JP2011002194A - One-can type composite heat source machine - Google Patents

One-can type composite heat source machine Download PDF

Info

Publication number
JP2011002194A
JP2011002194A JP2009147216A JP2009147216A JP2011002194A JP 2011002194 A JP2011002194 A JP 2011002194A JP 2009147216 A JP2009147216 A JP 2009147216A JP 2009147216 A JP2009147216 A JP 2009147216A JP 2011002194 A JP2011002194 A JP 2011002194A
Authority
JP
Japan
Prior art keywords
heat exchanger
burner
combustion
increase
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009147216A
Other languages
Japanese (ja)
Other versions
JP5186440B2 (en
Inventor
Hidesuke Kondo
秀介 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2009147216A priority Critical patent/JP5186440B2/en
Publication of JP2011002194A publication Critical patent/JP2011002194A/en
Application granted granted Critical
Publication of JP5186440B2 publication Critical patent/JP5186440B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent, in a one-can type composite heat source machine including: a first burner 2and a second burner 2smaller than the first burner, which are provided in parallel in a single can body 1; a first heat exchanger 3and a second heat exchanger 3smaller than the first heat exchanger, which are provided in parallel at an upper part of the can body; and a partition wall 8 dividing the interior of the can body into two combustion chambers 7, 7, wherein the partition wall is formed in a hollow structure having two wall plates 8a and air is let flow in an internal space of the partition wall from an air supply chamber 5 at a lower part of the can body, an air amount supplied to the second heat exchanger from becoming excessive due to blockade of the first heat exchanger and causing defective combustion of the second burner.SOLUTION: A temperature sensor 10 is arranged between the two wall plates 8a of the partition wall 8. A blocking rate of the first heat exchanger 3is estimated based on detected temperature of the temperature sensor 10 in single combustion by the first burner 2alone. In single combustion by the second burner 2alone, rotation speed of a combustion fan 6 is corrected for decrease according to an increase of the blocking rate of the first heat exchanger 3.

Description

本発明は、単一の缶体と、この缶体内に横方向に並べて設けた第1と第2の一対のバーナと、缶体の上部に横方向に並べて設けた第1と第2の一対の熱交換器とを備える1缶式複合熱源機に関する。   The present invention includes a single can body, a first and second pair of burners provided side by side in the can body, and a first and second pair provided side by side on the top of the can body. The present invention relates to a single can type combined heat source apparatus including a heat exchanger.

従来、この種の1缶式複合熱源機では、缶体内の第1と第2の両バーナと第1と第2の両熱交換器との間の空間を、第1バーナから第1熱交換器に至る第1燃焼室と第2バーナから第2熱交換器に至る第2燃焼室とに区画する仕切り壁を備え、一方のバーナ、例えば、第2バーナのみを燃焼させて第2熱交換器を加熱する単独燃焼時に、第2バーナの燃焼ガスが第1熱交換器側に流れて第1熱交換器が加熱されるといった不具合を防止できるようにしている。また、缶体の下部に、分布板で仕切られた給気室を画成し、単一の燃焼ファンからの燃焼用空気を給気室から分布板に形成した分布孔を介して第1と第2の両燃焼室に供給するようにしている。   Conventionally, in this type of single can type combined heat source machine, the space between the first and second burners and the first and second heat exchangers in the can is transferred from the first burner to the first heat exchange. A partition wall that divides into a first combustion chamber leading to the furnace and a second combustion chamber leading from the second burner to the second heat exchanger, and burns only one of the burners, for example, the second burner to perform the second heat exchange At the time of single combustion for heating the heat exchanger, it is possible to prevent a problem that the combustion gas of the second burner flows to the first heat exchanger side and the first heat exchanger is heated. Further, an air supply chamber partitioned by a distribution plate is defined at the lower part of the can body, and the first and second combustion air from a single combustion fan is distributed through the distribution holes formed in the distribution plate from the air supply chamber. The fuel is supplied to both the second combustion chambers.

ここで、上記の如く缶体内に仕切り壁を設ける場合、第1と第2の各バーナの燃焼熱により仕切り壁が加熱されて非常に高温になるため、仕切り壁の耐熱性の確保が問題になる。そこで、仕切り壁を、第1燃焼室側と第2燃焼室側の2枚の壁板を有する中空構造に構成し、両壁板間の空隙に給気室からの空気を流すようにしたものも知られている(例えば、特許文献1参照)。これによれば、仕切り壁が給気室からの空気により冷却されて、仕切り壁の耐熱性が確保される。   Here, when the partition wall is provided in the can as described above, the partition wall is heated to a very high temperature by the combustion heat of each of the first and second burners, so ensuring the heat resistance of the partition wall is a problem. Become. Therefore, the partition wall is configured as a hollow structure having two wall plates on the first combustion chamber side and the second combustion chamber side so that the air from the air supply chamber flows in the gap between both wall plates. Is also known (see, for example, Patent Document 1). According to this, the partition wall is cooled by the air from the air supply chamber, and the heat resistance of the partition wall is ensured.

ところで、第1バーナ及び第1熱交換器が例えば給湯用であり、第2バーナ及び第2熱交換器が風呂追い焚き用や暖房用である場合、要求加熱能力の違いから、第2バーナと第2熱交換器は夫々第1バーナと第1熱交換器よりも小型に形成される。この場合、第2燃焼室への空気の供給割合よりも第1燃焼室への空気の供給割合の方が大きくなる。そして、第1熱交換器のフィンに煤やスケールが堆積して第1熱交換器の閉塞率が増加し、第1燃焼室への供給空気量が減少すると、第2燃焼室への供給空気量が大幅に増加し、第2バーナが空気過多で燃焼不良を生じてしまう。然し、従来は、第1熱交換器の閉塞率が増加してもこれを検出できず、第2バーナの燃焼不良を防止することができなかった。   By the way, when the first burner and the first heat exchanger are for hot water supply, for example, and the second burner and the second heat exchanger are for bath reheating and for heating, from the difference in required heating capacity, The second heat exchanger is formed smaller than the first burner and the first heat exchanger, respectively. In this case, the supply ratio of air to the first combustion chamber is larger than the supply ratio of air to the second combustion chamber. Then, when soot and scale accumulate on the fins of the first heat exchanger, the blockage rate of the first heat exchanger increases, and the amount of air supplied to the first combustion chamber decreases, the supply air to the second combustion chamber The amount is greatly increased, and the second burner has excessive air, resulting in poor combustion. However, conventionally, even if the blockage rate of the first heat exchanger increases, this cannot be detected, and the combustion failure of the second burner cannot be prevented.

特開2006−78162号公報JP 2006-78162 A

本発明は、以上の点に鑑み、大型の第1熱交換器の閉塞率を検出して、第2バーナの燃焼不良を防止できるようにした1缶式複合熱源器を提供することをその課題としている。   In view of the above points, the present invention provides a single can type combined heat source device that detects the blockage rate of a large first heat exchanger and prevents the combustion failure of the second burner. It is said.

本発明は、単一の缶体と、この缶体内に横方向に並べて設けた第1バーナ及び第1バーナより小型の第2バーナと、缶体の上部に横方向に並べて設けた第1熱交換器及び第1熱交換器より小型の第2熱交換器と、缶体内の第1と第2の両バーナと第1と第2の両熱交換器との間の空間を、第1バーナから第1熱交換器に至る第1燃焼室と第2バーナから第2熱交換器に至る第2燃焼室とに区画する仕切り壁とを備え、缶体の下部に、分布板で仕切られた給気室を画成し、単一の燃焼ファンからの燃焼用空気を給気室から分布板に形成した分布孔を介して第1と第2の両燃焼室に供給するようにした1缶式複合熱源機であって、仕切り壁は、第1燃焼室側と第2燃焼室側の2枚の壁板を有する中空構造に構成され、両壁板間の空隙に給気室からの空気を流すものにおいて、上記課題を解決するために以下の如く改良したことを特徴とする。   The present invention includes a single can body, a first burner arranged side by side in the can body, a second burner smaller than the first burner, and a first heat provided side by side on the top of the can body. A space between the first heat exchanger and the second heat exchanger smaller than the first heat exchanger, the first and second burners, and the first and second heat exchangers in the can. A partition wall partitioning into a first combustion chamber extending from the first heat exchanger to the first heat exchanger and a second combustion chamber extending from the second burner to the second heat exchanger, and partitioned by a distribution plate at a lower portion of the can body. One can that defines a supply chamber and supplies combustion air from a single combustion fan to both the first and second combustion chambers from the supply chamber through distribution holes formed in the distribution plate The partition wall is configured to have a hollow structure having two wall plates on the first combustion chamber side and the second combustion chamber side, and a space between the two wall plates extends from the air supply chamber. In those flowing air, characterized in that it has improved as follows in order to solve the above problems.

即ち、本発明は、仕切り壁の両壁板間に温度センサが配置され、第1バーナのみの単独燃焼時における温度センサの検出温度に基づいて、第1熱交換器の閉塞率を推定する第1推定手段と、第2バーナのみの単独燃焼時に、第1推定手段で推定した第1熱交換器の閉塞率の増加に応じて燃焼ファンの回転数を減少補正するファン補正手段と、を備えることを特徴とする。   That is, according to the present invention, a temperature sensor is disposed between both wall plates of the partition wall, and the blockage rate of the first heat exchanger is estimated based on the temperature detected by the temperature sensor during single combustion of only the first burner. 1 estimating means, and fan correcting means for reducing and correcting the rotational speed of the combustion fan in accordance with an increase in the blockage rate of the first heat exchanger estimated by the first estimating means during single combustion of only the second burner. It is characterized by that.

ここで、第1熱交換器と第2熱交換器との一方の熱交換器が閉塞気味になると、他方の熱交換器を通過して流れる空気流や排気流に引かれて、一方の熱交換器に対応する一方の燃焼室内の燃焼ガスが仕切り壁側に偏って流れる。そのため、本発明の如く仕切り壁を構成する2枚の壁板間に温度センサを配置しておけば、一方の熱交換器の閉塞率が増加するのに伴い温度センサの検出温度が上昇する。尚、第1バーナと第2バーナの同時燃焼時には、温度センサの検出温度が上昇しても、第1熱交換器と第2熱交換器との何れの熱交換器の閉塞を生じたか判別不能であるが、第1バーナのみの単独燃焼時には、温度センサの検出温度に基づいて、第1熱交換器の閉塞率を推定することができる。そして、本発明では、第2バーナのみの単独燃焼時に、第1熱交換器の閉塞率の増加に応じて燃焼ファンの回転数を減少補正するため、第1熱交換器の閉塞で第2燃焼室に流れる空気の割合が増加しても、第2燃焼室に過剰に空気が供給されることはなく、第2バーナの燃焼不良を防止できる。   Here, when one of the first heat exchanger and the second heat exchanger becomes obstructed, it is drawn by the air flow or the exhaust flow that flows through the other heat exchanger, Combustion gas in one combustion chamber corresponding to the exchanger flows toward the partition wall side. Therefore, if a temperature sensor is arranged between two wall plates constituting the partition wall as in the present invention, the temperature detected by the temperature sensor rises as the blockage rate of one heat exchanger increases. In addition, at the time of simultaneous combustion of the first burner and the second burner, even if the temperature detected by the temperature sensor rises, it is impossible to determine which of the first heat exchanger and the second heat exchanger has become blocked. However, at the time of single combustion of only the first burner, the blockage rate of the first heat exchanger can be estimated based on the temperature detected by the temperature sensor. In the present invention, during the single combustion of only the second burner, the rotational speed of the combustion fan is corrected to decrease according to the increase in the blocking rate of the first heat exchanger. Even if the ratio of the air flowing into the chamber increases, the air is not excessively supplied to the second combustion chamber, and the combustion failure of the second burner can be prevented.

また、本発明においては、第2バーナのみの単独燃焼時における温度センサの検出温度に基づいて、第2熱交換器の閉塞率を推定する第2推定手段を備え、ファン補正手段は、第2バーナのみの単独燃焼時に、燃焼ファンの回転数を、第1熱交換器の閉塞率の増加に応じて減少補正すると共に、第2推定手段で推定した第2熱交換器の閉塞率の増加に応じて増加補正するように構成されることが望ましい。これによれば、第2熱交換器の閉塞による第2燃焼室への供給空気量の減少を燃焼ファンの回転数の増加で補償して、第2バーナの燃焼状態を良好に維持できる。   In the present invention, the second correction means for estimating the blockage rate of the second heat exchanger based on the temperature detected by the temperature sensor during the single combustion of only the second burner is provided. At the time of single combustion of only the burner, the rotational speed of the combustion fan is corrected to decrease according to the increase in the blockage rate of the first heat exchanger, and the increase in the blockage rate of the second heat exchanger estimated by the second estimation means It is desirable to be configured to compensate for increase accordingly. According to this, the decrease in the amount of air supplied to the second combustion chamber due to the blockage of the second heat exchanger can be compensated by the increase in the rotational speed of the combustion fan, and the combustion state of the second burner can be maintained well.

更に、本発明においては、ファン制御手段を、第1バーナのみの単独燃焼時に、燃焼ファンの回転数を、第1推定手段で推定した第1熱交換器の閉塞率の増加に応じて増加補正すると共に、第2推定手段で推定した第2熱交換器の閉塞率の増加に応じて減少補正するように構成することが望ましい。これによれば、第1熱交換器の閉塞や第2熱交換器の閉塞を生じても、第1バーナの燃焼状態を良好に維持できる。   Further, in the present invention, the fan control means corrects the rotation speed of the combustion fan according to the increase in the blockage rate of the first heat exchanger estimated by the first estimation means when the first burner alone is burned alone. At the same time, it is desirable that the correction is made so as to decrease in accordance with the increase in the blockage rate of the second heat exchanger estimated by the second estimation means. According to this, even if the blockage of the first heat exchanger or the blockage of the second heat exchanger occurs, the combustion state of the first burner can be maintained well.

尚、後述する実施形態において、上記第1推定手段に相当するのは図3のSTEP8であり、上記第2推定手段に相当するのは図3のSTEP2であり、上記ファン制御手段に相当するのは図3のSTEP5〜7,STEP11〜13である。   In the embodiment to be described later, STEP 8 in FIG. 3 corresponds to the first estimation means, and STEP 2 in FIG. 3 corresponds to the second estimation means, which corresponds to the fan control means. Are STEP 5 to 7 and STEP 11 to 13 in FIG.

本発明の実施形態の1缶式複合熱源機を示す切断正面図。The cutting front view showing the 1 can type compound heat source machine of the embodiment of the present invention. 図1のII−II線で切断した切断側面図。FIG. 2 is a cut side view taken along line II-II in FIG. 1. 実施形態の1缶式複合熱源機で行うファン補正制御の内容を示すフロー図。The flowchart which shows the content of the fan correction | amendment control performed with the 1 can type compound heat source machine of embodiment. (a)第1熱交換器の閉塞率と温度センサの検出温度との関係を示すグラフ、(b)第2熱交換器の閉塞率と温度センサの検出温度との関係を示すグラフ。(A) The graph which shows the relationship between the blockage rate of a 1st heat exchanger, and the detection temperature of a temperature sensor, (b) The graph which shows the relationship between the blockage rate of a 2nd heat exchanger, and the detection temperature of a temperature sensor. (a)第1熱交換器の閉塞率とファン補正係数との関係を示すグラフ、(b)第2熱交換器の閉塞率とファン補正係数との関係を示すグラフ。(A) The graph which shows the relationship between the obstruction | occlusion rate of a 1st heat exchanger, and a fan correction coefficient, (b) The graph which shows the relationship between the obstruction | occlusion rate of a 2nd heat exchanger, and a fan correction coefficient.

図1は、給湯機能と風呂追い焚き機能とを有する1缶式複合熱源機を示している。この複合熱源機は、単一の缶体1内に横方向に並べて設けた給湯用の第1バーナ2と風呂用の第2バーナ2とを備えると共に、缶体1の上部に横方向に並べて設けた給湯用の第1熱交換器3と風呂用の第2熱交換器3とを備えている。 FIG. 1 shows a single can type combined heat source machine having a hot water supply function and a bath reheating function. With the composite heat source machine, and a second burner 2 2 for the first burner 2 1 and bath hot water supply provided side by side in the lateral direction in a single can body 1, transverse to the top of the can body 1 Tile and a second heat exchanger 3 2 for the first heat exchanger 3 1 the bath hot water supply provided in the.

缶体1の下部には、缶体1内の空間に対し分布板4で仕切られた給気室5が画成されている。給気室5には、ファンモータ6aで駆動される単一の燃焼ファン6が接続されている。そして、燃焼ファン6からの空気が給気室5から分布板4に形成した多数の分布孔4aを介して缶体1内の後述する第1と第2の両燃焼室7,7に燃焼用二次空気として供給されるようにしている。 In the lower part of the can body 1, an air supply chamber 5 partitioned by a distribution plate 4 with respect to the space in the can body 1 is defined. A single combustion fan 6 driven by a fan motor 6 a is connected to the supply chamber 5. Then, air from the combustion fan 6 enters the first and second combustion chambers 7 1 and 7 2, which will be described later, in the can 1 through a number of distribution holes 4 a formed in the distribution plate 4 from the air supply chamber 5. It is supplied as secondary air for combustion.

第1と第2の各バーナ2,2は、夫々、缶体1の奥行方向たる前後方向(図1の紙面直交方向)に長手の単位バーナ2aを横方向に複数列設して構成されている。各単位バーナ2aは、図2に示す如く、前後方向にのびる下部の混合管部2bを備えている。そして、分布板4の前部を上方に屈曲させて、給気室5の前部に立上り部5aを形成し、この立上り部5aに各混合管部2bの流入端を臨ませている。給気室5の立上り部5aの前面はガスマニホールド2cで閉塞されており、このガスマニホールド2cに、各単位バーナ2aの混合管部2bに臨むガスノズル2dが設けられている。そして、各ガスノズル2dから各単位バーナ2aの混合管部2bに燃料ガスが供給され、且つ、混合管部2bに立上り部5aから燃焼用一次空気が供給されるようにしている。 Each of the first and second burners 2 1 and 2 2 is configured by arranging a plurality of unit burners 2a that are long in the front-rear direction (in the direction orthogonal to the plane of FIG. 1) as the depth direction of the can body 1 in the horizontal direction. Has been. As shown in FIG. 2, each unit burner 2a includes a lower mixing tube portion 2b extending in the front-rear direction. And the front part of the distribution plate 4 is bent upward, the rising part 5a is formed in the front part of the air supply chamber 5, and the inflow end of each mixing pipe part 2b is made to face this rising part 5a. The front surface of the rising portion 5a of the air supply chamber 5 is closed by a gas manifold 2c, and a gas nozzle 2d facing the mixing tube portion 2b of each unit burner 2a is provided in the gas manifold 2c. The fuel gas is supplied from each gas nozzle 2d to the mixing pipe portion 2b of each unit burner 2a, and the primary combustion air is supplied to the mixing pipe portion 2b from the rising portion 5a.

第1と第2の各熱交換器3,3は、前後方向に隙間を存して多数積層した吸熱フィン3aと、これら吸熱フィン3aを貫通する蛇行形状の吸熱管3bとで構成される。第1熱交換器3の吸熱管3bには、図示しないが、上流側の給水管と下流側の出湯管とが接続されており、出湯管の下流端の出湯栓を開いて第1熱交換器3に通水したとき、第1バーナ2に点火されて、出湯栓から設定温度の湯が出湯される。また、第2熱交換器3の吸熱管3bには、図示しないが、往き管と戻り管とを介して浴槽が接続されており、浴槽内の水を第2熱交換器3を介して循環させるとき、第2バーナ2に点火されて、風呂の追い焚きが行われる。 Each of the first and second heat exchangers 3 1 , 3 2 includes a heat absorbing fin 3 a that is stacked in a large number in the front-rear direction, and a meandering heat absorbing tube 3 b that passes through the heat absorbing fin 3 a. The Although not shown, an upstream water supply pipe and a downstream hot water outlet pipe are connected to the heat absorption pipe 3b of the first heat exchanger 31, and a first hot water tap is opened at the downstream end of the hot water outlet pipe. when passed through the exchanger 3 1, is ignited first burner 2 1, the hot water set temperature from hot water tap is tapped. The second heat absorbing tube 3b of the heat exchanger 3 2, although not shown, bathtub via the return forward pipe line is connected, via a water through the second heat exchanger 3 2 in the bathtub when circulating Te and ignited in the second burner 2 2, bath reheating is carried out.

尚、給湯よりも風呂追い焚きの方が要求加熱能力が小さいため、第2バーナ2と第2熱交換器3は夫々第1バーナ2と第1熱交換器3よりも小型になっている。 Since the direction of reheating bath than hot water supply less demand heating capacity, the second burner 2 2 smaller than a second heat exchanger 3 2 are each first burner 2 1 and the first heat exchanger 3 1 It has become.

また、缶体1内には、第1と第2の両バーナ2,2と第1と第2の両熱交換器3,3との間の空間を、第1バーナ2から第1熱交換器3に至る第1燃焼室7と、第2バーナ2から第2熱交換器3に至る第2燃焼室7とに区画する仕切り壁8が設けられている。そのため、第1バーナ2の燃焼ガスは第1燃焼室7を介して第1熱交換器3に導かれ、第2バーナ2の燃焼ガスは第2燃焼室7を介して第2熱交換器3に導かれる。第1と第2の各熱交換器3,3で熱交換した燃焼ガスは、両熱交換器3,3の上方に配置した共通の排気フード9に流れ、排気フード9に形成した排気口9aから外部に排出される。 Further, in the can 1, a space between the first and second burners 2 1 and 2 2 and the first and second heat exchangers 3 1 and 3 2 is provided as a first burner 2 1. and a first combustion chamber 71 leading to the first heat exchanger 3 1, and the partition wall 8 is provided for partitioning the second burner 2 2 second combustion chamber 7 2 reaching the second heat exchanger 3 2 Yes. Therefore, the first combustion gas of the burner 2 1 is led to the first heat exchanger 3 1 through the first combustion chamber 71, the combustion gas of the second burner 2 2 through the second combustion chamber 7 Paragraph 2 is guided to the heat exchanger 3 2. Combustion gas heat exchange with the first and second of each heat exchanger 3 1, 3 2, flows to a common exhaust hood 9 positioned above the two heat exchangers 3 1, 3 2, formed in the exhaust hood 9 From the exhaust port 9a.

仕切り壁8は、第1燃焼室7側と第2燃焼室7側の2枚の壁板8a,8aを有する中空構造に構成されている。そして、両壁板8a,8a間の空隙の横幅を仕切り壁8の下部で広くし、この空隙を分布板4に形成した連通孔4bを介して給気室5に連通させている。そのため、両壁板8a,8a間の空隙に給気室5からの空気が流れ、仕切り壁8がこの空気により冷却されて、仕切り壁8の耐熱性が確保される。 Partition wall 8 is constructed in a hollow structure having first combustion chamber 71 side and the second combustion chamber 7 2 side of the two wall panels 8a, the 8a. The lateral width of the gap between the wall plates 8a, 8a is widened at the lower part of the partition wall 8, and the gap is communicated with the air supply chamber 5 through the communication hole 4b formed in the distribution plate 4. Therefore, the air from the air supply chamber 5 flows into the space between the wall plates 8a and 8a, and the partition wall 8 is cooled by this air, so that the heat resistance of the partition wall 8 is ensured.

ところで、第1熱交換器3や第2熱交換器3の吸熱フィン3aに煤やスケールが堆積し、第1熱交換器3や第2熱交換器3の閉塞を生ずることがある。そして、正常時は第2燃焼室7への空気の供給割合よりも第1燃焼室7への空気の供給割合の方が大きいため、第1熱交換器3の閉塞で第1燃焼室7への供給空気量が減少すると、空気不足による第1バーナ3の燃焼不良を生ずるだけでなく、第2燃焼室7への供給空気量が大幅に増加して、第2バーナ2が空気過多で燃焼不良を生じてしまう。また、第2熱交換器3が閉塞すると、第2燃焼室7への供給空気量が減少し、第2バーナ2が空気不足で燃焼不良を生ずる。 Incidentally, that soot or scale is deposited on the first heat exchanger 3 1 and the second heat absorbing fins 3a of the heat exchanger 3 2, resulting in obstruction of the first heat exchanger 3 1 and the second heat exchanger 3 2 is there. The normal because the larger feed rate of air to the first combustion chamber 7 1 than the feed rate of air to the second combustion chamber 7 2, the first combustion at the first closing of the heat exchanger 3 1 When the supply amount of air to the chamber 71 is reduced, not only produce the first burner 3 1 of incomplete combustion due to insufficient air, the supply air amount to the second combustion chamber 7 2 greatly increases, the second burner 2 2 occurs poor combustion with air excess. When the second heat exchanger 3 2 is closed, the second supply air amount to the combustion chamber 7 2 decreases, 2 second burner 2 is generated poor combustion with insufficient air.

ここで、第1熱交換器3と第2熱交換器3との一方の熱交換器が閉塞気味になると、両熱交換器3,3の上方の共通の排気フード9に他方の熱交換器を通過して流れる排気流に引かれて、一方の熱交換器に対応する一方の燃焼室内の燃焼ガスが仕切り壁8側に偏って流れる。尚、他方の熱交換器に対応するバーナを燃焼させなくても、給気室5から他方の熱交換器を介して排気フード9に流れる空気流に引かれて、一方の燃焼室内の燃焼ガスが仕切り壁8側に偏って流れる。そのため、仕切り壁8の温度が上昇する。 Here, the first heat exchanger 3 1 and the second heat exchanger 3 2 and one heat exchanger is closed slightly, while the two heat exchangers 3 1, 3 2 common exhaust hood 9 above The combustion gas in one combustion chamber corresponding to one heat exchanger is biased toward the partition wall 8 by being drawn by the exhaust flow flowing through the heat exchanger. Even if the burner corresponding to the other heat exchanger is not burned, the combustion gas in one combustion chamber is drawn by the air flow flowing from the air supply chamber 5 to the exhaust hood 9 via the other heat exchanger. Flows unevenly toward the partition wall 8 side. Therefore, the temperature of the partition wall 8 rises.

そこで、本実施形態では、仕切り壁8の両壁板8a,8a間に温度センサ10を配置し、この温度センサ10の検出温度Tに基づいて第1熱交換器3や第2熱交換器3の閉塞率を検出できるようにしている。 Therefore, in this embodiment, both wallboard 8a of the partition wall 8, a temperature sensor 10 between 8a arranged, the first heat exchanger 3 1 and the second heat exchanger on the basis of the detected temperature T of the temperature sensor 10 32 The blockage rate of 2 can be detected.

温度センサ10は、先端にサーミスタ等の感温素子を内蔵する感温部10aを有するパイプ状のものであり、図2に示す如く、缶体1の前面側から温度センサ10を仕切り壁8内に挿入している。そして、感温部10aを仕切り壁8の前後方向中央部に位置させた状態で、温度センサ10の尾端側の固定部10bを缶体1の前面に固定している。   The temperature sensor 10 has a pipe-like shape having a temperature sensing part 10a incorporating a temperature sensing element such as a thermistor at the tip. The temperature sensor 10 is inserted into the partition wall 8 from the front side of the can 1 as shown in FIG. Is inserted. And the fixed part 10b of the tail end side of the temperature sensor 10 is being fixed to the front surface of the can 1 in the state which located the temperature sensitive part 10a in the center part of the partition wall 8 in the front-back direction.

尚、温度センサ10が仕切り壁8の両壁板8a,8aに接触していると、第1バーナ2と第2バーナ2との一方のバーナのみを燃焼させる単独燃焼時に、このバーナに対応する一方の熱交換器の閉塞で一方の燃焼室側の壁板8aの温度が高温になっても、この壁板8aから他方の燃焼室側の壁板8aへの温度センサ10を介しての熱引けで、温度センサ10の検出温度の上昇が抑制され、熱交換器の閉塞率の検出精度が悪くなる。そこで、本実施形態では、両壁板8a,8aに、温度センサ10の挿入部分に位置させて、横方向外方に膨出する膨出部8bを形成し、温度センサ10が両壁板8a,8aに接触しないようにしている。 Incidentally, both wallboard 8a of the temperature sensor 10 is a partition wall 8, when in contact with the 8a, when one alone causes only a burned burner combustion of the first burner 2 1 and the second burner 2 2, the burner Even if the temperature of one combustion chamber side wall plate 8a becomes high due to the blockage of one of the corresponding heat exchangers, the temperature sensor 10 from this wall plate 8a to the other combustion chamber side wall plate 8a passes through the temperature sensor 10. As a result, the detection temperature rise of the temperature sensor 10 is suppressed and the detection accuracy of the blockage rate of the heat exchanger is deteriorated. Therefore, in the present embodiment, the both wall plates 8a and 8a are formed with the bulging portion 8b bulging outward in the lateral direction so as to be positioned at the insertion portion of the temperature sensor 10, and the temperature sensor 10 is formed on the both wall plates 8a. , 8a.

温度センサ10の検出信号は、第1と第2の両バーナ2,2と燃焼ファン6とを制御するコントローラ11に入力される。ここで、温度センサ10の検出温度Tは、第1熱交換器3の閉塞率CL1に応じて図4(a)に示す如く変化し、第2熱交換器3の閉塞率CL2に応じて図4(b)に示す如く変化する。そこで、コントローラ11は、温度センサ10の検出温度Tに基づいて第1熱交換器3や第2熱交換器3の閉塞率CL1,CL2を推定し、この推定結果に応じて燃焼ファン6の回転数を補正するファン補正制御を実行する。以下、ファン補正制御について図3を参照して説明する。 A detection signal of the temperature sensor 10 is input to a controller 11 that controls both the first and second burners 2 1 and 2 2 and the combustion fan 6. Here, the detection temperature T of the temperature sensor 10, in response to the first heat exchanger 3 1 the closure rate CL1 changes as shown in FIG. 4 (a), according to the second closing rate CL2 of the heat exchanger 3 2 Changes as shown in FIG. Therefore, the controller 11 estimates the detected temperature first heat exchanger on the basis of T 3 1 and the second heat exchanger 3 and second occlusion rate CL1, CL2 of the temperature sensor 10, the combustion fan 6 in accordance with the estimation result The fan correction control is executed to correct the rotation speed. Hereinafter, the fan correction control will be described with reference to FIG.

ファン補正制御では、先ず、STEP1で複合熱源機の運転状態が第2バーナ2のみを燃焼させる風呂単独運転、第1バーナ2のみを燃焼させる給湯単独運転及び第1と第2の両バーナ2,2を同時に燃焼させる給湯と風呂の同時運転の何れであるかを判別する。 Fans correction control, first, a bath islanding operation of the operating state of the multifunction heat source device in STEP1 burning only the second burner 2 2, the single hot water supply run and first to burn only the first burner 2 1 second both burners It is discriminated whether the hot water supply or the bath is operated at the same time to burn 2 1 and 2 2 simultaneously.

風呂単独運転時には、STEP2において、温度センサ10の検出温度Tに基づき第2熱交換器3の閉塞率CL2を推定し、また、給湯単独運転時には、STEP8において、温度センサ10の検出温度Tに基づき第1熱交換器3の閉塞率CL1を推定する。この推定は、コントローラ11に格納されている図4(a)や図4(b)に示す如きデータテーブルから検出温度Tに対応する閉塞率CL1,CL2を検索することで行う。尚、給湯と風呂の同時運転時には、温度センサ10の検出温度Tが上昇しても、第1熱交換器3と第2熱交換器3との何れの熱交換器の閉塞を生じたか判別不能である。そこで、同時運転時には温度センサ10の検出温度Tに基づく熱交換器の閉塞率の推定は行わない。 During bath islanding operation, in STEP2, estimates the detected temperature T the second heat exchanger 3 and second closure rate CL2 based on the temperature sensor 10, also at the time of single hot water supply run, in STEP 8, the detection temperature T of the temperature sensor 10 based estimating a first heat exchanger 3 1 the closure rate CL1. This estimation is performed by retrieving the blocking rates CL1 and CL2 corresponding to the detected temperature T from the data table as shown in FIG. 4A or 4B stored in the controller 11. Incidentally, either at the time of simultaneous operation of the water heater and bath, even if the detected temperature T of the temperature sensor 10 is increased, resulting in any clogging of the heat exchanger and the first heat exchanger 3 1 and the second heat exchanger 3 2 Indistinguishable. Therefore, the blockage rate of the heat exchanger is not estimated based on the temperature T detected by the temperature sensor 10 during simultaneous operation.

風呂単独運転時にSTEP2で第2熱交換器3の閉塞率CL2を推定すると、STEP3に進み、この閉塞率CL2が燃焼可能範囲の上限である所定の判定値YCL2(例えば、90%)を上回っているか否かを判別する。CL2>YCL2であれば、STEP4に進んで第2バーナ2の燃焼を停止すると共に、エラー表示を行う。 If during bath isolated operation for estimating a second heat exchanger 3 and second occlusion rate CL2 in STEP2, the process proceeds to STEP3, exceeds a predetermined judgment value the blockage rate CL2 is the upper limit of the combustible range YCL2 (e.g., 90%) It is determined whether or not. If CL2> YCL2, stops the second burner 2 2 combustion proceeds in STEP4, an error message is displayed.

CL2≦YCL2であればSTEP5に進み、図5(b)に示すデータテーブルを検索して、第2熱交換器3の閉塞率CL2に対応する増加補正係数I2を求める。次に、STEP6に進み、図5(a)に示すデータテーブルを検索して、前回の給湯単独運転時にSTEP8で推定した第1熱交換器3の閉塞率CL1に対応する減少補正係数D2を求める。尚、増加補正係数I2は、第2熱交換器3の閉塞率CL2の増加に伴い1.0から次第に増加し、閉塞率CL2が判定値YCL2になったとき最大(例えば、1.05)になる。また、減少補正係数D2は、第1熱交換器3の閉塞率CL1の増加に伴い1.0から次第に減少し、閉塞率CL1が後述する判定値YCL1になったとき最小(例えば、0.95)になる。 Proceeds to STEP5 If CL2 ≦ YCL2, searches the data table shown in FIG. 5 (b), determining the enhancement factor I2 corresponding to the second closing rate CL2 of the heat exchanger 3 2. Next, proceeding to STEP 6, the data table shown in FIG. 5A is searched, and a decrease correction coefficient D 2 corresponding to the blockage rate CL 1 of the first heat exchanger 31 estimated in STEP 8 during the previous hot water supply independent operation is obtained. Ask. The maximum time increase correction factor I2 is gradually increased from with 1.0 to increase the second heat exchanger 3 and second occlusion rate CL2, occlusion rate CL2 becomes the determination value YCL2 (e.g., 1.05) become. Further, reduction correction coefficient D2, the minimum when it is judged value YCL1 gradually decreases from with 1.0 to increase the first heat exchanger 3 1 the closure rate CL1, occlusion rate CL1 will be described later (for example, 0. 95).

その後、STEP7に進み、第2バーナ2の燃焼量に応じて定められる基準回転数YNF2に増加補正係数I2と減少補正係数D2とを乗算して回転数NFを算出し、この回転数NFで燃焼ファン6を回転させる。これによれば、燃焼ファン6の回転数NFを、第1熱交換器3の閉塞率CL1の増加に応じて減少補正すると共に、第2熱交換器3の閉塞率CL2の増加に応じて増加補正することができる。そのため、第2燃焼室7に燃焼用空気を過不足なく供給して、第2バーナ2の燃焼状態を良好に維持できる。 Thereafter, the process proceeds to STEP7, calculates the rotational speed NF by multiplying the increase correction coefficient I2 in reference rotational speed YNF2 defined a decrease correction coefficient D2 in response to the second combustion amount of burners 2 2, with the rotation speed NF The combustion fan 6 is rotated. According to this, the rotational speed NF combustion fan 6, with decreasing corrected in accordance with the increase in the first heat exchanger 3 1 the closure rate CL1, according to the increase of the second heat exchanger 3 and second occlusion rate CL2 Increase correction. Therefore, the combustion air excess or deficiency in supply without can maintain second combustion state of the burner 2 2 satisfactorily in the second combustion chamber 7 2.

給湯単独運転時にSTEP8で第1熱交換器3の閉塞率CL1を推定すると、STEP9に進み、この閉塞率CL1が燃焼可能範囲の上限である所定の判定値YCL1(例えば、90%)を上回っているか否かを判別する。CL1>YCL1であれば、STEP10に進んで第1バーナ2の燃焼を停止すると共に、エラー表示を行う。 When estimating the occlusion rate CL1 of single hot water supply run first heat exchanger in STEP8 at 3 1, the process proceeds to STEP 9, exceeds a predetermined judgment value the blockage rate CL1 is the upper limit of the combustible range YCL1 (e.g., 90%) It is determined whether or not. If CL1> YCL1, stops the first combustion burner 2 2 proceeds to STEP 10, an error message is displayed.

CL1≦YCL1であればSTEP11に進み、図5(a)に示すデータテーブルを検索して、第1熱交換器3の閉塞率CL1に対応する増加補正係数I1を求める。次に、STEP12に進み、図5(b)に示すデータテーブルを検索して、前回の風呂単独運転時にSTEP2で推定した第2熱交換器3の閉塞率CL2に対応する減少補正係数D1を求める。尚、増加補正係数I1は、第1熱交換器3の閉塞率CL1の増加に伴い1.0から次第に増加し、閉塞率CL1が判定値YCL1になったとき最大(例えば、1.05)になる。また、減少補正係数D1は、第2熱交換器3の閉塞率CL2の増加に伴い1.0から次第に減少し、閉塞率CL2が判定値YCL2になったとき最小(例えば、0.98)になる。 Proceeds to STEP11 if CL1 ≦ YCL1, searches the data table shown in FIG. 5 (a), obtaining the increase correction factor I1 corresponding to the first heat exchanger 3 1 the closure rate CL1. Then, the process proceeds to STEP 12, and searches the data table shown in FIG. 5 (b), a decrease correction coefficient D1 corresponding to the second closing rate CL2 of the heat exchanger 3 2 estimated in STEP2 in the preceding bath islanding Ask. The maximum time increase correction factor I1 is gradually increased from with 1.0 to increase the first heat exchanger 3 1 the closure rate CL1, occlusion rate CL1 becomes the determination value YCL1 (e.g., 1.05) become. Further, reduction correction coefficient D1 is gradually decreased from with 1.0 to increase the second heat exchanger 3 and second occlusion rate CL2, minimum when the closure rate CL2 becomes the determination value YCL2 (e.g., 0.98) become.

その後、STEP13に進み、第1バーナ2の燃焼量に応じて定められる基準回転数YNF1に増加補正係数I1と減少補正係数D1とを乗算して回転数NFを算出し、この回転数NFで燃焼ファン6を回転させる。これによれば、燃焼ファン6の回転数NFを、第1熱交換器3の閉塞率CL1の増加に応じて増加補正すると共に、第2熱交換器3の閉塞率CL2の増加に応じて減少補正することができる。そのため、第1燃焼室7に燃焼用空気を過不足なく供給して、第1バーナ2の燃焼状態を良好に維持できる。 Thereafter, the process proceeds to STEP 13, and calculates the rotation speed NF by multiplying the increase correction coefficient I1 to the reference rotational speed YNF1 defined a decrease correction coefficient D1 in response to the first burner 2 first combustion amount in the rotational speed NF The combustion fan 6 is rotated. According to this, the rotational speed NF combustion fan 6, with increasing corrected in accordance with the increase in the first heat exchanger 3 1 the closure rate CL1, according to the increase of the second heat exchanger 3 and second occlusion rate CL2 Decrease correction. Therefore, the combustion air excess or deficiency in supply without can maintain a first combustion state of the burner 2 1 satisfactorily in the first combustion chamber 7 1.

給湯と風呂の同時運転時には、STEP14において、前回の風呂単独運転時にSTEP2で推定した第2熱交換器3の閉塞率CL2が判定値YCL2を上回っているか否かを判別し、また、STEP15において、前回の給湯単独運転時にSTEP8で推定した第1熱交換器3の閉塞率CL1が上記判定値YCL1よりも小さく設定する所定の予備判定値YCL1a(例えば、70%)を上回っているか否かを判別する。そして、CL2>YCL2であるときやCL1>YCL1aであるときは、STEP16に進んで第2バーナ2の燃焼を停止すると共にエラー表示を行う。次に、STEP17で第1熱交換器3の閉塞率CL1が判定値YCL1を上回っているか否かを判別し、CL1>YCL1であれば、STEP18に進んで第1バーナ2の燃焼を停止すると共に、エラー表示を行う。 During simultaneous operation of the water heater and bath, in STEP 14, it is determined whether or not the second closing rate CL2 of the heat exchanger 3 2 estimated in STEP2 in the preceding bath isolated operation exceeds the determination value YCL2, also, in STEP15 , whether exceeds a predetermined preliminary determination value first heat exchanger 3 1 the closure rate CL1 estimated in STEP8 in the previous single hot water supply run is set smaller than the determination value YCL1 YCL1a (e.g., 70%) Is determined. Then, CL2> when a YCL2 a is when and CL1> YCL1a, an error display stops the second burner 2 2 combustion proceeds to STEP 16. Next, the first heat exchanger 3 1 the closure rate CL1 is determined whether or not exceeds the determination value YCL1 in STEP 17, CL1> if YCL1, stops the first burner 2 2 combustion proceeds to STEP18 And error display.

尚、同時運転時には、給湯温度が設定温度に維持されるよう、給湯側を優先して制御する関係で、燃焼ファン6の回転数NFを第1熱交換器3の閉塞率CL1の増加に応じて減少補正することができない。従って、CL1>YCL1aになると、空気過多で第2バーナ2の燃焼状態が悪化してしまう。そのため、CL1>YCL1aであるときは第2バーナ2の燃焼を停止している。 Incidentally, at the time of simultaneous operation, so that the hot water temperature is maintained at the set temperature, in relation to control with priority hot-water supply side, the rotational speed NF of the combustion fan 6 to an increase in the first heat exchanger 3 1 the closure rate CL1 Accordingly, it is not possible to correct the decrease. Therefore, CL1> becomes a YCL1a, the combustion state of the second burner 2 2 with air excess is degraded. Therefore, CL1> when a YCL1a is stopped combustion of the second burners 2 2.

STEP17でCL1≦YCL1と判別されたときは、STEP19で第1熱交換器3の閉塞率CL1に対応する増加補正係数I1を求めると共に、STEP20で第2熱交換器3の閉塞率CL2に対応する減少補正係数D1を求める。そして、STEP21に進み、第1バーナ3の燃焼量に応じて定められる基準回転数YNF1に増加補正係数I1と減少補正係数D1とを乗算して回転数NFを算出し、この回転数NFで燃焼ファン6を回転させる。 When it is determined that CL1 ≦ YCL1 In STEP17, together determine the enhancement factor I1 corresponding to the first closing rate CL1 of the heat exchanger 3 1 STEP 19, the second heat exchanger 3 and second occlusion rate CL2 in STEP20 A corresponding decrease correction coefficient D1 is obtained. Then, the process proceeds to STEP 21, and calculates the rotation speed NF by multiplying the increase correction coefficient I1 to the reference rotational speed YNF1 defined a decrease correction coefficient D1 in response to the first burner 3 first combustion amount in the rotational speed NF The combustion fan 6 is rotated.

尚、ファン回転数NFを過度に増加補正したり減少補正すると、仕切り壁8の内部空隙への供給空気量の変化で温度センサ10の検出温度Tが変化し、第1と第2の各熱交換器3,3の閉塞率CL1,CL2を正確に推定できなくなる。そこで、規定回転数YNF1,YNF2の例えば±5%の範囲でファン回転数NFを増減補正するようにしている。 If the fan rotational speed NF is excessively corrected to increase or decrease, the detected temperature T of the temperature sensor 10 changes due to a change in the amount of air supplied to the internal space of the partition wall 8, and the first and second heats. The blocking rates CL1 and CL2 of the exchangers 3 1 and 3 2 cannot be accurately estimated. Therefore, the fan rotational speed NF is corrected to increase or decrease within a range of, for example, ± 5% of the specified rotational speeds YNF1 and YNF2.

また、温度センサ10の検出温度Tは、第1バーナ2や第2バーナ2の燃焼量によっても変化する。そこで、第1バーナ2や第2バーナ2の燃焼量が夫々所定量のときに、温度センサ10の検出温度Tに基づく第1熱交換器3や第2熱交換器3の閉塞率CL1,CL2の推定を行うようにしている。尚、第1バーナ2や第2バーナ2の燃焼量を段階的に変化させながら第1熱交換器3や第2熱交換器3の閉塞率CL1,CL2と検出温度Tとの関係を調べて、各燃焼量毎のデータテーブルをコントローラ11に格納し、第1バーナ2や第2バーナ2の燃焼量に対応するデータテーブルから第1熱交換器3や第2熱交換器3の閉塞率CL1,CL2を推定することも可能である。 Further, the detected temperature T of the temperature sensor 10 is also changed by the combustion amount of the first burner 2 1 and the second burner 2 2. Therefore, when the combustion amount of the first burner 2 1 and the second burner 2 2 each predetermined amount, closure of the detected temperature T first heat exchanger based on the 3 1 and the second heat exchanger 3 and second temperature sensor 10 The rates CL1 and CL2 are estimated. Incidentally, the first burner 2 1 and the second burner 2 2 of the first heat exchanger while gradually changing the combustion amount unit 3 1 and second heat exchanger 3 and second occlusion rate CL1, CL2 between the detected temperature T examine the relationship stores data tables for each combustion amount to the controller 11, first burner 2 1 and the first heat exchanger 3 1 and the second heat from the data table corresponding to the second combustion amount of burners 2 2 it is also possible to estimate the occlusion rate CL1, CL2 of the exchanger 3 2.

以上、本発明の実施形態について図面を参照して説明したが、本発明はこれに限定されない。例えば、上記実施形態では、給湯運転時や同時運転時のファン回転数NFを、基準回転数YNF1に第1熱交換器3の閉塞率CL1に応じた増加補正係数I1と、第2熱交換器3の閉塞率CL2に応じた減少補正係数D1とを乗算して算出しているが、第2熱交換器3の閉塞を生じても、第1燃焼室7への供給空気量は然程増加しない。そのため、給湯運転時や同時運転時のファン回転数NFは、基準回転数YNF1に増加補正係数I1のみを乗算して算出するようにしてもよい。 As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to this. For example, in the above embodiment, the fan rotation speed NF at the time or simultaneous operation hot water supply operation, increasing the correction coefficient I1 corresponding to the occlusion rate CL1 reference rotation number YNF1 to the first heat exchanger 3 1, the second heat exchanger vessel 3 is calculated by multiplying the second closure rate CL2 reduction correction coefficient D1 in accordance with it, even if the clogging of the second heat exchanger 3 2, amount of air supplied to the first combustion chamber 7 1 Does not increase so much. Therefore, the fan rotation speed NF during hot water supply operation or simultaneous operation may be calculated by multiplying the reference rotation speed YNF1 by only the increase correction coefficient I1.

また、上記実施形態は、第1バーナ2及び第1熱交換器3を給湯用、第2バーナ2及び第2熱交換器3を風呂用とした1缶式複合熱源機に本発明を適用したものであるが、第2バーナ2及び第2熱交換器3を風呂以外の用途、例えば、暖房用とし、更には、第1バーナ2及び第1熱交換器3を給湯以外の用途のものとする1缶式複合熱源機であっても、第2バーナ2及び第2熱交換器3が夫々第1バーナ2及び第1熱交換器3よりも小型のものである限り、同様に本発明を適用できる。 Further, the above-described embodiment, the first burner 2 1 and the first heat exchanger 3 1 for hot water, the second burner 2 2 and 1 can type composite heat source machine and the second heat exchanger 3 2 and a bath While the invention is obtained by applying the second burner 2 2 and the second heat exchanger 3 2 other than bath applications, for example, and for heating, and further, the first burner 2 1 and the first heat exchanger 3 1 even one can type composite heat source machine according to those other than the hot water supply application, and the second burner 2 2 and the second heat exchanger 3 2 respectively first than the burner 2 1 and the first heat exchanger 3 1 The present invention can be similarly applied as long as it is small.

1…缶体、2…第1バーナ、2…第2バーナ、3…第1熱交換器、3…第2熱交換器、4…分布板、4a…分布孔、5…給気室、6…燃焼ファン、7…第1燃焼室、7…第2燃焼室、8…仕切り壁、8a…壁板、10…温度センサ、11…コントローラ。 DESCRIPTION OF SYMBOLS 1 ... Can body, 2 1 ... 1st burner, 2 2 ... 2nd burner, 3 1 ... 1st heat exchanger, 3 2 ... 2nd heat exchanger, 4 ... Distribution board, 4a ... Distribution hole, 5 ... Supply Air chamber, 6 ... combustion fan, 7 1 ... first combustion chamber, 7 2 ... second combustion chamber, 8 ... partition wall, 8a ... wall plate, 10 ... temperature sensor, 11 ... controller.

Claims (3)

単一の缶体と、この缶体内に横方向に並べて設けた第1バーナ及び第1バーナより小型の第2バーナと、缶体の上部に横方向に並べて設けた第1熱交換器及び第1熱交換器より小型の第2熱交換器と、缶体内の第1と第2の両バーナと第1と第2の両熱交換器との間の空間を、第1バーナから第1熱交換器に至る第1燃焼室と第2バーナから第2熱交換器に至る第2燃焼室とに区画する仕切り壁とを備え、缶体の下部に、分布板で仕切られた給気室を画成し、単一の燃焼ファンからの燃焼用空気を給気室から分布板に形成した分布孔を介して第1と第2の両燃焼室に供給するようにした1缶式複合熱源機であって、仕切り壁は、第1燃焼室側と第2燃焼室側の2枚の壁板を有する中空構造に構成され、両壁板間の空隙に給気室からの空気を流すものにおいて、
仕切り壁の両壁板間に温度センサが配置され、
第1バーナのみの単独燃焼時における温度センサの検出温度に基づいて、第1熱交換器の閉塞率を推定する第1推定手段と、
第2バーナのみの単独燃焼時に、第1推定手段で推定した第1熱交換器の閉塞率の増加に応じて燃焼ファンの回転数を減少補正するファン補正手段と、を備えることを特徴とする1缶式複合熱源機。
A single can body, a first burner arranged side by side in the can body and a second burner smaller than the first burner, a first heat exchanger arranged side by side on the top of the can body and the first The space between the first heat exchanger and the second heat exchanger, which is smaller than the first heat exchanger, and the first and second burners in the can and the first and second heat exchangers, is transferred from the first burner to the first heat A partition wall partitioning into a first combustion chamber leading to the exchanger and a second combustion chamber leading from the second burner to the second heat exchanger, and an air supply chamber partitioned by a distribution plate at a lower portion of the can body A single-can type combined heat source that is configured to supply combustion air from a single combustion fan to both the first and second combustion chambers through distribution holes formed in the distribution plate from the supply chamber. The partition wall has a hollow structure having two wall plates on the first combustion chamber side and the second combustion chamber side, and allows air from the air supply chamber to flow into the space between both wall plates. In things,
A temperature sensor is arranged between both wall plates of the partition wall,
First estimating means for estimating a blocking rate of the first heat exchanger based on a temperature detected by a temperature sensor during single combustion of only the first burner;
Fan correction means for reducing and correcting the rotational speed of the combustion fan in accordance with an increase in the blockage rate of the first heat exchanger estimated by the first estimation means during single combustion of only the second burner. 1 can type combined heat source machine.
前記第2バーナのみの単独燃焼時における前記温度センサの検出温度に基づいて、前記第2熱交換器の閉塞率を推定する第2推定手段を備え、前記ファン補正手段は、第2バーナのみの単独燃焼時に、前記燃焼ファンの回転数を、前記第1熱交換器の閉塞率の増加に応じて減少補正すると共に、第2推定手段で推定した第2熱交換器の閉塞率の増加に応じて増加補正するように構成されることを特徴とする請求項1記載の1缶式複合熱源機。   Based on the temperature detected by the temperature sensor during single combustion of the second burner alone, the second heat exchanger is provided with second estimating means for estimating the blockage rate of the second heat exchanger, and the fan correction means includes only the second burner. During the single combustion, the rotational speed of the combustion fan is corrected to decrease according to the increase in the blockage rate of the first heat exchanger, and according to the increase in the blockage rate of the second heat exchanger estimated by the second estimation means. The single-can type combined heat source apparatus according to claim 1, wherein the one-can type combined heat source apparatus is configured to compensate for the increase. 請求項2記載の1缶式複合熱源機であって、前記ファン制御手段は、前記第1バーナのみの単独燃焼時に、前記燃焼ファンの回転数を、前記第1推定手段で推定した前記第1熱交換器の閉塞率の増加に応じて増加補正すると共に、前記第2推定手段で推定した前記第2熱交換器の閉塞率の増加に応じて減少補正するように構成されることを特徴とする1缶式複合熱源機。   3. The single can type combined heat source apparatus according to claim 2, wherein the fan control means estimates the rotation speed of the combustion fan by the first estimation means when the first burner alone is burned alone. It is configured to perform an increase correction according to an increase in the blockage rate of the heat exchanger and to perform a decrease correction according to an increase in the blockage rate of the second heat exchanger estimated by the second estimation means. One can type combined heat source machine.
JP2009147216A 2009-06-22 2009-06-22 1 can type combined heat source machine Active JP5186440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009147216A JP5186440B2 (en) 2009-06-22 2009-06-22 1 can type combined heat source machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009147216A JP5186440B2 (en) 2009-06-22 2009-06-22 1 can type combined heat source machine

Publications (2)

Publication Number Publication Date
JP2011002194A true JP2011002194A (en) 2011-01-06
JP5186440B2 JP5186440B2 (en) 2013-04-17

Family

ID=43560287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009147216A Active JP5186440B2 (en) 2009-06-22 2009-06-22 1 can type combined heat source machine

Country Status (1)

Country Link
JP (1) JP5186440B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004445A (en) * 2013-06-19 2015-01-08 リンナイ株式会社 Unit can type complex heat source
JP2015090258A (en) * 2013-11-07 2015-05-11 リンナイ株式会社 Uni-can body type complex heat source
CN110513863A (en) * 2019-08-20 2019-11-29 华帝股份有限公司 Gas water heater capable of being connected in series, series system, pressurization method and preheating method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173851U (en) * 1984-04-26 1985-11-18 株式会社ノーリツ Water heater
JP2005331222A (en) * 2004-04-19 2005-12-02 Rinnai Corp One-can type composite heat source machine
JP2006038401A (en) * 2004-07-29 2006-02-09 Rinnai Corp Compound heat source machine
JP2006078162A (en) * 2004-08-09 2006-03-23 Rinnai Corp One-can type complex heat source machine
JP2006300438A (en) * 2005-04-22 2006-11-02 Rinnai Corp Composite heat source machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173851U (en) * 1984-04-26 1985-11-18 株式会社ノーリツ Water heater
JP2005331222A (en) * 2004-04-19 2005-12-02 Rinnai Corp One-can type composite heat source machine
JP2006038401A (en) * 2004-07-29 2006-02-09 Rinnai Corp Compound heat source machine
JP2006078162A (en) * 2004-08-09 2006-03-23 Rinnai Corp One-can type complex heat source machine
JP2006300438A (en) * 2005-04-22 2006-11-02 Rinnai Corp Composite heat source machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004445A (en) * 2013-06-19 2015-01-08 リンナイ株式会社 Unit can type complex heat source
JP2015090258A (en) * 2013-11-07 2015-05-11 リンナイ株式会社 Uni-can body type complex heat source
CN110513863A (en) * 2019-08-20 2019-11-29 华帝股份有限公司 Gas water heater capable of being connected in series, series system, pressurization method and preheating method

Also Published As

Publication number Publication date
JP5186440B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
JP4850205B2 (en) 1 can type combined heat source machine
JP6807265B2 (en) Combustion device
JP5186440B2 (en) 1 can type combined heat source machine
JP2017502238A (en) Dynamic control system and method for heat exchanger
JP6398325B2 (en) Water heater
JP5330285B2 (en) 1 can type combined heat source machine
JP2012072991A (en) Economizer control device, economizer, and boiler
JP2011027350A (en) Single can type complex heat source machine
JP5987866B2 (en) Economizer control device, economizer and boiler
JP5178656B2 (en) 1 can type combined heat source machine
JP4477566B2 (en) Hot water system
JP5826539B2 (en) Boiler blow control device and blow control method
JP2018162703A (en) Internal combustion engine cooling apparatus
JP2015001342A (en) One can-type composite heat source machine
JP6274396B2 (en) boiler
JP2011133200A (en) Gas combustion device
JP7099866B2 (en) Combined heat source machine
JP5911107B2 (en) 1 can type combined heat source machine
JP6787107B2 (en) Combustion device
JP4656106B2 (en) Hot water storage water heater
JP6700604B2 (en) Glass plate manufacturing apparatus and glass plate manufacturing method
JP7335586B2 (en) Water heater
JP5752944B2 (en) One can two water channel bath water heater
JP6168605B2 (en) 1 can type combined heat source machine
JP5715789B2 (en) Combined heat source machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

R150 Certificate of patent or registration of utility model

Ref document number: 5186440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250