JP2011001304A - Process for producing primary amine - Google Patents

Process for producing primary amine Download PDF

Info

Publication number
JP2011001304A
JP2011001304A JP2009146117A JP2009146117A JP2011001304A JP 2011001304 A JP2011001304 A JP 2011001304A JP 2009146117 A JP2009146117 A JP 2009146117A JP 2009146117 A JP2009146117 A JP 2009146117A JP 2011001304 A JP2011001304 A JP 2011001304A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
nitrile
pretreatment
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009146117A
Other languages
Japanese (ja)
Inventor
Ryosuke Yamamoto
良亮 山本
Kazuhiko Amakawa
和彦 天川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2009146117A priority Critical patent/JP2011001304A/en
Publication of JP2011001304A publication Critical patent/JP2011001304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process for producing a primary amine from a nitrile in a high yield by inhibiting side reactions which give condensation products.SOLUTION: In producing a primary amine by reacting hydrogen with a nitrile in the presence of a hydrogenation catalyst containing at least one metal selected from nickel, cobalt, and iron, whenever the catalyst whose activity has been lowered by being used in the reaction is subjected to regeneration treatment by hydrogenolysis, the catalyst is pretreated in a gas phase with the use of a treating agent to constantly obtain the primary amine in a high yield.

Description

本発明はニトリルの接触水素化により一級アミンを製造する方法に関する。   The present invention relates to a process for producing primary amines by catalytic hydrogenation of nitriles.

ニトリルをニッケル、コバルト、鉄から選ばれる金属を含有する触媒の存在下水素化し一級アミンを製造する方法は良く知られている。ニトリルの水素化による一級アミンの製造に際しては分子間縮合反応により二級および三級アミン等の縮合生成物が副生し、収率が低下しやすい(非特許文献1参照)。
また、これら縮合生成物が触媒に付着することで触媒の活性低下をもたらすだけでなく、触媒層の閉塞原因になりうる。したがって、これらの反応を継続的に行うためには定期的な再生操作を必要とする。
A method for producing a primary amine by hydrogenating nitrile in the presence of a catalyst containing a metal selected from nickel, cobalt and iron is well known. In the production of primary amines by hydrogenation of nitriles, condensation products such as secondary and tertiary amines are by-produced by intermolecular condensation reaction, and the yield tends to decrease (see Non-Patent Document 1).
In addition, the condensation products attached to the catalyst not only cause a decrease in the activity of the catalyst, but can also cause clogging of the catalyst layer. Therefore, periodic regeneration operations are required to continuously perform these reactions.

このような縮合反応による二級および三級アミンの生成を抑制するために、アンモニアを溶媒として使用する方法(たとえば特許文献3〜6参照)、アルカリ金属あるいはアルカリ土類金属の水酸化物を添加して反応を行う方法(たとえば特許文献1〜2、7、8参照)等が古くから良く知られている。しかしアンモニアを溶媒としての使用する場合にはアンモニアが高い蒸気圧を有するために高圧の装置が必要となる。またアルカリ金属を用いた場合はアルカリ金属を含有する廃液が発生するため工業的実施に際してはその処理に困難が伴う。さらに、これらは方法では副反応を完全に抑制することは困難であり、更なる改善手段が求められている。   In order to suppress the formation of secondary and tertiary amines due to such a condensation reaction, a method using ammonia as a solvent (for example, see Patent Documents 3 to 6), an alkali metal or alkaline earth metal hydroxide is added. Thus, a method for carrying out the reaction (see, for example, Patent Documents 1, 2, 7, and 8) has been well known for a long time. However, when ammonia is used as a solvent, a high pressure apparatus is required because ammonia has a high vapor pressure. In addition, when an alkali metal is used, a waste liquid containing the alkali metal is generated, which makes it difficult to perform the treatment in industrial implementation. Furthermore, it is difficult for these methods to completely suppress side reactions, and further improvement means are required.

副反応を抑制し、収率を向上する手段としては液体分散媒中ホルマリン等で触媒を改変する方法(特許文献9参照)、メタノールやエチレンを用いて触媒を改変する方法(特許文献10参照)、などが提案されている。これらの方法は、上記アンモニアを溶媒とする方法やアルカリ金属あるいはアルカリ土類金属の共存下反応を行う方法と組み合わせて実施可能であることが開示されており、一定の収率改善効果を有している。これらの有機物を触媒の改変に用いる方法では、触媒上に有機物が付着していることが示されている(特許文献11)。   As means for suppressing side reactions and improving the yield, a method of modifying the catalyst with formalin in a liquid dispersion medium (see Patent Document 9), a method of modifying the catalyst using methanol or ethylene (see Patent Document 10) , Etc. have been proposed. It is disclosed that these methods can be carried out in combination with the above-mentioned method using ammonia as a solvent or the method of performing a reaction in the coexistence of alkali metal or alkaline earth metal, and has a certain yield improving effect. ing. In the method of using these organic substances for the modification of the catalyst, it is shown that the organic substances are attached on the catalyst (Patent Document 11).

特開平7−518900号公報JP-A-7-518900 特開平7−517801号公報Japanese Patent Laid-Open No. 7-517801 特公昭53−20969号公報Japanese Patent Publication No.53-20969 特開平8−299799号公報JP-A-8-299799 特表2002−505192号公報Special Table 2002-505192 特開昭51−6971号公報Japanese Patent Laid-Open No. 51-6971 特公昭38−8719号公報Japanese Patent Publication No. 38-8719 特開昭54−41804号公報JP 54-41804 A 特開2001−212461号公報JP 2001-212461 A 特開2008−63326号公報JP 2008-63326 A 特表2008−519677号公報Special table 2008-519677 gazette

Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis, Shigeo Nishimura, John Wiley&Sons, Inc., Chapter 7 Hydrogenation of Nitriles p254-285Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis, Shigeo Nishimura, John Wiley & Sons, Inc., Chapter 7 Hydrogenation of Nitriles p254-285

前記方法は、工業的に必要とされる長期の触媒寿命に関して何ら記載はない。一般に縮合生成物が触媒に付着すると触媒の活性が低下するため、反応を継続するためには何らかの再生操作が必要となる。再生操作として一般的に用いられているのは、水素化分解処理である。しかしながら、ホルマリンなどで触媒を液相改質する方法、メタノールやエチレンを用いて触媒を改質する方法など有機物を改質剤として用いる方法は、高温水素化による再生処理を実施すると、触媒上から表面改質物が除去されるため、収率改善効果は失われ長期間の反応において1級アミンを高収率で得ることが出来ない。   The method is not described in terms of the long catalyst life required industrially. In general, when the condensation product adheres to the catalyst, the activity of the catalyst is lowered, so that some kind of regeneration operation is required to continue the reaction. The hydrogenolysis process is generally used as the regeneration operation. However, the method of reforming the catalyst with formalin and the like, the method of reforming the catalyst with methanol and ethylene, and the method of using organic substances as a modifier, Since the surface modification product is removed, the yield improving effect is lost and the primary amine cannot be obtained in a high yield in a long-term reaction.

また従来知られているこれらの方法をもってしても長期間にわたり縮合生成物を与える副反応を完全に抑制することは困難である。   Even with these conventionally known methods, it is difficult to completely suppress side reactions that give condensation products over a long period of time.

本発明が解決しようとする課題は、上記従来技術の問題点を解消し、常に縮合生成物を与える副反応を抑制することで高い収率でニトリルから一級アミンを製造し、かつ縮合生成物による触媒層の閉塞を抑制する方法を提供することである。   The problem to be solved by the present invention is to solve the above-mentioned problems of the prior art, to produce a primary amine from nitrile in a high yield by constantly suppressing side reactions that give a condensation product, and depending on the condensation product It is to provide a method for suppressing clogging of a catalyst layer.

本発明者らは、上記課題を解決するために鋭意研究を行った結果、ニトリル水素化反応に用いる水素化触媒を使用する際に、反応に用いて活性が低下した触媒を水素化分解による再生処理を実施するたびに、処理剤を用いて気相で前処理することにより、上記課題を解決しうることを見出し、本発明に到達した。   As a result of diligent research to solve the above-mentioned problems, the inventors of the present invention regenerated a catalyst whose activity has been reduced by hydrogenolysis when using a hydrogenation catalyst used in a nitrile hydrogenation reaction. It has been found that the above-mentioned problems can be solved by performing pretreatment in a gas phase using a treatment agent every time the treatment is carried out, and the present invention has been achieved.

即ち本発明は、ニッケル、コバルトおよび鉄から選ばれる一種以上の金属を含有する水素化触媒の存在下、水素とニトリルを反応させて一級アミンを製造するに際して、(1)触媒の再生、(2)触媒の前処理および(3)ニトリルの水素化反応をこの順で実施し、且つ該前処理が炭化水素化合物、アルコール、エーテルおよびエステルから選ばれる少なくとも一種の処理剤を触媒に気相で接触させることで実施されることを特徴とする一級アミンの製造方法に関する。   That is, the present invention provides (1) regeneration of a catalyst when producing a primary amine by reacting hydrogen with a nitrile in the presence of a hydrogenation catalyst containing one or more metals selected from nickel, cobalt and iron. The catalyst pretreatment and (3) the nitrile hydrogenation reaction are carried out in this order, and the pretreatment is performed by contacting the catalyst in the gas phase with at least one treatment agent selected from hydrocarbon compounds, alcohols, ethers and esters. It is related with the manufacturing method of the primary amine characterized by being made to carry out.

本発明では、ニトリル水素化反応に用いる水素化触媒を使用する際に、活性の低下した触媒を水素化分解による再生処理を行った後、反応に先立って特定の処理剤で前処理することにより、副生成物である縮合生成物の生成量を常に低い状態で、目的物である一級アミンを高収率で得られる状態を維持する。また工業的観点からは、本発明の再生から前処理操作はきわめて簡便であり、前処理後煩雑な操作を経ずにひきつづいてニトリル水素化反応を実施できる。さらに前処理用の処理剤としては入手容易で安価なメタノール、ジメチルエーテル、エチレン、天然ガス等が使用できる。よって本発明の工業的意義は大きい。   In the present invention, when using the hydrogenation catalyst used in the nitrile hydrogenation reaction, after regenerating the catalyst with reduced activity by hydrocracking, it is pretreated with a specific treating agent prior to the reaction. The production amount of the by-product condensation product is always kept low, and the primary amine as the target product is maintained in a high yield. From an industrial point of view, the pretreatment operation from the regeneration of the present invention is very simple, and the nitrile hydrogenation reaction can be carried out without complicated operations after the pretreatment. Furthermore, methanol, dimethyl ether, ethylene, natural gas, etc. that are easily available and inexpensive can be used as pretreatment agents. Therefore, the industrial significance of the present invention is great.

本発明では触媒の存在下ニトリルを水素と反応させて一級アミンを製造する。対象となるニトリルは脂肪族ニトリル、脂環式ニトリル、芳香族ニトリルのいずれでも良い。また複数ニトリル基を有するニトリルでも良い。さらにアミノ基、ハロゲノ基、アルキル基、フェニル基、水酸基、エステル基、エーテル基等の官能基を有していてもよい。またアルデヒド基またはケトン基、イミノ基のような水素化可能な官能基を有していても良い。ニトリルの水素化反応において、ニトリルの水素化と同時にこれらの官能基が水素化されて、水酸基もしくはアミノ基に転換される場合もある。脂肪族ニトリルの例としては、アセトニトリル、プロピオニトリル、ブタンニトリル、ペンタンニトリル、ヘキサンニトリル、ヘプタンニトリル、オクタンニトリル、ブタンジニトリル(アジポニトリル)、ペンタンジニトリル、ヘキサンジニトリル、ヘプタンジニトリル、オクタンジニトリル、ベンジルシアニド等を挙げることができる。脂環式ニトリルとしてはシクロヘキサンニトリル、シクロヘキサンジニトリル、3−シアノー3,5,5,−トリメチルシクロヘキサノン、3−シアノー3,5,5,−トリメチルシクロヘキシルイミン、トリシクロデカンジカルボニトリル等を挙げることができる。芳香族ニトリルの例としてはベンゾニトリル、メチルベンゾニトリル、ジシアノベンゼン、トリシアノベンゼン、ビフェニルニトリル、シアノナフタレン、ジシアノナフタレン等が挙げられる。このほかピリジンカルボニトリル、ピリミジンカルボニトリル等の複素環ニトリルも例示される。中でも芳香族ニトリルの水素化、特にイソフタロニトリル、テレフタロニトリル等、ジシアノベンゼン類の水素化に本発明は適している。それぞれ水素化により対応する一級アミンが得られる。ジニトリルの水素化においては片方のニトリル基のみを一級アミンに転化するアミノニトリルの製造、たとえばアジポニトリルの水素化によるアミノカプロニトリルの製造やジシアノベンゼンの水素化によるシアノベンジルアミンの製造にも本発明は適用可能である。   In the present invention, a primary amine is produced by reacting nitrile with hydrogen in the presence of a catalyst. The target nitrile may be an aliphatic nitrile, an alicyclic nitrile, or an aromatic nitrile. Nitriles having a plurality of nitrile groups may also be used. Furthermore, it may have a functional group such as an amino group, a halogeno group, an alkyl group, a phenyl group, a hydroxyl group, an ester group or an ether group. Further, it may have a hydrogenatable functional group such as an aldehyde group, a ketone group or an imino group. In the nitrile hydrogenation reaction, these functional groups may be hydrogenated at the same time as the nitrile hydrogenation to be converted into a hydroxyl group or an amino group. Examples of aliphatic nitriles include acetonitrile, propionitrile, butanenitrile, pentanenitrile, hexanenitrile, heptanenitrile, octanenitrile, butanedinitrile (adiponitrile), pentanedinitrile, hexanedinitrile, heptanedinitrile, octanedi Nitriles, benzyl cyanides and the like can be mentioned. Examples of alicyclic nitriles include cyclohexane nitrile, cyclohexane dinitrile, 3-cyano-3,5,5-trimethylcyclohexanone, 3-cyano-3,5,5-trimethylcyclohexylimine, tricyclodecane dicarbonitrile and the like. Can do. Examples of the aromatic nitrile include benzonitrile, methylbenzonitrile, dicyanobenzene, tricyanobenzene, biphenylnitrile, cyanonaphthalene, dicyanonaphthalene and the like. Other examples include heterocyclic nitriles such as pyridinecarbonitrile and pyrimidinecarbonitrile. In particular, the present invention is suitable for hydrogenation of aromatic nitriles, particularly hydrogenation of dicyanobenzenes such as isophthalonitrile and terephthalonitrile. The corresponding primary amine is obtained by hydrogenation. In the dinitrile hydrogenation, the present invention is also applicable to the production of an aminonitrile in which only one nitrile group is converted to a primary amine, for example, the production of aminocapronitrile by hydrogenation of adiponitrile and the production of cyanobenzylamine by hydrogenation of dicyanobenzene. Is applicable.

本発明において、水素化は気相または液相で実施されるが、アセトニトリル等比較的低沸点のニトリルの場合除いて、一般的には液相で反応が実施されることが多い。液相での水素化においては反応溶媒を用いることもできる。反応溶媒としては水素化反応条件下で安定な種々の溶媒を使用することができる。具体的にはトルエン、キシレン、トリメチルベンゼン等の炭化水素系溶媒;テトラヒドロフラン、ジオキサン等のエーテル系溶媒;ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の低級脂肪族アミド系溶媒;メタノール、エタノール、プロパノール等のアルコール系溶媒;アンモニア等が挙げられる。またこれらの溶媒から2種類以上を選択して併用してもよい。アンモニアを用いることで一級アミンの収率を高めることができるため、反応溶媒の一部にアンモニアを選択するのが好ましい。反応溶媒の使用量はニトリルや触媒の種類にもよるが、ニトリル1重量部に対して好ましくは0.5〜99重量部の範囲、より好ましくは1〜98重量部、さらに好ましくは1〜30重量部であるである。   In the present invention, hydrogenation is carried out in the gas phase or in the liquid phase, but generally the reaction is often carried out in the liquid phase except in the case of nitriles having a relatively low boiling point such as acetonitrile. In the hydrogenation in the liquid phase, a reaction solvent can also be used. As the reaction solvent, various solvents which are stable under hydrogenation reaction conditions can be used. Specifically, hydrocarbon solvents such as toluene, xylene and trimethylbenzene; ether solvents such as tetrahydrofuran and dioxane; lower aliphatic amide solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; methanol, ethanol and propanol Alcohol-based solvents such as ammonia; Two or more of these solvents may be selected and used in combination. Since the yield of primary amine can be increased by using ammonia, it is preferable to select ammonia as a part of the reaction solvent. The amount of reaction solvent used depends on the type of nitrile and catalyst, but is preferably in the range of 0.5 to 99 parts by weight, more preferably 1 to 98 parts by weight, and still more preferably 1 to 30 parts per 1 part by weight of nitrile. Parts by weight.

ニトリルの水素化に用いられる水素は反応に関与しない不純物、例えばメタン、窒素等を含んでいても良いが、不純物濃度が高いと必要な水素分圧を確保するために反応全圧を高める必要があり工業的に不利となるため、水素濃度は50mol%以上が好ましい。   Hydrogen used for nitrile hydrogenation may contain impurities that do not participate in the reaction, such as methane, nitrogen, etc., but if the impurity concentration is high, the total reaction pressure needs to be increased to ensure the necessary hydrogen partial pressure. Since it is industrially disadvantageous, the hydrogen concentration is preferably 50 mol% or more.

本発明では水素化触媒の存在下で水素とニトリルを反応させて一級アミンを製造する。本発明における水素化触媒としては活性金属成分としてニッケル、コバルトおよび鉄から選ばれる少なくとも一種の金属を含有する触媒を用いる。中でもニッケルおよび/またはコバルトを含有する触媒が好適に用いられ、ニッケル含有触媒が特に好ましい。触媒の形態は担持触媒(たとえば米国特許公開2002−177735号公報)、非担持金属触媒(たとえば特開平8−299799号公報、特表2002−505192号公報等)、スポンジメタル触媒(ラネーニッケル、ラネーコバルト等)のどの形態でもよい。担持触媒の場合には活性金属成分の濃度は10〜98重量%が好ましく、さらに20〜90重量%が好ましく、特に30〜80重量%が好ましい。また担持触媒の場合、使用される担体としては、アルミナ、シリカ、珪藻土、シリカ−アルミナ、マグネシア、チタニア、ジルコニア、シリカ−ジルコニア、炭素等が挙げられる。触媒は必要に応じてアルカリ金属(Li,Na,K,Rb、Cs)、アルカリ土類金属(Mg、Ca、Sr、Ba)、B、Al、Si、P、Ti、V、Cr、Mn、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Ru、Rh、Pd、Ag、In、Sn、Sb、Te、Ta、W、Re、Os、Ir、Pt、Au、Tl、Pb、BiおよびCeからなる群より選ばれる少なくとも一種の成分を添加して変性することができる。   In the present invention, a primary amine is produced by reacting hydrogen with a nitrile in the presence of a hydrogenation catalyst. As the hydrogenation catalyst in the present invention, a catalyst containing at least one metal selected from nickel, cobalt and iron as an active metal component is used. Among them, a catalyst containing nickel and / or cobalt is preferably used, and a nickel-containing catalyst is particularly preferable. The catalyst is in the form of a supported catalyst (for example, US Patent Publication No. 2002-177735), a non-supported metal catalyst (for example, JP-A-8-299799, JP-T-2002-505192, etc.), sponge metal catalyst (Raney nickel, Raney cobalt). Etc.). In the case of a supported catalyst, the concentration of the active metal component is preferably 10 to 98% by weight, more preferably 20 to 90% by weight, and particularly preferably 30 to 80% by weight. In the case of a supported catalyst, examples of the carrier used include alumina, silica, diatomaceous earth, silica-alumina, magnesia, titania, zirconia, silica-zirconia, and carbon. Catalysts may be alkali metals (Li, Na, K, Rb, Cs), alkaline earth metals (Mg, Ca, Sr, Ba), B, Al, Si, P, Ti, V, Cr, Mn, as necessary. Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ru, Rh, Pd, Ag, In, Sn, Sb, Te, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi and It can be modified by adding at least one component selected from the group consisting of Ce.

また、本発明においては、水素化反応に際し、反応促進や収率向上等の目的で公知の助触媒を併用してもよい。助触媒としては、例えばアルカリ金属またはアルカリ土類金属の水酸化物やアルコラート等が挙げられる。これらの助触媒を用いた場合加算的に選択性を上昇させる効果が得られる場合もある。   In the present invention, in the hydrogenation reaction, a known promoter may be used in combination for the purpose of promoting the reaction or improving the yield. Examples of the cocatalyst include alkali metal or alkaline earth metal hydroxides and alcoholates. When these cocatalysts are used, the effect of increasing the selectivity may be obtained.

水素化反応の形式は固定床、懸濁床のいずれも可能であり、また回分式、連続式の何れの方式も可能であるが、特に反応を液相で行う場合は工業的には固定床灌液型連続流通方式(いわゆるトリクルベッドリアクターの使用)が簡便で好適である。触媒やニトリルの種類にもよるが、水素化反応の反応温度は好ましくは20〜250℃、より好ましくは20〜200℃であり、反応圧力は水素分圧として、好ましくは0〜30MPaG、より好ましくは0.2〜20MPaG、特に好ましくは0.5〜15MPaGである。触媒の使用量は触媒やニトリルの種類にもよるが、懸濁床回分式水素化の場合、原料ニトリル100重量部に対して、0.1〜100重量部であるのが好ましい。これより触媒が少ないと十分に反応が進行せず、これより触媒が多いと触媒費がかさみ経済的ではない。固定床連続式水素化の場合は、触媒100重量部に対して、原料ニトリルを0.01〜1000重量部/時間の速度で供給するのが好ましい。   The hydrogenation reaction can be either a fixed bed or a suspension bed, and can be either a batch type or a continuous type. However, especially when the reaction is carried out in the liquid phase, it is industrially fixed bed. An irrigated continuous flow system (use of a so-called trickle bed reactor) is convenient and suitable. Although depending on the type of catalyst and nitrile, the reaction temperature of the hydrogenation reaction is preferably 20 to 250 ° C., more preferably 20 to 200 ° C., and the reaction pressure is preferably 0 to 30 MPaG, more preferably hydrogen partial pressure. Is 0.2 to 20 MPaG, particularly preferably 0.5 to 15 MPaG. The amount of catalyst used depends on the type of catalyst and nitrile, but in the case of suspension bed batch hydrogenation, it is preferably 0.1 to 100 parts by weight per 100 parts by weight of the starting nitrile. If the amount of catalyst is less than this, the reaction does not proceed sufficiently, and if the amount of catalyst is more than this, the cost of the catalyst increases and it is not economical. In the case of fixed bed continuous hydrogenation, the raw material nitrile is preferably supplied at a rate of 0.01 to 1000 parts by weight / hour with respect to 100 parts by weight of the catalyst.

本発明では、上記反応に使用した触媒を再生し、その後、該反応に再使用する。触媒の再生操作として、水素化分解処理が用いられる。水素化分解処理は、触媒層に水素、もしくは不活性ガスで希釈された水素を供給することで実施される。水素化分解処理の温度は具体的には150〜500℃、好ましくは180〜400℃、特に好ましくは200〜300℃である。これより温度が低いと再生の効果が得られず、これより温度が高いと触媒のシンタリングを加速し反応活性を減じる可能性がある。水素化分解処理の終了は、例えば、水素化分解生成物(メタン等)の生成量から判断できる。通常は出口ガス(処理ガス)中のメタン濃度が供給ガス中の水素濃度に対して1%以下になるまで実施する。出口ガス中にメタンが検出されなくなるまで水素化分解処理操作を行うことがより好ましい。   In the present invention, the catalyst used in the above reaction is regenerated and then reused in the reaction. Hydrocracking treatment is used as the catalyst regeneration operation. The hydrocracking treatment is performed by supplying hydrogen or hydrogen diluted with an inert gas to the catalyst layer. The temperature of the hydrocracking treatment is specifically 150 to 500 ° C, preferably 180 to 400 ° C, particularly preferably 200 to 300 ° C. If the temperature is lower than this, the regeneration effect cannot be obtained, and if the temperature is higher than this, there is a possibility that the sintering of the catalyst is accelerated and the reaction activity is reduced. The end of the hydrocracking process can be determined from, for example, the amount of hydrocracking product (methane or the like) produced. Usually, it is carried out until the methane concentration in the outlet gas (processing gas) becomes 1% or less with respect to the hydrogen concentration in the supply gas. It is more preferable to perform the hydrocracking operation until no methane is detected in the outlet gas.

本発明では、触媒再生後のニトリル水素化反応に先立ち、特定の処理剤による水素化触媒の前処理を行うことが好ましい。前処理の実施により縮合生成物を与える副反応が抑制されて一級アミンの収率が向上する効果が得られる。前処理に用いられる処理剤としては炭化水素化合物、アルコール、エーテルおよびエステルが挙げられる。中でも炭化水素化合物とアルコールが好ましい。   In the present invention, it is preferable to perform a pretreatment of the hydrogenation catalyst with a specific treating agent prior to the nitrile hydrogenation reaction after catalyst regeneration. By carrying out the pretreatment, the side reaction giving the condensation product is suppressed, and the effect of improving the yield of primary amine is obtained. Examples of the treating agent used for the pretreatment include hydrocarbon compounds, alcohols, ethers and esters. Of these, hydrocarbon compounds and alcohols are preferred.

本発明における処理剤としての炭化水素化合物は炭素数が12以下のアルカン類、アルケン類およびアルキン類が例示され、中でも炭素−炭素不飽和結合を有する化合物であるアルケン類、アルキン類が好ましく、アルケン類が特に好ましい。アルカン類としてはメタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタンやこれらの骨格異性体(イソブタン、イソペンタン等)、シクロペンタン、シクロヘキサン、メチルシクロヘキサン等が例示される。天然ガスを利用することもできる。アルケン類としてはエチレン、プロピレン、ブテン、ブタジエン、ペンテン、ヘキセン、ヘプテン、オクテンやこれらの骨格異性体(イソブテン、イソペンテン等)、シクロペンタジエン、シクロヘキセン、メチルシクロヘキサンが例示される。アルキン類としてはアセチレン、メチルアセチレン、エチルアセチレン等が例示される。芳香族化合物としてはベンゼン、トルエン、キシレン等が例示される。これらの中でも炭素数4以下のアルケン類であるエチレン、プロピレンおよびブテンが特に好ましく、エチレンがさらに好ましい。   Examples of the hydrocarbon compound as the treating agent in the present invention include alkanes having 12 or less carbon atoms, alkenes and alkynes. Among them, alkenes and alkynes which are compounds having a carbon-carbon unsaturated bond are preferable. Are particularly preferred. Examples of alkanes include methane, ethane, propane, butane, pentane, hexane, heptane, octane, skeletal isomers (isobutane, isopentane, etc.), cyclopentane, cyclohexane, methylcyclohexane, and the like. Natural gas can also be used. Examples of alkenes include ethylene, propylene, butene, butadiene, pentene, hexene, heptene, octene and their skeletal isomers (isobutene, isopentene, etc.), cyclopentadiene, cyclohexene, and methylcyclohexane. Examples of alkynes include acetylene, methyl acetylene, and ethyl acetylene. Examples of the aromatic compound include benzene, toluene, xylene and the like. Among these, ethylene, propylene and butene which are alkenes having 4 or less carbon atoms are particularly preferable, and ethylene is more preferable.

本発明における処理剤としてのアルコールは炭素数が6以下のアルコールが好ましく、具体的にはメタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、t−ブタノール、エチレングリコール、アリルアルコール等が例示される。中でもメタノールまたはエタノールが好ましく、メタノールが特に好ましい。アルコールは水酸基以外の官能基としてカルボニル基、カルボキシル基、アミド基を含有しないものが好ましい。   The alcohol as the treating agent in the present invention is preferably an alcohol having 6 or less carbon atoms, specifically, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, ethylene glycol, allyl alcohol, etc. Is exemplified. Of these, methanol or ethanol is preferable, and methanol is particularly preferable. The alcohol preferably contains no carbonyl group, carboxyl group or amide group as a functional group other than a hydroxyl group.

本発明における処理剤としてのエーテルは炭素数が12以下のエーテルが好ましく、炭素数が6以下のエーテルがより好ましい。具体的にはジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、エチレングリコールモノメチルエーテル、ジグライム等が例示される。中でもジメチルエーテルまたはジエチルエーテルが好ましく、ジメチルエーテルが特に好ましい。エーテルはエーテル基以外の官能基としてカルボニル基、カルボキシル基、アミド基を含有しないものが好ましい。   The ether as the treating agent in the present invention is preferably an ether having 12 or less carbon atoms, more preferably an ether having 6 or less carbon atoms. Specific examples include dimethyl ether, diethyl ether, methyl ethyl ether, ethylene glycol monomethyl ether, diglyme and the like. Among them, dimethyl ether or diethyl ether is preferable, and dimethyl ether is particularly preferable. The ether preferably does not contain a carbonyl group, a carboxyl group or an amide group as a functional group other than the ether group.

本発明における処理剤としてのエステルはメチルエステルまたはエチルエステルが好ましく、具体的には蟻酸メチル、酢酸メチル、酢酸エチル等が例示される。エステルはエステル基以外の官能基としてカルボニル基、カルボキシル基、アミド基を含有しないものが好ましい。   The ester as the treating agent in the present invention is preferably a methyl ester or an ethyl ester, and specific examples include methyl formate, methyl acetate, and ethyl acetate. The ester preferably contains no carbonyl group, carboxyl group or amide group as a functional group other than the ester group.

以上の処理剤は単独もしくは2種以上を組み合わせて使用される。   The above treatment agents are used alone or in combination of two or more.

触媒が酸素や二酸化炭素で安定化処理を施された安定化触媒である場合等、前処理に先立ち触媒の水素による予備還元が実施されることもある。   When the catalyst is a stabilized catalyst that has been stabilized with oxygen or carbon dioxide, the catalyst may be pre-reduced with hydrogen prior to the pretreatment.

また酸素の共存は触媒を失活させるため、前処理は好ましくは酸素の非存在下で行われる。   Further, since coexistence of oxygen deactivates the catalyst, the pretreatment is preferably performed in the absence of oxygen.

気相で前処理を行う場合、処理剤の蒸気を触媒と接触させる。この際、窒素、アルゴン、ヘリウム、水蒸気等の希釈ガスを用いることも可能である。希釈ガスを用いることで処理剤濃度を適当な条件に調整することができる。固定床形式の場合、触媒層に気体状処理剤を含むガスを流通させる方法が極めて簡便であり、溶媒置換等煩雑な操作を経ずとも、ニトリル水素化反応の実施へと移行できる。   When the pretreatment is performed in the gas phase, the vapor of the treatment agent is brought into contact with the catalyst. At this time, it is also possible to use a diluent gas such as nitrogen, argon, helium or water vapor. By using the dilution gas, the treatment agent concentration can be adjusted to an appropriate condition. In the case of a fixed bed type, a method of circulating a gas containing a gaseous treating agent in the catalyst layer is very simple, and the nitrile hydrogenation reaction can be carried out without complicated operations such as solvent replacement.

水素化分解による再生後に多量の水素が存在すると前処理の効果が弱まるだけでなく、水素との反応による発熱が起こる傾向があるため、前処理時の水素の共存量は低い方が好ましく、水素非存在条件が最もこのましい。気相で前処理を実施する場合、気相中の水素と処理剤の濃度比(モル比)を、好ましくは6以下、さらに好ましくは3以下、特に好ましくは1.5以下に保つのが良い。また、前処理操作終了後に処理剤の非存在下、高温で水素含有ガスと触媒を接触させると前処理の効果が弱まることがある。よって前処理工程終了後は水素非存在下でいったん触媒を冷却してからニトリル水素化反応を開始する操作手順が好ましい。   The presence of a large amount of hydrogen after regeneration by hydrocracking not only weakens the effect of pretreatment, but also tends to generate heat due to reaction with hydrogen. Therefore, the coexistence of hydrogen during pretreatment is preferably low. Non-existing conditions are the most desirable. When the pretreatment is performed in the gas phase, the concentration ratio (molar ratio) of hydrogen and the processing agent in the gas phase is preferably 6 or less, more preferably 3 or less, and particularly preferably 1.5 or less. . In addition, if the hydrogen-containing gas and the catalyst are brought into contact with each other at a high temperature in the absence of a treating agent after the pretreatment operation, the effect of the pretreatment may be weakened. Therefore, after the pretreatment step, an operation procedure in which the catalyst is once cooled in the absence of hydrogen and then the nitrile hydrogenation reaction is started is preferable.

前処理時の温度は、触媒種や処理剤の種類等の条件にもよるが、ニトリル水素化反応温度より高い温度が好ましい。具体的には150〜500℃、好ましくは180〜400℃、特に好ましくは200〜300℃である。これより温度が低いと十分な効果が得られず、これより温度が高いとかえって活性や選択性が低下する場合がある。   The temperature during the pretreatment is preferably higher than the nitrile hydrogenation reaction temperature, although it depends on conditions such as the type of catalyst and the type of treatment agent. Specifically, it is 150-500 degreeC, Preferably it is 180-400 degreeC, Most preferably, it is 200-300 degreeC. If the temperature is lower than this, a sufficient effect cannot be obtained. If the temperature is higher than this, the activity and selectivity may be lowered.

前処理の時間は、処理剤種や温度等の条件にもよるが、5秒〜50時間、好ましくは1分〜20時間、特に好ましくは5分〜10時間である。これより時間が短いと十分な効果が得られず、これより時間が長いとかえって活性や選択性が低下する場合がある。   The pretreatment time is 5 seconds to 50 hours, preferably 1 minute to 20 hours, particularly preferably 5 minutes to 10 hours, although it depends on conditions such as the type of treatment agent and temperature. If the time is shorter than this, a sufficient effect cannot be obtained, and if the time is longer than this, the activity and selectivity may be lowered.

気相で前処理を行う場合、処理剤の濃度は0.1〜100vol%、より好ましくは0.2〜20vol%、特に好ましくは0.5〜10vol%が好ましい。気相で処理剤含有ガスを流通させる形式で前処理を行う場合、空間速度(GHSV)は30〜10000h−1、好ましくは50〜5000h−1、特に好ましくは50〜3000h−1、である。 When the pretreatment is performed in the gas phase, the concentration of the treatment agent is preferably 0.1 to 100 vol%, more preferably 0.2 to 20 vol%, and particularly preferably 0.5 to 10 vol%. When the pretreatment is performed in a form in which the treatment agent-containing gas is circulated in the gas phase, the space velocity (GHSV) is 30 to 10000 h −1 , preferably 50 to 5000 h −1 , particularly preferably 50 to 3000 h −1 .

処理剤の総使用量は処理剤種や温度等の条件にもよるが、触媒1kgに対して0.1〜100モル、好ましくは0.2〜50モル、特に好ましくは0.3〜20モルである。   Although the total amount of the treatment agent depends on conditions such as the kind of treatment agent and temperature, it is 0.1 to 100 mol, preferably 0.2 to 50 mol, particularly preferably 0.3 to 20 mol, per 1 kg of the catalyst. It is.

前処理時の圧力は処理剤種等の条件にもよるが、通常は常圧から水素化反応の反応圧の間から選択され、あえて例示するならば0〜30MPaGの範囲より選ばれるが、通常は常圧〜1MPaGの低圧条件での処理で十分な効果が得られる。   The pressure at the time of pretreatment depends on conditions such as the type of treatment agent, but is usually selected from the range of normal pressure to the reaction pressure of the hydrogenation reaction, and is illustratively selected from the range of 0 to 30 MPaG. A sufficient effect can be obtained by treatment under low pressure conditions of normal pressure to 1 MPaG.

かかる前処理を施した触媒はニトリル水素化反応に供される。ニトリル水素化における分子間縮合反応による二級および三級アミン等の縮合生成物生成が著しく抑制され、一級アミンの選択率が向上する。前処理の実施による縮合生成物の生成量が、前処理未実施の場合と比較して、少なくとも15%、好適な例においては、30%以上、さらには50%以上減少する。
かかる前処理は、新規触媒を水素化反応に供する時にも実施することが好ましい。
The catalyst subjected to such pretreatment is subjected to a nitrile hydrogenation reaction. Formation of condensation products such as secondary and tertiary amines due to intermolecular condensation reaction in nitrile hydrogenation is remarkably suppressed, and the selectivity of primary amine is improved. The amount of condensation product produced by the pretreatment is reduced by at least 15%, in a preferred example, by 30% or more, and even 50% or more, compared to the case where the pretreatment is not conducted.
Such pretreatment is also preferably performed when the new catalyst is subjected to a hydrogenation reaction.

以下に実施例および比較例を示し、本発明を具体的に説明する。ただし本発明はこれら実施例に制限されるものではない。尚、反応成績はAgilent(J&W)社製DB−1カラムを備え付けたガスクロマトグラフィーによる分析により決定した。高沸点副成物については主な生成物である(NHCH−Ar−CH(NH)−)(ここでArはフェニレン基である)換算で収率を表記した。また、水素化分解時の出口ガス中のメタン分析はGC−TCDにより行った(検出下限:100ppm)。 The present invention will be specifically described below with reference to examples and comparative examples. However, the present invention is not limited to these examples. The reaction results were determined by analysis by gas chromatography equipped with a DB-1 column manufactured by Agilent (J & W). For high-boiling by-products, the yield was expressed in terms of (NH 2 CH 2 —Ar—CH (NH 2 ) —) 2 (where Ar is a phenylene group), which is the main product. Moreover, the methane analysis in the exit gas at the time of hydrocracking was performed by GC-TCD (detection lower limit: 100 ppm).

<触媒調製>
硝酸ニッケル6水和物Ni(NO・6HO 305.0g、硝酸銅3水和物Cu(NO・3HO 6.5gおよび硝酸クロム9水和物Cr(NO・9HO 7.1gを40℃の純水1kgに溶解し、さらに珪藻土29.6gをこの水溶液に懸濁させながら40℃で撹拌した。このスラリーに、炭酸ナトリウムNaCO 128.6gを40℃の純水1kgに溶解した水溶液をよく撹拌しながら注加して沈殿スラリーを調製した。このスラリーを80℃まで昇温し、30分同温度で保持した。こうして得られた沈殿スラリーを濾過洗浄し、沈殿物を得た。この沈殿物を110℃で1晩乾燥し、380℃18時間空気雰囲気下で焼成した。この焼成粉に3重量%グラファイトを混合し、3.0mmφ×2.5mmに打錠成型した。この成型品を水素気流中400℃で還元した。還元後の成型品を希薄酸素ガス(酸素/窒素=1/99(体積比))流通下、室温〜40℃以下の温度で一晩酸化処理して安定化させた。さらにこの安定化成型品を破砕して60〜80meshに粒度を揃えた破砕触媒を得た。これを触媒Aとした。また、破砕前の安定化成型品そのものを触媒Bとした。
<Catalyst preparation>
Nickel nitrate hexahydrate Ni (NO 3 ) 2 .6H 2 O 305.0 g, copper nitrate trihydrate Cu (NO 3 ) 2 .3H 2 O 6.5 g and chromium nitrate 9 hydrate Cr (NO 3 ) and 3 · 9H 2 O 7.1g was dissolved in pure water 1kg of 40 ° C., was further stirred at 40 ° C. while suspending kieselguhr 29.6g to the aqueous solution. To this slurry, an aqueous solution in which 128.6 g of sodium carbonate Na 2 CO 3 was dissolved in 1 kg of 40 ° C. pure water was added with good stirring to prepare a precipitated slurry. The slurry was heated to 80 ° C. and held at the same temperature for 30 minutes. The precipitate slurry thus obtained was filtered and washed to obtain a precipitate. The precipitate was dried at 110 ° C. overnight and calcined at 380 ° C. for 18 hours in an air atmosphere. This fired powder was mixed with 3% by weight of graphite and tableted to 3.0 mmφ × 2.5 mm. This molded product was reduced at 400 ° C. in a hydrogen stream. The molded product after the reduction was stabilized by oxidizing overnight at a temperature of room temperature to 40 ° C. under a flow of dilute oxygen gas (oxygen / nitrogen = 1/99 (volume ratio)). Furthermore, this stabilized molded product was crushed to obtain a crushed catalyst having a uniform particle size of 60 to 80 mesh. This was designated Catalyst A. The stabilized molded product itself before crushing was used as catalyst B.

<比較例1>
触媒A0.6gを内径4mmのステンレス製管状反応管に充填した。触媒層に100%水素ガスを流通させ、常圧、250℃、ガス流量0.6NL/hなる条件のもと10時間還元して活性化させた。水素ガスの流通を止め、反応管を50℃まで冷却したのち、反応装置を水素で10MPaGに昇圧し、触媒層に液体アンモニアを供給し、触媒層を液体アンモニアで濡れた状態とした。反応管上部から0.6NL/hの水素、およびイソフタロニトリル(IPN)、プソイドクメン(PCM)、液体アンモニア(NH3)の混合液で組成がIPN:PCM:NH3=8:8:84(重量比)のものを2g/hで供給し、連続的に水素化反応を行った。全圧は10MPa、反応温度は80℃とした。反応開始後24時間目の反応成績はイソフタロニトリルの転化率が100%、メタキシリレンジアミンの収率が92.1mol%、高沸点の縮合生成物の収率が7.8mol%であった。
累積で320時間反応を継続したところ、触媒層内の差圧が上昇した。そこで液体アンモニアで触媒層を洗浄した後、触媒層に100%水素を流通させ、常圧、290℃、ガス流量0.6NL/hなる条件のもと13時間水素化分解処理を行い、出口ガス中のメタンが検出されなくなるまで再生操作を実施した。再生後、前記同様の条件でイソフタロニトリルの水素化反応を行った。反応開始後24時間目の反応成績はイソフタロニトリルの転化率が100%、メタキシリレンジアミンの収率が88.3mol%、高沸点の縮合生成物の収率が11.7mol%であった。
累積で495時間経過後、再び触媒層内の差圧上昇が見られたため、前記同様の再生操作を実施した。再生後、前記同様の条件でイソフタロニトリルの水素化反応を行った結果、反応再開後24時間目の反応成績はイソフタロニトリルの転化率が100%、メタキシリレンジアミンの収率が88.7mol%、高沸点の縮合生成物の収率が11.2mol%であった。
<Comparative Example 1>
0.6 g of catalyst A was packed in a stainless steel tubular reaction tube having an inner diameter of 4 mm. 100% hydrogen gas was circulated through the catalyst layer, and it was activated by reduction for 10 hours under the conditions of normal pressure, 250 ° C., and gas flow rate of 0.6 NL / h. After stopping the flow of hydrogen gas and cooling the reaction tube to 50 ° C., the reactor was pressurized to 10 MPaG with hydrogen, liquid ammonia was supplied to the catalyst layer, and the catalyst layer was wetted with liquid ammonia. The composition is IPN: PCM: NH3 = 8: 8: 84 (weight ratio) in a mixed solution of 0.6 NL / h of hydrogen, isophthalonitrile (IPN), pseudocumene (PCM), and liquid ammonia (NH3) from the upper part of the reaction tube. ) Was fed at 2 g / h, and the hydrogenation reaction was carried out continuously. The total pressure was 10 MPa and the reaction temperature was 80 ° C. As for the reaction results 24 hours after the start of the reaction, the conversion rate of isophthalonitrile was 100%, the yield of metaxylylenediamine was 92.1 mol%, and the yield of the high-boiling condensation product was 7.8 mol%. .
When the reaction was continued for a total of 320 hours, the differential pressure in the catalyst layer increased. Therefore, after washing the catalyst layer with liquid ammonia, 100% hydrogen was passed through the catalyst layer, hydrocracking treatment was performed for 13 hours under the conditions of normal pressure, 290 ° C., and gas flow rate of 0.6 NL / h, and the outlet gas Regeneration operation was carried out until no methane was detected. After regeneration, a hydrogenation reaction of isophthalonitrile was performed under the same conditions as described above. The reaction results 24 hours after the start of the reaction were 100% conversion of isophthalonitrile, 88.3 mol% of metaxylylenediamine, and 11.7 mol% of the high-boiling condensation product. .
After a cumulative time of 495 hours, the pressure difference in the catalyst layer was increased again, and thus the same regeneration operation as described above was performed. After regeneration, the hydrogenation reaction of isophthalonitrile was performed under the same conditions as described above. As a result, the reaction results at 24 hours after the resumption of the reaction showed that the conversion rate of isophthalonitrile was 100% and the yield of metaxylylenediamine was 88. The yield of 7 mol%, high-boiling condensation product was 11.2 mol%.

<実施例1>
(処理剤としてエチレン)
触媒A0.6gを内径4mmのステンレス製管状反応管に充填した。触媒層に100%水素を流通させ、常圧、250℃、ガス流量0.6NL/hなる条件のもと10時間還元して活性化させた。引き続き流通ガスをエチレン:窒素=4:96vol%なる混合ガスに切り替え前処理を実施した。常圧、250℃、ガス流量0.6NL/hなる条件のもと混合ガスの流通を1時間継続した。ガスの流通を止め、反応管を50℃まで冷却したのち、反応装置を水素で10MPaGに昇圧し、触媒層に液体アンモニアを供給し、触媒層を液体アンモニアで濡れた状態とした。反応管上部から0.6NL/hの水素、およびイソフタロニトリル(IPN)、プソイドクメン(PCM)、液体アンモニア(NH3)の混合液で組成がIPN:PCM:NH3=8:8:84(重量比)のものを2g/hで供給し、連続的に水素化反応を行った。全圧は10MPa、反応温度は80℃とした。反応開始後24時間目の反応成績はイソフタロニトリルの転化率が100%、メタキシリレンジアミンの収率が97.8mol%、高沸点の縮合生成物の収率が2.1mol%であった。
累積で880時間反応を継続したところ、触媒層内の差圧が上昇した。そこで液体アンモニアで触媒層を洗浄した後、触媒層に100%水素を流通させ、常圧、290℃、ガス流量0.6NL/hなる条件のもと、出口ガス中のメタンが検出されなくなるまで13時間水素化分解処理を行い、再生操作を実施した。水素化分解による再生後、引き続き流通ガスを常圧、250℃、ガス流量0.6NL/hなる条件のもとエチレン:窒素=4:96vol%なる混合ガスに切り替え、気相による前処理を実施した。前処理を実施後、前記同様の条件でイソフタロニトリルの水素化反応を行った。反応再開後24時間目の反応成績はイソフタロニトリルの転化率が100%、メタキシリレンジアミンの収率が99.2mol%、高沸点の縮合生成物の収率が0.8mol%であった。
累積で1150時間経過後、触媒層内の差圧上昇が見られ、前記同様の再生操作および前処理を実施した。前処理を実施後、前記同様の条件でイソフタロニトリル水素化反応を行った。反応開始後24時間目の反応成績はイソフタロニトリルの転化率が100%、メタキシリレンジアミンの収率が97.0mol%、高沸点の縮合生成物の収率が3.0mol%であった。
水素化分解による触媒再生処理の後に気相による前処理を追加することで、目的物質であるメタキシリレンジアミンを常に高収率で得られるだけでなく、高沸点化合物による触媒層の閉塞も抑制し、長時間の連続運転をすることが出来た。
<Example 1>
(Ethylene as treatment agent)
0.6 g of catalyst A was packed in a stainless steel tubular reaction tube having an inner diameter of 4 mm. 100% hydrogen was circulated through the catalyst layer, and it was activated by reduction for 10 hours under the conditions of normal pressure, 250 ° C., and gas flow rate of 0.6 NL / h. Subsequently, the flow gas was switched to a mixed gas of ethylene: nitrogen = 4: 96 vol%, and pretreatment was performed. The circulation of the mixed gas was continued for 1 hour under the conditions of normal pressure, 250 ° C., and gas flow rate of 0.6 NL / h. After the gas flow was stopped and the reaction tube was cooled to 50 ° C., the reactor was pressurized to 10 MPaG with hydrogen, liquid ammonia was supplied to the catalyst layer, and the catalyst layer was wetted with liquid ammonia. The composition is IPN: PCM: NH3 = 8: 8: 84 (weight ratio) in a mixed solution of 0.6 NL / h of hydrogen, isophthalonitrile (IPN), pseudocumene (PCM), and liquid ammonia (NH3) from the upper part of the reaction tube. ) Was fed at 2 g / h, and the hydrogenation reaction was carried out continuously. The total pressure was 10 MPa and the reaction temperature was 80 ° C. 24 hours after the start of the reaction, the conversion rate of isophthalonitrile was 100%, the yield of metaxylylenediamine was 97.8 mol%, and the yield of the high-boiling condensation product was 2.1 mol%. .
When the reaction was continued for a total of 880 hours, the differential pressure in the catalyst layer increased. Therefore, after washing the catalyst layer with liquid ammonia, 100% hydrogen was circulated through the catalyst layer until methane in the outlet gas was not detected under the conditions of normal pressure, 290 ° C., and gas flow rate of 0.6 NL / h. A 13-hour hydrocracking treatment was performed and a regeneration operation was performed. After regeneration by hydrocracking, the pre-treatment in the gas phase is continued by switching the flowing gas to a mixed gas of ethylene: nitrogen = 4: 96 vol% under the conditions of atmospheric pressure, 250 ° C. and gas flow rate of 0.6 NL / h. did. After the pretreatment, a hydrogenation reaction of isophthalonitrile was performed under the same conditions as described above. The reaction results 24 hours after the resumption of the reaction were as follows: the conversion rate of isophthalonitrile was 100%, the yield of metaxylylenediamine was 99.2 mol%, and the yield of the high-boiling condensation product was 0.8 mol%. .
After a cumulative time of 1150 hours, an increase in the differential pressure in the catalyst layer was observed, and the same regeneration operation and pretreatment as described above were performed. After the pretreatment, an isophthalonitrile hydrogenation reaction was performed under the same conditions as described above. 24 hours after the start of the reaction, the conversion rate of isophthalonitrile was 100%, the yield of metaxylylenediamine was 97.0 mol%, and the yield of the high-boiling condensation product was 3.0 mol%. .
By adding gas phase pretreatment after catalyst regeneration treatment by hydrocracking, not only the target substance metaxylylenediamine can be always obtained in high yield, but also blockage of the catalyst layer by high boiling point compounds is suppressed. And we were able to operate continuously for a long time.

<実施例2>
(処理剤としてメタノール)
触媒量を0.6g、前処理時の流通ガスをメタノール:窒素=4:96vol%なる混合ガスとし、前処理条件を常圧、200℃、ガス流量0.18NL/h、3時間とした以外は実施例1と同じ条件で触媒の還元、前処理、ニトリルの水素化反応を行った。反応開始後24時間目の反応成績はイソフタロニトリルの転化率が100%、メタキシリレンジアミンの収率が98.5mol%、高沸点の縮合生成物の収率が1.5%であった。
累積で1370時間経過後、触媒層内の差圧上昇が見られたため、液体アンモニアで触媒層を洗浄した。その後、実施例1と同様の再生操作を実施した。水素化分解による再生後、引き続き前記混合ガスを常圧、200℃、ガス流量0.18NL/hで流通させ、3時間気相による前処理を実施し、その後前記同様の条件でイソフタロニトリルの水素化反応を行った。イソフタロニトリル水素化反応再開後24時間目の反応成績はイソフタロニトリルの転化率が100%、メタキシリレンジアミンの収率が97.8mol%、高沸点の縮合生成物の収率が2.2mol%であった。
<Example 2>
(Methanol as treatment agent)
Except that the amount of catalyst is 0.6 g, the flow gas at the time of pretreatment is a mixed gas of methanol: nitrogen = 4: 96 vol%, the pretreatment conditions are normal pressure, 200 ° C., gas flow rate 0.18 NL / h, 3 hours. Were subjected to catalyst reduction, pretreatment, and nitrile hydrogenation under the same conditions as in Example 1. The reaction results 24 hours after the start of the reaction showed that the conversion of isophthalonitrile was 100%, the yield of metaxylylenediamine was 98.5 mol%, and the yield of the high-boiling condensation product was 1.5%. .
After a cumulative time of 1370 hours, an increase in the differential pressure in the catalyst layer was observed, so the catalyst layer was washed with liquid ammonia. Thereafter, the same reproduction operation as in Example 1 was performed. After regeneration by hydrocracking, the mixed gas is continuously passed at normal pressure, 200 ° C., and a gas flow rate of 0.18 NL / h, and pretreatment with a gas phase is performed for 3 hours. A hydrogenation reaction was performed. The reaction results 24 hours after resuming the isophthalonitrile hydrogenation reaction were as follows: the conversion of isophthalonitrile was 100%, the yield of metaxylylenediamine was 97.8 mol%, and the yield of the high-boiling condensation product was 2. It was 2 mol%.

<比較例2>
触媒B14gを内径17mmのステンレス製管状反応管(前段)に、触媒A1.0gを内径4mmのステンレス製管状反応管(後段)に充填した。2つの反応管を接続し、触媒層に100%水素を流通させ、常圧、250℃、ガス流量3NL/hなる条件のもと12時間還元して活性化させた。ガスの流通を止め、反応管を50℃まで冷却したのち、反応装置を水素で10MPaGに昇圧し、触媒層に液体アンモニアを供給し、触媒層を液体アンモニアで濡れた状態とした。前段の反応管上部から3NL/hの水素、およびイソフタロニトリル(IPN)、プソイドクメン(PCM)、液体アンモニア(NH3)の混合液で組成がIPN:PCM:NH3=8:8:84(重量比)のものを15g/hで供給し、連続的に水素化反応を行った。全圧は10MPa、反応温度は55℃とした。反応開始直後から100時間目の平均反応成績はイソフタロニトリルの転化率が99.7%、メタキシリレンジアミンの収率が93.6mol%、高沸点の縮合生成物の収率が5.8mol%であった。
<Comparative Example 2>
14 g of catalyst B was packed into a stainless steel tubular reaction tube (front stage) having an inner diameter of 17 mm, and 1.0 g of catalyst A was packed into a stainless steel tubular reaction tube (back stage) having an inner diameter of 4 mm. Two reaction tubes were connected, 100% hydrogen was circulated through the catalyst layer, and activated by reducing for 12 hours under conditions of normal pressure, 250 ° C., and gas flow rate of 3 NL / h. After the gas flow was stopped and the reaction tube was cooled to 50 ° C., the reactor was pressurized to 10 MPaG with hydrogen, liquid ammonia was supplied to the catalyst layer, and the catalyst layer was wetted with liquid ammonia. From the top of the previous reaction tube, 3NL / h of hydrogen, isophthalonitrile (IPN), pseudocumene (PCM), and liquid ammonia (NH3) are mixed in a composition of IPN: PCM: NH3 = 8: 8: 84 (weight ratio) ) Was fed at 15 g / h, and the hydrogenation reaction was carried out continuously. The total pressure was 10 MPa and the reaction temperature was 55 ° C. The average reaction results for 100 hours immediately after the start of the reaction were 99.7% conversion of isophthalonitrile, 93.6 mol% of metaxylylenediamine, and 5.8 mol of high-boiling condensation product. %Met.

<実施例3>
(処理剤としてエチレン、メタノール)
触媒B14gを内径17mmのステンレス製管状反応管(前段)に、触媒A1.0gを内径4mmのステンレス製管状反応管(後段)に充填した。2つの反応管を接続し、触媒層に100%水素を流通させ、常圧、250℃、ガス流量3NL/hなる条件のもと12時間還元して活性化させた。引き続き流通ガスをエチレン:窒素=10:90vol%なる混合ガスに切り替え前処理を実施した。常圧、200℃、ガス流量1NL/hなる条件のもと混合ガスの流通を8時間継続した。ガスの流通を止め、反応管を50℃まで冷却したのち、反応装置を水素で10MPaGに昇圧し、触媒層に液体アンモニアを供給し、触媒層を液体アンモニアで濡れた状態とした。前段の反応管上部から3NL/hの水素、およびイソフタロニトリル(IPN)、プソイドクメン(PCM)、液体アンモニア(NH3)の混合液で組成がIPN:PCM:NH3=8:8:84(重量比)のものを15g/hで供給し、連続的に水素化反応を行った。全圧は10MPa、反応温度は前段の反応管出口でのイソフタロニトリル転化率が95%以上になるように、55〜70℃の範囲で調節した。反応開始直後から100時間目の平均反応成績はイソフタロニトリルの転化率が99.8%、メタキシリレンジアミンの収率が95.8mol%、高沸点の縮合生成物の収率が3.4mol%であった。
累積で100時間反応を継続したところで、液体アンモニアにより触媒層を洗浄した後、触媒層に100%水素を流通させ、常圧、290℃、ガス流量3NL/hなる条件のもと、出口ガス中のメタンが検出されなくなるまで13時間水素化分解処理を行い、再生操作を実施した。水素化分解による再生後、引き続き流通ガスを常圧、250℃、ガス流量2NL/hなる条件のもとエチレン:窒素=6:94vol%なる混合ガスに切り替え3時間、気相による前処理を実施した。前処理を実施後、前記同様の条件でイソフタロニトリルの水素化反応を行った。反応再開直後から100時間目(累積で100〜200時間)の平均反応成績はイソフタロニトリルの転化率が99.9%、メタキシリレンジアミンの収率が96.7mol%、高沸点の縮合生成物の収率が3.1mol%であった。
累積で200時間反応を継続したところで、液体アンモニアで触媒層を洗浄した後、触媒層に100%水素を流通させ、常圧、290℃、ガス流量3NL/hなる条件のもと13時間水素化分解処理を行い、再生操作を実施した。再生後、前処理を実施せず前記同様の条件でイソフタロニトリルの水素化反応を行った結果、反応再開直後から100時間目(累積で200〜300時間)の平均反応成績はイソフタロニトリルの転化率が99.7%であり、メタキシリレンジアミンの収率が92.3mol%まで低下し、高沸点の縮合生成物の収率が7.5mol%と増加した。
累積で300時間反応を継続したところで、液体アンモニアで触媒層を洗浄した後、触媒層に100%水素を流通させ、常圧、290℃、ガス流量3NL/hなる条件のもと13時間水素化分解処理を行い、再生操作を実施した。水素化分解による再生後、引き続き流通ガスを常圧、250℃、ガス流量2NL/hなる条件のもとメタノール:窒素=4:96vol%なる混合ガスに切り替え10時間、気相による前処理を実施した。前処理を実施後、前記同様の条件でイソフタロニトリルの水素化反応を行った。反応再開直後から100時間目(累積で300〜400時間)の平均反応成績はイソフタロニトリルの転化率が100%、メタキシリレンジアミンの収率が98.2mol%まで向上し、高沸点の縮合生成物の収率が1.8mol%まで減少した。
<Example 3>
(Ethylene and methanol as treatment agents)
14 g of catalyst B was packed into a stainless steel tubular reaction tube (front stage) having an inner diameter of 17 mm, and 1.0 g of catalyst A was packed into a stainless steel tubular reaction tube (back stage) having an inner diameter of 4 mm. Two reaction tubes were connected, 100% hydrogen was circulated through the catalyst layer, and activated by reducing for 12 hours under conditions of normal pressure, 250 ° C., and gas flow rate of 3 NL / h. Subsequently, the flow gas was changed to a mixed gas of ethylene: nitrogen = 10: 90 vol%, and pretreatment was performed. The circulation of the mixed gas was continued for 8 hours under the conditions of normal pressure, 200 ° C., and gas flow rate of 1 NL / h. After the gas flow was stopped and the reaction tube was cooled to 50 ° C., the reactor was pressurized to 10 MPaG with hydrogen, liquid ammonia was supplied to the catalyst layer, and the catalyst layer was wetted with liquid ammonia. From the top of the previous reaction tube, 3NL / h of hydrogen, isophthalonitrile (IPN), pseudocumene (PCM), and liquid ammonia (NH3) are mixed in a composition of IPN: PCM: NH3 = 8: 8: 84 (weight ratio) ) Was fed at 15 g / h, and the hydrogenation reaction was carried out continuously. The total pressure was 10 MPa, and the reaction temperature was adjusted in the range of 55 to 70 ° C. so that the conversion rate of isophthalonitrile at the outlet of the previous reaction tube was 95% or more. The average reaction results for 100 hours immediately after the start of the reaction are 99.8% conversion of isophthalonitrile, 95.8 mol% of metaxylylenediamine, and 3.4 mol of high-boiling condensation product. %Met.
When the reaction was continued for a total of 100 hours, the catalyst layer was washed with liquid ammonia, and then 100% hydrogen was circulated through the catalyst layer, under conditions of normal pressure, 290 ° C., and gas flow rate of 3 NL / h. Hydrocracking treatment was performed for 13 hours until no methane was detected, and a regeneration operation was performed. After regeneration by hydrocracking, the pre-treatment in the gas phase is continued for 3 hours by switching the flowing gas to a mixed gas of ethylene: nitrogen = 6: 94 vol% under the conditions of atmospheric pressure, 250 ° C. and gas flow rate 2 NL / h did. After the pretreatment, a hydrogenation reaction of isophthalonitrile was performed under the same conditions as described above. The average reaction results in the first 100 hours (cumulatively 100 to 200 hours) immediately after the resumption of the reaction are: conversion of isophthalonitrile is 99.9%, yield of metaxylylenediamine is 96.7 mol%, high boiling point condensation product The yield of the product was 3.1 mol%.
When the reaction was continued for a total of 200 hours, the catalyst layer was washed with liquid ammonia, then 100% hydrogen was passed through the catalyst layer, and hydrogenation was performed for 13 hours under conditions of normal pressure, 290 ° C., and gas flow rate of 3 NL / h. A decomposition process was performed and a regeneration operation was performed. After regeneration, the hydrogenation reaction of isophthalonitrile was carried out under the same conditions as described above without performing pretreatment. As a result, the average reaction result at 100 hours (cumulative 200 to 300 hours) immediately after the reaction was resumed was that of isophthalonitrile. The conversion was 99.7%, the yield of metaxylylenediamine decreased to 92.3 mol%, and the yield of the high-boiling condensation product increased to 7.5 mol%.
When the reaction was continued for 300 hours, the catalyst layer was washed with liquid ammonia, then 100% hydrogen was passed through the catalyst layer, and hydrogenation was performed for 13 hours under conditions of normal pressure, 290 ° C., and gas flow rate of 3 NL / h. A decomposition process was performed and a regeneration operation was performed. After regeneration by hydrocracking, the pre-treatment in the gas phase was continued for 10 hours by switching the flowing gas to a mixed gas of methanol: nitrogen = 4: 96 vol% under the conditions of atmospheric pressure, 250 ° C. and gas flow rate 2 NL / h did. After the pretreatment, a hydrogenation reaction of isophthalonitrile was performed under the same conditions as described above. The average reaction results in the first 100 hours (cumulative 300 to 400 hours) immediately after the resumption of the reaction show that the conversion rate of isophthalonitrile is improved to 100%, the yield of metaxylylenediamine is increased to 98.2 mol%, and high-boiling condensation The product yield was reduced to 1.8 mol%.

本発明で得られる一級アミン類はポリアミド樹脂、エポキシ硬化剤等の原料、およびイソシアネート、有機溶媒、農薬、医薬、洗剤等の中間原料として産業上有用である。   The primary amines obtained in the present invention are industrially useful as raw materials for polyamide resins, epoxy curing agents and the like, and as intermediate materials for isocyanates, organic solvents, agricultural chemicals, pharmaceuticals, detergents and the like.

Claims (12)

ニッケル、コバルトおよび鉄から選ばれる一種以上の金属を含有する触媒の存在下、水素とニトリルを反応させて一級アミンを製造するに際して、(1)触媒の再生、(2)触媒の前処理および(3)ニトリルの水素化反応をこの順で実施し、且つ該前処理が炭化水素化合物、アルコール、エーテルおよびエステルから選ばれる少なくとも一種の処理剤を触媒に気相で接触させることで実施されることを特徴とする一級アミンの製造方法。   In the production of a primary amine by reacting hydrogen with a nitrile in the presence of a catalyst containing one or more metals selected from nickel, cobalt and iron, (1) regeneration of the catalyst, (2) pretreatment of the catalyst and ( 3) The nitrile hydrogenation reaction is carried out in this order, and the pretreatment is carried out by contacting the catalyst in the gas phase with at least one treatment agent selected from hydrocarbon compounds, alcohols, ethers and esters. A process for producing a primary amine characterized by 処理剤が炭化水素化合物およびアルコールから選択される、請求項1に記載の方法。   The process according to claim 1, wherein the treating agent is selected from hydrocarbon compounds and alcohols. 炭化水素化合物が炭素数4以下のアルケン類である、請求項1または2に記載の方法。   The method according to claim 1 or 2, wherein the hydrocarbon compound is an alkene having 4 or less carbon atoms. 炭化水素化合物がエチレンである、請求項1または2に記載の方法。   The process according to claim 1 or 2, wherein the hydrocarbon compound is ethylene. アルコールが炭素数6以下のアルコールである、請求項1または2に記載の方法。   The method according to claim 1 or 2, wherein the alcohol is an alcohol having 6 or less carbon atoms. アルコールがメタノールである、請求項1または2に記載の方法。   The process according to claim 1 or 2, wherein the alcohol is methanol. 前処理が150〜500℃の気相条件下で実施される、請求項1〜6のいずれかに記載の方法。   The method according to claim 1, wherein the pretreatment is performed under a gas phase condition of 150 to 500 ° C. 触媒の再生が150〜500℃の範囲で、触媒層に水素、もしくは不活性ガスで希釈された水素を供給し、出口ガス中のメタン濃度が供給ガス中の水素濃度に対し1%以下になるまで実施される、請求項1〜7のいずれかに記載の方法。   When the regeneration of the catalyst is in the range of 150 to 500 ° C., hydrogen or hydrogen diluted with an inert gas is supplied to the catalyst layer, and the methane concentration in the outlet gas becomes 1% or less with respect to the hydrogen concentration in the supply gas. The method according to any one of claims 1 to 7, wherein the method is performed. 水素化触媒がニッケル含有触媒である、請求項1〜8のいずれかに記載の方法。   The method according to claim 1, wherein the hydrogenation catalyst is a nickel-containing catalyst. ニトリルが芳香族ニトリルである、請求項1〜9のいずれかに記載の方法。   The method according to claim 1, wherein the nitrile is an aromatic nitrile. ニトリルがジシアノベンゼンである、請求項1〜9のいずれかに記載の方法。   The method according to any one of claims 1 to 9, wherein the nitrile is dicyanobenzene. ニトリルの水素化反応が固定床連続流通式で行われる、請求項1〜11のいずれかに記載の方法。   The method according to any one of claims 1 to 11, wherein the nitrile hydrogenation reaction is carried out in a fixed bed continuous flow system.
JP2009146117A 2009-06-19 2009-06-19 Process for producing primary amine Pending JP2011001304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009146117A JP2011001304A (en) 2009-06-19 2009-06-19 Process for producing primary amine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009146117A JP2011001304A (en) 2009-06-19 2009-06-19 Process for producing primary amine

Publications (1)

Publication Number Publication Date
JP2011001304A true JP2011001304A (en) 2011-01-06

Family

ID=43559587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009146117A Pending JP2011001304A (en) 2009-06-19 2009-06-19 Process for producing primary amine

Country Status (1)

Country Link
JP (1) JP2011001304A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003038958A (en) * 2001-05-22 2003-02-12 Mitsubishi Gas Chem Co Inc Method for producing catalyst useful for producing aromatic amine
JP2004107327A (en) * 2002-08-26 2004-04-08 Mitsubishi Gas Chem Co Inc Method for producing xylylenediamine
JP2008063326A (en) * 2006-08-09 2008-03-21 Mitsubishi Gas Chem Co Inc Production method of primary amine and catalyst for producing primary amine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003038958A (en) * 2001-05-22 2003-02-12 Mitsubishi Gas Chem Co Inc Method for producing catalyst useful for producing aromatic amine
JP2004107327A (en) * 2002-08-26 2004-04-08 Mitsubishi Gas Chem Co Inc Method for producing xylylenediamine
JP2008063326A (en) * 2006-08-09 2008-03-21 Mitsubishi Gas Chem Co Inc Production method of primary amine and catalyst for producing primary amine

Similar Documents

Publication Publication Date Title
US7767859B2 (en) Production method of primary amines and catalysts for producing primary amines
RU2473537C2 (en) Method of producing mixture of ethylene amines
CA2250734C (en) Method of producing amines and aminonitriles
KR20090122436A (en) Method for producing ethylenediamine
JP2010209092A (en) Method for producing primary amine by hydrogenating nitrile
CA2263111C (en) Catalysts suitable for preparing aliphatic alpha-, omega-aminonitriles by partial hydrogenation of aliphatic dinitriles
AU737529B2 (en) Preparation of amines and aminonitriles
JP5706415B2 (en) Process for the reductive amination of aliphatic cyanaldehydes to aliphatic diamines
JP5369398B2 (en) Method for producing primary amine and catalyst for producing primary amine
US7179945B2 (en) High-selective production method of di(aminomethyl)-substituted aromatic compound
PL181529B1 (en) Method of obtaining aliphatic alpha, omega-aminoinitriles
US7119230B2 (en) Process for production of xylylenediamine and/or cyanobenzylamine
JP2011001304A (en) Process for producing primary amine
US6905997B2 (en) Method for generating catalysts
JP5841533B2 (en) Alicyclic diamine and method for producing the same
US5574189A (en) Hydrogenation of nitriles to produce amines
CZ46697A3 (en) Process for preparing a mixture of cyclohexyl amine and dicyclohexyl amine
JP4561063B2 (en) Method for producing xylylenediamine
US6894192B2 (en) Process for production of xylylenediamine
JP5829623B2 (en) A method for improving the catalytic activity of catalytic systems for the reductive amination of aliphatic cyanoaldehydes to aliphatic diamines
JP2004269510A (en) Highly selective method for producing di(aminomethyl)-substituted aromatic compound

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140128