JP2011001525A - Transparent plastic substrate plate - Google Patents

Transparent plastic substrate plate Download PDF

Info

Publication number
JP2011001525A
JP2011001525A JP2009147936A JP2009147936A JP2011001525A JP 2011001525 A JP2011001525 A JP 2011001525A JP 2009147936 A JP2009147936 A JP 2009147936A JP 2009147936 A JP2009147936 A JP 2009147936A JP 2011001525 A JP2011001525 A JP 2011001525A
Authority
JP
Japan
Prior art keywords
plastic substrate
repeating unit
transparent plastic
copolymer
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009147936A
Other languages
Japanese (ja)
Other versions
JP5230011B2 (en
Inventor
Masamitsu Yonemura
真実 米村
Mayuko Kimura
真由子 木村
Takezo Fujiwara
武三 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2009147936A priority Critical patent/JP5230011B2/en
Publication of JP2011001525A publication Critical patent/JP2011001525A/en
Application granted granted Critical
Publication of JP5230011B2 publication Critical patent/JP5230011B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transparent plastic substrate plate having heat resistance and a small birefringence value, and excellent in molding processability and surface smoothness, and concretely, the plastic substrate plate for a liquid crystal touch panel, transparent electroconductive substrate plate and lens array.SOLUTION: This acrylic copolymer and the transparent plastic substrate plate consisting of the same are provided. The copolymer consists of (i) a recurring unit derived from a methacrylate monomer, (ii) a recurring unit derived from a vinylaromatic monomer and (iii) an acid anhydride recurring unit.

Description

本発明は、透明プラスチック基板に関する。さらに詳しくは液晶タッチパネル用プラスチック基板、透明導電性基板、レンズアレイに関する。   The present invention relates to a transparent plastic substrate. More specifically, the present invention relates to a liquid crystal touch panel plastic substrate, a transparent conductive substrate, and a lens array.

タッチパネルは、カーナビゲーション、携帯型ゲーム機、PDAなどを中心として広く採用されている。従来、液晶用タッチパネルは、その基板としてガラス基板が用いられていたが、近年、タッチパネル基板の小型携帯化のニーズが高まっている。これを実現するために軽量化、耐衝撃性・耐熱性の向上に関する要求が増し、0.4〜2.0mm厚のガラス基板を用いた液晶タッチパネルが生産されている。しかし、ガラス基板は耐衝撃性が低く、落下により割れ易いという問題があった。さらに軽量化を目的にガラス基板を薄肉化することは、ガラス基板の割れ発生率の増加につながり、結果として生産歩留りや耐久性の低下を招くという問題があった。軽量化と前述のガラス割れ対策のため、ガラスに代わる基板として透明プラスチック基板を使用した液晶タッチパネルの開発要求が強くなってきている(特許文献1)。   Touch panels are widely used mainly for car navigation, portable game machines, PDAs and the like. Conventionally, a glass substrate has been used as a substrate for a liquid crystal touch panel, but in recent years, there is an increasing need for a small and portable touch panel substrate. In order to realize this, demands for weight reduction, impact resistance and heat resistance increase have increased, and liquid crystal touch panels using a glass substrate having a thickness of 0.4 to 2.0 mm have been produced. However, there is a problem that the glass substrate has low impact resistance and is easily broken by dropping. Further, reducing the thickness of the glass substrate for the purpose of reducing the weight leads to an increase in the rate of occurrence of cracks in the glass substrate, resulting in a problem in that the production yield and the durability are lowered. In order to reduce the weight and prevent the above-mentioned glass breakage, there is an increasing demand for the development of a liquid crystal touch panel using a transparent plastic substrate as a substrate instead of glass (Patent Document 1).

また、透明導電膜は可視光透過性と電気伝導性を兼ね備えた膜として広く知られている。透明導電膜には、例えば、スズ添加酸化インジウム膜(以下「ITO膜」という)が挙げられ、このITO膜を透明基板上に積層した積層体は、電極、通電による発熱体、電磁波の遮蔽材や透光体として広く用いられている。近年では、高価なITO膜に替わる材料として、酸化亜鉛(ZnO)系透明導電膜などが開発されている。従来、透明導電膜の基材としてはガラスが主に用いられてきたが、需要や用途が増えるにつれ、加工性や生産性の向上が求められるようになってきた。そのため近年では、ガラスに比べ軽量で加工性・生産性に優れたプラスチックが注目されるようになり、例えば、ポリエチレンテレフタレートやポリカーボネート、環状オレフィン樹脂などを透明プラスチック基板に加工して用いられるようになってきている(特許文献2)。   A transparent conductive film is widely known as a film having both visible light transmission and electrical conductivity. The transparent conductive film includes, for example, a tin-added indium oxide film (hereinafter referred to as “ITO film”), and a laminate in which this ITO film is laminated on a transparent substrate includes an electrode, a heating element by energization, and an electromagnetic wave shielding material. And widely used as a translucent body. In recent years, zinc oxide (ZnO) based transparent conductive films and the like have been developed as materials to replace expensive ITO films. Conventionally, glass has been mainly used as a base material for a transparent conductive film. However, as demand and applications increase, improvement in workability and productivity has been demanded. Therefore, in recent years, plastics that are lighter than glass and superior in workability and productivity have attracted attention. For example, polyethylene terephthalate, polycarbonate, and cyclic olefin resins have been processed into transparent plastic substrates. (Patent Document 2).

電極基板、例えば、液晶ディスプレイ用電極基板、液晶タッチパネル用電極基板では、全光線透過率が同じであっても複屈折がより小さいプラスチック基板が求められる。さらに近年の液晶ディスプレイの大型化の結果、外力の偏りによって生じる複屈折変化が小さい、即ち、光弾性係数の小さい透明プラスチック基板が求められるようになってきている(特許文献3、4)。
一方、照明・表示装置として、透明プラスチック基材からなるレンズアレイがある。レンズアレイは偏肉成形品であり、例えば、携帯電話の押しボタンは、厚肉部となる単レンズが複数個配列され、それが薄肉部で連結された形状を持っている。従来の透明プラスチック基材では使用環境温度によって、熱変形を受けて、明るさムラにつながるなどの問題があった(特許文献5)。
An electrode substrate, for example, an electrode substrate for a liquid crystal display or an electrode substrate for a liquid crystal touch panel, requires a plastic substrate having a smaller birefringence even if the total light transmittance is the same. Furthermore, as a result of the recent increase in size of liquid crystal displays, a transparent plastic substrate having a small change in birefringence caused by bias of external force, that is, a small photoelastic coefficient has been demanded (Patent Documents 3 and 4).
On the other hand, as an illumination / display device, there is a lens array made of a transparent plastic substrate. The lens array is an unevenly molded product. For example, a push button of a mobile phone has a shape in which a plurality of single lenses that are thick portions are arranged and connected by thin portions. The conventional transparent plastic base material has a problem that it undergoes thermal deformation depending on the use environment temperature and leads to uneven brightness (Patent Document 5).

特開2003−5909号公報JP 2003-5909 A 特開2007−115657号公報JP 2007-115657 A 特開平4−176857号公報JP-A-4-176857 特開2003−34860号公報Japanese Patent Laid-Open No. 2003-34860 特開2008−281728号公報JP 2008-281728 A 特許第2886893号公報Japanese Patent No. 2886893

以上、従来、ガラス基板が用いられてきた用途において、透明プラスチック基板への代替への努力が払われている。透明プラスチック基板の材料として、PMMAに代表されるアクリル系樹脂が、その透明性の高さ、複屈折の小ささから幅広く用いられているが、耐熱性が十分でなく、寸法変化を受け易いという問題があり、市場の要求に対し満足しうるものではなかった。一方、耐熱性を向上させたアクリル系樹脂である、メタクリル酸メチル、スチレンおよび無水マレイン酸からなる3元共重合体(スチレン/無水マレイン酸重量比≧1)が開示されているが、該共重合体には複屈折が大きいという問題がある(特許文献5)。   As described above, in applications where glass substrates have been used, efforts have been made to replace them with transparent plastic substrates. Acrylic resin typified by PMMA is widely used as a material for transparent plastic substrates because of its high transparency and low birefringence, but it is not sufficient in heat resistance and is subject to dimensional changes. There was a problem and it was not satisfactory for the demands of the market. On the other hand, a terpolymer composed of methyl methacrylate, styrene and maleic anhydride, which is an acrylic resin with improved heat resistance (styrene / maleic anhydride weight ratio ≧ 1), is disclosed. The polymer has a problem that the birefringence is large (Patent Document 5).

従って、耐熱性を有し、複屈折値が小さく、成形加工性、及び表面平滑性に優れる透明プラスチック基板の開発が求められている。
本発明は、耐熱性を有し、複屈折値が小さく、成形加工性、及び表面平滑性に優れる透明プラスチック基板を提供することを目的とする。具体的には、液晶タッチパネル用プラスチック基板、透明導電性基板、レンズアレイを提供することを目的とする。
本発明は、特定のアクリル系共重合体からなる透明プラスチック基板が、耐熱性を有し、複屈折値が小さく、成形加工時の熱安定性に優れ、成形加工性、及び表面平滑性に優れることを見出しなされたものである。
Therefore, development of a transparent plastic substrate having heat resistance, a small birefringence value, excellent molding processability and surface smoothness is required.
An object of this invention is to provide the transparent plastic substrate which has heat resistance, a small birefringence value, and is excellent in molding processability and surface smoothness. Specifically, it aims at providing the plastic substrate for liquid crystal touch panels, a transparent conductive substrate, and a lens array.
In the present invention, a transparent plastic substrate made of a specific acrylic copolymer has heat resistance, a small birefringence value, excellent thermal stability during molding, excellent molding processability and surface smoothness. It was made to find out.

すなわち本発明は、
[1]下記式(1)で表されるメタクリレート単量体由来の繰り返し単位:10〜70重量%、下記式(2)で表されるビニル芳香族単量体由来の繰り返し単位:5〜40重量%、及び下記式(3)又は下記式(4)で表される環状酸無水物繰り返し単位:20〜50重量%を含有する共重合体であって、ビニル芳香族単量体由来の繰り返し単位の含有量(A)と環状酸無水物繰り返し単位の含有量(B)のモル比(B/A)が、1より大きく、10以下の範囲にあり、且つ、該共重合体100重量部に対して残存する単量体の合計が0.5重量部以下である共重合体からなる透明プラスチック基板。
That is, the present invention
[1] Repeating unit derived from a methacrylate monomer represented by the following formula (1): 10 to 70% by weight, repeating unit derived from a vinyl aromatic monomer represented by the following formula (2): 5 to 40 A copolymer containing 20% by weight and a cyclic acid anhydride repeating unit represented by the following formula (3) or the following formula (4): 20 to 50% by weight, which is a repeat derived from a vinyl aromatic monomer The molar ratio (B / A) of the unit content (A) to the cyclic acid anhydride repeating unit content (B) is greater than 1 and 10 or less, and 100 parts by weight of the copolymer. The transparent plastic substrate which consists of a copolymer whose sum total of the monomer which remains with respect to is 0.5 weight part or less.

Figure 2011001525
Figure 2011001525

(式中:Rは、水素、直鎖状または分岐状の炭素数1〜12のアルキル基、炭素数5〜12のシクロアルキル基を表す。) (In the formula: R 1 represents hydrogen, a linear or branched alkyl group having 1 to 12 carbon atoms, or a cycloalkyl group having 5 to 12 carbon atoms.)

Figure 2011001525
Figure 2011001525

(式中:R、Rは、それぞれ同一でも、異なっていても良く、水素、ハロゲン、水酸基、アルコキシ基、ニトロ基、直鎖状または分岐状の炭素数1〜12のアルキル基を表す。lは1〜3の整数を示す。) (In the formula: R 2 and R 3 may be the same or different, and each represents hydrogen, halogen, hydroxyl group, alkoxy group, nitro group, linear or branched alkyl group having 1 to 12 carbon atoms. L represents an integer of 1 to 3)

Figure 2011001525
Figure 2011001525

Figure 2011001525
Figure 2011001525

(式中:R〜Rは、それぞれ同一でも、異なっていても良く、水素、直鎖状または分岐状の炭素数1〜12のアルキル基を表す。) (Wherein R 5 to R 8 may be the same or different and each represents hydrogen, a linear or branched alkyl group having 1 to 12 carbon atoms).

[2]共重合体が、さらに、下記式(5)で表される芳香族基を有するメタクリレート単量体由来の繰り返し単位:0.1〜5重量%を含有する共重合体からなる[1]記載の透明プラスチック基板。 [2] The copolymer further comprises a copolymer containing a repeating unit derived from a methacrylate monomer having an aromatic group represented by the following formula (5): 0.1 to 5% by weight [1] ] The transparent plastic substrate of description.

Figure 2011001525
Figure 2011001525

(式中:Rは、水素、ハロゲン、水酸基、アルコキシ基、ニトロ基、直鎖状または分岐状の炭素数1〜12のアルキル基を表す。mは1〜3の整数、nは0〜2の整数を示す。) (In the formula: R 4 represents hydrogen, halogen, hydroxyl group, alkoxy group, nitro group, linear or branched alkyl group having 1 to 12 carbon atoms, m is an integer of 1 to 3, and n is 0 to 0. Indicates an integer of 2.)

[3]共重合体が、GPC測定法による重量平均分子量で10,000〜400,000、分子量分布で1.8〜3.0の範囲にあることを特徴とする[1]又は[2]に記載の透明プラスチック基板。
[4]共重合体が、メタクリレート単量体由来の繰り返し単位がメタクリル酸メチル、ビニル芳香族単量体由来の繰り返し単位がスチレン、環状酸無水物繰り返し単位が無水マレイン酸、芳香族基を有するメタクリレート単量体由来の繰り返し単位がメタクリル酸ベンジルからそれぞれ誘導される共重合体よりなることを特徴とする[1]〜[3]のいずれかに記載の透明プラスチック基板。
[5][1]〜[4]のいずれかに記載の透明プラスチック基板からなる液晶タッチパネル用プラスチック基板。
[6][1]〜[4]のいずれかに記載の透明プラスチック基板の少なくとも片面に直接スズ添加酸化インジウム膜が積層された透明導電性基板。
[7][1]〜[4]のいずれかに記載の透明プラスチック基板の少なくとも片面に直接酸化亜鉛系透明導電膜が積層された透明導電膜導電性基板。
[8][1]〜[4]のいずれかに記載の透明プラスチック基板からなるレンズアレイ。
に関する。
[3] The copolymer has a weight average molecular weight of 10,000 to 400,000 and a molecular weight distribution of 1.8 to 3.0 according to GPC measurement method. [1] or [2] Transparent plastic substrate as described in 1.
[4] The copolymer has a repeating unit derived from a methacrylate monomer as methyl methacrylate, a repeating unit derived from a vinyl aromatic monomer as styrene, a cyclic acid anhydride repeating unit as maleic anhydride, and an aromatic group. The transparent plastic substrate according to any one of [1] to [3], wherein the repeating unit derived from a methacrylate monomer is a copolymer derived from benzyl methacrylate.
[5] A plastic substrate for a liquid crystal touch panel comprising the transparent plastic substrate according to any one of [1] to [4].
[6] A transparent conductive substrate in which a tin-added indium oxide film is directly laminated on at least one surface of the transparent plastic substrate according to any one of [1] to [4].
[7] A transparent conductive film conductive substrate in which a zinc oxide-based transparent conductive film is directly laminated on at least one surface of the transparent plastic substrate according to any one of [1] to [4].
[8] A lens array comprising the transparent plastic substrate according to any one of [1] to [4].
About.

本発明は、特定のアクリル系樹脂からなる、耐熱性を有し、複屈折値が小さく、成形加工時の熱安定性に優れ、成形加工性、及び表面平滑性に優れる透明プラスチック基板を提供することができる。   The present invention provides a transparent plastic substrate made of a specific acrylic resin, having heat resistance, a small birefringence value, excellent thermal stability at the time of molding, molding processability, and surface smoothness. be able to.

[アクリル系共重合体]
本発明の透明プラスチック基板を得るのに好ましいアクリル系共重合体は、
下記式(1)で表されるメタクリレート単量体由来の繰り返し単位:10〜70重量%、下記式(2)で表されるビニル芳香族単量体由来の繰り返し単位:5〜40重量%、及び下記式(3)又は下記式(4)で表される環状酸無水物繰り返し単位:20〜50重量%を含有する共重合体であって、ビニル芳香族単量体由来の繰り返し単位の含有量(A)と環状酸無水物繰り返し単位の含有量(B)のモル比(B/A)が、1より大きく、10以下の範囲にあり、且つ、該共重合体100重量部に対して残存する単量体の合計が0.5重量部以下であるアクリル系共重合体である。
[Acrylic copolymer]
A preferred acrylic copolymer for obtaining the transparent plastic substrate of the present invention is:
Repeating unit derived from a methacrylate monomer represented by the following formula (1): 10 to 70% by weight, repeating unit derived from a vinyl aromatic monomer represented by the following formula (2): 5 to 40% by weight, And a cyclic acid anhydride repeating unit represented by the following formula (3) or the following formula (4): a copolymer containing 20 to 50% by weight, containing a repeating unit derived from a vinyl aromatic monomer The molar ratio (B / A) between the amount (A) and the content (B) of the cyclic acid anhydride repeating unit is in the range of more than 1 and 10 or less, and relative to 100 parts by weight of the copolymer It is an acrylic copolymer in which the total of the remaining monomers is 0.5 parts by weight or less.

Figure 2011001525
Figure 2011001525

(式中:Rは、水素、直鎖状または分岐状の炭素数1〜12のアルキル基、炭素数5〜12のシクロアルキル基を表す。) (In the formula: R 1 represents hydrogen, a linear or branched alkyl group having 1 to 12 carbon atoms, or a cycloalkyl group having 5 to 12 carbon atoms.)

Figure 2011001525
Figure 2011001525

(式中:R、Rは、それぞれ同一でも、異なっていても良く、水素、ハロゲン、水酸基、アルコキシ基、ニトロ基、直鎖状または分岐状の炭素数1〜12のアルキル基を表す。lは1〜3の整数を示す。) (In the formula: R 2 and R 3 may be the same or different, and each represents hydrogen, halogen, hydroxyl group, alkoxy group, nitro group, linear or branched alkyl group having 1 to 12 carbon atoms. L represents an integer of 1 to 3)

Figure 2011001525
Figure 2011001525

Figure 2011001525
Figure 2011001525

(式中:R〜Rは、それぞれ同一でも、異なっていても良く、水素、直鎖状または分岐状の炭素数1〜12のアルキル基を表す。) (Wherein R 5 to R 8 may be the same or different and each represents hydrogen, a linear or branched alkyl group having 1 to 12 carbon atoms).

さらに好ましいアクリル系共重合体は、下記式(5)で表される芳香族基を有するメタクリレート単量体由来の繰り返し単位:0.1〜5重量%を含有するアクリル系共重合体である。   A more preferable acrylic copolymer is an acrylic copolymer containing 0.1 to 5% by weight of a repeating unit derived from a methacrylate monomer having an aromatic group represented by the following formula (5).

Figure 2011001525
Figure 2011001525

(式中:Rは、水素、ハロゲン、水酸基、アルコキシ基、ニトロ基、直鎖状または分岐状の炭素数1〜12のアルキル基を表す。mは1〜3の整数、nは0〜2の整数を示す。) (In the formula: R 4 represents hydrogen, halogen, hydroxyl group, alkoxy group, nitro group, linear or branched alkyl group having 1 to 12 carbon atoms, m is an integer of 1 to 3, and n is 0 to 0. Indicates an integer of 2.)

アクリル系共重合体において、式(1)で表される繰り返し単位は、メタクリル酸、及びメタクリル酸エステル単量体から誘導される。使用されるメタクリル酸エステルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸t−ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸シクロヘキシル;などが挙げられる。メタクリル酸、及びメタクリル酸エステルは、単独で用いても2種以上を併用してもよい。
これらメタクリル酸エステルのうち、アルキル基の炭素数が1〜7であるメタクリル酸アルキルエステルが好ましく、得られたアクリル系共重合体の耐熱性や透明性が優れることから、メタクリル酸メチルが特に好ましい。
In the acrylic copolymer, the repeating unit represented by the formula (1) is derived from methacrylic acid and a methacrylic acid ester monomer. Examples of the methacrylic acid ester used include methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, methacrylic acid. Cyclohexyl acid; and the like. Methacrylic acid and methacrylic acid ester may be used alone or in combination of two or more.
Among these methacrylic acid esters, methacrylic acid alkyl esters having 1 to 7 carbon atoms in the alkyl group are preferable, and methyl methacrylate is particularly preferable because the resulting acrylic copolymer has excellent heat resistance and transparency. .

式(1)で表される繰り返し単位の含有割合は、透明性の観点から10〜70質量%、好ましくは25〜70質量%、より好ましくは40〜70質量%である。
式(2)で表される繰り返し単位は、芳香族ビニル単量体から誘導される。使用される単量体としては、例えば、スチレン、2−メチルスチレン、3−メチルスチレン、4−メチルスチレン、2,4−ジメチルスチレン、2,5−ジメチルスチレン、2−メチル−4−クロロスチレン、2,4,6−トリメチルスチレン、α―メチルスチレン、cis−β−メチルスチレン、trans−β−メチルスチレン、4−メチル−α−メチルスチレン、4−フルオロ−α−メチルスチレン、4−クロロ−α−メチルスチレン、4−ブロモ−α−メチルスチレン、4−t−ブチルスチレン、2−フルオロスチレン、3−フルオロスチレン、4−フルオロスチレン、2,4−ジフルオロスチレン、2−クロロスチレン、3−クロロスチレン、4−クロロスチレン、2,4−ジクロロスチレン、2,6−ジクロロスチレン、2−ブロモスチレン、3−ブロモスチレン、4−ブロモスチレン、2,4−ジブロモスチレン、α−ブロモスチレン、β−ブロモスチレン、2−ヒドロキシスチレン、4−ヒドロキシスチレンなどが挙げられる。これらの芳香族ビニル単量体は、単独で用いても2種以上を併用してもよい。
これらの単量体のうち、共重合が容易なことから、スチレン、α−メチルスチレンが好ましい。
The content ratio of the repeating unit represented by the formula (1) is 10 to 70% by mass, preferably 25 to 70% by mass, more preferably 40 to 70% by mass from the viewpoint of transparency.
The repeating unit represented by the formula (2) is derived from an aromatic vinyl monomer. Examples of the monomer used include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-dimethylstyrene, 2,5-dimethylstyrene, and 2-methyl-4-chlorostyrene. 2,4,6-trimethylstyrene, α-methylstyrene, cis-β-methylstyrene, trans-β-methylstyrene, 4-methyl-α-methylstyrene, 4-fluoro-α-methylstyrene, 4-chloro -Α-methylstyrene, 4-bromo-α-methylstyrene, 4-t-butylstyrene, 2-fluorostyrene, 3-fluorostyrene, 4-fluorostyrene, 2,4-difluorostyrene, 2-chlorostyrene, 3 -Chlorostyrene, 4-chlorostyrene, 2,4-dichlorostyrene, 2,6-dichlorostyrene, 2-bromo Styrene, 3-bromostyrene, 4-bromostyrene, 2,4-dibromostyrene, alpha-bromostyrene, beta-bromostyrene, 2-hydroxystyrene, 4-hydroxy styrene. These aromatic vinyl monomers may be used alone or in combination of two or more.
Of these monomers, styrene and α-methylstyrene are preferable because of easy copolymerization.

式(2)で表される繰り返し単位の含有割合は、透明性、耐熱性の観点から5〜40質量%、好ましくは5〜30質量%、より好ましくは5〜20質量%である。
式(3)で表される環状酸無水物繰り返し単位は、無置換及び/又は置換無水マレイン酸から誘導される。使用される単量体としては、例えば、無水マレイン酸、無水シトラコン酸、ジメチル無水マレイン酸、ジクロロ無水マレイン酸、ブロモ無水マレイン酸、ジブロモ無水マレイン酸、フェニル無水マレイン酸、ジフェニル無水マレイン酸などが挙げられる。これらの単量体のうち、共重合が容易なことから、無水マレイン酸が好ましい。
また、式(4)で表される環状酸無水物繰り返し単位は、後述する繰り返し単位間での縮合環化反応により誘導され、例えば、無水グルタル酸などが挙げられる。
The content ratio of the repeating unit represented by the formula (2) is 5 to 40% by mass, preferably 5 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoints of transparency and heat resistance.
The cyclic acid anhydride repeating unit represented by the formula (3) is derived from unsubstituted and / or substituted maleic anhydride. Examples of the monomer used include maleic anhydride, citraconic anhydride, dimethyl maleic anhydride, dichloromaleic anhydride, bromomaleic anhydride, dibromomaleic anhydride, phenylmaleic anhydride, and diphenylmaleic anhydride. Can be mentioned. Of these monomers, maleic anhydride is preferable because of easy copolymerization.
The cyclic acid anhydride repeating unit represented by the formula (4) is derived by a condensation cyclization reaction between the repeating units described later, and examples thereof include glutaric anhydride.

本発明の共重合体(a)において、式(3)又は式(4)であらわされる環状酸無水物繰り返し単位は、空気中の湿気など外的環境により一部加水分解を受け開環する可能性がある。本発明の共重合体(a)では、光学的特性や耐熱性の観点から、その加水分解率は10モル%未満であることが望ましい。さらに5モル%未満であることが好ましく、1モル%未満であることがより好ましい。
ここで、加水分解率(モル%)は、{1−(加水分解後の環状酸無水物量(モル))/加水分解前の環状酸無水物量(モル)}×100で求められる。
In the copolymer (a) of the present invention, the cyclic acid anhydride repeating unit represented by the formula (3) or the formula (4) can be opened by being partially hydrolyzed by an external environment such as moisture in the air. There is sex. In the copolymer (a) of the present invention, the hydrolysis rate is preferably less than 10 mol% from the viewpoint of optical properties and heat resistance. Furthermore, it is preferable that it is less than 5 mol%, and it is more preferable that it is less than 1 mol%.
Here, the hydrolysis rate (mol%) is obtained by {1- (cyclic acid anhydride amount after hydrolysis (mol)) / cyclic acid anhydride amount (mol) before hydrolysis} × 100.

式(3)又は式(4)で示される環状酸無水物繰り返し単位の含有割合は、本発明のアクリル系共重合体が高い耐熱性と光学特性(特に、後述する位相差の制御)をより高度に達成するために、20〜50質量%、好ましくは20〜45質量%である。但し、本発明のアクリル系共重合体中、式(2)で表されるビニル芳香族単量体由来の繰り返し単位の含有量(A)と式(3)又は式(4)で表される環状酸無水物繰り返し単位の含有量(B)のモル比(B/A)は、好ましくは1より大きく、10以下であり、より好ましくは1より大きく、5以下である。
式(5)で表される繰り返し単位は、芳香族基を有するメタクリレート単量体から誘導される。使用される単量体としては、例えば、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸1−フェニルエチルなどが挙げられる。これらの単量体は、単独で用いても2種以上を併用してもよい。これらの単量体のうち、メタクリル酸ベンジルが特に好ましい。
式(5)で示される繰り返し単位の含有割合は、本発明の効果である光学的特性(特に、光弾性係数を極小化する)を発現させる上で、0.1〜5質量%、好ましくは0.1〜4質量%、より好ましくは0.1〜3質量%である。
The content ratio of the cyclic acid anhydride repeating unit represented by the formula (3) or the formula (4) is such that the acrylic copolymer of the present invention has high heat resistance and optical characteristics (particularly, control of retardation described later). In order to achieve a high degree, it is 20-50 mass%, Preferably it is 20-45 mass%. However, in the acrylic copolymer of the present invention, the content (A) of the repeating unit derived from the vinyl aromatic monomer represented by the formula (2) and the formula (3) or the formula (4) The molar ratio (B / A) of the content (B) of cyclic acid anhydride repeating units is preferably more than 1 and 10 or less, more preferably more than 1 and 5 or less.
The repeating unit represented by the formula (5) is derived from a methacrylate monomer having an aromatic group. Examples of the monomer used include phenyl methacrylate, benzyl methacrylate, and 1-phenylethyl methacrylate. These monomers may be used alone or in combination of two or more. Of these monomers, benzyl methacrylate is particularly preferred.
The content of the repeating unit represented by the formula (5) is 0.1 to 5% by mass, preferably 0.1% by mass, preferably the optical properties (particularly minimizing the photoelastic coefficient) that are the effects of the present invention. It is 0.1-4 mass%, More preferably, it is 0.1-3 mass%.

本発明の共重合体は、残存する(共重合体の繰り返し単位を構成する)単量体の合計が、共重合体100重量部に対して0.5重量部以下であり、好ましくは0.4重量部以下、より好ましくは0.3重量部以下である。残存単量体の合計が、0.5重量部を超えると、成形加工時に熱時着色したり、成形品の耐熱・耐候性が低下するなど実用に適さない成形体が得られ問題である。本発明でいう残存揮発分量とは、先述した重合反応時に反応しなかった残存単量体、重合溶媒、副生水、及び副生アルコールの合計量をいう。
本発明のアクリル系共重合体のGPC測定法によるPMMA換算の重量平均分子量(Mw)は、10,000〜400,000、好ましくは40,000〜300,000、より好ましくは70,000〜200,000であり、その分子量分布(Mw/Mn)は1.8〜3.0、好ましくは1.8〜2.7、より好ましくは1.8〜2.5の範囲である。
本発明のアクリル系共重合体のガラス転移温度(Tg)は、樹脂組成で任意に制御できるが、産業上の応用性の観点から、好ましくは120℃以上に制御される。より好ましくは130℃以上、さらに好ましくは135℃以上に制御される。
In the copolymer of the present invention, the total amount of the remaining monomers (constituting the copolymer repeating unit) is 0.5 parts by weight or less with respect to 100 parts by weight of the copolymer. 4 parts by weight or less, more preferably 0.3 parts by weight or less. When the total amount of residual monomers exceeds 0.5 parts by weight, there is a problem in that a molded product that is not suitable for practical use is obtained, such as being colored when heated during molding, and the heat resistance and weather resistance of the molded product are reduced. The amount of residual volatile matter referred to in the present invention refers to the total amount of residual monomer, polymerization solvent, by-product water, and by-product alcohol that have not reacted during the above-described polymerization reaction.
The weight average molecular weight (Mw) in terms of PMMA according to the GPC measurement method of the acrylic copolymer of the present invention is 10,000 to 400,000, preferably 40,000 to 300,000, more preferably 70,000 to 200. The molecular weight distribution (Mw / Mn) is 1.8 to 3.0, preferably 1.8 to 2.7, more preferably 1.8 to 2.5.
The glass transition temperature (Tg) of the acrylic copolymer of the present invention can be arbitrarily controlled by the resin composition, but is preferably controlled to 120 ° C. or more from the viewpoint of industrial applicability. More preferably, it is controlled to 130 ° C. or higher, more preferably 135 ° C. or higher.

本発明のアクリル系共重合体の製造法は公知の懸濁重合、溶液重合、塊状重合等の重合方法を適用して製造でき、特に限定されない。例えば、特公昭63−1964号公報、特開昭60−147417号公報、特許第387964号等に記載されている方法等を用いることができる。アクリル系共重合体は、分子量、組成等がことなる2種以上のものを同時に用いることができる。
本発明のアクリル系共重合体は、必要に応じて公知の色剤、紫外線吸収剤・酸化防止剤等の安定剤、各種添加剤を使用してもよい。例えば、無機充填剤、酸化鉄等の顔料、ステアリン酸、ベヘニン酸、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム、エチレンビスステアロアミド等の滑剤、離型剤、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイル、パラフィン、有機ポリシロキサン、ミネラルオイル等の軟化剤・可塑剤、ヒンダードフェノール系酸化防止剤、りん系熱安定剤等の酸化防止剤、ヒンダードアミン系光安定剤、ベンゾトリアゾール系紫外線吸収剤、難燃剤、帯電防止剤、有機繊維、ガラス繊維、炭素繊維、金属ウィスカ等の補強剤、着色剤、その他添加剤或いはこれらの混合物等が挙げられる。
添加剤の含有割合は、好ましくは0〜5質量%、より好ましくは0〜2質量%、さらに好ましくは0〜1質量%である。
The method for producing the acrylic copolymer of the present invention can be produced by applying a known polymerization method such as suspension polymerization, solution polymerization or bulk polymerization, and is not particularly limited. For example, methods described in Japanese Patent Publication No. 63-1964, Japanese Patent Application Laid-Open No. 60-147417, Japanese Patent No. 387964, and the like can be used. As the acrylic copolymer, two or more types having different molecular weight, composition and the like can be used at the same time.
The acrylic copolymer of the present invention may use known colorants, stabilizers such as ultraviolet absorbers and antioxidants, and various additives as necessary. For example, inorganic fillers, pigments such as iron oxides, lubricants such as stearic acid, behenic acid, zinc stearate, calcium stearate, magnesium stearate, ethylene bisstearamide, mold release agents, paraffinic process oil, naphthenic process Oils, aromatic process oils, paraffins, organic polysiloxanes, mineralizers and other softeners / plasticizers, hindered phenol antioxidants, phosphorus heat stabilizers and other antioxidants, hindered amine light stabilizers, benzo Examples include triazole-based ultraviolet absorbers, flame retardants, antistatic agents, organic fibers, glass fibers, carbon fibers, reinforcing agents such as metal whiskers, colorants, other additives, or mixtures thereof.
The content of the additive is preferably 0 to 5% by mass, more preferably 0 to 2% by mass, and still more preferably 0 to 1% by mass.

また、本発明のアクリル系共重合体は、本発明の目的を損なわない範囲で、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂、ポリスチレン、スチレン/アクリロニトリル共重合体、スチレン/無水マレイン酸共重合体、スチレン/メタアクリル酸共重合体等のスチレン系樹脂、ポリメタアクリル酸エステル系樹脂、ポリアミド、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル系樹脂、ポリスルホン、ポリフェニレンオキサイド、ポリイミド、ポリエーテルイミド、ポリアセタール、環状オレフィン系樹脂、ノルボルネン系樹脂等の熱可塑性樹脂、およびフェノール樹脂、メラミン樹脂、シリコーン樹脂、エポキシ樹脂等の熱硬化性樹脂などの少なくとも1種以上を混合することができる。   In addition, the acrylic copolymer of the present invention is within the range not impairing the object of the present invention, for example, polyolefin resin such as polyethylene and polypropylene, polystyrene, styrene / acrylonitrile copolymer, styrene / maleic anhydride copolymer. , Styrene resins such as styrene / methacrylic acid copolymer, polymethacrylate resin, polyamide, polyphenylene sulfide resin, polyether ether ketone resin, polyester resin, polysulfone, polyphenylene oxide, polyimide, polyetherimide, It is possible to mix at least one kind of thermoplastic resin such as polyacetal, cyclic olefin resin, norbornene resin, and thermosetting resin such as phenol resin, melamine resin, silicone resin, epoxy resin, etc. That.

[透明プラスチック基板]
本発明における透明プラスチック基板を製造する際、必要に応じて染料、顔料、ヒンダードフェノール系やリン酸塩等の熱安定剤、ベンゾトリアゾール系、2−ヒドロキシベンゾフェノン系、サリチル酸フェニルエステル系などの紫外線吸収剤、フタル酸エステル系、脂肪酸エステル系、トリメリット酸エステル系、リン酸エステル系、ポリエステル系などの可塑剤、高級脂肪酸、高級脂肪酸エステル、高級脂肪酸のモノ、ジ、またはトリグリセリド系などの離型剤、高級脂肪酸エステル、ポリオレフィン系などの滑剤、ポリエーテル系、ポリエーテルエステル系、ポリエーテルエステルアミド系、アルキルスフォン酸塩、アルキルベンゼンスルフォン酸塩などの帯電防止剤、リン系、リン/塩素系、リン/臭素系などの難燃剤、反射光のぎらつきを防止するためにメタクリル酸メチル/スチレン共重合体ビーズなどの有機系光拡散剤、硫酸バリウム、酸化チタン、炭酸カルシウム、タルクなどの無機系光拡散剤、補強剤として多段重合で得られるアクリル系ゴム等を使用してもよい。
これらの添加剤を配合するときには、公知の方法で実施しうる。例えば、単量体混合物にあらかじめ添加剤を溶解しておき重合する方法や、溶融状態、ビーズ状あるいはペレット状の樹脂に添加剤をミキサー等でドライブレンドし、押出し機を用いて混練、造粒する方法などが挙げられる。
[Transparent plastic substrate]
When producing transparent plastic substrates in the present invention, dyes, pigments, heat stabilizers such as hindered phenols and phosphates, ultraviolet rays such as benzotriazoles, 2-hydroxybenzophenones, and salicylic acid phenyl esters Absorbent, phthalate ester, fatty acid ester, trimellitic acid ester, phosphate ester, polyester and other plasticizer, higher fatty acid, higher fatty acid ester, higher fatty acid mono-, di- or triglyceride Molding agents, higher fatty acid esters, polyolefin-based lubricants, polyether-based, polyether-ester-based, polyether-ester amide-based, alkyl sulfonates, alkylbenzene sulfonates and other antistatic agents, phosphorus-based, phosphorus / chlorine , Phosphorus / bromine flame retardants, reflected light In order to prevent sticking, organic light diffusing agents such as methyl methacrylate / styrene copolymer beads, inorganic light diffusing agents such as barium sulfate, titanium oxide, calcium carbonate, talc, and acrylics obtained by multistage polymerization as reinforcing agents System rubber or the like may be used.
When these additives are blended, it can be carried out by a known method. For example, a method in which an additive is dissolved in a monomer mixture in advance and polymerized, or an additive is dry-blended with a mixer or the like in a molten state, bead-like or pellet-like resin, and kneaded and granulated using an extruder The method of doing is mentioned.

本発明の透明プラスチック基板は、フィルム、もしくはシートであることが好ましい。本発明におけるフィルム・シートは、厚さの違いのみであり、フィルムは300μm以下の厚さのものを言い、シートは300μmを超えるものである。
好ましいプラスチック基板の厚さは、0.01〜10.0mmの範囲のフィルムまたはシートである。0.01〜10.0mmの範囲のフィルムまたはシートは、パネル加工時に変形しにくく取り扱いやすい。また、基板の荷重による変形も生じ難くなる。さらに好ましいプラスチック基板の厚さは0.1〜5.0mmの範囲である。
本発明における透明プラスチック基板であるフィルム、またはシートは耐熱性を有していることが好ましく、その耐熱性の指標として、温度90℃の雰囲気下で約1時間静置した際、そり・変形のないことが好ましい。
本発明における透明プラスチック基板であるフィルム、またはシートは透明性が必須であり、その透明性の指標として全光線透過率が80%以上、ヘイズ値が5%以下であることが好ましい。さらに好ましくは全光線透過率が85%以上、ヘイズ値が2%以下である。
The transparent plastic substrate of the present invention is preferably a film or a sheet. The film / sheet in the present invention is only a difference in thickness, the film is a thickness of 300 μm or less, and the sheet is more than 300 μm.
A preferred plastic substrate thickness is a film or sheet in the range of 0.01 to 10.0 mm. A film or sheet in the range of 0.01 to 10.0 mm is hard to be deformed during panel processing and easy to handle. Further, deformation due to the load on the substrate is less likely to occur. A more preferable thickness of the plastic substrate is in the range of 0.1 to 5.0 mm.
The film or sheet, which is a transparent plastic substrate in the present invention, preferably has heat resistance. As an index of heat resistance, the film or sheet is warped or deformed when left in an atmosphere at a temperature of 90 ° C. for about 1 hour. Preferably not.
The film or sheet, which is a transparent plastic substrate in the present invention, must have transparency, and it is preferable that the total light transmittance is 80% or more and the haze value is 5% or less as an index of transparency. More preferably, the total light transmittance is 85% or more and the haze value is 2% or less.

本発明における透明プラスチック基板であるフィルム、またはシートは光学等方性が優れるものが好ましく、リタデーション値が30nm以下、遅相軸のバラツキが40度以内、より好ましくはリタデーション値が20nm以下、遅相軸のバラツキが20度以内のものが好適である。ここで、リタデーション値は、公知の測定装置を用いて測定した波長590nmにおける複屈折の屈折率の差△nと膜厚dとの積△n・dで表されるものである。   The film or sheet which is a transparent plastic substrate in the present invention preferably has excellent optical isotropy, the retardation value is 30 nm or less, the variation of the slow axis is within 40 degrees, more preferably the retardation value is 20 nm or less, the slow phase A shaft with a variation of 20 degrees or less is preferable. Here, the retardation value is represented by a product Δn · d of a refractive index difference Δn of birefringence at a wavelength of 590 nm and a film thickness d measured using a known measuring apparatus.

本発明における透明プラスチック基板であるフィルム、またはシートは光弾性係数の絶対値が3.0×10−12Pa−1未満であることが好ましい。光弾性係数がこの範囲内であれば、応力による複屈折の変化が少ないため、液晶表示装置等に使用した場合にコントラストや画面の均一性に優れる。
光弾性係数に関しては種々の文献に記載があり(例えばMacromolecules
2004,37,1062−1066参照)、下式により定義されるものである。
|CR|=|Δn|/σR |Δn|=|n1−n2|
(式中、|CR|:光弾性係数の絶対値、σR:伸張応力、|Δn|:複屈折の絶対値、n1:伸張方向の屈折率、n2:伸張方向と垂直な屈折率)
光弾性係数の値がゼロに近いほど外力による複屈折の変化が小さいことを示しており、各用途において設計された複屈折の変化が小さいことを意味する。
The film or sheet which is a transparent plastic substrate in the present invention preferably has an absolute value of the photoelastic coefficient of less than 3.0 × 10 −12 Pa −1 . If the photoelastic coefficient is within this range, the change in birefringence due to stress is small, so that the contrast and the uniformity of the screen are excellent when used in a liquid crystal display device or the like.
The photoelastic coefficient is described in various documents (for example, Macromolecules).
2004, 37, 1062-1066), and is defined by the following equation.
| CR | = | Δn | / σR | Δn | = | n1-n2 |
(Where: | CR |: absolute value of photoelastic coefficient, σR: stretching stress, | Δn |: absolute value of birefringence, n1: refractive index in stretching direction, n2: refractive index perpendicular to stretching direction)
The closer the value of the photoelastic coefficient is to zero, the smaller the change in birefringence due to external force, which means that the change in birefringence designed for each application is small.

本発明の透明プラスチック基板は、耐熱性を有し、さらに複屈折値が小さい。さらに、成形加工性、及び表面平滑性に優れるため、液晶タッチパネル用プラスチック基板、透明導電性基板、レンズアレイなどに好適に用いられる。
1)液晶タッチパネル用プラスチック基板
液晶タッチパネル用基板は、例えば、表面を液晶タッチパネル基板用として平坦に加工処理されたガラス基板の上面に紫外線硬化樹脂を介してプラスチック基板を積層することによって得られる。具体的には、このプラスチック基板の上側から圧延ローラーを回動させることによって紫外線硬化樹脂を所定の厚さに圧延塗布する。
その後、ガラス基板の下面側から紫外線ランプにより紫外線照射することにより、紫外線硬化樹脂を硬化させた表面コート層(薄膜層)を形成させる。硬化後、この表面コート層(硬化した紫外線硬化樹脂)とともにプラスチック基板をガラス基板から引き離す。
これによりガラス基板の表面形状が、プラスチック基板に一体接合された表面コート層の表面に転写され、このガラス基板とまったく同じ平坦化処理された表面コート層を有するプラスチック基板である液晶タッチパネル用基板を得ることができる。
The transparent plastic substrate of the present invention has heat resistance and a small birefringence value. Furthermore, since it is excellent in molding processability and surface smoothness, it is suitably used for plastic substrates for liquid crystal touch panels, transparent conductive substrates, lens arrays, and the like.
1) Plastic substrate for liquid crystal touch panel A liquid crystal touch panel substrate is obtained, for example, by laminating a plastic substrate via an ultraviolet curable resin on the upper surface of a glass substrate whose surface is processed flat for a liquid crystal touch panel substrate. Specifically, the ultraviolet curable resin is rolled and applied to a predetermined thickness by rotating a rolling roller from the upper side of the plastic substrate.
Then, the surface coat layer (thin film layer) which hardened ultraviolet curable resin is formed by irradiating with an ultraviolet lamp from the lower surface side of a glass substrate. After curing, the plastic substrate is pulled away from the glass substrate together with the surface coat layer (cured ultraviolet curable resin).
As a result, the surface shape of the glass substrate is transferred to the surface of the surface coat layer integrally bonded to the plastic substrate, and the liquid crystal touch panel substrate, which is a plastic substrate having the same surface-coated surface coat layer as the glass substrate, is obtained. Obtainable.

表面コート層形成のために使用した紫外線硬化樹脂は、ガラスとの剥離が容易であることおよび揮発成分が少ないために発泡の問題が起こりにくい等のメリットがある。
紫外線硬化樹脂に代えて熱硬化樹脂を用いてもよいし、あるいは紫外線硬化樹脂と熱硬化樹脂を併用しても良いが、紫外線硬化樹脂は上記利点があるため好ましく用いられる。
熱硬化樹脂を用いる場合には、2液混合タイプの熱硬化樹脂を用い混合後、そのポットライフを利用して硬化開始後ガラスから剥離し、熱硬化させる。なお、紫外線や熱線はガラス基板の下側から照射していてもよく、プラスチック基板の上側からまたは両側から照射してもよい。
The ultraviolet curable resin used for forming the surface coat layer has advantages such as easy peeling from the glass and less foaming problem due to a small amount of volatile components.
A thermosetting resin may be used in place of the ultraviolet curable resin, or an ultraviolet curable resin and a thermosetting resin may be used in combination, but the ultraviolet curable resin is preferably used because of the above advantages.
In the case of using a thermosetting resin, after mixing using a two-component mixed thermosetting resin, the pot life is used to peel from the glass after curing is started and thermoset. Note that ultraviolet rays and heat rays may be irradiated from the lower side of the glass substrate, or may be irradiated from the upper side of the plastic substrate or from both sides.

2)透明導電性基板
透明導電性基板は、例えば、スズ添加酸化インジウム膜、酸化亜鉛膜をプラスチック基板上に積層することにより得られる。得られた積層体は、電極、通電による発熱体、電磁波の遮蔽材や透光体として広く用いられている。
例えば、酸化亜鉛系の透明導電膜に用いる材料としては、アルミニウム,ガリウム,ホウ素,ケイ素、スズ、インジウム、ゲルマニウム、アンチモン、イリジウム、レニウム、セリウム、ジルコニウム、スカンジウム、及びイットリウムから選ばれる少なくとも1種類以上を含む酸化亜鉛膜が利用される。
2) Transparent conductive substrate The transparent conductive substrate is obtained, for example, by laminating a tin-added indium oxide film and a zinc oxide film on a plastic substrate. The obtained laminate is widely used as an electrode, a heating element by energization, an electromagnetic shielding material or a translucent body.
For example, the material used for the zinc oxide-based transparent conductive film is at least one selected from aluminum, gallium, boron, silicon, tin, indium, germanium, antimony, iridium, rhenium, cerium, zirconium, scandium, and yttrium. A zinc oxide film containing is used.

酸化亜鉛膜に添加されるアルミニウム,ガリウム,ホウ素,ケイ素、スズ、インジウム、ゲルマニウム、アンチモン、イリジウム、レニウム、セリウム、ジルコニウム、スカンジウム、イットリウムの含有量は、これらのうち1種類を添加する場合は、酸化亜鉛に対するこれらの材料の原子比がいずれも0.05〜15の範囲が好ましい。このような比率で添加すると、膜の導電性及び透明性を良好に維持できる。
また、これらの材料の複数種類を添加する場合は、添加する材料の全体の添加量を酸化亜鉛に対して15%以下の範囲が好ましい。
これらの材料の中でも三酸化二ガリウムを添加した酸化亜鉛であると膜の導電性及び透明性がより好適である。
酸化亜鉛系透明導電膜の膜厚は、10nm〜1000nmの範囲が好ましい。この膜厚の範囲では、用途によって異なるが、可撓性が保たれた連続的な膜を得る事が出来る。
さらに、本発明の透明導電膜の膜厚は用途に応じて20〜500nmとすることが望ましい。
The content of aluminum, gallium, boron, silicon, tin, indium, germanium, antimony, iridium, rhenium, cerium, zirconium, scandium, yttrium added to the zinc oxide film, when adding one of these, The atomic ratio of these materials to zinc oxide is preferably in the range of 0.05 to 15. When added at such a ratio, the conductivity and transparency of the film can be maintained well.
Moreover, when adding multiple types of these materials, the range of 15% or less of the total addition amount of the material to add with respect to zinc oxide is preferable.
Among these materials, zinc oxide to which digallium trioxide is added is more suitable for the conductivity and transparency of the film.
The film thickness of the zinc oxide-based transparent conductive film is preferably in the range of 10 nm to 1000 nm. In this film thickness range, although it varies depending on the application, it is possible to obtain a continuous film in which flexibility is maintained.
Furthermore, the film thickness of the transparent conductive film of the present invention is desirably 20 to 500 nm depending on the application.

透明導電性基板のシート抵抗値は、用途によって異なるが、5〜10000Ω/□の範囲のものが導電性材料として好ましい。さらに好ましくは10〜300Ω/□の範囲のものが好ましい。
透明導電膜を形成してなる透明導電性基板の製造方法において、成膜法は、特に限定するものではなく、スパッタ法や、真空蒸着法、CVD法、イオンプレーティング法が用いられる。イオンプレーティング法では、成膜室に配設した電極部としてのハース等に、成膜材料として、ドーパントを含有する酸化亜鉛を配置し、この酸化亜鉛に例えばアルゴンプラズマを照射して酸化亜鉛を加熱し、蒸発させ、プラズマを通過した酸化亜鉛の各粒子をハース等に対向する位置に置かれた透明樹脂フィルムまたはシートに成膜する。このイオンプレーティング法は、例えばスパッタ法に比べて、粒子の持つ運動エネルギが小さいため、粒子が衝突するときに基板や基板に積層して成膜される酸化亜鉛系透明導電膜に与えるダメージが小さく、結晶性の良好な膜が得られることが知られている。
透明導電性基板の最外層として、任意の樹脂又は無機化合物の層を1層又は2層以上積層してもよい。このような最外層には、保護膜、反射防止膜、フィルター等の役割、又は、液晶の視野角の調整、曇り止め等の機能を持たせることができる。
Although the sheet resistance value of a transparent conductive substrate changes with uses, the thing of the range of 5-10000 ohms / square is preferable as an electroconductive material. More preferably, the range of 10 to 300Ω / □ is preferable.
In the method for producing a transparent conductive substrate formed by forming a transparent conductive film, the film forming method is not particularly limited, and a sputtering method, a vacuum deposition method, a CVD method, or an ion plating method is used. In the ion plating method, zinc oxide containing a dopant is disposed as a film forming material on a hearth as an electrode portion disposed in a film forming chamber, and the zinc oxide is irradiated with, for example, argon plasma to form zinc oxide. Each particle of zinc oxide that has been heated and evaporated and passed through the plasma is deposited on a transparent resin film or sheet placed at a position facing the hearth or the like. In this ion plating method, for example, the kinetic energy of the particles is smaller than that of the sputtering method. Therefore, when the particles collide, damage to the substrate or the zinc oxide-based transparent conductive film formed on the substrate is deposited. It is known that a small film with good crystallinity can be obtained.
As the outermost layer of the transparent conductive substrate, one or two or more layers of any resin or inorganic compound may be laminated. Such an outermost layer can have a role of a protective film, an antireflection film, a filter, or the like, or functions such as adjustment of the viewing angle of liquid crystal and anti-fogging.

3)レンズアレイ
本発明でいうレンズアレイは、単レンズを複数個並べたレンズであり、例えば連続したレンズ形状が繰り返しあるものが挙げられ、単レンズが、X方向に、又は面としてXY方向に配列してある一体型のものも含まれる。単レンズの形状として制限はなく、例えば、一般的な凹凸Rレンズ形状、プリズム形状、ピラミッド形状、蒲鉾形レンズ形状、フレネルレンズ形状、モスアイレンズ形状、レンチキュラーレンズ、フライアイレンズ等が挙げられる。また、レンズの大きさには限定されず、マイクロレンズから緩やかなR形状のものまで含まれる。
レンズアレイの一例として、携帯電話の押しボタンがある。この場合、厚肉部となる単レンズが複数配列されており、単レンズ以外の部分が薄肉部で繋がり、一体型の成形品となっているもので、一般的には連結レンズとも呼ばれる。携帯電話の押しボタンは、決まった場所に組み込まれるものであり、組み立ての効率などを考えるとボタンが全て繋がっていることはメリットが大きい。
3) Lens array The lens array referred to in the present invention is a lens in which a plurality of single lenses are arranged, for example, a lens having a continuous continuous lens shape, and the single lens is in the X direction or in the XY direction as a surface. Included are integrated types. There is no restriction | limiting in the shape of a single lens, For example, a general uneven | corrugated R lens shape, a prism shape, a pyramid shape, a saddle-shaped lens shape, a Fresnel lens shape, a moth-eye lens shape, a lenticular lens, a fly eye lens etc. are mentioned. Further, the size of the lens is not limited, and includes a microlens to a gentle R shape.
An example of a lens array is a push button of a mobile phone. In this case, a plurality of single lenses that are thick portions are arranged, and portions other than the single lenses are connected by thin portions to form an integral molded product, which is generally called a connected lens. Mobile phone push buttons are built in a fixed location, and considering the efficiency of assembly, it is a great merit that all buttons are connected.

意匠によっては、単レンズが、規則正しくXY方向に平面で配列されていたり、一直線にX方向だけ並んでいたり、デザイン上ランダムに並んでいたり、また単レンズの形状、厚み、大きさが各々の機能により異なったものが並んでいたり、と種々の形状が想定できるが、本発明のレンズアレイにはいずれも含まれる。また、携帯電話の押しボタン以外にもディスプレーのインジケーターなども含まれる。
更に、特に近年、急激に普及の広がったLED光源用のレンズとして、LEDの光を効率良く拾い上げる為に、一つのLEDを包み込むような形で、逆三角錐の頂点にLEDを入れる穴を空けて、LEDを10mm間隔で面光源としてXY方向に敷き詰めたLED一つ一つに単レンズを被せ、これを一体型の成形品にしたLED光源用のレンズも含まれる。
Depending on the design, single lenses are regularly arranged in a plane in the XY direction, aligned in the straight line only in the X direction, or randomly arranged in the design, and the shape, thickness, and size of the single lens are the functions of each lens. Although various shapes can be envisaged depending on the type of lens, various shapes can be assumed, but the lens array of the present invention includes any of them. In addition to mobile phone push buttons, display indicators are also included.
Furthermore, in particular, as a lens for LED light sources that has spread rapidly in recent years, in order to efficiently pick up the light of the LED, a hole for putting the LED into the apex of the inverted triangular pyramid is formed so as to enclose one LED. In addition, a lens for an LED light source is also included in which a single lens is covered with each LED in which LEDs are spread in the XY directions as surface light sources at intervals of 10 mm, and this is formed into an integral molded product.

凸レンズや凹レンズ、ピックアップレンズ、プロジェクターレンズや、偏肉レンズ、プリズム、ミラーレンズなど、製品形状によりヒケが問題となりやすい単レンズから構成されるレンズアレイにも適している。
本発明のレンズアレイの製造方法としては、射出成形、押出し成形、ブロー成形、真空成形、圧空成形、延伸成形等が挙げられる。発明のレンズアレイの耐熱性は、ビカット軟化温度で100℃以上が好ましく、より好ましくは103℃以上である。
It is also suitable for lens arrays composed of single lenses, such as convex lenses, concave lenses, pickup lenses, projector lenses, uneven-thickness lenses, prisms, and mirror lenses, where sink marks tend to cause problems depending on the product shape.
Examples of the method for producing the lens array of the present invention include injection molding, extrusion molding, blow molding, vacuum molding, pressure forming, and stretch molding. The heat resistance of the lens array of the invention is preferably 100 ° C. or higher, more preferably 103 ° C. or higher in terms of Vicat softening temperature.

以下、実施例を挙げて本発明をより具体的に説明する。
本願発明に用いられる各測定値の測定方法は次のとおりである。
(a)アクリル系共重合体の解析
(1)繰り返し単位
H−NMR測定より、(i)メタクリレート単量体由来の繰り返し単位、(ii)ビニル芳香族単量体由来の繰り返し単位、(iii)芳香族基を有するメタクリレート単量体由来の繰り返し単位、及び(iv)酸無水物繰り返し単位を同定し、その存在量を算出した。
測定機器:ブルーカー株式会社製 DPX−400
測定溶媒:CDCl、又はd−DMSO
測定温度:40℃
Hereinafter, the present invention will be described more specifically with reference to examples.
The measuring method of each measured value used for this invention is as follows.
(A) Analysis of acrylic copolymer (1) Repeating unit
From 1 H-NMR measurement, (i) a repeating unit derived from a methacrylate monomer, (ii) a repeating unit derived from a vinyl aromatic monomer, (iii) a repeating unit derived from a methacrylate monomer having an aromatic group, And (iv) an acid anhydride repeating unit was identified and its abundance was calculated.
Measuring instrument: DPX-400 manufactured by Blue Car Co., Ltd.
Measurement solvent: CDCl 3 or d 6 -DMSO
Measurement temperature: 40 ° C

(2)ガラス転移温度
ガラス転移温度(Tg)は、示差走査熱量計(パーキンエルマージャパン(株)製 Diamond DSC)を用いて、窒素ガス雰囲気下、α−アルミナをリファレンスとし、JIS−K−7121に準拠して、試料約10mgを常温から200℃まで昇温速度10℃/minで昇温して得られたDSC曲線から中点法で算出した。
(3)分子量
重量平均分子量、及び数平均分子量は、ゲル浸透クロマトグラフ(東ソー(株)製 HLC−8220)を用いて、溶媒はテトラヒドロフラン、設定温度40℃で、市販標準PMMA換算により求めた。
(2) Glass transition temperature The glass transition temperature (Tg) is JIS-K-7121 using a differential scanning calorimeter (Diamond DSC, manufactured by PerkinElmer Japan Co., Ltd.) under a nitrogen gas atmosphere and α-alumina as a reference. Based on the DSC curve obtained by heating about 10 mg of the sample from room temperature to 200 ° C. at a rate of temperature increase of 10 ° C./min, it was calculated by the midpoint method.
(3) Molecular weight The weight average molecular weight and the number average molecular weight were determined using a gel permeation chromatograph (HLC-8220 manufactured by Tosoh Corporation), the solvent being tetrahydrofuran, at a set temperature of 40 ° C., in terms of commercial standard PMMA.

(b)光学特性評価
(1)光学フィルムサンプルの作製
(a)プレスフィルムの成型
真空圧縮成型機((株)神藤金属工業所製 SFV−30型)を用いて、大気圧下、260℃、で25分間予熱後、真空下(約10kPa)、260℃、約10MPaで5分間圧縮してプレスフィルムを成型した。
(b)延伸フィルムの成型
インストロン社製5t引張り試験機を用いて、延伸温度(Tg+20)℃、延伸速度(500mm/分)で一軸フリー延伸して延伸フィルムを成形した。延伸倍率は、100%、200%、及び300%で延伸した。
(2)複屈折の測定
大塚電子製RETS-100を用いて、回転検光子法により測定を行った。複屈折の値は、波長550nm光の値である。複屈折(Δn)は、以下の式により計算した。
Δn=nx-ny
(Δn:複屈折、nx:伸張方向の屈折率、ny:伸張方向と垂直な屈折率)
複屈折(Δn)の絶対値(|Δn|)は、以下のように求めた。
|Δn|=|nx-ny|
(B) Optical characteristic evaluation (1) Production of optical film sample (a) Molding of press film Using a vacuum compression molding machine (SFV-30 type, manufactured by Kamito Metal Industries Co., Ltd.) at 260 ° C under atmospheric pressure, After preheating for 25 minutes, the film was compressed under vacuum (about 10 kPa) at 260 ° C. and about 10 MPa for 5 minutes to form a press film.
(B) Molding of stretched film A stretched film was molded by uniaxial free stretching at a stretching temperature (Tg + 20) ° C. and a stretching speed (500 mm / min) using an Instron 5t tensile tester. The draw ratio was drawn at 100%, 200%, and 300%.
(2) Measurement of birefringence Measurement was performed by a rotating analyzer method using RETS-100 manufactured by Otsuka Electronics. The value of birefringence is a value of light having a wavelength of 550 nm. Birefringence (Δn) was calculated by the following formula.
Δn = nx-ny
(Δn: birefringence, nx: refractive index in the stretching direction, ny: refractive index perpendicular to the stretching direction)
The absolute value (| Δn |) of birefringence (Δn) was determined as follows.
| Δn | = | nx−ny |

(3)位相差の測定
<面内の位相差>
大塚電子(株)製RETS-100を用いて、回転検光子法により波長400〜800nmの範囲について測定を行った。
複屈折の絶対値(|Δn|)と位相差(Re)は以下の関係にある。
Re=|Δn|×d
(|Δn|:複屈折の絶対値、Re:位相差、d:サンプルの厚み)
また、複屈折の絶対値(|Δn|)は以下に示す値である。
|Δn|=|nx-ny|
(nx:延伸方向の屈折率、ny:面内で延伸方向と垂直な屈折率)
(3) Phase difference measurement <In-plane phase difference>
Using a RETS-100 manufactured by Otsuka Electronics Co., Ltd., measurement was performed in the wavelength range of 400 to 800 nm by the rotary analyzer method.
The absolute value of birefringence (| Δn |) and the phase difference (Re) have the following relationship.
Re = | Δn | × d
(| Δn |: absolute value of birefringence, Re: phase difference, d: thickness of sample)
The absolute value (| Δn |) of birefringence is a value shown below.
| Δn | = | nx−ny |
(Nx: refractive index in the stretching direction, ny: refractive index perpendicular to the stretching direction in the plane)

<厚み方向の位相差>
王子計測機器(株)製位相差測定装置(KOBRA−21ADH)を用いて、波長589nmにおける位相差を測定し、得られた値をフィルムの厚さ100μmに換算して測定値とした。
複屈折の絶対値(|Δn|)と位相差(Rth)は以下の関係にある。
Rth=|Δn|×d
(|Δn|:複屈折の絶対値、Rth:位相差、d:サンプルの厚み)
また、複屈折の絶対値(|Δn|)は以下に示す値である。
|Δn|=|(nx+ny)/2-nz|
(nx:延伸方向の屈折率、ny:面内で延伸方向と垂直な屈折率、nz:面外で延伸方向と垂直な厚み方向の屈折率)
(理想となる、3次元方向について完全等方的等方性であるフィルムでは、面内位相差(Re)、厚み方向位相差(Rth)ともに0となる。)
<Thickness direction retardation>
Using a phase difference measuring device (KOBRA-21ADH) manufactured by Oji Scientific Instruments, the phase difference at a wavelength of 589 nm was measured, and the obtained value was converted to a film thickness of 100 μm to obtain a measured value.
The absolute value of birefringence (| Δn |) and the phase difference (Rth) have the following relationship.
Rth = | Δn | × d
(| Δn |: absolute value of birefringence, Rth: phase difference, d: thickness of sample)
The absolute value (| Δn |) of birefringence is a value shown below.
| Δn | = | (nx + ny) / 2−nz |
(Nx: refractive index in the stretching direction, ny: refractive index in the plane perpendicular to the stretching direction, nz: refractive index in the thickness direction out of the plane perpendicular to the stretching direction)
(In an ideal film that is completely isotropic in the three-dimensional direction, both in-plane retardation (Re) and thickness direction retardation (Rth) are zero.)

(4)光弾性係数の測定
Polymer Engineering and Science1999,39,2349−2357に詳細について記載のある複屈折測定装置を用いた。レーザー光の経路にフィルムの引張り装置を配置し、23℃で伸張応力をかけながら複屈折を測定した。伸張時の歪速度は50%/分(チャック間:50mm、チャック移動速度:5mm/分)、試験片幅は6mmで測定を行った。複屈折の絶対値(|Δn|)と伸張応力(σ)の関係から、最小二乗近似によりその直線の傾きを求め光弾性係数(C)を計算した。計算には伸張応力が2.5MPa≦σ≦10MPaの間のデータを用いた。
=|Δn|/σ
|Δn|=|nx-ny|
(C:光弾性係数、σ:伸張応力、|Δn|:複屈折の絶対値、nx:伸張方向の屈折率、ny:伸張方向の垂直な屈折率)
(4) Measurement of photoelastic coefficient A birefringence measuring apparatus described in detail in Polymer Engineering and Science 1999, 39, 2349-2357 was used. A film tensioning device was placed in the laser beam path, and birefringence was measured while applying an extensional stress at 23 ° C. The strain rate during stretching was 50% / min (between chucks: 50 mm, chuck moving speed: 5 mm / min), and the test piece width was 6 mm. From the relationship between the absolute value of birefringence (| Δn |) and the extensional stress (σ R ), the slope of the straight line was obtained by least square approximation, and the photoelastic coefficient (C R ) was calculated. For the calculation, data with a tensile stress between 2.5 MPa ≦ σ R ≦ 10 MPa was used.
C R = | Δn | / σ R
| Δn | = | nx−ny |
(C R : photoelastic coefficient, σ R : stretching stress, | Δn |: absolute value of birefringence, nx: refractive index in the stretching direction, ny: vertical refractive index in the stretching direction)

[アクリル系共重合体]
メタクリル酸メチル/スチレン/無水マレイン酸
[合成例1]
攪拌装置、温度センサー、冷却管、窒素ガス導入ノズル、原料溶液導入ノズル、開始剤溶液導入ノズル、及び重合溶液排出ノズルとを備えたジャケット付ガラス反応器(容量1L)を用いた。重合反応器の圧力は、微加圧、反応温度は100℃に制御した。
メタクリル酸メチル(MMA)518g、スチレン(St)48g、無水マレイン酸(MAH)384g、メチルイソブチルケトン240g、n−オクチルメルカプタン1.2gを混合した後、窒素ガスで置換して原料溶液を調製した。2,2’−アゾビス(イソブチロニトリル)を0.364gをメチルイソブチルケトン12.96gに溶解した後、窒素ガスで置換して開始剤溶液を調整した。
原料溶液はポンプを用いて6.98ml/minで原料溶液導入ノズルから導入した。また、開始剤溶液はポンプを用いて0.08ml/minで開始剤溶液導入ノズルから導入した。30分後、重合溶液排出ノズルから抜き出しポンプを用いて425ml/hrの一定流量でポリマー溶液を排出した。
[Acrylic copolymer]
Methyl methacrylate / styrene / maleic anhydride
[Synthesis Example 1]
A jacketed glass reactor (capacity: 1 L) equipped with a stirrer, a temperature sensor, a cooling pipe, a nitrogen gas introduction nozzle, a raw material solution introduction nozzle, an initiator solution introduction nozzle, and a polymerization solution discharge nozzle was used. The pressure in the polymerization reactor was slightly pressurized, and the reaction temperature was controlled at 100 ° C.
After mixing 518 g of methyl methacrylate (MMA), 48 g of styrene (St), 384 g of maleic anhydride (MAH), 240 g of methyl isobutyl ketone and 1.2 g of n-octyl mercaptan, a raw material solution was prepared by replacing with nitrogen gas. . An initiator solution was prepared by dissolving 0.364 g of 2,2′-azobis (isobutyronitrile) in 12.96 g of methyl isobutyl ketone and then substituting with nitrogen gas.
The raw material solution was introduced from the raw material solution introduction nozzle at 6.98 ml / min using a pump. The initiator solution was introduced from the initiator solution introduction nozzle at 0.08 ml / min using a pump. After 30 minutes, the polymer solution was discharged at a constant flow rate of 425 ml / hr using a pump extracted from the polymerization solution discharge nozzle.

ポリマー溶液は、排出から1.5時間分は初流タンクに分別回収した。排出開始から、1.5時間後から2.5時間のポリマー溶液を本回収した。得られたポリマー溶液を、貧溶媒であるメタノールに滴下し、沈殿、精製した。真空下、130℃で2時間乾燥して目的とするアクリル系共重合体を得た。
組成:MMA/St/MAH=61/11/27wt%
分子量:Mw=19.5×10;Mw/Mn=2.23
Tg:141℃
メタクリル酸メチル/スチレン/無水マレイン酸/メタクリル酸ベンジル
The polymer solution was collected separately in the initial flow tank for 1.5 hours after discharge. The polymer solution was collected for 2.5 hours after 1.5 hours from the start of discharge. The obtained polymer solution was dropped into methanol, which is a poor solvent, and precipitated and purified. It was dried at 130 ° C. for 2 hours under vacuum to obtain a desired acrylic copolymer.
Composition: MMA / St / MAH = 61/11/27 wt%
Molecular weight: Mw = 19.5 × 10 4 ; Mw / Mn = 2.23
Tg: 141 ° C
Methyl methacrylate / styrene / maleic anhydride / benzyl methacrylate

[合成例2]
攪拌装置、温度センサー、冷却管、窒素ガス導入ノズル、原料溶液導入ノズル、開始剤溶液導入ノズル、及び重合溶液排出ノズルとを備えたジャケット付ガラス反応器(容量1L)を用いた。重合反応器の圧力は、微加圧、反応温度は100℃に制御した。
メタクリル酸メチル(MMA)518g、スチレン(St)48g、メタクリル酸ベンジル(BzMA)9.6g、無水マレイン酸(MAH)384g、メチルイソブチルケトン240g、n−オクチルメルカプタン1.2gを混合した後、窒素ガスで置換して原料溶液を調製した。2,2’−アゾビス(イソブチロニトリル)を0.364gをメチルイソブチルケトン12.96gに溶解した後、窒素ガスで置換して開始剤溶液を調整した。
原料溶液はポンプを用いて6.98ml/minで原料溶液導入ノズルから導入した。また、開始剤溶液はポンプを用いて0.08ml/minで開始剤溶液導入ノズルから導入した。30分後、重合溶液排出ノズルから抜き出しポンプを用いて425ml/hrの一定流量でポリマー溶液を排出した。
[Synthesis Example 2]
A jacketed glass reactor (capacity: 1 L) equipped with a stirrer, a temperature sensor, a cooling pipe, a nitrogen gas introduction nozzle, a raw material solution introduction nozzle, an initiator solution introduction nozzle, and a polymerization solution discharge nozzle was used. The pressure in the polymerization reactor was slightly pressurized, and the reaction temperature was controlled at 100 ° C.
After mixing 518 g of methyl methacrylate (MMA), 48 g of styrene (St), 9.6 g of benzyl methacrylate (BzMA), 384 g of maleic anhydride (MAH), 240 g of methyl isobutyl ketone and 1.2 g of n-octyl mercaptan, nitrogen was mixed. A raw material solution was prepared by replacing with gas. An initiator solution was prepared by dissolving 0.364 g of 2,2′-azobis (isobutyronitrile) in 12.96 g of methyl isobutyl ketone and then substituting with nitrogen gas.
The raw material solution was introduced from the raw material solution introduction nozzle at 6.98 ml / min using a pump. The initiator solution was introduced from the initiator solution introduction nozzle at 0.08 ml / min using a pump. After 30 minutes, the polymer solution was discharged at a constant flow rate of 425 ml / hr using a pump extracted from the polymerization solution discharge nozzle.

ポリマー溶液は、排出から1.5時間分は初流タンクに分別回収した。排出開始から、1.5時間後から2.5時間のポリマー溶液を本回収した。得られたポリマー溶液を、貧溶媒であるメタノールに滴下し、沈殿、精製した。真空下、130℃で2時間乾燥して目的とするアクリル系共重合体を得た。
組成:MMA/St/BzMA/MAH=61/12/1/27wt%
分子量:Mw=18.8×10;Mw/Mn=2.08
Tg:142℃
The polymer solution was collected separately in the initial flow tank for 1.5 hours after discharge. The polymer solution was collected for 2.5 hours after 1.5 hours from the start of discharge. The obtained polymer solution was dropped into methanol, which is a poor solvent, and precipitated and purified. It was dried at 130 ° C. for 2 hours under vacuum to obtain a desired acrylic copolymer.
Composition: MMA / St / BzMA / MAH = 61/12/1/27 wt%
Molecular weight: Mw = 18.8 × 10 4 ; Mw / Mn = 2.08
Tg: 142 ° C

[合成例3]
合成例2において、メタクリル酸メチル499g、スチレン42g、メタクリル酸ベンジル48g、無水マレイン酸371gに変更した以外は、合成例2と同様の操作を行ってアクリル系共重合体を得た。
組成:MMA/St/BzMA/MAH=60/11/5/24wt%
分子量:Mw=20.2×10;Mw/Mn=2.36
Tg:138℃
メタクリル酸メチル/スチレン/メタクリル酸/無水グルタル酸
[Synthesis Example 3]
An acrylic copolymer was obtained in the same manner as in Synthesis Example 2 except that the synthesis was changed to 499 g of methyl methacrylate, 42 g of styrene, 48 g of benzyl methacrylate, and 371 g of maleic anhydride.
Composition: MMA / St / BzMA / MAH = 60/11/5/24 wt%
Molecular weight: Mw = 20.2 × 10 4 ; Mw / Mn = 2.36
Tg: 138 ° C
Methyl methacrylate / styrene / methacrylic acid / glutaric anhydride

[合成例4]
攪拌装置、温度センサー、冷却管、窒素ガス導入ノズル、原料溶液導入ノズル、開始剤溶液導入ノズル、及び重合溶液排出ノズルとを備えたジャケット付ガラス反応器(容量1L)を用いた。重合反応器の圧力は、微加圧、反応温度は100℃に制御した。
メタクリル酸メチル900g、スチレン36g、メタクリル酸ベンジル48g、メタクリル酸(MAA)216g、メチルイソブチルケトン240g、n−オクチルメルカプタン1.2gを混合した後、窒素ガスで置換して原料溶液を調製した。2,2’−アゾビス(イソブチロニトリル)を0.364gをメチルイソブチルケトン12.96gに溶解した後、窒素ガスで置換して開始剤溶液を調整した。
原料溶液はポンプを用いて6.98ml/minで原料溶液導入ノズルから導入した。また、開始剤溶液はポンプを用いて0.08ml/minで開始剤溶液導入ノズルから導入した。30分後、重合溶液排出ノズルから抜き出しポンプを用いて425ml/hrの一定流量でポリマー溶液を排出した。
[Synthesis Example 4]
A jacketed glass reactor (capacity: 1 L) equipped with a stirrer, a temperature sensor, a cooling pipe, a nitrogen gas introduction nozzle, a raw material solution introduction nozzle, an initiator solution introduction nozzle, and a polymerization solution discharge nozzle was used. The pressure in the polymerization reactor was slightly pressurized, and the reaction temperature was controlled at 100 ° C.
After mixing 900 g of methyl methacrylate, 36 g of styrene, 48 g of benzyl methacrylate, 216 g of methacrylic acid (MAA), 240 g of methyl isobutyl ketone and 1.2 g of n-octyl mercaptan, the mixture was replaced with nitrogen gas to prepare a raw material solution. An initiator solution was prepared by dissolving 0.364 g of 2,2′-azobis (isobutyronitrile) in 12.96 g of methyl isobutyl ketone and then substituting with nitrogen gas.
The raw material solution was introduced from the raw material solution introduction nozzle at 6.98 ml / min using a pump. The initiator solution was introduced from the initiator solution introduction nozzle at 0.08 ml / min using a pump. After 30 minutes, the polymer solution was discharged at a constant flow rate of 425 ml / hr using a pump extracted from the polymerization solution discharge nozzle.

ポリマー溶液は、排出から1.5時間分は初流タンクに分別回収した。排出開始から、1.5時間後から2.5時間のポリマー溶液を本回収した。得られたポリマー溶液を、貧溶媒であるメタノールに滴下し、沈殿、精製した。真空下、130℃で2時間乾燥して前駆体を得た。該前駆体を脱揮装置を附帯したラボプラストミルで加熱処理(処理温度:250℃、真空度:133hPa(100mmHg))して目的とするアクリル系共重合体を得た。
組成:MMA/St/BzMA/MAA/無水グルタル酸
=70/5/4/4/21wt%
分子量:Mw=11.4×10;Mw/Mn=2.40
Tg:128℃
これらの重合結果を表1に示す。
The polymer solution was collected separately in the initial flow tank for 1.5 hours after discharge. The polymer solution was collected for 2.5 hours after 1.5 hours from the start of discharge. The obtained polymer solution was dropped into methanol, which is a poor solvent, and precipitated and purified. The precursor was obtained by drying at 130 ° C. for 2 hours under vacuum. The precursor was heat-treated with a lab plast mill equipped with a devolatilizer (treatment temperature: 250 ° C., vacuum degree: 133 hPa (100 mmHg)) to obtain a target acrylic copolymer.
Composition: MMA / St / BzMA / MAA / glutaric anhydride = 70/5/4/4/21 wt%
Molecular weight: Mw = 11.4 × 10 4 ; Mw / Mn = 2.40
Tg: 128 ° C
The polymerization results are shown in Table 1.

[比較合成例1]
合成例1において、メタクリル酸メチル960gを用いた以外は、合成例1と同様の操作を行って熱可塑性樹脂を得た。
組成:MMA=100wt%
分子量:Mw=10×10;Mw/Mn=1.89
Tg:121℃
[Comparative Synthesis Example 1]
In Synthesis Example 1, a thermoplastic resin was obtained by performing the same operation as in Synthesis Example 1 except that 960 g of methyl methacrylate was used.
Composition: MMA = 100 wt%
Molecular weight: Mw = 10 × 10 4 ; Mw / Mn = 1.89
Tg: 121 ° C

[比較合成例2]
合成例1において、メタクリル酸ベンジルを用いることなく、メタクリル酸メチル768g、スチレン144g、無水マレイン酸48gに変更した以外は、合成例1と同様の操作を行って熱可塑性樹脂を得た。
組成:MMA/St/MAH=76/17/7wt%
分子量:Mw=13.4×10;Mw/Mn=2.01
Tg:128℃
これらの重合結果を表1に示す。
[Comparative Synthesis Example 2]
In Synthesis Example 1, a thermoplastic resin was obtained by performing the same operation as in Synthesis Example 1 except that benzyl methacrylate was not used and methyl methacrylate was changed to 768 g, styrene 144 g, and maleic anhydride 48 g.
Composition: MMA / St / MAH = 76/17/7 wt%
Molecular weight: Mw = 13.4 × 10 4 ; Mw / Mn = 2.01
Tg: 128 ° C
The polymerization results are shown in Table 1.

[評価例1〜4、比較評価例1,2]
合成例1〜4、及び比較合成例1、2で得られたアクリル系共重合体を用いて、前述の方法に従いプレスフィルムを成型した。該プレスフィルムから前述の方法に従い100%延伸フィルムを成型し、その光学特性を評価した。測定結果を表2に示す。
[Evaluation Examples 1 to 4, Comparative Evaluation Examples 1 and 2]
Using the acrylic copolymers obtained in Synthesis Examples 1 to 4 and Comparative Synthesis Examples 1 and 2, press films were molded according to the method described above. A 100% stretched film was molded from the press film according to the method described above, and its optical properties were evaluated. The measurement results are shown in Table 2.

[実施例1〜4、比較例1、2]
実施例1〜4、及び比較例1、2で得られたアクリル系共重合体をベント付2軸押出機へ供給して温度220〜230℃ベント真空圧力700〜750mmHgで造粒した、このペレットを名機製作所製M−70で射出成形し成形温度220℃で200*200*3mmの平板成形品を得た。
評価結果を表3に示す。
表2、3より、本発明の透明プラスチック基板は、耐熱性を有し、複屈折値が小さく、成形加工性、及び表面平滑性に優れることが判る。
これらの特性は、液晶タッチパネル用プラスチック基板、透明導電性基板、レンズアレイ等に好適である。
[Examples 1 to 4, Comparative Examples 1 and 2]
The pellets obtained by supplying the acrylic copolymers obtained in Examples 1 to 4 and Comparative Examples 1 and 2 to a twin screw extruder with a vent and granulating them at a temperature of 220 to 230 ° C. and a vent vacuum pressure of 700 to 750 mmHg. Was molded by M-70 manufactured by Meiki Seisakusho, and a flat plate molded product of 200 * 200 * 3 mm was obtained at a molding temperature of 220 ° C.
The evaluation results are shown in Table 3.
From Tables 2 and 3, it can be seen that the transparent plastic substrate of the present invention has heat resistance, a small birefringence value, and excellent molding processability and surface smoothness.
These characteristics are suitable for plastic substrates for liquid crystal touch panels, transparent conductive substrates, lens arrays, and the like.

Figure 2011001525
Figure 2011001525

Figure 2011001525
Figure 2011001525

Figure 2011001525
Figure 2011001525

透明プラスチック基板は、液晶タッチパネル用プラスチック基板、透明導電性基板、レンズアレイ等に好適である。レンズアレイとしては、LED光源用のレンズも含まれ、凸レンズや凹レンズ、ピックアップレンズ、プロジェクターレンズや、偏肉レンズ、プリズム、ミラーレンズなどにも好適である。   The transparent plastic substrate is suitable for a liquid crystal touch panel plastic substrate, a transparent conductive substrate, a lens array, and the like. The lens array includes a lens for an LED light source, and is also suitable for a convex lens, a concave lens, a pickup lens, a projector lens, an uneven thickness lens, a prism, a mirror lens, and the like.

Claims (8)

下記式(1)で表されるメタクリレート単量体由来の繰り返し単位:10〜70重量%、下記式(2)で表されるビニル芳香族単量体由来の繰り返し単位:5〜40重量%、及び下記式(3)又は下記式(4)で表される環状酸無水物繰り返し単位:20〜50重量%を含有する共重合体であって、ビニル芳香族単量体由来の繰り返し単位の含有量(A)と環状酸無水物繰り返し単位の含有量(B)のモル比(B/A)が、1より大きく、10以下の範囲にあり、且つ、該共重合体100重量部に対して残存する単量体の合計が0.5重量部以下である共重合体からなる透明プラスチック基板。
Figure 2011001525
(式中:Rは、水素、直鎖状または分岐状の炭素数1〜12のアルキル基、炭素数5〜12のシクロアルキル基を表す。)
Figure 2011001525
(式中:R、Rは、それぞれ同一でも、異なっていても良く、水素、ハロゲン、水酸基、アルコキシ基、ニトロ基、直鎖状または分岐状の炭素数1〜12のアルキル基を表す。lは1〜3の整数を示す。)
Figure 2011001525
Figure 2011001525
(式中:R〜Rは、それぞれ同一でも、異なっていても良く、水素、直鎖状または分岐状の炭素数1〜12のアルキル基を表す。)
Repeating unit derived from a methacrylate monomer represented by the following formula (1): 10 to 70% by weight, repeating unit derived from a vinyl aromatic monomer represented by the following formula (2): 5 to 40% by weight, And a cyclic acid anhydride repeating unit represented by the following formula (3) or the following formula (4): a copolymer containing 20 to 50% by weight, containing a repeating unit derived from a vinyl aromatic monomer The molar ratio (B / A) between the amount (A) and the content (B) of the cyclic acid anhydride repeating unit is in the range of more than 1 and 10 or less, and relative to 100 parts by weight of the copolymer A transparent plastic substrate made of a copolymer having a total of remaining monomers of 0.5 parts by weight or less.
Figure 2011001525
(In the formula: R 1 represents hydrogen, a linear or branched alkyl group having 1 to 12 carbon atoms, or a cycloalkyl group having 5 to 12 carbon atoms.)
Figure 2011001525
(In the formula: R 2 and R 3 may be the same or different, and each represents hydrogen, halogen, hydroxyl group, alkoxy group, nitro group, linear or branched alkyl group having 1 to 12 carbon atoms. L represents an integer of 1 to 3)
Figure 2011001525
Figure 2011001525
(Wherein R 5 to R 8 may be the same or different and each represents hydrogen, a linear or branched alkyl group having 1 to 12 carbon atoms).
共重合体が、さらに、下記式(5)で表される芳香族基を有するメタクリレート単量体由来の繰り返し単位:0.1〜5重量%を含有する共重合体からなる請求項1記載の透明プラスチック基板。
Figure 2011001525
(式中:Rは、水素、ハロゲン、水酸基、アルコキシ基、ニトロ基、直鎖状または分岐状の炭素数1〜12のアルキル基を表す。mは1〜3の整数、nは0〜2の整数を示す。)
The copolymer according to claim 1, further comprising a copolymer containing 0.1 to 5% by weight of repeating units derived from a methacrylate monomer having an aromatic group represented by the following formula (5): Transparent plastic substrate.
Figure 2011001525
(In the formula: R 4 represents hydrogen, halogen, hydroxyl group, alkoxy group, nitro group, linear or branched alkyl group having 1 to 12 carbon atoms, m is an integer of 1 to 3, and n is 0 to 0. Indicates an integer of 2.)
共重合体が、GPC測定法による重量平均分子量で10,000〜400,000、分子量分布で1.8〜3.0の範囲にあることを特徴とする請求項1又は2に記載の透明プラスチック基板。   The transparent plastic according to claim 1 or 2, wherein the copolymer has a weight average molecular weight of 10,000 to 400,000 and a molecular weight distribution of 1.8 to 3.0 by GPC measurement. substrate. 共重合体が、メタクリレート単量体由来の繰り返し単位がメタクリル酸メチル、ビニル芳香族単量体由来の繰り返し単位がスチレン、環状酸無水物繰り返し単位が無水マレイン酸、芳香族基を有するメタクリレート単量体由来の繰り返し単位がメタクリル酸ベンジルからそれぞれ誘導される共重合体よりなることを特徴とする請求項1〜3のいずれか1項に記載の透明プラスチック基板。   The copolymer has a repeating unit derived from a methacrylate monomer as methyl methacrylate, a repeating unit derived from a vinyl aromatic monomer as styrene, a cyclic acid anhydride repeating unit as maleic anhydride, and a monomer having an aromatic group The transparent plastic substrate according to any one of claims 1 to 3, wherein the repeating unit derived from the body comprises a copolymer derived from benzyl methacrylate. 請求項1〜4のいずれか1項に記載の透明プラスチック基板からなる液晶タッチパネル用プラスチック基板。   The plastic substrate for liquid crystal touch panels which consists of a transparent plastic substrate of any one of Claims 1-4. 請求項1〜4のいずれか1項に記載の透明プラスチック基板の少なくとも片面に直接スズ添加酸化インジウム膜が積層された透明導電性基板。   A transparent conductive substrate in which a tin-added indium oxide film is directly laminated on at least one surface of the transparent plastic substrate according to claim 1. 請求項1〜4のいずれか1項に記載の透明プラスチック基板の少なくとも片面に直接酸化亜鉛系透明導電膜が積層された透明導電膜導電性基板。   A transparent conductive film conductive substrate in which a zinc oxide-based transparent conductive film is directly laminated on at least one surface of the transparent plastic substrate according to claim 1. 請求項1〜4のいずれか1項に記載の透明プラスチック基板からなるレンズアレイ。   The lens array which consists of a transparent plastic substrate of any one of Claims 1-4.
JP2009147936A 2009-06-22 2009-06-22 Transparent plastic substrate Active JP5230011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009147936A JP5230011B2 (en) 2009-06-22 2009-06-22 Transparent plastic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009147936A JP5230011B2 (en) 2009-06-22 2009-06-22 Transparent plastic substrate

Publications (2)

Publication Number Publication Date
JP2011001525A true JP2011001525A (en) 2011-01-06
JP5230011B2 JP5230011B2 (en) 2013-07-10

Family

ID=43559744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009147936A Active JP5230011B2 (en) 2009-06-22 2009-06-22 Transparent plastic substrate

Country Status (1)

Country Link
JP (1) JP5230011B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2474345A1 (en) 2011-01-06 2012-07-11 Nintendo Co., Ltd. Communication system, information processing apparatus, communication program, and communication method
JP2014047278A (en) * 2012-08-31 2014-03-17 Sumitomo Chemical Co Ltd Polymer compound, and insulating layer material including the polymer compound
JP2015041137A (en) * 2013-08-20 2015-03-02 デクセリアルズ株式会社 Method for manufacturing capacitive touch panel
JP2015095022A (en) * 2013-11-11 2015-05-18 デクセリアルズ株式会社 Electrostatic capacitance touch panel
WO2015178437A1 (en) * 2014-05-22 2015-11-26 電気化学工業株式会社 Copolymer for transparent, scratch-resistant plate, and laminate for transparent, scratch-resistant plate
JP2018114757A (en) * 2013-03-13 2018-07-26 住友化学株式会社 Resin laminate sheet and scratch resistant resin laminate sheet using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414220A (en) * 1987-07-07 1989-01-18 Mitsubishi Rayon Co Base for information recording medium
JPH04216806A (en) * 1990-12-18 1992-08-06 Kuraray Co Ltd Production of methacrylic resin molding material
JP2886893B2 (en) * 1989-06-20 1999-04-26 株式会社クラレ Phase difference plate
JP2002284946A (en) * 2001-01-22 2002-10-03 Sumitomo Chem Co Ltd Resin composition and sheet for optical screen
JP2007115657A (en) * 2005-09-26 2007-05-10 Asahi Kasei Chemicals Corp Zinc oxide-based transparent conductive substrate by ion plating method and method of manufacturing same
JP2007262399A (en) * 2006-03-01 2007-10-11 Nippon Shokubai Co Ltd Thermoplastic resin composition and preparation method
JP2008179677A (en) * 2007-01-23 2008-08-07 Nippon Shokubai Co Ltd Transparent electroconductive film
JP2008281728A (en) * 2007-05-10 2008-11-20 Asahi Kasei Chemicals Corp Lens array
JP2009003445A (en) * 2007-05-24 2009-01-08 Asahi Kasei Chemicals Corp Optical film having small temperature dependence on photoelastic coefficient

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414220A (en) * 1987-07-07 1989-01-18 Mitsubishi Rayon Co Base for information recording medium
JP2886893B2 (en) * 1989-06-20 1999-04-26 株式会社クラレ Phase difference plate
JPH04216806A (en) * 1990-12-18 1992-08-06 Kuraray Co Ltd Production of methacrylic resin molding material
JP2002284946A (en) * 2001-01-22 2002-10-03 Sumitomo Chem Co Ltd Resin composition and sheet for optical screen
JP2007115657A (en) * 2005-09-26 2007-05-10 Asahi Kasei Chemicals Corp Zinc oxide-based transparent conductive substrate by ion plating method and method of manufacturing same
JP2007262399A (en) * 2006-03-01 2007-10-11 Nippon Shokubai Co Ltd Thermoplastic resin composition and preparation method
JP2008179677A (en) * 2007-01-23 2008-08-07 Nippon Shokubai Co Ltd Transparent electroconductive film
JP2008281728A (en) * 2007-05-10 2008-11-20 Asahi Kasei Chemicals Corp Lens array
JP2009003445A (en) * 2007-05-24 2009-01-08 Asahi Kasei Chemicals Corp Optical film having small temperature dependence on photoelastic coefficient

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2474345A1 (en) 2011-01-06 2012-07-11 Nintendo Co., Ltd. Communication system, information processing apparatus, communication program, and communication method
JP2014047278A (en) * 2012-08-31 2014-03-17 Sumitomo Chemical Co Ltd Polymer compound, and insulating layer material including the polymer compound
JP2018114757A (en) * 2013-03-13 2018-07-26 住友化学株式会社 Resin laminate sheet and scratch resistant resin laminate sheet using the same
JP2015041137A (en) * 2013-08-20 2015-03-02 デクセリアルズ株式会社 Method for manufacturing capacitive touch panel
JP2015095022A (en) * 2013-11-11 2015-05-18 デクセリアルズ株式会社 Electrostatic capacitance touch panel
WO2015178437A1 (en) * 2014-05-22 2015-11-26 電気化学工業株式会社 Copolymer for transparent, scratch-resistant plate, and laminate for transparent, scratch-resistant plate
JPWO2015178437A1 (en) * 2014-05-22 2017-04-20 デンカ株式会社 Copolymer for transparent scratch-resistant board, laminate for transparent scratch-resistant board

Also Published As

Publication number Publication date
JP5230011B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5362110B2 (en) Acrylic thermoplastic resin and molded article thereof
US20180312682A1 (en) Optical Material
KR101443407B1 (en) Fluidity improving agent, aromatic polycarbonate resin composition, and molded article thereof
JP5142938B2 (en) Optical film
JP5221531B2 (en) Optical member made of acrylic block copolymer
JP6731913B2 (en) Resin composition and film
JP5230011B2 (en) Transparent plastic substrate
TWI683831B (en) Resin composition, molded body and optical member composed of acrylic block copolymer
KR102524695B1 (en) Transparent films based on resin components with high glass transition temperatures
JP5965621B2 (en) Optical film and manufacturing method thereof
JP2014181256A (en) Resin composition
JP2008094064A (en) Heat-resistant acrylic resin laminate used for forming transparent conductive film
KR100876260B1 (en) High transparence and high heat resistance thermoplastic risin composition and a manufacturing method thereof
JP2009128638A (en) Optical molded body
JP6110184B2 (en) Biaxially stretched film, polarizing plate, image display device, and method for producing biaxially stretched film
JP5901158B2 (en) Conductive substrate
JP5965612B2 (en) Optical film and manufacturing method thereof
JP2016169283A (en) Thermoplastic resin composition
KR101749934B1 (en) Acrylate copolymer for optical film and manufacturing method thereof
KR101110607B1 (en) Phase difference film
JP2009258183A (en) Optical molded body
JP2009161583A (en) Thermoplastic polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130117

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5230011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350