JP2011002639A - Susceptor and flash irradiation method using the same, and method for producing photomask blank - Google Patents

Susceptor and flash irradiation method using the same, and method for producing photomask blank Download PDF

Info

Publication number
JP2011002639A
JP2011002639A JP2009145320A JP2009145320A JP2011002639A JP 2011002639 A JP2011002639 A JP 2011002639A JP 2009145320 A JP2009145320 A JP 2009145320A JP 2009145320 A JP2009145320 A JP 2009145320A JP 2011002639 A JP2011002639 A JP 2011002639A
Authority
JP
Japan
Prior art keywords
region
susceptor
substrate
reflectance
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009145320A
Other languages
Japanese (ja)
Other versions
JP5270465B2 (en
Inventor
Soichi Fukaya
創一 深谷
Sadaomi Inazuki
判臣 稲月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2009145320A priority Critical patent/JP5270465B2/en
Publication of JP2011002639A publication Critical patent/JP2011002639A/en
Application granted granted Critical
Publication of JP5270465B2 publication Critical patent/JP5270465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical film having a low stress and excellent in-plane uniformity of optical characteristics.SOLUTION: A susceptor is provided, which includes a high reflectance (R1) region and a low reflectance (R2) region in a region to mount a substrate (with a thickness L) that is chamfered by a length of D inwardly from an intersection between a plane including the major face of the substrate and a plane including an end face of the substrate, along the plane including the major face. The low reflectance region (30L) includes a region (30H) interposed between a rectangle c which is present inside a contour obtained by perpendicularly projecting the outermost end of the substrate onto the major face of the susceptor 30, spaced at a distance of (L-D×tanθ)×tanθ from the contour, and a rectangle d inside the contour, spaced at a distance of (D+L×tanθ). The high reflectance region (30H) includes an inner region of a rectangle e which is present inside the contour obtained by perpendicularly projecting the outermost end of the substrate onto the major face of the susceptor 30, spaced at a distance of {D+L×tanθ+α(L×tanθ)} (0<α≤1), and the outer rim of the high reflectance region is present inside the contour, spaced at a distance of (D+L×tanθ), wherein θ represents an angle of the chamfered face with respect to the major face of the substrate.

Description

本発明は、サセプタおよびこれを用いた閃光照射方法ならびにフォトマスクブランクの製造方法に関し、より詳細には、低応力で且つ光学特性の面内均一性に優れた光学膜を提供するための技術に関する。   The present invention relates to a susceptor, a flash irradiation method using the susceptor, and a method for manufacturing a photomask blank, and more particularly to a technique for providing an optical film having low stress and excellent in-plane uniformity of optical characteristics. .

半導体デバイス等の微細構造を形成するためには、複数枚のフォトマスクを高い精度で重ね合わせてパターニングが行なわれるが、フォトマスクブランクの状態で既に、基板上に形成された薄膜(光学膜)に応力が蓄えられていると、当該膜中に蓄積されている応力がフォトリソグラフィ工程中に部分的に開放されてしまい、フォトマスクに「歪み」(ディストーション)を生じさせてしまう。このような歪みがあると、フォトマスクの重ね合わせ精度は低下して描写される回路パターンの欠陥原因となる。   In order to form a fine structure of a semiconductor device or the like, patterning is performed by overlaying a plurality of photomasks with high accuracy, but a thin film (optical film) already formed on a substrate in a photomask blank state. If stress is accumulated in the film, the stress accumulated in the film is partially released during the photolithography process, causing “distortion” in the photomask. If there is such a distortion, the overlay accuracy of the photomask is lowered, causing a defect in a circuit pattern drawn.

各薄膜(光学膜)の応力が概ねゼロとなるような条件で薄膜形成すれば上述したような問題が生じることはないが、光学膜としての薄膜が備えるべき諸特性を確保するための成膜条件が、同時に、低応力の薄膜を形成するための条件でもあるという製造プロセス条件を見出すことは極めて難しく、事実上不可能である。このため、所望の膜特性を確保可能な条件で成膜する工程と、成膜後の薄膜の低応力化を図る工程とは、独立した別個の工程とする必要がある。   If the thin film is formed under such a condition that the stress of each thin film (optical film) is substantially zero, the above-mentioned problems will not occur, but film formation for ensuring various characteristics that the thin film as an optical film should have. It is extremely difficult and practically impossible to find manufacturing process conditions that are also conditions for forming a low-stress thin film at the same time. For this reason, it is necessary to separate the process of forming a film under conditions capable of ensuring desired film characteristics and the process of reducing the stress of the thin film after film formation as independent processes.

ところで、一般に、フォトマスクブランクの製造工程においては、位相シフト膜等の薄膜をスパッタリング法で成膜している。しかし、当該成膜プロセスの過程で膜中に応力が生じ、この応力によって基板そのものが歪み、フォトマスクブランクの反りを発生させてしまうという問題がある。この問題を解決する手法として、位相シフト膜等の光吸収性の薄膜に閃光ランプからの光を所定のエネルギ密度で照射して膜応力を制御し、これによりフォトマスクブランクの反りを低減するという技術が提唱されている(特許文献1)。   By the way, generally, in the photomask blank manufacturing process, a thin film such as a phase shift film is formed by a sputtering method. However, there is a problem in that stress is generated in the film during the film forming process, and the substrate itself is distorted by the stress to cause warping of the photomask blank. As a method for solving this problem, light from a flash lamp is irradiated to a light-absorbing thin film such as a phase shift film at a predetermined energy density to control film stress, thereby reducing warpage of the photomask blank. Technology has been proposed (Patent Document 1).

しかしながら、閃光ランプを用いて光照射を行うと、照射装置ハウジングで反射した光が、基板の面取り面あるいは端面より入射し、当該入射光が基板を載置するサセプタ面で反射して光学膜に再入射して過剰なエネルギを光学膜に部分的に付与する結果となり、光学特性の面内均一性を低下させるという現象が生じることがある。   However, when light irradiation is performed using a flash lamp, the light reflected by the irradiation device housing is incident from the chamfered surface or the end surface of the substrate, and the incident light is reflected by the susceptor surface on which the substrate is placed and is reflected on the optical film. Re-incidence results in partial application of excess energy to the optical film, which may cause a phenomenon that the in-plane uniformity of the optical characteristics is reduced.

このような反射光を低減させるために有効な手法は本発明者らにより既に提案されてきているが(特許文献2)、これらの手法によっても反射光を完全に抑制することはできないため、より面内均一性に優れた光学膜を得るための新たな手法が望まれている。   An effective method for reducing such reflected light has already been proposed by the present inventors (Patent Document 2), but the reflected light cannot be completely suppressed by these methods. A new technique for obtaining an optical film excellent in in-plane uniformity is desired.

特開2004−199035号公報JP 2004-199035 A 特開2008−076994号公報JP 2008-076994 A

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、低応力で且つ光学特性の面内均一性に優れた光学膜を提供するために好適なサセプタ、ならびに当該サセプタを用いた閃光照射方法およびフォトマスクブランクの製造方法を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide a susceptor suitable for providing an optical film having low stress and excellent in-plane uniformity of optical characteristics, and An object is to provide a flash irradiation method using a susceptor and a photomask blank manufacturing method.

上述の課題を解決するために、第1の発明に係るサセプタは、透明基板上に設けられた光学膜に閃光を照射する際に用いられるサセプタであって、前記サセプタに前記基板を載置した際、前記サセプタの前記基板が載置される領域には反射率の高い領域と反射率が低い領域があり、前記反射率が高い領域は閃光を照射した際に到達する照射光量が少ない領域であり、前記反射率が低い領域は閃光を照射した際に到達する照射光量が多い領域であるサセプタである。   In order to solve the above-described problem, a susceptor according to a first aspect of the present invention is a susceptor used when irradiating an optical film provided on a transparent substrate with flash light, and the substrate is placed on the susceptor. In this case, the region of the susceptor on which the substrate is placed includes a region having a high reflectance and a region having a low reflectance, and the region having a high reflectance is a region having a small amount of irradiated light reaching when the flash is irradiated. In addition, the low reflectance region is a susceptor which is a region where a large amount of light reaches when the flash light is irradiated.

また、第2の発明に係るサセプタは、主面と端面との間に面取り面を有する透明基板上に設けられた光学膜に閃光を照射する際に用いられるサセプタであって、前記サセプタに前記基板を載置した際、前記サセプタの前記基板が載置される矩形領域内において、前記基板の上側の面取り面より入射した照射光の前記基板載置領域上への到達領域である4辺帯状領域の反射率がR2であり、前記4辺帯状領域より内側の領域の反射率R1は前記反射率R2よりも高いサセプタである。   A susceptor according to a second aspect of the invention is a susceptor used when irradiating a flash on an optical film provided on a transparent substrate having a chamfered surface between a main surface and an end surface. When the substrate is placed, a quadrilateral band which is a region where the irradiation light incident from the chamfered surface on the upper side of the substrate reaches the substrate placement region in the rectangular region where the substrate of the susceptor is placed. The reflectance of the region is R2, and the reflectance R1 of the region inside the four-sided belt-shaped region is a susceptor higher than the reflectance R2.

また、第3の発明に係るサセプタは、厚みがLの透明基板上に設けられた光学膜に閃光を照射する際に用いられるサセプタであって、前記透明基板には主面と端面との間に面取り面が設けられており、該面取り面は、前記主面に対し角度θ(0<θ<90°)で、かつ前記主面を含む平面上で、前記主面を含む平面と前記端面を含む平面との交線から長さDだけ内側まで面取りされた面であり、前記サセプタには、前記基板が載置される領域内に、相対的に高い反射率(R1)の領域と相対的に低い反射率(R2)の領域が設けられており、前記高反射率領域は、前記基板の最端部を前記サセプタの前記基板が載置される面上に垂直投影して得られる矩形の輪郭を基準として、{D+L・tanθ+α(L・tanθ)}(但し0<α≦1)だけ内側の矩形の内部領域を必ず含み、かつ、外縁が(D+L・tanθ)だけ内側の矩形の内側にあるように設けられ、前記低反射率領域は、前記基板の最端部を前記サセプタの前記基板が載置される面上に垂直投影して得られる矩形の輪郭を基準として、(L−D・tanθ)・tanθだけ内側の矩形と(D+L・tanθ)だけ内側の矩形に挟まれた領域を含むように設けられているサセプタである。   A susceptor according to a third aspect of the present invention is a susceptor used when irradiating an optical film provided on a transparent substrate having a thickness of L with flash light, wherein the transparent substrate has a space between a main surface and an end surface. The chamfered surface has an angle θ (0 <θ <90 °) with respect to the main surface, and the plane including the main surface and the end surface on the plane including the main surface. The surface of the susceptor is chamfered to the inner side by a length D from the intersecting line with the plane including the surface, and the susceptor is relative to the region having a relatively high reflectance (R1) in the region where the substrate is placed. A region having a low reflectivity (R2) is provided, and the high reflectivity region is a rectangle obtained by vertically projecting the extreme end of the substrate onto the surface of the susceptor on which the substrate is placed. {D + L · tan θ + α (L · tan θ)} (where 0 <α ≦ 1) A rectangular inner region on the side, and an outer edge is provided inside the inner rectangle by (D + L · tan θ), and the low-reflectance region has an end of the substrate at the end of the susceptor. An area sandwiched between an inner rectangle of (LD · tanθ) · tanθ and an inner rectangle of (D + L · tanθ) with reference to a rectangular contour obtained by vertical projection onto the surface on which the substrate is placed It is a susceptor provided so that it may contain.

好ましくは、前記反射率R1は、波長200〜600nmの光に対して40%以上である。   Preferably, the reflectance R1 is 40% or more with respect to light having a wavelength of 200 to 600 nm.

例えば、前記R1の反射率を有する高反射率領域は不透明石英ガラスからなり、前記R2の反射率を有する低反射率領域は透明石英ガラスからなる。   For example, the high reflectance region having the reflectance of R1 is made of opaque quartz glass, and the low reflectance region having the reflectance of R2 is made of transparent quartz glass.

この場合、例えば、前記不透明石英ガラスは、気泡を含有させた石英ガラスである。   In this case, for example, the opaque quartz glass is quartz glass containing bubbles.

また、例えば、前記R1の反射率を有する高反射率領域および前記R2の反射率を有する低反射率領域は何れも気泡を含有させた不透明石英ガラスからなり、前記高反射率領域の気泡含有量は前記低反射率領域の気泡含有量よりも多い。   Further, for example, the high reflectance region having the reflectance of R1 and the low reflectance region having the reflectance of R2 are both made of opaque quartz glass containing bubbles, and the bubble content of the high reflectance region is Is greater than the bubble content in the low reflectivity region.

さらに、例えば、前記R1の反射率を有する高反射率領域はアルミニウムからなり、前記R2の反射率を有する低反射率領域は不透明石英ガラスからなる。   Further, for example, the high reflectance region having the reflectance of R1 is made of aluminum, and the low reflectance region having the reflectance of R2 is made of opaque quartz glass.

本発明に係る閃光照射方法およびフォトマスクブランクの製造方法は、上述のサセプタ上に光学膜を設けた基板を載置して前記光学膜に閃光ランプからの光を照射する工程を備えている。   The flash irradiation method and the photomask blank manufacturing method according to the present invention include a step of placing a substrate provided with an optical film on the susceptor and irradiating the optical film with light from a flash lamp.

本発明によれば、サセプタの面内に反射率の異なる領域を設けることとしたので、光学膜に照射される光量の面内不均一が抑制され、その結果、低応力で且つ光学特性の面内均一性に優れた光学膜を得ることが可能となる。このようなサセプタを用いて閃光照射を行なう手法は、フォトマスクブランクの製造等に有用である。   According to the present invention, since regions having different reflectivities are provided in the surface of the susceptor, in-plane non-uniformity of the amount of light irradiated to the optical film is suppressed, and as a result, the surface has low stress and optical characteristics. An optical film excellent in internal uniformity can be obtained. Such a method of performing flash irradiation using a susceptor is useful for manufacturing a photomask blank or the like.

全面に白色不透明層(泡入り石英製)を配した平板状サセプタの上に、ArF用のハーフトーン位相シフト膜として機能するMoSiON膜を光学膜として備えた石英基板を載置して閃光照射を施した後に、当該光学膜の透過率を基板中心から基板対角線上に沿って測定したした結果を示した図である。A quartz substrate equipped with a MoSiON film functioning as a halftone phase shift film for ArF as an optical film is placed on a flat plate susceptor having a white opaque layer (made of foamed quartz) on the entire surface, and flash irradiation is performed. It is the figure which showed the result of having measured the transmittance | permeability of the said optical film along the board | substrate diagonal from the board | substrate center after giving. 端部に主面と45°の角度を成す面取り面を有している石英基板の断面(一部)図である。It is a cross section (partial) figure of the quartz substrate which has the chamfering surface which makes an angle of 45 degrees with the main surface in the edge part. 面取り面1から入射した光によりサセプタの表面における光入射量が多くなる位置と、少なくとも反射率を高くしておく領域を求めるための図である。It is a figure for calculating | requiring the area | region where the light incident amount on the surface of a susceptor increases with the light which injected from the chamfering surface 1, and at least the area | region which makes a reflectance high. 本発明に係るサセプタ例の上面図である。It is a top view of the example of a susceptor concerning the present invention. 130mm角のみを不透明領域とし他の領域を透明としたサセプタ(A)および全面不透明領域のサセプタ(B)を用いて閃光照射を施した後の光学膜の透過率の面内分布を示す図である。The figure which shows the in-plane distribution of the transmittance | permeability of the optical film after performing flash irradiation using the susceptor (A) which made only 130 mm square an opaque area | region, and the other area | region transparent, and the susceptor (B) of a whole opaque area | region. is there.

以下に図面を参照して、本発明を実施するための最良の形態について説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

先ず、閃光照射により光学膜特性の面内不均一性の発生原因についての本発明者らの解釈について説明する。   First, the inventors' interpretation of the cause of in-plane non-uniformity of the optical film characteristics due to flash irradiation will be described.

図1は、全面に白色不透明層(泡入り石英製)を配した平板状サセプタの上に、ArF用のハーフトーン位相シフト膜として機能するMoSiON膜を光学膜として備えた石英基板を載置して閃光照射を施した後に、当該光学膜の透過率を基板中心から基板対角線上に沿って測定したした結果を示した図である。   In FIG. 1, a quartz substrate having a MoSiON film functioning as a halftone phase shift film for ArF as an optical film is placed on a flat plate susceptor having a white opaque layer (made of foamed quartz) on the entire surface. FIG. 5 is a diagram showing the result of measuring the transmittance of the optical film along the diagonal of the substrate from the center of the substrate after flash irradiation.

なお、図2に示したように、石英基板10(1辺が152mmの正方形で厚さは約6mm)は、端部に、主面と45°の角度を成す面取り面11を有している。   As shown in FIG. 2, the quartz substrate 10 (a square with a side of 152 mm and a thickness of about 6 mm) has a chamfered surface 11 at an angle of 45 ° with the main surface at the end. .

図1に示したとおり、光学膜の透過率は、基板の対角線上中心から60mm付近までは概ね均一である一方、中心から90mm付近で顕著な透過率上昇を示し、基板の端部に近づくにつれて急激に低下している。   As shown in FIG. 1, the transmittance of the optical film is substantially uniform from the diagonal center of the substrate to around 60 mm, while showing a significant increase in transmittance around 90 mm from the center, and as it approaches the edge of the substrate. It has dropped rapidly.

これは、閃光ランプから発せられた光が、光を反射する素材で作製されたハウジング壁やチャンバ内壁で反射して面取り面11から入射し、更に、サセプタ30の基板載置面で反射して、当該反射光が光学膜20に照射されることによるものと理解される。そして、このような反射光は、基板10の対角線上でみた場合に、基板中心から約90mm付近に集中し易いために、当該位置での光学膜の透過率が他の位置の透過率と大きく異なってしまう結果となる。   This is because the light emitted from the flash lamp is reflected by the housing wall or the inner wall of the chamber made of a material that reflects the light, enters from the chamfered surface 11, and further reflects by the substrate mounting surface of the susceptor 30. It is understood that the reflected light is applied to the optical film 20. Such reflected light tends to concentrate about 90 mm from the center of the substrate when viewed on the diagonal line of the substrate 10, so that the transmittance of the optical film at that position is larger than the transmittance at other positions. The result will be different.

この点について更に説明すると、一般に、基板10の端部は、例えばフォトマスクブランクの製造工程やフォトマスクの使用時においてクラック等が生じ難いように、テーパ状に面取りされている。また、基板10の主面には、その全面に光学膜20が形成されているわけではないため、基板の面取り面11は露出された状態にある。なお、一般的には、面取り面11は、基板主面に対し45°の角度を有し、基板の端面から0.5mm程度内側まで形成されている。   This point will be further described. In general, the end portion of the substrate 10 is chamfered in a tapered shape so that, for example, cracks and the like are unlikely to occur during the manufacturing process of the photomask blank and the use of the photomask. Further, since the optical film 20 is not formed on the entire main surface of the substrate 10, the chamfered surface 11 of the substrate is exposed. In general, the chamfered surface 11 has an angle of 45 ° with respect to the main surface of the substrate, and is formed from the end surface of the substrate to about 0.5 mm inside.

上述のような面取り面11を有する基板10では、ハウジング壁やチャンバ内壁で反射した光が面取り面11から入射し易い。このような入射光は基板10中を直進してサセプタ30の白色不透明層で反射し、当該反射光が光学膜20によって吸収されることとなる。つまり、光学膜に照射される閃光の光量は、面内の特定の場所において実効的に高くなり、その結果、光学特性の面内均一性が悪化することとなる。   In the substrate 10 having the chamfered surface 11 as described above, light reflected by the housing wall and the chamber inner wall is likely to enter from the chamfered surface 11. Such incident light travels straight through the substrate 10 and is reflected by the white opaque layer of the susceptor 30, and the reflected light is absorbed by the optical film 20. That is, the amount of flash light applied to the optical film is effectively increased at a specific location in the plane, and as a result, the in-plane uniformity of the optical characteristics is deteriorated.

なお、このとき、面取り面11に照射される光は多数の入射角度成分をもち得るが、本発明者らは、光学膜20への影響という観点からは、面取り面11から基板10内へと入射してくる光のうち、面取り面11に対して垂直に近いものの寄与が大きいと考えており、特に垂直な入射角を有する光成分の寄与に注目している。   At this time, the light irradiated onto the chamfered surface 11 may have a large number of incident angle components. However, the present inventors have introduced the chamfered surface 11 into the substrate 10 from the viewpoint of influence on the optical film 20. Of the incident light, it is considered that the contribution of light that is nearly perpendicular to the chamfered surface 11 is large, and particularly attention is paid to the contribution of a light component having a perpendicular incident angle.

図3は、上記の仮定の下において、面取り面11から入射した光により、サセプタ30の表面における光入射量が多くなる位置を求めるための図である。この図の例では、基板10の厚さはLであり、面取り面11が基板10の端面から長さDだけ内側まで主面に対し角度θ(0<θ<90°)で設けられている。この場合、面取り面11の右端部からの光は、基板10の最端部をサセプタ30の主面上に垂直投影して得られる輪郭(a)から(L−D・tanθ)・tanθだけ内側(b)に入射する。また、面取り面11の左端部からの光は、基板10の最端部をサセプタ30の主面上に垂直投影して得られる輪郭(a)から(D+Ltanθ)だけ内側(c)に入射する。   FIG. 3 is a diagram for obtaining a position where the amount of light incident on the surface of the susceptor 30 is increased by the light incident from the chamfered surface 11 under the above assumption. In the example of this figure, the thickness of the substrate 10 is L, and the chamfered surface 11 is provided at an angle θ (0 <θ <90 °) with respect to the main surface from the end surface of the substrate 10 to the inside by a length D. . In this case, the light from the right end portion of the chamfered surface 11 is inward from the contour (a) obtained by vertically projecting the outermost end portion of the substrate 10 onto the main surface of the susceptor 30 by (LD · tan θ) · tan θ. Incident to (b). In addition, light from the left end portion of the chamfered surface 11 is incident on the inner side (c) by (D + Ltanθ) from a contour (a) obtained by vertically projecting the outermost end portion of the substrate 10 onto the main surface of the susceptor 30.

つまり、面取り面11に垂直に入射した光は、サセプタ30の主面上に基板10の最端部を垂直投影して得られる輪郭(a)内の(L−D・tanθ)・tanθだけ内側(b)の領域であり、かつ、(D+Ltanθ)だけ内側(c)の領域を含まない領域(d)の光入射量を局所的に高めることとなる。   That is, the light incident perpendicularly to the chamfered surface 11 is inward by (LD · tanθ) · tanθ in the contour (a) obtained by vertically projecting the endmost portion of the substrate 10 onto the main surface of the susceptor 30. The amount of light incident on the region (d) that is the region (b) and does not include the inner (c) region by (D + Ltanθ) is locally increased.

そして、このような光はサセプタ30の面で反射され、光学膜領域へと到達し、当該領域に過剰なエネルギを与えることになる。   Such light is reflected by the surface of the susceptor 30, reaches the optical film region, and gives excessive energy to the region.

なお、上述のように一般的に用いられる基板は、厚さが6.4mm、面取り面の角度が45°、また面取りの主面上の長さが0.5であるとすると、それぞれ、基板最端面から12.3mmより内側で13.3mmより外側の領域が過剰エネルギ照射されることとなる。   As described above, the generally used substrate has a thickness of 6.4 mm, an angle of the chamfered surface of 45 °, and a length on the main surface of the chamfer of 0.5, respectively. A region inside 12.3 mm and outside 13.3 mm from the endmost surface is irradiated with excess energy.

このような理解のもと、本発明者らは、サセプタ面内の入射光量の少ない領域と多い領域で異なる反射率をもたせることにより、光学膜に照射される閃光量を均一化することを想到した。   Based on this understanding, the present inventors have conceived that the amount of flash light irradiated on the optical film is made uniform by providing different reflectances in a region with a small amount of incident light and a region with a large amount of light on the susceptor surface. did.

なお、ここで言う「反射率」とは、素材の微小領域がもつミクロな反射率のことではなく、垂直に入射した光が、反射成分と透過成分と吸収成分とに分かれる場合の、入射光量に対する反射成分の比を意味する。このため、上記反射率は、更に、局所的な数字を言うものではなく、その領域の平均された反射率を意味する。   The “reflectance” mentioned here is not the micro-reflectance of the micro area of the material, but the incident light quantity when the vertically incident light is divided into a reflection component, a transmission component, and an absorption component. Means the ratio of the reflection component to. For this reason, the said reflectance does not say a local number further, but means the average reflectance of the area | region.

例えば、サセプタ材料には、アルミニウムのような反射率の極めて高い材料や、石英のような吸収成分を殆どもたない材料が使用されるが、石英材料を例に取ると、泡入り石英や、表面あるいは内部に粗面をもつ石英は、乱反射による反射成分の寄与により反射率の高い材料となる。つまり、上述の定義に従えば、透明石英は泡入り石英等に比べて反射率の低い材料であり、乱反射成分が多くなるに従い反射率の高い材料となる。また、不透明石英においても、不透明度が高くなるに従い反射率が高い材料となる。   For example, as the susceptor material, a material having a very high reflectance such as aluminum or a material having almost no absorption component such as quartz is used. Quartz with a rough surface or inside becomes a highly reflective material due to the contribution of reflection components due to irregular reflection. That is, according to the above definition, transparent quartz is a material having a lower reflectance than foamed quartz or the like, and a material having a higher reflectance as the irregular reflection component increases. Also, opaque quartz becomes a material having a high reflectance as the opacity increases.

図4は、本発明に係るサセプタ例の上面図で、このサセプタ30は円形平板状で、その内側に基板を載置する矩形領域を有しており、基板載置領域の周縁部に、他の基板載置領域(30H)の反射率(R1)よりも低い反射率(R2)を有する領域(4辺が帯状の領域:30L)を有している。また、(30H)の外側の周辺領域(4辺が帯状の領域:30X)の反射率は、(R2)と等しくても、それより大きくても良い。   FIG. 4 is a top view of an example of a susceptor according to the present invention. This susceptor 30 has a circular flat plate shape and has a rectangular area on which a substrate is placed. The substrate mounting region (30H) has a region (4 side belt-shaped region: 30L) having a reflectance (R2) lower than the reflectance (R1). Further, the reflectance of the peripheral region outside (30H) (region having four sides of a band: 30X) may be equal to or greater than (R2).

当該サセプタの基板載置領域には、例えば図3に図示したような端部に面取り部を有する基板が置かれ、その主面に設けられた光学膜に閃光ランプからの光照射が施されてフォトマスクブランク等が製造される。   In the substrate mounting region of the susceptor, for example, a substrate having a chamfered portion at the end as shown in FIG. 3 is placed, and the optical film provided on the main surface is irradiated with light from a flash lamp. A photomask blank or the like is manufactured.

この場合、上述の反射率R2を有する低反射率領域(30L)は、基板の最端部をサセプタ30の主面上に垂直投影して得られる輪郭内の(L−D・tanθ)・tanθだけ内側の矩形cと(D+L・tanθ)だけ内側の矩形dに挟まれた領域を必ず含むように設けられる。また、上述の反射率R1を有する高反射率領域(30H)は、上記(D+L・tanθ)よりα(L・tanθ)だけ内側の矩形e、すなわち上記基板の最端部をサセプタ30の主面上に垂直投影して得られる輪郭より{D+L・tanθ+α(L・tanθ)}だけ内側の矩形eの内部領域を必ず含み、かつ、その外縁が上記(D+L・tanθ)だけ内側の矩形dの内側にあるように設けられる。なお、αの値は正であり、1以下であれば被照射膜にほぼ均質な光照射量を与えることができ、0.66以下であれば、より均質な光照射量を与えることができる。   In this case, the low reflectance region (30L) having the reflectance R2 described above is (LD−tanθ) · tanθ within the contour obtained by vertically projecting the endmost portion of the substrate onto the main surface of the susceptor 30. It is provided so as to necessarily include a region sandwiched between the inner rectangle c and the inner rectangle d by (D + L · tan θ). In addition, the high reflectance region (30H) having the reflectance R1 described above is the rectangle e inside (D · L · tan θ) by α (L · tan θ) from the above (D + L · tan θ), that is, the outermost end of the substrate is the main surface of the susceptor 30. It always includes the inner area of the rectangle e inside by {D + L · tan θ + α (L · tan θ)} from the outline obtained by vertical projection on the inside, and the outer edge is inside the rectangle d inside (D + L · tan θ) above. Is provided. Note that the value of α is positive, and if it is 1 or less, it is possible to give a substantially uniform light irradiation amount to the irradiated film, and if it is 0.66 or less, it is possible to give a more uniform light irradiation amount. .

上述の反射率R1は、波長200〜600nmの光に対して40%以上であることが好ましい。   The reflectance R1 described above is preferably 40% or more for light with a wavelength of 200 to 600 nm.

高反射領域および低反射領域に用いるサセプタ材料の組み合わせとしては、例えば、高反射率領域は不透明石英ガラス、低反射率領域は透明石英ガラスなどとする。この場合、不透明石英ガラスには、気泡を含有させた石英ガラスを用いることができる。直径が1mmより小さく0.8μmより大きな気泡を含ませることによって不透明化した石英材料は、機械強度を維持しつつ気泡含有量を上げることで、反射率を40%程度まで上げることができる。   As a combination of the susceptor materials used for the high reflection region and the low reflection region, for example, the high reflectance region is opaque quartz glass, the low reflectance region is transparent quartz glass, and the like. In this case, quartz glass containing bubbles can be used as the opaque quartz glass. The quartz material made opaque by including bubbles with a diameter smaller than 1 mm and larger than 0.8 μm can increase the reflectance to about 40% by increasing the bubble content while maintaining the mechanical strength.

他のサセプタ材料の組み合わせとしては、高反射率領域と低反射率領域を何れも気泡を含有させた不透明石英ガラスとし、高反射率領域の気泡含有量を低反射率領域の気泡含有量よりも多いものとするようにしてもよい。   Other susceptor material combinations include opaque quartz glass containing bubbles in both the high reflectivity region and the low reflectivity region, and the bubble content in the high reflectivity region is higher than the bubble content in the low reflectivity region. You may make it be many.

さらに、高反射率領域はアルミニウムからなり、低反射率領域は不透明石英ガラスからなるようにすることもできる。   Further, the high reflectance region may be made of aluminum, and the low reflectance region may be made of opaque quartz glass.

なお、上記低反射率領域の設計は、上述の通り面取り面から垂直に入射してくる成分が最も大きな寄与をするためであるが、図3のdで示した位置(面とり面より垂直に入射した光が到達する最も内側の位置)に正確に一致させる必要はなく、本発明の趣旨を逸脱しない範囲、例えば基板内側方向に、図3で示したSの幅、すなわちα(L・tanθ)以内であれば、その領域も含むようにしてもよい。これは、面取り面に非垂直入射する光成分もあるためであり、非垂直入射する成分による影響が出る幅は、基板の厚みと面取り面の角度の関数となるからである。上記αは上述の通り、1以下に設計すればかなりの効果が得られ、0.66以下とした場合には十分な効果が得られる。   The design of the low reflectance region is because the component perpendicularly incident from the chamfered surface makes the largest contribution as described above, but the position indicated by d in FIG. 3 (perpendicular to the chamfered surface). The width of S shown in FIG. 3, that is, α (L · tan θ) does not need to be exactly matched to the innermost position where the incident light reaches) and does not deviate from the gist of the present invention, for example, in the substrate inner direction. ), The area may be included. This is because there is a light component that is incident non-perpendicularly on the chamfered surface, and the width that is affected by the component that is incident non-perpendicularly is a function of the thickness of the substrate and the angle of the chamfered surface. As described above, if α is designed to be 1 or less, a considerable effect can be obtained, and if it is 0.66 or less, a sufficient effect can be obtained.

本発明のサセプタを、高反射率領域は気泡を含ませることによって不透明化した不透明石英ガラス、低反射率領域は透明石英ガラスで構成した場合を例にとると、低反射率領域に入射した光の多くはサセプタで反射されずに裏面へと抜ける一方、サセプタが置かれている装置ハウジング底面によって反射は生じるが、反射して戻ってくる光は、サセプタの反射率の高い領域に戻ってくるため、被照射材料である光学膜へのエネルギ供与は極めて小さくなる。   Taking the susceptor of the present invention as an example in which the high reflectance region is made of opaque quartz glass made opaque by including bubbles, and the low reflectance region is made of transparent quartz glass, the light incident on the low reflectance region is taken as an example. Most of the light is not reflected by the susceptor but escapes to the back surface, while reflection is caused by the bottom of the device housing where the susceptor is placed, but the light that is reflected back returns to the highly reflective area of the susceptor. For this reason, energy supply to the optical film as the irradiated material is extremely small.

これに対し、高反射率領域に入射してくる光の多くは一旦光学膜を通過した光であり既に減衰されているものであるが、この減衰された光は比較的高い比率で反射されて光学膜に再度入射する。   On the other hand, most of the light incident on the high reflectivity region is light that has once passed through the optical film and has already been attenuated, but this attenuated light is reflected at a relatively high rate. Re-enter the optical film.

従って、高反射率領域に対応する光学膜部分と低反射率領域に対応する光学膜部分とで閃光照射量の均一化が図られ、その結果、光学膜特性の面内均一化が図れることになる。加えて、高反射率領域の反射率を十分に高いものとすることで、再入射光のエネルギが有効に利用され、光照射エネルギ量を低く設定することが可能となる。   Accordingly, the amount of flash light irradiation can be made uniform between the optical film portion corresponding to the high reflectance region and the optical film portion corresponding to the low reflectance region, and as a result, the in-plane uniformity of the optical film characteristics can be achieved. Become. In addition, by making the reflectance of the high reflectance region sufficiently high, the energy of the re-incident light is effectively used, and the light irradiation energy amount can be set low.

なお、図3のcで示した点より外側に上記(30L)よりも反射率の高い周辺領域(図4の領域30X)を設けても良い。周辺領域(30X)は上記R2の反射率を持っていても、本発明の照射量を平均化するという最低限の目的を達することはできるが、図1に示された、基板端部の照射量が少ないと考えられる領域に対しても平均化を図るためには、この(30X)の領域の反射率を高くすることが有効である。また、(30X)の領域の反射率を高くする場合には、上記(30H)と(30L)の境界の場合と同様、図3のc点より外側に、β(L・tanθ)の幅をもって(30L)と(30X)の境界を設けても良く、βの値は0.66以下であることが好ましい。   Note that a peripheral region (region 30X in FIG. 4) having a higher reflectance than the above (30L) may be provided outside the point indicated by c in FIG. Even if the peripheral region (30X) has the reflectivity of R2, the minimum object of averaging the dose of the present invention can be achieved, but the irradiation at the edge of the substrate shown in FIG. It is effective to increase the reflectivity of this (30X) region in order to average the region considered to have a small amount. Further, in the case of increasing the reflectance of the region (30X), as in the case of the boundary between (30H) and (30L), a width of β (L · tan θ) is provided outside the point c in FIG. A boundary between (30L) and (30X) may be provided, and the value of β is preferably 0.66 or less.

上述のサセプタの設計は、閃光ランプ光照射装置として、中央に閃光照射ランプを1つ有し、被照射体1枚に対して閃光を照射する装置を基準に行ったものであるが、場合によっては2以上の被照射体に照射する装置とする場合もあり、このような装置を用いて照射を行う際に被照射体である光学膜に入射するエネルギ量を平均化するには、より複雑な設計が必要になる。このような場合、閃光ランプ照射を行った際に、基板が載置される領域各部に到達する照射光量を求め、到達光量の多い部分を低反射率領域としてやれば良い。なお、到達する照射光量の大小は、図1に示した無機膜の透過率変化の原理を用い、被照射体載置部に半透過性の無機膜を置いておき、その透過率変化より測定することができる。   The design of the susceptor described above is based on an apparatus that has one flash irradiation lamp in the center as a flash lamp light irradiation device and irradiates a single irradiated object with flash light. May be an apparatus that irradiates two or more irradiated objects, and it is more complicated to average the amount of energy incident on the optical film that is the irradiated object when irradiation is performed using such an apparatus. Design is required. In such a case, when the flash lamp irradiation is performed, the amount of irradiation light reaching each part of the region on which the substrate is placed may be obtained, and a portion with a large amount of reaching light may be set as the low reflectance region. Note that the amount of irradiated light reached is measured by using the principle of change in transmittance of the inorganic film shown in FIG. 1 and placing a semi-permeable inorganic film on the irradiated object mounting portion and measuring the change in transmittance. can do.

本発明のサセプタを用いて閃光ランプ光照射処理を行い、光学膜中の応力低減を実行すれば、閃光照射量の均一化が図られるため、光学膜の特性の面内均一性を維持した状態で光学膜の応力低減が可能となる。例えば、合成石英ガラスやフッ化カルシウム等の透明基板上に、閃光ランプから照射される光を吸収可能な光学膜(例えば、位相シフト膜)を成膜した後、この基板を上述の構成のサセプタに載置し、光学膜に閃光照射して膜中の応力低減を行った後に、必要に応じて、当該光学膜上に他の光学膜等が成膜されてフォトマスクブランクとされる。   When the flash lamp light irradiation treatment is performed using the susceptor of the present invention and the stress reduction in the optical film is executed, the flash light irradiation amount can be made uniform, so that the in-plane uniformity of the characteristics of the optical film is maintained. Thus, the stress of the optical film can be reduced. For example, after forming an optical film (for example, a phase shift film) capable of absorbing light irradiated from a flash lamp on a transparent substrate such as synthetic quartz glass or calcium fluoride, the substrate is formed into a susceptor having the above-described configuration. After the optical film is irradiated with flash light to reduce the stress in the film, if necessary, another optical film or the like is formed on the optical film to form a photomask blank.

なお、閃光照射を受ける光学膜としては、フォトマスクブランクに形成される位相シフト膜、遮光膜、反射防止膜などが例示されるが、本発明の閃光照射方法は、本件発明に使用する閃光ランプが、一般的には、閃光が約1〜10ミリ秒の間に約20J/cmものエネルギで照射するものであることを考慮すると、その波長の光吸収能が高すぎる場合には、特別な減光手段を用いないと膜が破壊される可能性がある。 Examples of the optical film that receives the flash irradiation include a phase shift film, a light shielding film, and an antireflection film formed on the photomask blank. The flash irradiation method of the present invention is a flash lamp used in the present invention. However, in general, considering that the flash light is irradiated with an energy of about 20 J / cm 2 in about 1 to 10 milliseconds, it is special if the light absorption capacity at that wavelength is too high. If no dimming means is used, the film may be destroyed.

閃光ランプは発光時間が短く、高照度で連続した幅広の波長領域をもつ光源で、例えばキセノンフラッシュランプがこれにあたる。このため、レーザ光源を用いる場合とは異なり、光吸収膜が特定波長の光に対して大きな吸収を示す膜である必要はない。従って、閃光照射の手法による応力制御が可能な膜組成などの制約は極めて緩やかであり、応用範囲は広い。また、基板上で照射光を走査させる必要もなく、基板全面に短時間で光照射(エネルギ付与)することができる。さらに、広い波長領域にわたるスペクトルをもつために、種々の波長の光の照射効果を同時に得ることもできる。   The flash lamp is a light source having a short light emission time and a wide wavelength range with high illuminance, for example, a xenon flash lamp. For this reason, unlike the case of using a laser light source, the light absorption film does not need to be a film that exhibits large absorption with respect to light of a specific wavelength. Therefore, the restrictions on the film composition and the like that can control the stress by the flash irradiation method are extremely loose, and the application range is wide. Further, it is not necessary to scan the irradiation light on the substrate, and the entire surface of the substrate can be irradiated with light (given energy) in a short time. Furthermore, since it has a spectrum over a wide wavelength region, it is possible to simultaneously obtain irradiation effects of light of various wavelengths.

このような閃光がハーフトーン位相シフト膜などの光学膜(閃光吸収膜)に照射されると、その照射光の吸収や急激な温度変化等によって膜組成や原子の結合状態等が変化して応力低減が生じると考えられる。   When such a flash is applied to an optical film (flash absorption film) such as a halftone phase shift film, the film composition, atomic bonding state, etc. change due to absorption of the irradiation light or a sudden temperature change, resulting in stress. A reduction is believed to occur.

先ず、厚さが6.35mm、四辺の長さがそれぞれ152mmであり、主面方向に基板端部より長さ0.50mmまで、主面に対し角度45°の面取り面をもつ合成石英製透明基板を準備し、この基板上に反応性DCスパッタリングにより、MoSiONからなるハーフトーン位相シフト膜を膜厚760Åで成膜した。   First, a synthetic quartz transparent having a thickness of 6.35 mm and a length of four sides of 152 mm each, and a chamfered surface with an angle of 45 ° with respect to the main surface, extending from the edge of the substrate to a length of 0.50 mm in the main surface direction. A substrate was prepared, and a halftone phase shift film made of MoSiON was formed on the substrate with a film thickness of 760 mm by reactive DC sputtering.

なお、この位相シフト膜は、露光光としてArFエキシマレーザ(193nm)を用いた場合、位相差が約180°で、透過率が約5%となる膜である。そして、この基板(すなわち位相シフト膜付基板)を温度80℃に加熱した後に、サセプタに位相シフト膜を上にした状態で載置し、上方からキセノン閃光ランプ光を用いてエネルギ照射した。この際、サセプタの不透明領域を基板より小さい130mm角として処理を行った。   This phase shift film is a film having a phase difference of about 180 ° and a transmittance of about 5% when an ArF excimer laser (193 nm) is used as exposure light. And after heating this board | substrate (namely, board | substrate with a phase shift film) to the temperature of 80 degreeC, it mounted in the state which faced the phase shift film on the susceptor, and irradiated energy using the xenon flash lamp light from the upper part. At this time, the opaque region of the susceptor was processed as a 130 mm square smaller than the substrate.

図5は、上述の130mm角のみを不透明領域とし他の領域を透明としたサセプタ(A)および全面不透明領域のサセプタ(B)を用い、それぞれのサセプタに光学膜を設けた基板を載置して閃光照射を施した後の光学膜の透過率の面内分布を示す図である。なお、上記不透明領域の反射率は、波長200〜600nmの光に対して40%以上である。   FIG. 5 shows a susceptor (A) in which only the 130 mm square is an opaque region and the other regions are transparent, and a susceptor (B) in the entire opaque region, and a substrate on which an optical film is provided on each susceptor. It is a figure which shows the in-plane distribution of the transmittance | permeability of the optical film after performing flash irradiation. In addition, the reflectance of the said opaque area | region is 40% or more with respect to the light with a wavelength of 200-600 nm.

この図から、全面不透明領域のサセプタ(B)を用いて閃光照射した際に生じていた中心から約90mmにある透過率のピークが、130mm角のみ不透明領域で他の領域を透明としたサセプタ(A)を用いて閃光照射した場合には抑えられていることが分かる。   From this figure, the transmittance peak at about 90 mm from the center, which was generated when flashing was performed using the susceptor (B) in the entire opaque region, was a susceptor in which only the 130 mm square was an opaque region and the other regions were transparent. It can be seen that it is suppressed when flash irradiation is performed using A).

これは、既に説明したように、面取り面から入射した光がサセプタAの不透明領域で反射されることなく通過する為、当該位置に対応する光学膜部分への閃光照射量が抑えられた為である。   This is because the light incident from the chamfered surface passes without being reflected by the opaque region of the susceptor A, as described above, and the amount of flash irradiation to the optical film portion corresponding to the position is suppressed. is there.

本実施例では、サセプタの不透明材料として石英ガラスからなる「泡入りガラス」を用いたが、当該材料はこれに限定されるものではない。また、サセプタは種々の態様のものが可能であり、サセプタ全てを不透明材料で構成したり不透明層と透明層を複数積層する構成のものとしたりすることも可能である。   In this embodiment, “foamed glass” made of quartz glass is used as the opaque material of the susceptor, but the material is not limited to this. In addition, the susceptor can have various forms, and the susceptor can be made of an opaque material, or a structure in which a plurality of opaque layers and transparent layers are stacked.

位相シフト膜などの光学膜中に蓄積された歪量(応力量)を制御し易くするために、閃光照射の量は所定量以下の光エネルギに制御される。これは、閃光照射量が高すぎると光学膜の膜質が損なわれることに加え、過剰照射による膜の破壊の恐れがあるためである。閃光照射光のエネルギの「所定量」は作製されるフォトマスクブランクが備える光学膜の光学特性に依存し、例えば、位相シフトマスクの場合には、位相シフト膜の膜厚、透過率に依存することとなる。   In order to make it easier to control the amount of strain (stress amount) accumulated in an optical film such as a phase shift film, the amount of flash irradiation is controlled to a predetermined amount or less of light energy. This is because if the amount of flash irradiation is too high, the film quality of the optical film is impaired and the film may be destroyed by excessive irradiation. The “predetermined amount” of the energy of flash irradiation light depends on the optical characteristics of the optical film provided in the photomask blank to be manufactured. For example, in the case of a phase shift mask, it depends on the thickness and transmittance of the phase shift film. It will be.

位相シフト膜としては、例えばアモルファスシリコン膜、酸素、窒素、炭素等を含有する金属化合物膜等があり、特にケイ素とケイ素以外の金属と、酸素、窒素及び炭素から選ばれる1種又は2種以上とを含有する層を単層又は多層で含む位相シフト膜はその光学特性制御性に優れる膜である。なお、位相シフト膜中に含有されるケイ素以外の金属としては、W、Mo、Ti、Ta、Zr、Hf、Nb、V、Co、Cr又はNi等が挙げられるが、閃光照射後の反りの低減や耐薬品性向上という観点からは、Moをベースにしたものが好ましい。   Examples of the phase shift film include an amorphous silicon film, a metal compound film containing oxygen, nitrogen, carbon, and the like, and in particular, one or more selected from metals other than silicon and silicon, and oxygen, nitrogen, and carbon. The phase shift film including a single layer or a multilayer containing the above is a film having excellent optical property controllability. Examples of metals other than silicon contained in the phase shift film include W, Mo, Ti, Ta, Zr, Hf, Nb, V, Co, Cr, and Ni. From the viewpoint of reduction and improvement in chemical resistance, those based on Mo are preferred.

そのような組成の位相シフト膜としては、モリブデンシリサイド酸化物(MoSiO)、モリブデンシリサイド窒化物(MoSiN)、モリブデンシリサイド炭化物(MoSiC)、モリブデンシリサイド酸化窒化物(MoSiON)、モリブデンシリサイド酸化炭化物(MoSiOC)又はモリブデンシリサイド酸化窒化炭化物(MoSiONC)などがあり、このようなモリブデンシリサイド系の位相シフト膜は、ターゲットとしてMoSi等を用いた反応性スパッタリング法により成膜することができる。   As the phase shift film having such a composition, molybdenum silicide oxide (MoSiO), molybdenum silicide nitride (MoSiN), molybdenum silicide carbide (MoSiC), molybdenum silicide oxynitride (MoSiON), molybdenum silicide oxycarbide (MoSiOC) Alternatively, there is molybdenum silicide oxynitride carbide (MoSiONC) or the like, and such a molybdenum silicide phase shift film can be formed by a reactive sputtering method using MoSi or the like as a target.

閃光照射される位相シフト膜が上述のようなモリブデンシリサイド系の膜である場合には、膜仕様としてKrF、ArF、Fレーザ露光用があり得るが、その透過率は200〜1100nmの波長範囲において、KrF用、ArF用、F用の順に高くなる。つまり、膜質により光の吸収効率が異なるため、閃光ランプによる照射エネルギにも各々適正領域があり、KrF、ArF、Fの順に大きくすることが必要となる。 When the phase shift film is irradiated with flash light is a film of molybdenum silicide system such as described above, KrF as film specifications, ArF, although there may be a F 2 laser exposure, the transmittance wavelength range of 200~1100nm in is higher for KrF, for ArF, in order for F 2. That is, since the absorption efficiency of light varies depending on the film quality, there is respectively appropriate region on the irradiation energy by the flash lamp, comprising KrF, ArF, and needs to be larger in the order of F 2.

具体的には、KrFレーザの波長(248nm)の光に対して5〜7%の透過率を有する位相シフト膜に対しては、閃光照射エネルギはカロリーメータの測定値で21.5J/cm2以下の所定量とされる。また、ArFレーザの波長(193nm)の光に対して5〜7%の透過率を有する位相シフト膜に対しては、閃光照射エネルギは32.5J/cm2以下の所定量とされる。さらに、F2レーザの波長(157nm)の光に対して5〜7%の透過率を有する位相シフト膜に対しては、閃光照射エネルギは41.5J/cm2以下の所定量とされる。ノマルスキー顕微鏡による観察によれば、位相シフト膜に上記の値よりも高い光エネルギで閃光照射すると、基板表面の位相シフト膜の一部が破壊されていることが確認されている。 Specifically, for a phase shift film having a transmittance of 5 to 7% with respect to light having a wavelength of KrF laser (248 nm), the flash irradiation energy is 21.5 J / cm 2 as measured by a calorimeter. The following predetermined amount is used. For the phase shift film having a transmittance of 5 to 7% with respect to the light of the ArF laser wavelength (193 nm), the flash irradiation energy is a predetermined amount of 32.5 J / cm 2 or less. Further, for the phase shift film having a transmittance of 5 to 7% with respect to the light of the wavelength (157 nm) of the F 2 laser, the flash irradiation energy is set to a predetermined amount of 41.5 J / cm 2 or less. According to observation with a Nomarski microscope, it has been confirmed that a part of the phase shift film on the substrate surface is destroyed when the phase shift film is irradiated with flash light with light energy higher than the above value.

なお、本発明において、閃光ランプの単位発光時間(一回の発光に要する時間)は一般的には100μsec〜1secの範囲で設定される。なお、閃光ランプの照射時間が短いと照射波長は短波長側へシフトする傾向があり、閃光ランプの照射時間が長いと照射波長は長波長側へシフトする傾向がある。このため、本実施例では、閃光ランプの単位発光時間を0.1msec〜100msecの範囲内で設定することとし、具体的には1〜10msec程度の照射時間とした。   In the present invention, the unit light emission time (time required for one light emission) of the flash lamp is generally set in the range of 100 μsec to 1 sec. When the irradiation time of the flash lamp is short, the irradiation wavelength tends to shift to the short wavelength side, and when the irradiation time of the flash lamp is long, the irradiation wavelength tends to shift to the long wavelength side. For this reason, in this embodiment, the unit light emission time of the flash lamp is set within the range of 0.1 msec to 100 msec, specifically, the irradiation time is about 1 to 10 msec.

以上、実施例により本発明のサセプタを用いた閃光照射について説明したが、上記実施例は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではない。これらの実施例を種々変形することは本発明の範囲内にあり、更に本発明の範囲内において他の様々な実施例が可能であることは上記記載から自明である。   As described above, the flash irradiation using the susceptor of the present invention has been described by way of examples. However, the above examples are merely examples for carrying out the present invention, and the present invention is not limited to these examples. It is apparent from the above description that various modifications of these embodiments are within the scope of the present invention, and that various other embodiments are possible within the scope of the present invention.

本発明により、低応力で且つ光学特性の面内均一性に優れた光学膜の提供が可能となる。   According to the present invention, it is possible to provide an optical film having low stress and excellent in-plane uniformity of optical characteristics.

10 基板
11 面取り面
20 光学膜
30 サセプタ
30L 低反射率領域
30H 高反射率領域
10 Substrate 11 Chamfered surface 20 Optical film 30 Susceptor 30L Low reflectance region 30H High reflectance region

Claims (10)

透明基板上に設けられた光学膜に閃光を照射する際に用いられるサセプタであって、
前記サセプタに前記基板を載置した際、前記サセプタの前記基板が載置される領域には反射率の高い領域と反射率が低い領域があり、
前記反射率が高い領域は閃光を照射した際に到達する照射光量が少ない領域であり、前記反射率が低い領域は閃光を照射した際に到達する照射光量が多い領域であるサセプタ。
A susceptor used when irradiating an optical film provided on a transparent substrate with a flash,
When the substrate is placed on the susceptor, the region of the susceptor where the substrate is placed includes a region having a high reflectance and a region having a low reflectance.
The susceptor in which the region having a high reflectance is a region having a small amount of irradiated light reaching when the flash is irradiated, and the region having a low reflectance is a region having a large amount of irradiated light reaching when the flash is irradiated.
主面と端面との間に面取り面を有する透明基板上に設けられた光学膜に閃光を照射する際に用いられるサセプタであって、
前記サセプタに前記基板を載置した際、前記サセプタの前記基板が載置される矩形領域内において、前記基板の上側の面取り面より入射した照射光の前記基板載置領域上への到達領域である4辺帯状領域の反射率がR2であり、前記4辺帯状領域より内側の領域の反射率R1は前記反射率R2よりも高いサセプタ。
A susceptor used when flashing an optical film provided on a transparent substrate having a chamfered surface between a main surface and an end surface,
When the substrate is placed on the susceptor, within a rectangular region where the substrate of the susceptor is placed, an irradiation area of the irradiation light incident from the chamfered surface on the upper side of the substrate reaches the substrate placement region. A susceptor in which a reflectance of a certain four-sided belt-shaped region is R2, and a reflectance R1 of a region inside the four-sided belt-shaped region is higher than the reflectance R2.
厚みがLの透明基板上に設けられた光学膜に閃光を照射する際に用いられるサセプタであって、
前記透明基板には主面と端面との間に面取り面が設けられており、
該面取り面は、前記主面に対し角度θ(0<θ<90°)で、かつ前記主面を含む平面上で、前記主面を含む平面と前記端面を含む平面との交線から長さDだけ内側まで面取りされた面であり、
前記サセプタには、前記基板が載置される領域内に、相対的に高い反射率(R1)の領域と相対的に低い反射率(R2)の領域が設けられており、
前記高反射率領域は、前記基板の最端部を前記サセプタの前記基板が載置される面上に垂直投影して得られる矩形の輪郭を基準として、{D+L・tanθ+α(L・tanθ)}(但し0<α≦1)だけ内側の矩形の内部領域を必ず含み、かつ、外縁が(D+L・tanθ)だけ内側の矩形の内側にあるように設けられ、
前記低反射率領域は、前記基板の最端部を前記サセプタの前記基板が載置される面上に垂直投影して得られる矩形の輪郭を基準として、(L−D・tanθ)・tanθだけ内側の矩形と(D+L・tanθ)だけ内側の矩形に挟まれた領域を含むように設けられているサセプタ。
A susceptor used when irradiating a flash on an optical film provided on a transparent substrate having a thickness of L,
The transparent substrate is provided with a chamfered surface between a main surface and an end surface,
The chamfered surface has an angle θ (0 <θ <90 °) with respect to the main surface and is long from an intersection line of the plane including the main surface and the plane including the end surface on the plane including the main surface. It is a surface that is chamfered to the inside by a length of D,
The susceptor is provided with a relatively high reflectance (R1) region and a relatively low reflectance (R2) region in a region where the substrate is placed,
The high reflectivity region is defined as {D + L · tan θ + α (L · tan θ)} with reference to a rectangular outline obtained by vertically projecting the extreme end of the substrate onto the surface of the susceptor on which the substrate is placed. (Provided that the inner region of the inner rectangle is necessarily included only by 0 <α ≦ 1), and the outer edge is located inside the inner rectangle by (D + L · tan θ),
The low reflectivity region is (LD−tanθ) · tanθ by using a rectangular outline obtained by vertically projecting the extreme end of the substrate on the surface of the susceptor on which the substrate is placed. A susceptor provided to include an inner rectangle and a region sandwiched between the inner rectangle by (D + L · tan θ).
前記反射率R1は、波長200〜600nmの光に対して40%以上である請求項2又は3に記載のサセプタ。   The susceptor according to claim 2 or 3, wherein the reflectance R1 is 40% or more with respect to light having a wavelength of 200 to 600 nm. 前記R1の反射率を有する高反射率領域は不透明石英ガラスからなり、前記R2の反射率を有する低反射率領域は透明石英ガラスからなる、請求項2乃至4の何れか1項に記載のサセプタ。   5. The susceptor according to claim 2, wherein the high reflectivity region having the reflectivity of R <b> 1 is made of opaque quartz glass, and the low reflectivity region having the reflectivity of R <b> 2 is made of transparent quartz glass. . 前記不透明石英ガラスは、気泡を含有させた石英ガラスである請求項5に記載のサセプタ。   The susceptor according to claim 5, wherein the opaque quartz glass is a quartz glass containing bubbles. 前記R1の反射率を有する高反射率領域および前記R2の反射率を有する低反射率領域は何れも気泡を含有させた不透明石英ガラスからなり、前記高反射率領域の気泡含有量は前記低反射率領域の気泡含有量よりも多い、請求項2乃至4の何れか1項に記載のサセプタ。   Both the high reflectance region having the reflectance of R1 and the low reflectance region having the reflectance of R2 are made of opaque quartz glass containing bubbles, and the bubble content in the high reflectance region is the low reflectance. The susceptor according to any one of claims 2 to 4, wherein the susceptor is larger than a bubble content in the rate region. 前記R1の反射率を有する高反射率領域はアルミニウムからなり、前記R2の反射率を有する低反射率領域は不透明石英ガラスからなる、請求項2乃至4の何れか1項に記載のサセプタ。   5. The susceptor according to claim 2, wherein the high reflectivity region having the reflectivity of R <b> 1 is made of aluminum, and the low reflectivity region having the reflectivity of R <b> 2 is made of opaque quartz glass. 請求項1乃至8の何れか1項に記載のサセプタ上に光学膜を設けた基板を載置して前記光学膜に閃光ランプからの光を照射する工程を備えている、閃光照射方法。   A flash irradiation method comprising a step of placing a substrate on which an optical film is provided on the susceptor according to claim 1 and irradiating the optical film with light from a flash lamp. 請求項1乃至8の何れか1項に記載のサセプタ上に光学膜を設けた基板を載置して前記光学膜に閃光ランプからの光を照射する工程を備えている、フォトマスクブランクの製造方法。   9. A photomask blank manufacturing method comprising a step of placing a substrate provided with an optical film on the susceptor according to claim 1 and irradiating the optical film with light from a flash lamp. Method.
JP2009145320A 2009-06-18 2009-06-18 Susceptor, flash irradiation method using the same, and photomask blank manufacturing method Active JP5270465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009145320A JP5270465B2 (en) 2009-06-18 2009-06-18 Susceptor, flash irradiation method using the same, and photomask blank manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009145320A JP5270465B2 (en) 2009-06-18 2009-06-18 Susceptor, flash irradiation method using the same, and photomask blank manufacturing method

Publications (2)

Publication Number Publication Date
JP2011002639A true JP2011002639A (en) 2011-01-06
JP5270465B2 JP5270465B2 (en) 2013-08-21

Family

ID=43560639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009145320A Active JP5270465B2 (en) 2009-06-18 2009-06-18 Susceptor, flash irradiation method using the same, and photomask blank manufacturing method

Country Status (1)

Country Link
JP (1) JP5270465B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104280998A (en) * 2013-07-03 2015-01-14 信越化学工业株式会社 Method of manufacturing photomask blank and photomask blank

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05205997A (en) * 1992-01-29 1993-08-13 Canon Inc Substrate support disc
JP2007114680A (en) * 2005-10-24 2007-05-10 Shin Etsu Chem Co Ltd Fabrication method of photomask-blank
JP2008076994A (en) * 2006-09-25 2008-04-03 Shin Etsu Chem Co Ltd Method of fabricating photomask blank

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05205997A (en) * 1992-01-29 1993-08-13 Canon Inc Substrate support disc
JP2007114680A (en) * 2005-10-24 2007-05-10 Shin Etsu Chem Co Ltd Fabrication method of photomask-blank
JP2008076994A (en) * 2006-09-25 2008-04-03 Shin Etsu Chem Co Ltd Method of fabricating photomask blank

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104280998A (en) * 2013-07-03 2015-01-14 信越化学工业株式会社 Method of manufacturing photomask blank and photomask blank
JP2015014642A (en) * 2013-07-03 2015-01-22 信越化学工業株式会社 Method of producing photomask blank and photomask blank
US9581892B2 (en) 2013-07-03 2017-02-28 Shin-Etsu Chemical Co., Ltd. Method of manufacturing photomask blank and photomask blank
US10120274B2 (en) 2013-07-03 2018-11-06 Shin-Etsu Chemical Co., Ltd. Method of manufacturing photomask blank and photomask blank

Also Published As

Publication number Publication date
JP5270465B2 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
US7767368B2 (en) Method of fabricating photomask blank
EP1860500B1 (en) Phase shift mask blank, phase shift mask, and pattern transfer method
KR101057564B1 (en) Manufacturing method of photomask blank
JP4204583B2 (en) Photomask blank manufacturing method
JP5233321B2 (en) Extreme ultraviolet exposure mask blank, extreme ultraviolet exposure mask, extreme ultraviolet exposure mask manufacturing method, and pattern transfer method using extreme ultraviolet exposure mask
JP4692984B2 (en) REFLECTIVE MASK BLANK, REFLECTIVE MASK, MULTILAYER REFLECTOR AND MANUFACTURING METHOD THEREOF
US10120274B2 (en) Method of manufacturing photomask blank and photomask blank
JP4339214B2 (en) Transparent substrate for mask blank and manufacturing method thereof, and mask blank and manufacturing method thereof
JP4204584B2 (en) Photomask blank manufacturing method
JP2011077552A (en) Reflective mask blank, reflective mask, and multilayer film reflecting mirror
JP2020024406A (en) Method for correcting photomask, method for manufacturing photomask, photomask, and method for manufacturing device for display apparatus
KR20230135032A (en) Blank mask, apparatus for forming a layer and manufacturing method for the blank mask
JP5270465B2 (en) Susceptor, flash irradiation method using the same, and photomask blank manufacturing method
JPH06258817A (en) Phase shift mask and blank to be used for the same and their production
JP2004157358A (en) Halftone phase shift mask blank, phase shift mask, and method for manufacturing semiconductor device using the mask
TW202409715A (en) Blank mask, photomask using the same and method of manufacturing semiconductor device
KR20200044784A (en) Photomask blank, photomask, exposure method, and manufacturing method of device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130509

R150 Certificate of patent or registration of utility model

Ref document number: 5270465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150