JP2004269510A - Highly selective method for producing di(aminomethyl)-substituted aromatic compound - Google Patents

Highly selective method for producing di(aminomethyl)-substituted aromatic compound Download PDF

Info

Publication number
JP2004269510A
JP2004269510A JP2004031638A JP2004031638A JP2004269510A JP 2004269510 A JP2004269510 A JP 2004269510A JP 2004031638 A JP2004031638 A JP 2004031638A JP 2004031638 A JP2004031638 A JP 2004031638A JP 2004269510 A JP2004269510 A JP 2004269510A
Authority
JP
Japan
Prior art keywords
catalyst
aminomethyl
aromatic compound
substituted aromatic
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004031638A
Other languages
Japanese (ja)
Other versions
JP4561963B2 (en
Inventor
Yoshinori Kanamori
圭徳 金森
Hideji Ebata
秀司 江端
Kengo Tsukahara
建悟 塚原
Ryosuke Yamamoto
良亮 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2004031638A priority Critical patent/JP4561963B2/en
Publication of JP2004269510A publication Critical patent/JP2004269510A/en
Application granted granted Critical
Publication of JP4561963B2 publication Critical patent/JP4561963B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new method for producing a di(aminomethyl)-substituted aromatic compound highly selectively. <P>SOLUTION: This highly selective method for producing the di(aminomethyl)-substituted aromatic compound is provided by hydrogenating an aromatic dinitrile by using a Pd catalyst as a catalyst in a first stage reaction region to produce an intermediate of the objective product, cyano(aminomethyl)-substituted aromatic compound, and then hydrogenating the cyano(aminomethyl)-substituted aromatic compound by using a Ni catalyst or Co catalyst as the catalyst in a second stage of the reaction region. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は芳香族ジニトリルを水素化することによりジ(アミノメチル)置換芳香族化合物を製造する製法に関する。ジ(アミノメチル)置換芳香族化合物は、硬化剤、合成樹脂、イソシアネート等の製造原料として有用である。   The present invention relates to a process for producing di (aminomethyl) -substituted aromatic compounds by hydrogenating aromatic dinitrile. Di (aminomethyl) -substituted aromatic compounds are useful as raw materials for producing curing agents, synthetic resins, isocyanates, and the like.

芳香族ジニトリルの水素化には、種々の金属を用いた触媒系での製造方法が提案されている。例えば、パラジウム触媒を使用しイソフタロニトリルまたはテレフタロニトリルを液体アンモニアおよび無機アルカリの共存下水素化反応を行うことを特徴とする3−シアノベンジルアミンまたは4−シアノベンジルアミンの製造法が提案されている(特許文献1参照。)。また、ニッケルおよび/またはコバルトを含有するラネー触媒を用いて芳香族ジニトリルの一方のニトリル基を水素化し、芳香族シアノメチルアミン(シアノ(アミノメチル)置換芳香族化合物)を製造する方法が開示されている(例えば、特許文献2、特許文献3参照。)。これらの文献には、何れも芳香族シアノメチルアミンの製造法について記載されているが、それに対応するジアミン(ジ(アミノメチル)置換芳香族化合物)の製法については記載されていない。   For the hydrogenation of aromatic dinitrile, a production method using a catalyst system using various metals has been proposed. For example, there has been proposed a method for producing 3-cyanobenzylamine or 4-cyanobenzylamine, which comprises performing a hydrogenation reaction of isophthalonitrile or terephthalonitrile in the presence of liquid ammonia and an inorganic alkali using a palladium catalyst. (See Patent Document 1). Also disclosed is a method for producing an aromatic cyanomethylamine (cyano (aminomethyl) -substituted aromatic compound) by hydrogenating one nitrile group of aromatic dinitrile using a Raney catalyst containing nickel and / or cobalt. (For example, see Patent Documents 2 and 3). These documents all describe a method for producing aromatic cyanomethylamine, but do not describe a method for producing a corresponding diamine (di (aminomethyl) -substituted aromatic compound).

一方、元素周期律表第IVb、VIb、VIIbおよびVIII族の元素並びに亜鉛から選択されるドーピング元素を含むラネーニッケル並びにIVb、VIb、VIIbおよびVIII族の元素並びに亜鉛から選択されるドーピング元素を含むラネーコバルトから選択された触媒を用い脂肪族ジニトリルを対応する脂肪族アミノニトリルへ半水素化する方法が開示されている(特許文献4参照。)。さらに、不均一系で水素化触媒の存在下において脂肪族ニトリルを部分的に対応する脂肪族アミノニトリルに連続的に水素化する反応方法について提案されている(特許文献5参照。)。これらの文献には、脂肪族ニトリルを脂肪族アミノニトリルに半水素化する方法については記載されているが、芳香族ジニトリルを芳香族シアノメチルアミンに半水素化する方法ついては記載されておらず、さらに芳香族シアノメチルアミンの対応するジアミン(ジ(アミノメチル)置換芳香族化合物)への水素化の方法についても記載されていない   On the other hand, Raney nickel containing an element of Group IVb, VIb, VIIb and VIII of the Periodic Table of Elements and a doping element selected from zinc and Raney nickel containing an element of Group IVb, VIb, VIIb and VIII and a doping element selected from zinc A method for half-hydrogenating an aliphatic dinitrile to a corresponding aliphatic aminonitrile using a catalyst selected from cobalt is disclosed (see Patent Document 4). Furthermore, there has been proposed a reaction method for continuously hydrogenating an aliphatic nitrile to a corresponding aliphatic amino nitrile in a heterogeneous system in the presence of a hydrogenation catalyst (see Patent Document 5). These documents describe a method for half-hydrogenating an aliphatic nitrile to an aliphatic amino nitrile, but do not describe a method for half-hydrogenating an aromatic dinitrile to an aromatic cyanomethylamine. Furthermore, it does not describe a method for hydrogenating an aromatic cyanomethylamine to a corresponding diamine (di (aminomethyl) -substituted aromatic compound).

さらに、芳香族ジニトリルから対応するジアミン(ジ(アミノメチル)芳香族化合物)への1段での水素化については、NiまたはCo系触媒を用いた種々の方法が提案されている。例えば、フタロニトリルを微量の水を含むアルコール中で苛性アルカリを添加したラネーニッケルまたはラネーコバルトを用いて水素化し目的のキシリレンジアミンを生成する方法が提案されている(特許文献6参照。)。また、助触媒成分として酸化マグネシウムを含む担体付きニッケル触媒を用いフタロニトリルからキシリレンジアミンを製造する方法が提案されている(特許文献7参照。)。しかしながら、これらの方法では、副生成物の生成により十分な目的ジアミンの収率が得られていない。   Furthermore, for the one-stage hydrogenation of aromatic dinitrile to the corresponding diamine (di (aminomethyl) aromatic compound), various methods using a Ni or Co catalyst have been proposed. For example, a method has been proposed in which phthalonitrile is hydrogenated in an alcohol containing a trace amount of water using Raney nickel or Raney cobalt to which caustic alkali has been added to produce a desired xylylenediamine (see Patent Document 6). Further, there has been proposed a method for producing xylylenediamine from phthalonitrile using a nickel catalyst with a carrier containing magnesium oxide as a promoter component (see Patent Document 7). However, in these methods, a sufficient yield of the target diamine has not been obtained due to generation of by-products.

特公昭51−24494号公報JP-B-51-24494 特開平9−40630号公報JP 9-40630 A 特開平10−204048号公報JP-A-10-204048 特公平10−502671号公報Japanese Patent Publication No. 10-502671 特表2001−524464号公報JP 2001-524664 A 特公昭38−8719号公報JP-B-38-8719 特公昭48−22593号公報JP-B-48-22593

本発明の目的は、高選択的にジ(アミノメチル)置換芳香族化合物を製造する新規の方法を提供することである。   An object of the present invention is to provide a novel method for producing a di (aminomethyl) -substituted aromatic compound with high selectivity.

本発明者らは、上記の課題を鋭意検討した結果、1段目の反応領域で触媒としてPd触媒を用い芳香族ジニトリルを水素化し目的生成物の中間体であるシアノ(アミノメチル)置換芳香族化合物を製造し、その後2段目の反応領域で触媒としてNi触媒若しくはCo触媒を用いシアノ(アミノメチル)置換芳香族化合物を水素化することにより目的ジ(アミノメチル)置換芳香族化合物が高選択的に得られることを見出し、本発明に到達した。
すなわち本発明は、1段目の反応領域でPdを含有する触媒Xの存在下、下記式(II):
CN−R−CN (II)
(式中、Rは二価の芳香族基を表し、水素化反応に関与しない置換基で置換されていてもよい。)
で表される芳香族ジニトリルの一方のニトリル基を水素化して、下記式(III):
NHCH−R−CN (III)
(式中、Rは前記と同様。)
で表されるシアノ(アミノメチル)置換芳香族化合物とし、2段目の反応領域でNiおよび/またはCoを含有する触媒Yの存在下、1段目で得られたシアノ(アミノメチル)置換芳香族化合物を水素化して下記式(I):
NHCH−R−CHNH (I)
(式中、Rは前記と同様。)
で表されるジ(アミノメチル)置換芳香族化合物とすることを特徴とするジ(アミノメチル)置換芳香族化合物の製造方法に関するものである。
The present inventors diligently studied the above problem, and as a result, hydrogenated aromatic dinitrile using a Pd catalyst as a catalyst in a first-stage reaction zone, and obtained a cyano (aminomethyl) -substituted aromatic compound as an intermediate of a target product. The compound is manufactured, and then the target di (aminomethyl) -substituted aromatic compound is highly selected by hydrogenating the cyano (aminomethyl) -substituted aromatic compound using a Ni catalyst or a Co catalyst as a catalyst in the second reaction zone. The present invention has been achieved, and the present invention has been achieved.
That is, the present invention provides the following formula (II) in the presence of a catalyst X containing Pd in the first-stage reaction zone:
CN-R-CN (II)
(In the formula, R represents a divalent aromatic group, and may be substituted with a substituent that does not participate in the hydrogenation reaction.)
By hydrogenating one nitrile group of the aromatic dinitrile represented by the following formula (III):
NH 2 CH 2 -R-CN ( III)
(In the formula, R is the same as described above.)
And the cyano (aminomethyl) -substituted aromatic compound obtained in the first stage in the presence of a catalyst Y containing Ni and / or Co in the second-stage reaction zone A group compound is hydrogenated to give the following formula (I):
NH 2 CH 2 -R-CH 2 NH 2 (I)
(In the formula, R is the same as described above.)
The present invention relates to a method for producing a di (aminomethyl) -substituted aromatic compound represented by the formula:

本発明によれば、1段目の反応領域で触媒としてPdを含有する触媒を用い芳香族ジニトリルを水素化し目的生成物の中間体であるシアノ(アミノメチル)置換芳香族化合物を製造し、その後2段目の反応領域で触媒としてNiおよび/またはCoを含有する触媒を用いシアノ(アミノメチル)置換芳香族化合物を水素化しジ(アミノメチル)置換芳香族化合物にすることにより、高選択率かつ十分な収率でジ(アミノメチル)置換芳香族化合物の製造をすることができる。また、副生成物の生成が極めて少ないため触媒寿命を長期化することができる。従って、本発明の製造法を用いることにより、極めて経済的に芳香族ジニトリルからジ(アミノメチル)置換芳香族化合物を製造できる。   According to the present invention, an aromatic dinitrile is hydrogenated using a Pd-containing catalyst as a catalyst in a first-stage reaction zone to produce a cyano (aminomethyl) -substituted aromatic compound which is an intermediate of a target product, and thereafter, By using a catalyst containing Ni and / or Co as a catalyst in the second reaction zone and hydrogenating a cyano (aminomethyl) -substituted aromatic compound to a di (aminomethyl) -substituted aromatic compound, high selectivity and high selectivity can be obtained. A di (aminomethyl) -substituted aromatic compound can be produced with a sufficient yield. Further, since the generation of by-products is extremely small, the catalyst life can be prolonged. Therefore, by using the production method of the present invention, a di (aminomethyl) -substituted aromatic compound can be produced from an aromatic dinitrile very economically.

以下、本発明を具体的に説明する。
本発明で用いられる原料の芳香族ジニトリルは、下記式(II):
CN−R−CN (II)
で表される。Rは二価の芳香族基、例えばフェニレン基、ナフチレン基等を表す。芳香族基上の二個のニトリル基の置換位置は特に制限されず、例えば、芳香族基がフェニレン基である場合には、o−、m−、p−位のいずれでもよい。芳香族基は、アルキル基、アルコキシ基、ハロゲン基、アミノ基、アミド基、ヒドロキシル基などの水素化反応に関与しない置換基で置換されていてもよい。通常、芳香族ジニトリルの水素化反応においては、芳香環上の置換基によって反応性が大きく変化するが、本発明の方法においては、これらの置換基を有するものにおいても、効率よく反応が進行する。好ましい芳香族ジニトリルは、フタロニトリル、イソフタロニトリル、テレフタロニトリル、1,5−ジシアノナフタレンである。
Hereinafter, the present invention will be described specifically.
The raw material aromatic dinitrile used in the present invention has the following formula (II):
CN-R-CN (II)
Is represented by R represents a divalent aromatic group such as a phenylene group and a naphthylene group. The substitution positions of the two nitrile groups on the aromatic group are not particularly limited. For example, when the aromatic group is a phenylene group, any of the o-, m-, and p-positions may be used. The aromatic group may be substituted with a substituent that does not participate in the hydrogenation reaction, such as an alkyl group, an alkoxy group, a halogen group, an amino group, an amide group, and a hydroxyl group. Usually, in the hydrogenation reaction of aromatic dinitrile, the reactivity greatly changes depending on the substituent on the aromatic ring. In the method of the present invention, the reaction proceeds efficiently even in those having these substituents. . Preferred aromatic dinitrile are phthalonitrile, isophthalonitrile, terephthalonitrile, 1,5-dicyanonaphthalene.

本発明において、水素化に用いられる原料水素は特に精製されたものを使用しなくても良く、工業用グレードでよい。反応領域での水素分圧は、1段目、2段目とも2.0〜20.0MPaの範囲が好ましい。水素分圧が上記範囲内であると、ジアミンの収率が十分であり、圧力の高い耐圧反応器が不要となりコストを低減することができるので好ましい。   In the present invention, the raw material hydrogen used for the hydrogenation need not be particularly purified, and may be of an industrial grade. The hydrogen partial pressure in the reaction zone is preferably in the range of 2.0 to 20.0 MPa for both the first and second stages. When the hydrogen partial pressure is within the above range, the yield of diamine is sufficient, and a pressure-resistant reactor having a high pressure is not required, so that the cost can be reduced, which is preferable.

本発明において、1段目の反応領域では、Pdを含有する触媒Xの存在下、芳香族ジニトリルを水素化して下記式(III):
NHCH−R−CN (III)
(式中、Rは前記と同様。)
で表されるシアノ(アミノメチル)置換芳香族化合物とする。水素化反応は液相にて行うことが好ましく、用いられる溶媒としては、反応中水素により還元を受けない不活性有機溶媒であれば制限はない。例えば、メタノール、エタノール、プロピルアルコール等のアルコール系溶媒、メタキシレン、メシチレン、プソイドキュメン等の炭化水素系溶媒、ジオキサン等のエーテル系溶媒などを用いることができる。不活性有機溶媒は、芳香族ジニトリル1重量部に対して1.0〜99.0重量部用いるのが好ましい。また、副生物の生成を抑制するために、溶媒として液体アンモニアを単独で、あるいは上記不活性有機溶媒と混合させて用いることができ、この場合の液体アンモニアの使用量は芳香族ジニトリルに対して0.5〜99重量比の範囲が好ましい。前記範囲であると、副生物が生成しシアノ(アミノメチル)置換芳香族化合物の収率が低下するのが避けられ、また、空時収率が低下するのが避けられるので好ましい。また、溶媒と液体アンモニアを混合して用いる場合の混合比は、液体アンモニアに対して溶媒が0.01〜99.0重量比の範囲が好ましい。
In the present invention, in the first-stage reaction zone, aromatic dinitrile is hydrogenated in the presence of a catalyst X containing Pd to obtain the following formula (III):
NH 2 CH 2 -R-CN ( III)
(In the formula, R is the same as described above.)
And a cyano (aminomethyl) -substituted aromatic compound represented by the formula: The hydrogenation reaction is preferably performed in a liquid phase, and the solvent used is not limited as long as it is an inert organic solvent that is not reduced by hydrogen during the reaction. For example, alcohol solvents such as methanol, ethanol and propyl alcohol, hydrocarbon solvents such as meta-xylene, mesitylene and pseudocumene, ether solvents such as dioxane and the like can be used. The inert organic solvent is preferably used in an amount of 1.0 to 99.0 parts by weight based on 1 part by weight of the aromatic dinitrile. Further, in order to suppress the generation of by-products, liquid ammonia can be used alone or as a mixture with the above-mentioned inert organic solvent as a solvent, and the amount of liquid ammonia used in this case is relative to aromatic dinitrile. A range of 0.5 to 99 weight ratio is preferred. It is preferable that the content is in the above-mentioned range, because it is possible to avoid by-products from being generated and lowering the yield of the cyano (aminomethyl) -substituted aromatic compound, and also to prevent lowering the space-time yield. When a mixture of the solvent and the liquid ammonia is used, the mixing ratio of the solvent to the liquid ammonia is preferably in the range of 0.01 to 99.0 weight ratio.

本発明において1段目の反応は、回分式および流通式の何れの方法を用いることもできる。反応温度は、20〜150℃の範囲が好ましい。この範囲であると、原料芳香族ジニトリルの転化率が良く、高沸物の生成が抑制されるので、目的生成物の収率が増大し好ましい。
原料芳香族ジニトリルと触媒Xとの接触時間は、原料の種類、原料、溶媒および水素の仕込み組成、反応温度および反応圧力によって異なるが、通常0.01〜10.0時間の範囲である。
In the present invention, the first-stage reaction may be performed by any of a batch system and a flow system. The reaction temperature is preferably in the range of 20 to 150 ° C. Within this range, the conversion of the raw material aromatic dinitrile is good and the production of high-boiling substances is suppressed, so that the yield of the target product is increased, which is preferable.
The contact time between the raw material aromatic dinitrile and the catalyst X varies depending on the type of the raw material, the raw material, the solvent and the charged composition of hydrogen, the reaction temperature and the reaction pressure, but is usually in the range of 0.01 to 10.0 hours.

本発明において芳香族ジニトリルから対応するシアノ(アミノメチル)置換芳香族化合物への1段目の水素化の触媒Xは、公知のPdを含有する触媒を用いて行うことができる。一般には、PdをAl、SiO、けい藻土、SiO−Al、ZrOに担持した触媒、好ましくはAlに担持した触媒が用いられる。Pdの担持量は、触媒Xに対して0.05〜10重量%が好ましい。触媒の使用量は、原料芳香族ジニトリルに対して、Pdとして、0.0001〜0.1重量倍の範囲が好ましい。固定床流通式反応器の場合には、単位Pd重量あたりの芳香族ジニトリル流量が1.0〜2000hr−1となる範囲が好ましい。触媒量がこの範囲であると、水素化が効率よく進み、触媒費の増大が避けられる。 In the present invention, the catalyst X for the first stage hydrogenation of an aromatic dinitrile to a corresponding cyano (aminomethyl) -substituted aromatic compound can be carried out using a known Pd-containing catalyst. Generally, a catalyst in which Pd is supported on Al 2 O 3 , SiO 2 , diatomaceous earth, SiO 2 —Al 2 O 3 , or ZrO 2 , preferably a catalyst in which Pd is supported on Al 2 O 3 is used. The supported amount of Pd is preferably 0.05 to 10% by weight based on the catalyst X. The use amount of the catalyst is preferably in the range of 0.0001 to 0.1 times by weight as Pd based on the raw material aromatic dinitrile. In the case of a fixed bed flow type reactor, the range where the flow rate of aromatic dinitrile per unit weight of Pd is 1.0 to 2000 hr-1 is preferable. When the amount of the catalyst is in this range, hydrogenation proceeds efficiently, and an increase in catalyst cost can be avoided.

本発明において、2段目の反応領域では、Niおよび/またはCoを含有する触媒Yの存在下、前記1段目の反応で生成したシアノ(アミノメチル)置換芳香族化合物を水素化して下記式(I):
NHCH−R−CHNH (I)
(式中、Rは前記と同様。)
で表されるジ(アミノメチル)置換芳香族化合物とする。水素化反応は液相にて行うことが好ましく、用いられる溶媒としては、反応中水素により還元を受けない不活性有機溶媒であれば制限はない。例えば、メタノール、エタノール、プロピルアルコール等のアルコール系溶媒、メタキシレン、メシチレン、プソイドキュメン等の炭化水素系溶媒、ジオキサン等のエーテル系溶媒などを用いることができる。不活性有機溶媒は、シアノ(アミノメチル)置換芳香族化合物1重量部に対して1.0〜99.0重量部用いるのが好ましい。また、副生物の生成を抑制するために、溶媒として液体アンモニアを単独で、あるいは上記不活性有機溶媒と混合させて用いることができ、この場合の液体アンモニアの使用量はシアノ(アミノメチル)置換芳香族化合物に対して0.5〜99重量比の範囲が好ましい。前記範囲であると、副生物が生成し目的ジ(アミノメチル)置換芳香族化合物の収率が低下するのが避けられ、また、空時収率が低下するのが避けられるので好ましい。また、溶媒と液体アンモニアを混合して用いる場合の混合比は、液体アンモニアに対して溶媒が0.01〜99.0重量比の範囲が好ましい。
In the present invention, in the second-stage reaction zone, the cyano (aminomethyl) -substituted aromatic compound produced in the first-stage reaction is hydrogenated in the presence of a catalyst Y containing Ni and / or Co to obtain the following formula: (I):
NH 2 CH 2 -R-CH 2 NH 2 (I)
(In the formula, R is the same as described above.)
And a di (aminomethyl) -substituted aromatic compound represented by The hydrogenation reaction is preferably performed in a liquid phase, and the solvent used is not limited as long as it is an inert organic solvent that is not reduced by hydrogen during the reaction. For example, alcohol solvents such as methanol, ethanol and propyl alcohol, hydrocarbon solvents such as meta-xylene, mesitylene and pseudocumene, ether solvents such as dioxane and the like can be used. The inert organic solvent is preferably used in an amount of 1.0 to 99.0 parts by weight based on 1 part by weight of the cyano (aminomethyl) -substituted aromatic compound. Further, in order to suppress the generation of by-products, liquid ammonia can be used alone or in a mixture with the above-mentioned inert organic solvent as a solvent. In this case, the amount of liquid ammonia used is determined by cyano (aminomethyl) substitution. The range of 0.5 to 99 weight ratio to the aromatic compound is preferred. It is preferable that the content is in the above-mentioned range, because it is possible to avoid a decrease in the yield of the target di (aminomethyl) -substituted aromatic compound due to by-products, and a decrease in the space-time yield. When a mixture of the solvent and the liquid ammonia is used, the mixing ratio of the solvent to the liquid ammonia is preferably in the range of 0.01 to 99.0 weight ratio.

本発明において2段目の反応は、回分式および流通式の何れの方法を用いることもできる。反応温度は、20〜150℃の範囲が好ましい。この範囲であると、シアノ(アミノメチル)置換芳香族化合物の転化率が良く、高沸物の生成が抑制されるので、目的生成物の収率が増大し好ましい。
シアノ(アミノメチル)置換芳香族化合物と触媒との接触時間は、原料の種類、原料、溶媒および水素の仕込み組成、反応温度および反応圧力によって異なるが、通常0.01〜10.0時間の範囲である。
In the present invention, the reaction of the second stage can be performed by any of a batch system and a flow system. The reaction temperature is preferably in the range of 20 to 150 ° C. Within this range, the conversion of the cyano (aminomethyl) -substituted aromatic compound is good, and the production of high-boiling substances is suppressed, so that the yield of the target product is increased, which is preferable.
The contact time between the cyano (aminomethyl) -substituted aromatic compound and the catalyst varies depending on the type of the raw material, the raw material, the solvent and the charged composition of hydrogen, the reaction temperature and the reaction pressure, but is usually in the range of 0.01 to 10.0 hours. It is.

本発明においてシアノ(アミノメチル)置換芳香族化合物から対応するジ(アミノメチル)置換芳香族化合物への2段目の水素化の触媒Yとしては、公知のNiおよび/またはCoを含有する触媒を用いることができる。一般には、Niおよび/またはCoをAl、SiO、けい藻土、SiO−Al、ZrOに沈殿法で担持した触媒、ラネーニッケル若しくはラネーコバルトが好適に用いられる。触媒金属(Niおよび/またはCo)の担持量は、触媒Yに対して5.0〜90.0重量%が好ましい。触媒の使用量は、原料シアノ(アミノメチル)置換芳香族化合物に対する触媒金属(Niおよび/またはCo)として、0.1〜2.0重量倍の範囲が好ましい。固定床流通式反応器の場合には、単位触媒金属重量あたりのシアノ(アミノメチル)置換芳香族化合物流量が0.05〜5.0hr−1となる範囲が好ましい。触媒量がこの範囲であると、水素化が効率よく進み、触媒費の増大が避けられる。 In the present invention, as the catalyst Y for the second stage hydrogenation of a cyano (aminomethyl) -substituted aromatic compound to a corresponding di (aminomethyl) -substituted aromatic compound, a known catalyst containing Ni and / or Co may be used. Can be used. Generally, a catalyst in which Ni and / or Co are supported on Al 2 O 3 , SiO 2 , diatomaceous earth, SiO 2 —Al 2 O 3 , or ZrO 2 by a precipitation method, Raney nickel or Raney cobalt is preferably used. The supported amount of the catalyst metal (Ni and / or Co) is preferably 5.0 to 90.0% by weight based on the catalyst Y. The amount of the catalyst used is preferably in the range of 0.1 to 2.0 times by weight as the catalyst metal (Ni and / or Co) based on the starting cyano (aminomethyl) -substituted aromatic compound. In the case of a fixed bed flow reactor, the flow rate of the cyano (aminomethyl) -substituted aromatic compound per unit weight of the catalyst metal is preferably in the range of 0.05 to 5.0 hr -1 . When the amount of the catalyst is in this range, hydrogenation proceeds efficiently, and an increase in catalyst cost can be avoided.

1段目の反応で得られたシアノ(アミノメチル)置換芳香族化合物を、2段目の反応に供する際には、1段目に固定床反応器を用いた場合以外は、反応液と触媒を分離する必要がある。また、1段目と2段目で同じ溶媒を用いると、1段目の反応液をそのまま2段目の反応に供することができ、効率的である。
2段目の反応で得られたジ(アミノメチル)置換芳香族化合物は、公知の方法を用いて溶媒、触媒と分離、回収される。例えば、反応系から気体成分と液成分を分離後、液成分から蒸留して回収される。
When the cyano (aminomethyl) -substituted aromatic compound obtained in the first-stage reaction is subjected to the second-stage reaction, the reaction solution and the catalyst are used except when a fixed-bed reactor is used in the first stage. Need to be separated. When the same solvent is used in the first and second stages, the reaction solution in the first stage can be directly used for the reaction in the second stage, which is efficient.
The di (aminomethyl) -substituted aromatic compound obtained in the second-stage reaction is separated and recovered from a solvent and a catalyst using a known method. For example, after a gas component and a liquid component are separated from the reaction system, they are recovered by distillation from the liquid component.

従来の方法によるジ(アミノメチル)置換芳香族化合物の製造法は、反応中にアミン類の高沸物が副生して触媒に付着し徐々に差圧が上昇し、触媒の寿命が短くなるため、高沸物を水素化分解して触媒を再生する必要がある。これに対して、本発明の製造方法では副生成物の生成が極めて少ないため触媒寿命を長期化することができる。   According to the conventional method for producing a di (aminomethyl) -substituted aromatic compound, a high-boiling substance of amines is produced as a by-product during the reaction and adheres to the catalyst to gradually increase the pressure difference, thereby shortening the life of the catalyst. Therefore, it is necessary to regenerate the catalyst by hydrocracking high boiling substances. On the other hand, in the production method of the present invention, since the generation of by-products is extremely small, the catalyst life can be prolonged.

次に実施例及び比較例により、本発明を更に具体的に説明する。但し本発明はこれらの実施例により制限されるものではない。   Next, the present invention will be described more specifically with reference to Examples and Comparative Examples. However, the present invention is not limited by these examples.

(Ni触媒調製)
硝酸ニッケル6水和物Ni(NO・6HO 305.0gおよび硝酸コバルト6水和物Co(NO・6HO 13.6gを840gの40℃の純水に溶解し、混合金属塩水溶液を調合した。また、炭酸水素アンモニウムNHHCO 190.6gを純水2.4kgに溶解し、よく撹拌しながら、40℃に昇温した。この炭酸水素アンモニウム水溶液に40℃に保持された混合金属塩水溶液をよく撹拌しながら加えて、炭酸ニッケルの沈殿スラリーを調製した。このスラリーを80℃まで昇温し、30分同温度で保持した。その後、このスラリーを40℃まで冷却し、同温度で保持した。また、ZrOとして25重量%含有する硝酸ジルコニウム水溶液118.4gを300gの純水に混合し、40℃で保持した。さらに、炭酸水素アンモニウムNHHCO 42.8gを純水530gに溶解し40℃に保持した。この硝酸ジルコニウム水溶液および炭酸水素アンモニウム水溶液を炭酸ニッケルの沈殿スラリーに同時に注加し、炭酸ジルコニウムを沈着した。こうして得られた、沈殿スラリーを40℃で保持したまま、30分撹拌した。この沈殿スラリーを濾過洗浄し、沈殿物を得た。この沈殿物を110℃で1晩乾燥し、380℃18時間空気雰囲気下で焼成した。この焼成粉に、3重量%グラファイトを混合し、3.0mmφ×2.5mmに打錠成形した。この成型品を水素気流中400℃で還元した。これを触媒(A)とする。尚、触媒(A)のニッケル担持量は65重量%である。
(Preparation of Ni catalyst)
Nickel nitrate hexahydrate Ni (NO 3) 2 · 6H 2 O 305.0g and cobalt nitrate hexahydrate Co (NO 3) the 2 · 6H 2 O 13.6g was dissolved in pure water at 40 ° C. of 840g A mixed metal salt aqueous solution was prepared. In addition, 190.6 g of ammonium bicarbonate NH 4 HCO 3 was dissolved in 2.4 kg of pure water, and the temperature was raised to 40 ° C. with good stirring. An aqueous mixed metal salt solution maintained at 40 ° C. was added to the aqueous ammonium hydrogen carbonate solution with good stirring to prepare a precipitated slurry of nickel carbonate. This slurry was heated to 80 ° C. and kept at the same temperature for 30 minutes. Thereafter, the slurry was cooled to 40 ° C. and kept at the same temperature. Also, 118.4 g of an aqueous solution of zirconium nitrate containing 25% by weight as ZrO 2 was mixed with 300 g of pure water, and kept at 40 ° C. Further, 42.8 g of ammonium bicarbonate NH 4 HCO 3 was dissolved in 530 g of pure water and kept at 40 ° C. The aqueous solution of zirconium nitrate and the aqueous solution of ammonium bicarbonate were simultaneously poured into a precipitation slurry of nickel carbonate to deposit zirconium carbonate. The resulting precipitate slurry was stirred at 40 ° C. for 30 minutes. The precipitate slurry was filtered and washed to obtain a precipitate. The precipitate was dried at 110 ° C. overnight and calcined at 380 ° C. for 18 hours in an air atmosphere. This calcined powder was mixed with 3% by weight of graphite, and tabletted into 3.0 mmφ × 2.5 mm. This molded product was reduced at 400 ° C. in a hydrogen stream. This is designated as catalyst (A). The amount of nickel carried on the catalyst (A) is 65% by weight.

<実施例1>
(イソフタロニトリルの水素化)
100mlのオートクレーブにイソフタロニトリル3.2g、メシチレン10.4g、液体アンモニア10.0gおよびエヌ・イーケムキャット(株)製5重量%Pd−アルミナペレット2.0gを仕込み、水素で4.9MPaに加圧した。このオートクレーブを50℃で圧力の変化が認められなくなるまで振とうした。この反応生成液を分析したところ、イソフタロニトリル転化率は、95.7mol%、3−シアノベンジルアミン収率は87.3mol%、メタキシリレンジアミン収率は7.7mol%であった。さらにこの反応液と触媒を分離し、100mlのオートクレーブに反応液と液体アンモニア10.0gおよび日揮化学(株)製Ni−けい藻土ペレット(Ni担持量:46重量%)2.0gを仕込み、水素で4.9MPaに加圧した。このオートクレーブを50℃で圧力の変化が認められなくなるまで振とうした。この反応生成液を分析したところ、イソフタロニトリル転化率は、100mol%、3−シアノベンジルアミン収率は0.2mol%、メタキシリレンジアミン収率は89.4mol%であった。
<Example 1>
(Hydrogenation of isophthalonitrile)
In a 100 ml autoclave, 3.2 g of isophthalonitrile, 10.4 g of mesitylene, 10.0 g of liquid ammonia, and 2.0 g of 5% by weight Pd-alumina pellets manufactured by NEC Chemcat Co., Ltd. were charged, and hydrogen was added to 4.9 MPa. Pressed. The autoclave was shaken at 50 ° C. until no change in pressure was observed. When this reaction product was analyzed, the conversion of isophthalonitrile was 95.7 mol%, the yield of 3-cyanobenzylamine was 87.3 mol%, and the yield of metaxylylenediamine was 7.7 mol%. The reaction solution and the catalyst were separated, and the reaction solution, 10.0 g of liquid ammonia, and 2.0 g of Ni-diatomaceous earth pellets (Ni loading: 46% by weight) manufactured by Nikki Chemical Co., Ltd. were charged into a 100 ml autoclave. The pressure was increased to 4.9 MPa with hydrogen. The autoclave was shaken at 50 ° C. until no change in pressure was observed. When this reaction product was analyzed, the conversion of isophthalonitrile was 100 mol%, the yield of 3-cyanobenzylamine was 0.2 mol%, and the yield of metaxylylenediamine was 89.4 mol%.

<実施例2>
(テレフタロニトリルの水素化)
100mlのオートクレーブにテレフタロニトリル3.2g、メシチレン10.4g、液体アンモニア10.0gおよびエヌ・イーケムキャット(株)製5重量%Pd−アルミナペレット2.0gを仕込み、水素で4.9MPaに加圧した。このオートクレーブを50℃で圧力の変化が認められなくなるまで振とうした。この反応生成液を分析したところ、テレフタロニトリル転化率は、94.8mol%、4−シアノベンジルアミン収率は88.8mol%、パラキシリレンジアミン収率は5.8mol%であった。さらにこの反応液と触媒を分離し、100mlのオートクレーブに反応液と液体アンモニア10.0gおよび日揮化学(株)製Ni−けい藻土ペレット(Ni担持量:46重量%)2.0gを仕込み、水素で4.9MPaに加圧した。このオートクレーブを50℃で圧力の変化が認められなくなるまで振とうした。この反応生成液を分析したところ、テレフタロニトリル転化率は、100mol%、4−シアノベンジルアミン収率は0.5mol%、パラキシリレンジアミン収率は87.7mol%であった。
<Example 2>
(Hydrogenation of terephthalonitrile)
In a 100 ml autoclave, 3.2 g of terephthalonitrile, 10.4 g of mesitylene, 10.0 g of liquid ammonia, and 2.0 g of 5% by weight Pd-alumina pellets manufactured by NEC Chemcat Co., Ltd. were charged, and hydrogen was added to 4.9 MPa. Pressed. The autoclave was shaken at 50 ° C. until no change in pressure was observed. When this reaction product was analyzed, the conversion of terephthalonitrile was 94.8 mol%, the yield of 4-cyanobenzylamine was 88.8 mol%, and the yield of paraxylylenediamine was 5.8 mol%. The reaction solution and the catalyst were separated, and the reaction solution, 10.0 g of liquid ammonia, and 2.0 g of Ni-diatomaceous earth pellets (Ni loading: 46% by weight) manufactured by Nikki Chemical Co., Ltd. were charged into a 100 ml autoclave. The pressure was increased to 4.9 MPa with hydrogen. The autoclave was shaken at 50 ° C. until no change in pressure was observed. When this reaction product was analyzed, the conversion of terephthalonitrile was 100 mol%, the yield of 4-cyanobenzylamine was 0.5 mol%, and the yield of paraxylylenediamine was 87.7 mol%.

<実施例3>
(1,5−ジシアノナフタレンの水素化)
100mlのオートクレーブに1,5−ジシアノナフタレン3.2g、メシチレン10.4g、液体アンモニア10.0gおよびエヌ・イーケムキャット(株)製5重量%Pd−アルミナペレット2.0gを仕込み、水素で4.9MPaに加圧した。このオートクレーブを50℃で圧力の変化が認められなくなるまで振とうした。この反応生成液を分析したところ、1,5−ジニトリルナフタレン転化率は、92.6mol%、1−アミノメチル−5−シアノナフタレン収率は85.4mol%、1,5−ジアミノメチルナフタレン収率は4.0mol%であった。さらにこの反応液と触媒を分離し、100mlのオートクレーブに反応液と液体アンモニア10.0gおよび日揮化学(株)製Ni−けい藻土ペレット(Ni担持量:46重量%)2.0gを仕込み、水素で4.9MPaに加圧した。このオートクレーブを50℃で圧力の変化が認められなくなるまで振とうした。この反応生成液を分析したところ、1,5−ジシアノナフタレン転化率は、100mol%、1−アミノメチル−5−シアノナフタレン収率は0.0mol%、1,5−ジアミノメチルナフタレン収率は88.0mol%であった。
<Example 3>
(Hydrogenation of 1,5-dicyanonaphthalene)
In a 100 ml autoclave, 3.2 g of 1,5-dicyanonaphthalene, 10.4 g of mesitylene, 10.0 g of liquid ammonia, and 2.0 g of 5% by weight Pd-alumina pellets manufactured by N.C. The pressure was increased to 9 MPa. The autoclave was shaken at 50 ° C. until no change in pressure was observed. When this reaction product solution was analyzed, the conversion of 1,5-dinitrilenaphthalene was 92.6 mol%, the yield of 1-aminomethyl-5-cyanonaphthalene was 85.4 mol%, and the yield of 1,5-diaminomethylnaphthalene was 1,8 mol%. The rate was 4.0 mol%. The reaction solution and the catalyst were separated, and the reaction solution, 10.0 g of liquid ammonia, and 2.0 g of Ni-diatomaceous earth pellets (Ni loading: 46% by weight) manufactured by Nikki Chemical Co., Ltd. were charged into a 100 ml autoclave. The pressure was increased to 4.9 MPa with hydrogen. The autoclave was shaken at 50 ° C. until no change in pressure was observed. When this reaction product solution was analyzed, the conversion of 1,5-dicyanonaphthalene was 100 mol%, the yield of 1-aminomethyl-5-cyanonaphthalene was 0.0 mol%, and the yield of 1,5-diaminomethylnaphthalene was 88. 0.0 mol%.

<実施例4>
(イソフタロニトリルの水素化)
100mlのオートクレーブにイソフタロニトリル3.2g、メシチレン10.4g、液体アンモニア10.0gおよびエヌ・イーケムキャット(株)製5重量%Pd−アルミナペレット2.0gを仕込み、水素で4.9MPaに加圧した。このオートクレーブを50℃で圧力の変化が認められなくなるまで振とうした。この反応生成液を分析したところ、イソフタロニトリル転化率は、95.7mol%、3−シアノベンジルアミン収率は87.3mol%、メタキシリレンジアミン収率は7.7mol%であった。さらにこの反応液と触媒を分離し、100mlのオートクレーブに反応液と液体アンモニア10.0gおよび触媒(A)2.0gを仕込み、水素で4.9MPaに加圧した。このオートクレーブを50℃で圧力の変化が認められなくなるまで振とうした。この反応生成液を分析したところ、イソフタロニトリル転化率は、100mol%、3−シアノベンジルアミン収率は0.0mol%、メタキシリレンジアミン収率は91.1mol%であった。
<Example 4>
(Hydrogenation of isophthalonitrile)
In a 100 ml autoclave, 3.2 g of isophthalonitrile, 10.4 g of mesitylene, 10.0 g of liquid ammonia, and 2.0 g of 5% by weight Pd-alumina pellets manufactured by NEC Chemcat Co., Ltd. were charged, and hydrogen was added to 4.9 MPa. Pressed. The autoclave was shaken at 50 ° C. until no change in pressure was observed. When this reaction product was analyzed, the conversion of isophthalonitrile was 95.7 mol%, the yield of 3-cyanobenzylamine was 87.3 mol%, and the yield of metaxylylenediamine was 7.7 mol%. Further, the reaction solution and the catalyst were separated, and the reaction solution, 10.0 g of liquid ammonia and 2.0 g of the catalyst (A) were charged into a 100 ml autoclave, and pressurized to 4.9 MPa with hydrogen. The autoclave was shaken at 50 ° C. until no change in pressure was observed. When this reaction product was analyzed, the conversion of isophthalonitrile was 100 mol%, the yield of 3-cyanobenzylamine was 0.0 mol%, and the yield of metaxylylenediamine was 91.1 mol%.

<実施例5>
(テレフタロニトリルの水素化)
100mlのオートクレーブにテレフタロニトリル3.2g、メシチレン10.4g、液体アンモニア10.0gおよびエヌ・イーケムキャット(株)製5重量%Pd−アルミナペレット2.0gを仕込み、水素で4.9MPaに加圧した。このオートクレーブを50℃で圧力の変化が認められなくなるまで振とうした。この反応生成液を分析したところ、テレフタロニトリル転化率は、94.8mol%、4−シアノベンジルアミン収率は88.8mol%、パラキシリレンジアミン収率は5.8mol%であった。さらにこの反応液と触媒を分離し、100mlのオートクレーブに反応液と液体アンモニア10.0gおよび触媒(A)2.0gを仕込み、水素で4.9MPaに加圧した。このオートクレーブを50℃で圧力の変化が認められなくなるまで振とうした。この反応生成液を分析したところ、テレフタロニトリル転化率は、100mol%、4−シアノベンジルアミン収率は0.2mol%、パラキシリレンジアミン収率は92.1mol%であった。
<Example 5>
(Hydrogenation of terephthalonitrile)
In a 100 ml autoclave, 3.2 g of terephthalonitrile, 10.4 g of mesitylene, 10.0 g of liquid ammonia, and 2.0 g of 5% by weight Pd-alumina pellets manufactured by NEC Chemcat Co., Ltd. were charged, and hydrogen was added to 4.9 MPa. Pressed. The autoclave was shaken at 50 ° C. until no change in pressure was observed. When this reaction product was analyzed, the conversion of terephthalonitrile was 94.8 mol%, the yield of 4-cyanobenzylamine was 88.8 mol%, and the yield of paraxylylenediamine was 5.8 mol%. Further, the reaction solution and the catalyst were separated, and the reaction solution, 10.0 g of liquid ammonia and 2.0 g of the catalyst (A) were charged into a 100 ml autoclave, and pressurized to 4.9 MPa with hydrogen. The autoclave was shaken at 50 ° C. until no change in pressure was observed. When this reaction product was analyzed, the conversion of terephthalonitrile was 100 mol%, the yield of 4-cyanobenzylamine was 0.2 mol%, and the yield of paraxylylenediamine was 92.1 mol%.

<実施例6>
(1,5−ジシアノナフタレンの水素化)
100mlのオートクレーブに1,5−ジシアノナフタレン3.2g、メシチレン10.4g、液体アンモニア10.0gおよびエヌ・イーケムキャット(株)製5重量%Pd−アルミナペレット2.0gを仕込み、水素で4.9MPaに加圧した。このオートクレーブを50℃で圧力の変化が認められなくなるまで振とうした。この反応生成液を分析したところ、1,5−ジシアノナフタレン転化率は、92.6mol%、1−アミノメチル−5−シアノナフタレン収率は85.4mol%、1,5−ジアミノメチルナフタレン収率は4.0mol%であった。さらにこの反応液と触媒を分離し、100mlのオートクレーブに反応液と液体アンモニア10.0gおよび触媒(A)2.0gを仕込み、水素で4.9MPaに加圧した。このオートクレーブを50℃で圧力の変化が認められなくなるまで振とうした。この反応生成液を分析したところ、1,5−ジシアノナフタレン転化率は、100mol%、1−アミノメチル−5−シアノナフタレン収率は1.5mol%、1,5−ジアミノメチルナフタレン収率は87.1mol%であった。
<Example 6>
(Hydrogenation of 1,5-dicyanonaphthalene)
In a 100 ml autoclave, 3.2 g of 1,5-dicyanonaphthalene, 10.4 g of mesitylene, 10.0 g of liquid ammonia, and 2.0 g of 5% by weight Pd-alumina pellets manufactured by N.C. The pressure was increased to 9 MPa. The autoclave was shaken at 50 ° C. until no change in pressure was observed. When this reaction product solution was analyzed, the conversion of 1,5-dicyanonaphthalene was 92.6 mol%, the yield of 1-aminomethyl-5-cyanonaphthalene was 85.4 mol%, and the yield of 1,5-diaminomethylnaphthalene. Was 4.0 mol%. Further, the reaction solution and the catalyst were separated, and the reaction solution, 10.0 g of liquid ammonia and 2.0 g of the catalyst (A) were charged into a 100 ml autoclave, and pressurized to 4.9 MPa with hydrogen. The autoclave was shaken at 50 ° C. until no change in pressure was observed. When this reaction product was analyzed, the conversion of 1,5-dicyanonaphthalene was 100 mol%, the yield of 1-aminomethyl-5-cyanonaphthalene was 1.5 mol%, and the yield of 1,5-diaminomethylnaphthalene was 87%. 0.1 mol%.

<比較例1>
(イソフタロニトリルの水素化)
100mlのオートクレーブにイソフタロニトリル3.2g、メシチレン10.4g、液体アンモニア10.0gおよび触媒(A)2.0gを仕込み、水素で4.9MPaに加圧した。このオートクレーブを50℃で圧力の変化が認められなくなるまで振とうした。この反応生成液を分析したところ、イソフタロニトリル転化率は、95.5mol%、メタキシリレンジアミン収率は49.4mol%であった。
<Comparative Example 1>
(Hydrogenation of isophthalonitrile)
A 100 ml autoclave was charged with 3.2 g of isophthalonitrile, 10.4 g of mesitylene, 10.0 g of liquid ammonia, and 2.0 g of the catalyst (A), and pressurized to 4.9 MPa with hydrogen. The autoclave was shaken at 50 ° C. until no change in pressure was observed. When this reaction product was analyzed, the conversion of isophthalonitrile was 95.5 mol%, and the yield of m-xylylenediamine was 49.4 mol%.

<比較例2>
(テレフタロニトリルの水素化)
100mlのオートクレーブにテレフタロニトリル3.2g、メシチレン10.4g、液体アンモニア10.0gおよび触媒(A)2.0gを仕込み、水素で4.9MPaに加圧した。このオートクレーブを50℃で圧力の変化が認められなくなるまで振とうした。この反応生成液を分析したところ、テレフタロニトリル転化率は、94.4mol%、パラキシリレンジアミン収率は35.6mol%であった。
<Comparative Example 2>
(Hydrogenation of terephthalonitrile)
A 100 ml autoclave was charged with 3.2 g of terephthalonitrile, 10.4 g of mesitylene, 10.0 g of liquid ammonia, and 2.0 g of the catalyst (A), and pressurized to 4.9 MPa with hydrogen. The autoclave was shaken at 50 ° C. until no change in pressure was observed. When this reaction product was analyzed, the conversion of terephthalonitrile was 94.4 mol%, and the yield of paraxylylenediamine was 35.6 mol%.

本発明により得られるジ(アミノメチル)置換芳香族化合物は、硬化剤、合成樹脂、イソシアネート等の製造原料として有用である。   The di (aminomethyl) -substituted aromatic compound obtained by the present invention is useful as a raw material for producing a curing agent, a synthetic resin, an isocyanate and the like.

Claims (5)

1段目の反応領域でPdを含有する触媒Xの存在下、下記式(II):
CN−R−CN (II)
(式中、Rは二価の芳香族基を表し、水素化反応に関与しない置換基で置換されていてもよい。)
で表される芳香族ジニトリルの一方のニトリル基を水素化して、下記式(III):
NHCH−R−CN (III)
(式中、Rは前記と同様。)
で表されるシアノ(アミノメチル)置換芳香族化合物とし、2段目の反応領域でNiおよび/またはCoを含有する触媒Yの存在下、1段目で得られたシアノ(アミノメチル)置換芳香族化合物を水素化して下記式(I):
NHCH−R−CHNH (I)
(式中、Rは前記と同様。)
で表されるジ(アミノメチル)置換芳香族化合物とすることを特徴とするジ(アミノメチル)置換芳香族化合物の製造方法。
In the first-stage reaction zone, in the presence of a catalyst X containing Pd, the following formula (II):
CN-R-CN (II)
(In the formula, R represents a divalent aromatic group, and may be substituted with a substituent that does not participate in the hydrogenation reaction.)
By hydrogenating one nitrile group of the aromatic dinitrile represented by the following formula (III):
NH 2 CH 2 -R-CN ( III)
(In the formula, R is the same as described above.)
And the cyano (aminomethyl) -substituted aromatic compound obtained in the first stage in the presence of a catalyst Y containing Ni and / or Co in the second-stage reaction zone A group compound is hydrogenated to give the following formula (I):
NH 2 CH 2 -R-CH 2 NH 2 (I)
(In the formula, R is the same as described above.)
A process for producing a di (aminomethyl) -substituted aromatic compound represented by the formula:
前記触媒Xが、0.05〜10重量%のPdを担体に担持した触媒である請求項1に記載のジ(アミノメチル)置換芳香族化合物の製造方法。 The method for producing a di (aminomethyl) -substituted aromatic compound according to claim 1, wherein the catalyst X is a catalyst having 0.05 to 10% by weight of Pd supported on a carrier. 前記触媒Xの担体がアルミナである請求項2に記載のジ(アミノメチル)置換芳香族化合物の製造方法。 The method for producing a di (aminomethyl) -substituted aromatic compound according to claim 2, wherein the carrier of the catalyst X is alumina. 前記触媒Yが、沈殿法でNiおよび/またはCoを担体に担持した触媒である請求項1に記載のジ(アミノメチル)置換芳香族化合物の製造方法。 The method for producing a di (aminomethyl) -substituted aromatic compound according to claim 1, wherein the catalyst Y is a catalyst having Ni and / or Co supported on a carrier by a precipitation method. 前記触媒Yが、ラネーニッケル触媒若しくはラネーコバルト触媒である請求項1に記載のジ(アミノメチル)置換芳香族化合物の製造方法。
The method for producing a di (aminomethyl) -substituted aromatic compound according to claim 1, wherein the catalyst Y is a Raney nickel catalyst or a Raney cobalt catalyst.
JP2004031638A 2003-02-20 2004-02-09 Highly selective production method of di (aminomethyl) -substituted aromatic compound Expired - Lifetime JP4561963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004031638A JP4561963B2 (en) 2003-02-20 2004-02-09 Highly selective production method of di (aminomethyl) -substituted aromatic compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003042397 2003-02-20
JP2004031638A JP4561963B2 (en) 2003-02-20 2004-02-09 Highly selective production method of di (aminomethyl) -substituted aromatic compound

Publications (2)

Publication Number Publication Date
JP2004269510A true JP2004269510A (en) 2004-09-30
JP4561963B2 JP4561963B2 (en) 2010-10-13

Family

ID=33134173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004031638A Expired - Lifetime JP4561963B2 (en) 2003-02-20 2004-02-09 Highly selective production method of di (aminomethyl) -substituted aromatic compound

Country Status (1)

Country Link
JP (1) JP4561963B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1762561A1 (en) 2005-09-09 2007-03-14 Mitsubishi Gas Chemical Company, Inc. Process and catalysts for the preparation of amino compounds containing an aromatic ring
JP2007332135A (en) * 2006-05-18 2007-12-27 Mitsubishi Gas Chem Co Inc Method for producing xylylenediamine
JP2008031155A (en) * 2006-06-29 2008-02-14 Mitsubishi Gas Chem Co Inc Method for producing xylylenediamine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124494B2 (en) * 1972-12-20 1976-07-24
JPS591448A (en) * 1982-05-27 1984-01-06 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− Hydrogenation of perhalogenated terephthalonitrile
WO2000046179A1 (en) * 1999-02-04 2000-08-10 Sagami Chemical Research Center Process for producing aromatic primary amine by low-pressure hydrogenation of aromatic nitrile
JP2002523483A (en) * 1998-08-28 2002-07-30 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing improved hexamethylenediamine
JP2003038956A (en) * 2001-05-22 2003-02-12 Mitsubishi Gas Chem Co Inc Catalyst useful for producing aromatic amine and method for producing the amine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124494B2 (en) * 1972-12-20 1976-07-24
JPS591448A (en) * 1982-05-27 1984-01-06 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− Hydrogenation of perhalogenated terephthalonitrile
JP2002523483A (en) * 1998-08-28 2002-07-30 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing improved hexamethylenediamine
WO2000046179A1 (en) * 1999-02-04 2000-08-10 Sagami Chemical Research Center Process for producing aromatic primary amine by low-pressure hydrogenation of aromatic nitrile
JP2003038956A (en) * 2001-05-22 2003-02-12 Mitsubishi Gas Chem Co Inc Catalyst useful for producing aromatic amine and method for producing the amine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1762561A1 (en) 2005-09-09 2007-03-14 Mitsubishi Gas Chemical Company, Inc. Process and catalysts for the preparation of amino compounds containing an aromatic ring
US7449604B2 (en) 2005-09-09 2008-11-11 Mitsubishi Gas Chemical Company, Inc. Production of aromatic ring-containing amino compounds and catalysts
JP2007332135A (en) * 2006-05-18 2007-12-27 Mitsubishi Gas Chem Co Inc Method for producing xylylenediamine
JP2008031155A (en) * 2006-06-29 2008-02-14 Mitsubishi Gas Chem Co Inc Method for producing xylylenediamine

Also Published As

Publication number Publication date
JP4561963B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
RU2473537C2 (en) Method of producing mixture of ethylene amines
EP1262232B1 (en) Catalysts and process for producing aromatic amines
JP2004516308A (en) Method for producing primary and secondary amines by hydrogenation of nitriles and imines
KR100502606B1 (en) Catalysts Suitable for Preparing Aliphatic Alpha-, Omega-aminonitriles by Partial Hydrogenation of Aliphatic Dinitriles
US7179945B2 (en) High-selective production method of di(aminomethyl)-substituted aromatic compound
KR100402525B1 (en) Method for producing aliphatic alpha, omega-aminonitrile
US6881864B2 (en) Production method of xylylenediamine
JP5706415B2 (en) Process for the reductive amination of aliphatic cyanaldehydes to aliphatic diamines
JP4304420B2 (en) Process for producing xylylenediamine and / or cyanobenzylamine
JP4561963B2 (en) Highly selective production method of di (aminomethyl) -substituted aromatic compound
JP4424479B2 (en) Method for producing xylylenediamine
JP5076344B2 (en) Method for producing aromatic diamino compound
JP5841533B2 (en) Alicyclic diamine and method for producing the same
JP4291483B2 (en) Method for producing cyclohexanebis (methylamine) s
JP6169193B2 (en) 2,6-bis (aminomethyl) piperidine derivatives
JP4561063B2 (en) Method for producing xylylenediamine
JP2003038956A (en) Catalyst useful for producing aromatic amine and method for producing the amine
CN106966908B (en) Process for improving the catalytic activity of catalyst systems for reductive amination of aliphatic cyanoaldehydes to aliphatic diamines
KR100365534B1 (en) A process for producing norbornane dimethylene amines
JP6494629B2 (en) N, N- (bis-2-aminoalkyl) -1,2-alkyldiamine derivatives
JPH0699371B2 (en) Method for producing N-methylalkylamine
JP2004182632A (en) Method for producing n-methylalkanediamines
JP2005162621A (en) Method for producing xylylenediamine
JPH10204048A (en) Production of aromatic cyanomethylamine
JP2001261621A (en) Method for producing bicyclo[2.2.1]heptane-2-methanamine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4561963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

EXPY Cancellation because of completion of term