiO 2 , CoCr—Cr 2 O 3 , CoCrPt—Ta 2 O 5 , Ru—SiO 2 , Ru—Si 3 N 4 , Pd—TaC, and the like can be used.

非磁性層7中の酸化物、金属窒化物、又は金属炭化物の含有量としては、垂直磁性膜の結晶成長や結晶配向を損なわない含有量であることが好ましい。また、酸化物、金属窒化物、又は金属炭化物の含有量としては、合金に対して、4mol%以上30mol%以下であることが好ましい。   The content of the oxide, metal nitride, or metal carbide in the nonmagnetic layer 7 is preferably a content that does not impair the crystal growth and crystal orientation of the perpendicular magnetic film. In addition, the content of oxide, metal nitride, or metal carbide is preferably 4 mol% or more and 30 mol% or less with respect to the alloy.

この非磁性層7中の酸化物、金属窒化物、又は金属炭化物の含有量が上記範囲を超える場合には、金属粒子中に酸化物、金属窒化物、又は金属炭化物が残留し、金属粒子の結晶性や配向性を損ねるほか、金属粒子の上下にも酸化物、金属窒化物、又は金属炭化物が析出してしまい、金属粒子が非磁性層7を上下に貫く柱状構造となりにくくなり、この非磁性層7の上に形成された磁性層の結晶性や配向性を損ねるおそれがあるため好ましくない。一方、この非磁性層7中の酸化物、金属窒化物、又は金属炭化物の含有量が上記範囲未満である場合には、酸化物、金属窒化物、又は金属炭化物の添加による効果が得られないため好ましくない。   When the content of the oxide, metal nitride, or metal carbide in the nonmagnetic layer 7 exceeds the above range, the oxide, metal nitride, or metal carbide remains in the metal particle, and the metal particle In addition to impairing crystallinity and orientation, oxides, metal nitrides, or metal carbides are also deposited on the top and bottom of the metal particles, making it difficult for the metal particles to have a columnar structure that vertically penetrates the nonmagnetic layer 7. This is not preferable because the crystallinity and orientation of the magnetic layer formed on the magnetic layer 7 may be impaired. On the other hand, when the content of the oxide, metal nitride, or metal carbide in the nonmagnetic layer 7 is less than the above range, the effect of adding the oxide, metal nitride, or metal carbide cannot be obtained. Therefore, it is not preferable.

非磁性層7a,7bは、適度な厚みで設けることで、個々の膜の磁化反転が容易になり、磁性粒子全体の磁化反転の分散を小さくすることができる。その結果S/N比をより向上させることが可能である。   By providing the nonmagnetic layers 7a and 7b with an appropriate thickness, magnetization reversal of individual films can be facilitated, and dispersion of magnetization reversal of the entire magnetic particles can be reduced. As a result, the S / N ratio can be further improved.

すなわち、非磁性層7a,7bの厚みは、垂直磁性層4を構成する各磁性層4a,4b,4cの静磁結合を完全に切断しない範囲、具体的には0.1nm以上2nm以下(より好ましくは0.1以上0.8nm以下)とすることが好ましい。   That is, the thickness of the nonmagnetic layers 7a and 7b is within a range in which the magnetostatic coupling of the magnetic layers 4a, 4b, and 4c constituting the perpendicular magnetic layer 4 is not completely cut, specifically, 0.1 nm to 2 nm (more Preferably, the thickness is 0.1 to 0.8 nm.

垂直磁性層4(磁性層4c)と炭素保護膜5との間に設けられるRu及びCoを含む中間層9には、RuCo合金(第1の主要成分がRu、第2の主要成分がCo)やCoRu合金(第1の主要成分がCo、第2の主要成分がRu)などを用いることができる。RuCo合金やCoRu合金は、一般的に垂直磁性層4よりも硬度が高いため、垂直磁性層4の上に設けることによって垂直磁性層4を保護する効果がある。また、これらの合金は、一般的に垂直磁性層4と結晶構造が同じであり、結晶の格子間距離も近い。したがって、このようなRu及びCoを含む中間層9は、垂直磁性層4に対する被覆性(密着性)が高く、垂直磁性層4の全表面を緻密に覆って、この垂直磁性層4を強固に保護することになる。   The intermediate layer 9 containing Ru and Co provided between the perpendicular magnetic layer 4 (magnetic layer 4c) and the carbon protective film 5 has a RuCo alloy (the first main component is Ru and the second main component is Co). Or CoRu alloy (the first main component is Co and the second main component is Ru) or the like can be used. Since the RuCo alloy and the CoRu alloy are generally harder than the perpendicular magnetic layer 4, providing the RuCo alloy or the CoRu alloy on the perpendicular magnetic layer 4 has an effect of protecting the perpendicular magnetic layer 4. In addition, these alloys generally have the same crystal structure as that of the perpendicular magnetic layer 4 and have a close interstitial distance between crystals. Therefore, such an intermediate layer 9 containing Ru and Co has high coverage (adhesiveness) with respect to the perpendicular magnetic layer 4, and covers the entire surface of the perpendicular magnetic layer 4 densely, thereby strengthening the perpendicular magnetic layer 4. Will protect.

また、Ru及びCoを含む中間層9が保護層としての効果を発現するのは、保護層として一般的に使用される炭素膜とは異なり、スペーシングロスがさほど生じないことにある。この理由については必ずしも明確ではないものの、例えばRuCo合金やCoRu合金などは強磁性材料であるCoを多く含むため、磁気ヘッドからの磁界を垂直磁性層に引き込む効果があり、これがスペーシングロスを低減しているものと考えられる。   Further, the reason why the intermediate layer 9 containing Ru and Co exhibits an effect as a protective layer is that, unlike a carbon film generally used as a protective layer, there is not much spacing loss. Although the reason for this is not necessarily clear, for example, RuCo alloys and CoRu alloys contain a large amount of Co, which is a ferromagnetic material, and therefore have the effect of drawing the magnetic field from the magnetic head into the perpendicular magnetic layer, which reduces the spacing loss. It is thought that.

また、中間層9は、上述したように、Ruを30原子%以上、Coを30原子%以上含む層とすることが好ましいものの、上記の効果が発現される範囲内で他の元素を添加することも可能である。添加元素としては、例えば、RuCo合金やCoRu合金の硬度をさほど低減させずに、磁気ヘッドからの磁界を垂直磁性層4に引き込む効果を高める物質、又は、結晶組織を微細化して硬度を高める効果を有する物質が好ましい。このような添加元素としては、例えば、Cr、Pt、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Re、Mnの中から選ばれる1種類以上の元素を挙げることができる。   Moreover, although it is preferable that the intermediate layer 9 is a layer containing 30 atomic% or more of Ru and 30 atomic% or more of Co as described above, other elements are added within a range in which the above effects are exhibited. It is also possible. Examples of the additive element include a substance that increases the effect of drawing the magnetic field from the magnetic head into the perpendicular magnetic layer 4 without significantly reducing the hardness of the RuCo alloy or CoRu alloy, or the effect of increasing the hardness by refining the crystal structure. Substances having the following are preferred. Examples of such additive elements include one or more elements selected from Cr, Pt, B, Ta, Mo, Cu, Nd, W, Nb, Sm, Tb, Ru, Re, and Mn. Can do.

また、中間層9の層厚は、上述したように2〜8Åの範囲内とすることが好ましいものの、最適な膜厚は、この厚みの範囲内で磁気記録媒体のスクラッチ耐性と電磁変換特性より適宜選択される。   Further, although the layer thickness of the intermediate layer 9 is preferably in the range of 2 to 8 mm as described above, the optimum film thickness is within this thickness range from the scratch resistance and electromagnetic conversion characteristics of the magnetic recording medium. It is selected appropriately.

炭素保護層5は、垂直磁性層4の腐食を防ぐとともに、磁気ヘッドが媒体に接触したときに媒体表面の損傷を防ぐためのものであり、例えばスパッタリング法やCVD法、イオンビーム蒸着法等によって形成される。炭素保護層5の厚みは、1〜10nmとすることがヘッドと媒体の距離を小さくできるので高記録密度の点から好ましい。   The carbon protective layer 5 prevents corrosion of the perpendicular magnetic layer 4 and prevents damage to the surface of the medium when the magnetic head comes into contact with the medium. For example, the carbon protective layer 5 is formed by sputtering, CVD, ion beam evaporation, or the like. It is formed. The thickness of the carbon protective layer 5 is preferably 1 to 10 nm from the viewpoint of high recording density because the distance between the head and the medium can be reduced.

潤滑層6には、例えば、パーフルオロポリエーテル、フッ素化アルコール、フッ素化カルボン酸などの潤滑剤を用いることが好ましい。   For the lubricating layer 6, it is preferable to use a lubricant such as perfluoropolyether, fluorinated alcohol, fluorinated carboxylic acid, or the like.

図3は、本発明を適用した磁気記録再生装置の一例を示すものである。
この磁気記録再生装置は、上記図2に示す構成を有する磁気記録媒体50と、磁気記録媒体50を回転駆動させる媒体駆動部51と、磁気記録媒体50に情報を記録再生する磁気ヘッド52と、この磁気ヘッド52を磁気記録媒体50に対して相対運動させるヘッド駆動部53と、記録再生信号処理系54とを備えている。また、記録再生信号処理系54は、外部から入力されたデータを処理して記録信号を磁気ヘッド52に送り、磁気ヘッド52からの再生信号を処理してデータを外部に送ることが可能となっている。また、本発明を適用した磁気記録再生装置に用いる磁気ヘッド52には、再生素子として巨大磁気抵抗効果(GMR)を利用したGMR素子などを有した、より高記録密度に適した磁気ヘッドを用いることができる。
FIG. 3 shows an example of a magnetic recording / reproducing apparatus to which the present invention is applied.
This magnetic recording / reproducing apparatus includes a magnetic recording medium 50 having the configuration shown in FIG. 2, a medium driving unit 51 that rotationally drives the magnetic recording medium 50, a magnetic head 52 that records and reproduces information on the magnetic recording medium 50, A head driving unit 53 that moves the magnetic head 52 relative to the magnetic recording medium 50 and a recording / reproducing signal processing system 54 are provided. Further, the recording / reproducing signal processing system 54 can process data input from the outside and send a recording signal to the magnetic head 52, process a reproducing signal from the magnetic head 52, and send the data to the outside. ing. Further, as the magnetic head 52 used in the magnetic recording / reproducing apparatus to which the present invention is applied, a magnetic head suitable for a higher recording density having a GMR element utilizing a giant magnetoresistance effect (GMR) as a reproducing element is used. be able to.

上記磁気記録再生装置によれば、上記磁気記録媒体50に本発明を適用した磁気記録媒体を採用することで、磁性粒子の微細化と磁気的な孤立化が促進され、再生時におけるS/N比を大幅に向上することができ、また熱揺らぎ特性も向上させることができ、さらに優れた記録特性(OW)を有した媒体を得ることができ、このため高密度記録に適した優れた磁気記録再生装置とすることができる。   According to the magnetic recording / reproducing apparatus, by adopting the magnetic recording medium to which the present invention is applied as the magnetic recording medium 50, miniaturization of magnetic particles and magnetic isolation are promoted, and the S / N during reproduction is increased. Ratio can be greatly improved, thermal fluctuation characteristics can be improved, and a medium having excellent recording characteristics (OW) can be obtained. A recording / reproducing apparatus can be obtained.

以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。   Hereinafter, the effects of the present invention will be made clearer by examples. In addition, this invention is not limited to a following example, In the range which does not change the summary, it can change suitably and can implement.

(実施例1)
実施例1では、先ず、洗浄済みのガラス基板(コニカミノルタ社製、外形2.5インチ)をDCマグネトロンスパッタ装置(アネルバ社製C−3040)の成膜チャンバ内に収容して、到達真空度1×10−5Paとなるまで成膜チャンバ内を排気した後、このガラス基板の上に、Crターゲットを用いて層厚10nmの密着層を成膜した。また、この密着層の上に、55Fe−30Co−15Ta{Fe含有量55at%、Co含有量30at%、Ta含有量15at%}のターゲットを用いて100℃以下の基板温度で、層厚25nmの軟磁性層を成膜し、この上にRu層を層厚1.6nmで成膜した後、さらにCo−20Fe−5Zr−5Taの軟磁性層を層厚25nm成膜して、これを軟磁性下地層とした。
Example 1
In Example 1, first, a cleaned glass substrate (manufactured by Konica Minolta Co., Ltd., 2.5 inches in outer diameter) is accommodated in a film forming chamber of a DC magnetron sputtering apparatus (C-3040 made by Anelva Co., Ltd.), and the ultimate vacuum is achieved. After the inside of the film formation chamber was evacuated to 1 × 10 −5 Pa, an adhesion layer having a layer thickness of 10 nm was formed on the glass substrate using a Cr target. Further, on this adhesion layer, a layer thickness of 25 nm is obtained at a substrate temperature of 100 ° C. or lower using a target of 55Fe-30Co-15Ta {Fe content 55 at%, Co content 30 at%, Ta content 15 at%}. A soft magnetic layer is formed, and a Ru layer is formed thereon with a thickness of 1.6 nm. Then, a Co-20Fe-5Zr-5Ta soft magnetic layer is further formed with a thickness of 25 nm. An underlayer was used.

次に、上記軟磁性下地層の上に、Ni−6W{W含有量6at%、残部Ni}ターゲット、Ruターゲットを用いて、それぞれ5nm、20nmの層厚で順に成膜し、これを配向制御層とした。   Next, on the soft magnetic underlayer, Ni-6W {W content 6 at%, remaining Ni} target and Ru target were sequentially formed with a layer thickness of 5 nm and 20 nm, respectively, and this was subjected to orientation control. Layered.

次に、配向制御層の上に、(Co15Cr16Pt)91−(SiO)6−(TiO)3{Cr含有量15at%、Pt含有量18at%、残部Coの合金を91mol%、SiOからなる酸化物を6mol%、Crからなる酸化物を3mol%、TiOからなる酸化物を3mol%}の組成の磁性層をスパッタ圧力2Paとして層厚3nmで成膜した。なお、この磁性層において、Kuは2.2×10(erg/cc)、Msは500(emu/cc)であった。 Then, on the orientation control layer, (Co15Cr16Pt) 91- (SiO 2 ) 6- (TiO 2) 3 {Cr content 15 at%, Pt content of 18 at%, the alloy of the balance Co 91 mol%, of SiO 2 A magnetic layer having a composition of 6 mol% of an oxide, 3 mol% of an oxide of Cr 2 O 3 , and 3 mol% of an oxide of TiO 2 is formed at a sputtering pressure of 2 Pa and a layer thickness of 3 nm. In this magnetic layer, Ku was 2.2 × 10 6 (erg / cc) and Ms was 500 (emu / cc).

次に、磁性層の上に、(Co30Cr)88−(TiO)12からなる非磁性層を層厚0.3nmで成膜した。 Next, on the magnetic layer was deposited at a layer thickness of 0.3nm nonmagnetic layer composed of (Co30Cr) 88- (TiO 2) 12.

次に、非磁性層の上に、(Co11Cr18Pt)92−(SiO)5−(TiO)3からなる磁性層をスパッタ圧力2Paとして層厚4nmで成膜した。 Next, on the non-magnetic layer was formed by (Co11Cr18Pt) 92- thickness 4nm and (SiO 2) 5-magnetic layer made of (TiO 2) 3 as a sputtering pressure 2 Pa.

次に、磁性層の上に、Ruからなる非磁性層を層厚0.3nmで成膜した。この磁性層において、Kuは4×10(erg/cc)、Msは600(emu/cc)であった。 Next, a nonmagnetic layer made of Ru was formed with a layer thickness of 0.3 nm on the magnetic layer. In this magnetic layer, Ku was 4 × 10 6 (erg / cc) and Ms was 600 (emu / cc).

次に、非磁性層の上に、Co20Cr14Pt3B{Cr含有量20at%、Pt含有量14at%、B含有量3at%、残部Co}からなるターゲットを用いて、スパッタ圧力を0.6Paとして磁性層を層厚4nmで成膜した。この磁性層において、Kuは1.5×10(erg/cc)、Msは400(emu/cc)であった。 Next, a magnetic layer is formed on the nonmagnetic layer using a target composed of Co20Cr14Pt3B {Cr content 20 at%, Pt content 14 at%, B content 3 at%, balance Co} and a sputtering pressure of 0.6 Pa. The film was formed with a layer thickness of 4 nm. In this magnetic layer, Ku was 1.5 × 10 6 (erg / cc), and Ms was 400 (emu / cc).

次に、磁性層の上に、52.5Ru47.5Co{Ru含有量52.5原子%、Co含有量47.5原子%}からなるターゲットを用いて、スパッタ圧力を0.6Paとしてターゲットと同一組成のRuCo層を層厚0.5nm(5Å)で成膜した。   Next, on the magnetic layer, using a target made of 52.5 Ru 47.5 Co {Ru content 52.5 atomic%, Co content 47.5 atomic%}, the sputtering pressure is 0.6 Pa, and the same as the target A RuCo layer having a composition was formed with a layer thickness of 0.5 nm (5 mm).

次に、CVD法により層厚3.0nmのカーボン保護層を成膜し、次いで、ディッピング法によりパーフルオロポリエーテルからなる潤滑層を成膜し、実施例1の磁気記録媒体を得た。   Next, a carbon protective layer having a thickness of 3.0 nm was formed by a CVD method, and then a lubricating layer made of perfluoropolyether was formed by a dipping method to obtain a magnetic recording medium of Example 1.

(実施例2〜7)
実施例2〜7では、下記表1に示すように、RuCo層の組成及び層厚を異ならせた以外は、実施例1と同様の条件で磁気記録媒体を作製した。
(Examples 2 to 7)
In Examples 2 to 7, as shown in Table 1 below, magnetic recording media were produced under the same conditions as in Example 1 except that the composition and layer thickness of the RuCo layer were changed.

(比較例1)
比較例1では、下記表1に示すように、RuCo層を設けなかった以外は、実施例1と同様の条件で磁気記録媒体を作製した。
(Comparative Example 1)
In Comparative Example 1, as shown in Table 1 below, a magnetic recording medium was manufactured under the same conditions as in Example 1 except that the RuCo layer was not provided.

Figure 2011003260
Figure 2011003260

<磁気記録媒体の電磁変換特性評価>
そして、これら実施例1〜7及び比較例1の磁気記録媒体について、米国GUZIK社製のリードライトアナライザRWA1632及びスピンスタンドS1701MPを用いて、その記録再生特性、すなわちS/N比、記録特性(OW)、及び熱揺らぎ特性の各評価を行った。その評価結果を表1に示す。
<Evaluation of electromagnetic conversion characteristics of magnetic recording media>
The magnetic recording media of Examples 1 to 7 and Comparative Example 1 were recorded using the read / write analyzer RWA1632 and spin stand S1701MP manufactured by GUZIK, USA, and their recording / reproduction characteristics, that is, S / N ratio, recording characteristics (OW). ) And thermal fluctuation characteristics were evaluated. The evaluation results are shown in Table 1.

なお、磁気ヘッドには、書き込み側にシングルポール磁極を用い、読み出し側にTMR素子を用いたヘッドを使用した。
S/N比については、記録密度750kFCIとして測定した。
一方、記録特性(OW)については、先ず、750kFCIの信号を書き込み、次いで100kFCIの信号を上書し、周波数フィルターにより高周波成分を取り出し、その残留割合によりデータの書き込み能力を評価した。
一方、熱揺らぎ特性について、70℃の条件下で記録密度50kFCIにて書き込みを行った後、書き込み後1秒後の再生出力に対する出力の減衰率を(So−S)×100/(So)に基いて算出した。なお、この式中において、Soは書き込み後、1秒経過時の再生出力、Sは10000秒後の再生出力を表す。
As the magnetic head, a head using a single pole magnetic pole on the writing side and a TMR element on the reading side was used.
The S / N ratio was measured as a recording density of 750 kFCI.
On the other hand, as for the recording characteristics (OW), first, a 750 kFCI signal was written, then a 100 kFCI signal was overwritten, a high frequency component was taken out by a frequency filter, and the data writing ability was evaluated by the residual ratio.
On the other hand, with respect to thermal fluctuation characteristics, after writing at a recording density of 50 kFCI under the condition of 70 ° C., the output attenuation rate with respect to the playback output one second after writing is (So−S) × 100 / (So). Calculated based on In this equation, So represents a reproduction output when 1 second has elapsed after writing, and S represents a reproduction output after 10,000 seconds.

<磁気記録媒体のスクラッチ耐性評価>
また、実施例1〜7及び比較例1の磁気記録媒体について、スクラッチ耐性を評価するためのスクラッチ試験を行った。このスクラッチ試験については、クボタ社製のSAFテスターを用いて行った。試験条件は、磁気記録媒体を12000rpmで回転させ、PP6ヘッドを用いて、ディスク表面を2時間、5インチ/秒の速度でシーク動作を繰り返し、その後、光学顕微鏡でスクラッチの有無を確認した。そして、このようなスクラッチ試験を、実施例1〜7及び比較例1の磁気記録媒体の各20枚について行い、そのスクラッチの発生率(%)を求めた。その評価結果を表1に示す。
<Scratch resistance evaluation of magnetic recording media>
Further, the magnetic recording media of Examples 1 to 7 and Comparative Example 1 were subjected to a scratch test for evaluating scratch resistance. The scratch test was performed using a SAF tester manufactured by Kubota. As test conditions, the magnetic recording medium was rotated at 12000 rpm, and the seek operation was repeated on the disk surface at a speed of 5 inches / second for 2 hours using a PP6 head, and then the presence or absence of scratches was confirmed with an optical microscope. Then, such a scratch test was performed on each of the 20 magnetic recording media of Examples 1 to 7 and Comparative Example 1, and the scratch generation rate (%) was obtained. The evaluation results are shown in Table 1.

表1に示す評価結果から、本発明の範囲である実施例1〜7の磁気記録媒体は、本発明の範囲外である比較例1の磁気記録媒体よりも、電磁変換特性及びスクラッチ耐性に優れていることがわかる。   From the evaluation results shown in Table 1, the magnetic recording media of Examples 1 to 7, which are the scope of the present invention, are superior in electromagnetic conversion characteristics and scratch resistance than the magnetic recording medium of Comparative Example 1, which is outside the scope of the present invention. You can see that

1…非磁性基板
2…軟磁性下地層
2a…軟磁性層
2b…スペーサ層
3…配向制御層
4…垂直磁性層
4a,4b,4c…磁性層
5…カーボン保護層
6…潤滑層
7a,7b…非磁性層
8…非磁性下地層
9…Ru及びCoを含む中間層
41…酸化物
42…磁性粒子(非磁性層7a,7bにおいては非磁性粒子)
50…磁気記録媒体
51…媒体駆動部
52…磁気ヘッド
53…ヘッド駆動部
54…記録再生信号処理系
1 ... Non-magnetic substrate
2. Soft magnetic underlayer
2a: Soft magnetic layer
2b ... Spacer layer
3 ... Orientation control layer
4 ... perpendicular magnetic layer
4a, 4b, 4c ... magnetic layer
5. Carbon protective layer
6 ... Lubrication layer
7a, 7b ... nonmagnetic layer
8 ... Nonmagnetic underlayer
9: Intermediate layer containing Ru and Co
41 ... Oxides
42 ... Magnetic particles (nonmagnetic particles in the nonmagnetic layers 7a and 7b)
50. Magnetic recording medium
51. Medium drive unit
52. Magnetic head
53. Head drive unit
54. Recording / reproducing signal processing system

Claims (4)

少なくとも非磁性基板の上に、磁化容易軸が前記非磁性基板に対して主に垂直に配向した垂直磁性層と、炭素保護層とを積層してなる磁気記録媒体であって、
前記垂直磁性層と前記炭素保護層との間に、Ru及びCoを含む中間層が設けられていることを特徴とする磁気記録媒体。
A magnetic recording medium comprising a carbon protective layer and a perpendicular magnetic layer having an easy axis of magnetization oriented perpendicularly to the nonmagnetic substrate at least on a nonmagnetic substrate,
A magnetic recording medium, wherein an intermediate layer containing Ru and Co is provided between the perpendicular magnetic layer and the carbon protective layer.
前記中間層が、Ruを30原子%以上、Coを30原子%以上含む層であることを特徴とする請求項1に記載の磁気記録媒体。   The magnetic recording medium according to claim 1, wherein the intermediate layer is a layer containing 30 atomic% or more of Ru and 30 atomic% or more of Co. 前記中間層の層厚が、0.2〜0.8nmの範囲内であることを特徴とする請求項1又は2に記載の磁気記録媒体。   3. The magnetic recording medium according to claim 1, wherein a thickness of the intermediate layer is in a range of 0.2 to 0.8 nm. 請求項1〜3の何れか一項に記載の磁気記録媒体と、
前記磁気記録媒体に対する情報の記録再生を行う磁気ヘッドとを備えることを特徴とする磁気記録再生装置。
The magnetic recording medium according to any one of claims 1 to 3,
A magnetic recording / reproducing apparatus comprising: a magnetic head for recording / reproducing information with respect to the magnetic recording medium.
JP2009147987A 2009-06-22 2009-06-22 Magnetic recording medium and magnetic recording and reproducing device Pending JP2011003260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009147987A JP2011003260A (en) 2009-06-22 2009-06-22 Magnetic recording medium and magnetic recording and reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009147987A JP2011003260A (en) 2009-06-22 2009-06-22 Magnetic recording medium and magnetic recording and reproducing device

Publications (1)

Publication Number Publication Date
JP2011003260A true JP2011003260A (en) 2011-01-06

Family

ID=43561095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009147987A Pending JP2011003260A (en) 2009-06-22 2009-06-22 Magnetic recording medium and magnetic recording and reproducing device

Country Status (1)

Country Link
JP (1) JP2011003260A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037731A (en) * 2011-08-04 2013-02-21 Fuji Electric Co Ltd Recording medium
WO2021014760A1 (en) * 2019-07-23 2021-01-28 Jx金属株式会社 Sputtering target member for non-magnetic layer formation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203069A (en) * 1995-01-31 1996-08-09 Nec Corp Magnetic recording medium
JPH11296833A (en) * 1998-04-06 1999-10-29 Hitachi Ltd Perpendicular magnetic recording medium and magnetic memory device
JP2003016625A (en) * 2001-06-29 2003-01-17 Showa Denko Kk Magnetic recording medium, its manufacturing method and magnetic recording and reproducing device
JP2008282512A (en) * 2007-05-14 2008-11-20 Toshiba Corp Magnetic recording medium and magnetic recording/reproducing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203069A (en) * 1995-01-31 1996-08-09 Nec Corp Magnetic recording medium
JPH11296833A (en) * 1998-04-06 1999-10-29 Hitachi Ltd Perpendicular magnetic recording medium and magnetic memory device
JP2003016625A (en) * 2001-06-29 2003-01-17 Showa Denko Kk Magnetic recording medium, its manufacturing method and magnetic recording and reproducing device
JP2008282512A (en) * 2007-05-14 2008-11-20 Toshiba Corp Magnetic recording medium and magnetic recording/reproducing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037731A (en) * 2011-08-04 2013-02-21 Fuji Electric Co Ltd Recording medium
WO2021014760A1 (en) * 2019-07-23 2021-01-28 Jx金属株式会社 Sputtering target member for non-magnetic layer formation
TWI742740B (en) * 2019-07-23 2021-10-11 日商Jx金屬股份有限公司 Sputtering target component for forming non-magnetic layer, sputtering target and film forming method

Similar Documents

Publication Publication Date Title
JP5250838B2 (en) Magnetic recording medium manufacturing method, magnetic recording medium, and magnetic recording / reproducing apparatus
JP4219941B2 (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP5274998B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic recording / reproducing apparatus
WO2012157600A1 (en) Magnetic recording medium, manufacturing method thereof, and magnetic record/play device
JP2004310910A (en) Magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device
JP2006024346A (en) Magnetic recording medium, production method for the same and magnetic recording and reproducing device
JP5775720B2 (en) Magnetic recording medium manufacturing method and magnetic recording / reproducing apparatus
JP6265529B2 (en) Magnetic recording medium manufacturing method, magnetic recording medium, and magnetic recording / reproducing apparatus
JP4771222B2 (en) Perpendicular magnetic recording medium
US8367155B2 (en) Manufacturing method of magnetic recording medium and magnetic recording/reproducing apparatus
JP6144570B2 (en) Magnetic recording medium manufacturing method, magnetic recording medium, and magnetic recording / reproducing apparatus
JP2017134877A (en) Magnetic recording medium and magnetic recording/reproducing apparatus
JP4764308B2 (en) Perpendicular magnetic recording medium and perpendicular magnetic recording / reproducing apparatus
JP5244679B2 (en) Method for manufacturing magnetic recording medium
JP2011123976A (en) Method for manufacturing magnetic recording medium and magnetic recording and reproducing device
JP5232730B2 (en) Magnetic recording medium, method of manufacturing magnetic recording medium, and magnetic recording / reproducing apparatus
JP2011003260A (en) Magnetic recording medium and magnetic recording and reproducing device
JP2011123977A (en) Magnetic recording medium and magnetic recording and reproducing device
JP2011192326A (en) Magnetic recording medium and magnetic recording and reproducing device
JP5677789B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP5244678B2 (en) Method for manufacturing magnetic recording medium
JP5312296B2 (en) Magnetic recording medium manufacturing method and magnetic recording / reproducing apparatus
JP2010262719A (en) Magnetic recording medium and magnetic recording and playback device
JP4196858B2 (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP2011138563A (en) Magnetic recording medium and magnetic recording and reproducing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130730