JP2011000541A - Freeze concentration method and freeze concentration apparatus - Google Patents

Freeze concentration method and freeze concentration apparatus Download PDF

Info

Publication number
JP2011000541A
JP2011000541A JP2009145707A JP2009145707A JP2011000541A JP 2011000541 A JP2011000541 A JP 2011000541A JP 2009145707 A JP2009145707 A JP 2009145707A JP 2009145707 A JP2009145707 A JP 2009145707A JP 2011000541 A JP2011000541 A JP 2011000541A
Authority
JP
Japan
Prior art keywords
liquid
treated
ice
melting
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009145707A
Other languages
Japanese (ja)
Inventor
Kohei Miki
康平 三木
Yoshihiko Arakawa
慶彦 荒川
Isamu Inoue
勇 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2009145707A priority Critical patent/JP2011000541A/en
Publication of JP2011000541A publication Critical patent/JP2011000541A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a freeze concentration method and a freeze concentration apparatus each of which separates a solute to a sufficiently higher degree while saving energy and has an improved processing speed of a liquid to be treated.SOLUTION: The freeze concentration method for freezing the liquid to be treated to concentrate the solute included in the liquid to be treated, comprises: a supply step of supplying the liquid to be treated to an icehouse 42 having a heat transfer area; a freezing step of freezing the liquid to be treated in the icehouse; a first thawing step of bringing the frozen liquid to be treated into contact with a high-concentration solution having the solute concentration higher than that of the liquid to be treated to thaw a part of the frozen liquid to be treated; a concentrated liquid recovery step of recovering a liquid mixture of the high-concentration solution, which is used at the first thawing step, with a thawed liquid of the frozen liquid to be treated; and a separated liquid recovery step of recovering the separated liquid in a state wherein frozen liquid to be treated is kept in a frozen state or is thawed into a liquid state after the concentrated liquid recovery step.

Description

本発明は、被処理液を凍結することによって当該被処理液に含まれる溶質分を濃縮する凍結濃縮方法及び凍結濃縮装置に関する。   The present invention relates to a freeze concentration method and a freeze concentration apparatus that concentrate a solute contained in a liquid to be processed by freezing the liquid to be processed.

半導体装置や液晶ディスプレイなどを製造する過程においては有機系廃液や無機酸廃液が生じる場合がある。これらの廃液は、生物難分解性物質を含有するものであったり、不溶化処理によって多量の汚泥が生じるなどの理由から、産業廃棄物として処分されることが多い。廃棄物量の削減を目指して濃縮による減容化又は廃液の再利用が試みられている。液体分を蒸発させたり、廃液を膜分離処理することなどが検討されているが、これらの手法は、高温による腐食や臭気発生、加熱に要するエネルギーコスト、あるいは膜腐食などの問題がある。   In the process of manufacturing a semiconductor device or a liquid crystal display, an organic waste liquid or an inorganic acid waste liquid may be generated. These waste liquids are often disposed of as industrial waste because they contain biodegradable substances or a large amount of sludge is generated by insolubilization. In order to reduce the amount of waste, volume reduction by concentration or reuse of waste liquid has been attempted. Evaporation of liquid components and membrane separation treatment of waste liquid have been studied. However, these methods have problems such as high temperature corrosion and odor generation, energy cost required for heating, and membrane corrosion.

廃液に含まれる溶質分を濃縮する方法として、凍結濃縮法が知られている(特許文献1−3を参照)。凍結濃縮法は、蒸発法に比べて1/7程度の潜熱に止まるため、エネルギーコストの点で有利であり、また低温条件下で処理を行うため、腐食の問題も生じにくい。例えば、無機酸を含有する廃液を処理する場合でも、適した有機材料を選択すれば、耐食性の維持が容易に可能である。更に、臭気の問題についても、低温であるがゆえにその対策が容易という利点がある。   As a method for concentrating the solute contained in the waste liquid, a freeze concentration method is known (see Patent Documents 1-3). The freeze-concentration method is advantageous in terms of energy cost because it has only about 1/7 of latent heat compared to the evaporation method, and the processing is performed under low temperature conditions, and therefore, corrosion problems are less likely to occur. For example, even when a waste liquid containing an inorganic acid is treated, it is possible to easily maintain corrosion resistance by selecting a suitable organic material. Furthermore, the problem of odor has the advantage of being easy to take countermeasures because of its low temperature.

特公昭38−10509号公報Japanese Examined Patent Publication No. 38-10509 特許第3739440号公報Japanese Patent No. 3739440 国際公開第2003/072216号International Publication No. 2003/072216

ところで、従来の凍結濃縮処理にあっては、高い分離度を得る観点から、被処理液を凍結させる際、被処理液に対して攪拌剪断力を加えるのが好適とされていた。例えば、上記特許文献2には、被処理液を結氷板に流下させながら凍らせた後、氷体の表層部を融解させる方法が記載されている。結氷板に氷が付着し始める初期段階は氷成長速度が高く、分離すべき溶質分が氷体内に閉じ込められやすい。このため、溶質分の濃縮部を氷体の表層部に偏在させるには、少なくとも初期段階において被処理流体に対して高速剪断を与える必要があると考えられる。このようは手法を採用した場合、被処理液に剪断力を与えるための攪拌装置や循環装置が必要であり、これらを運転するためのエネルギーも必要である。   By the way, in the conventional freeze concentration process, it was considered suitable to apply a stirring shear force to the liquid to be processed when the liquid to be processed was frozen from the viewpoint of obtaining a high degree of separation. For example, Patent Document 2 describes a method of melting a surface layer portion of an ice body after freezing the liquid to be treated while flowing down to an ice plate. In the initial stage where ice begins to adhere to the ice plate, the ice growth rate is high, and the solute to be separated is easily trapped in the ice body. For this reason, in order to make the concentrated portion of the solute portion unevenly distributed on the surface layer portion of the ice body, it is considered necessary to apply high-speed shear to the fluid to be treated at least in the initial stage. In this way, when the method is employed, a stirring device and a circulation device for applying a shearing force to the liquid to be treated are necessary, and energy for operating these is also necessary.

他方、上記特許文献3に記載の方法は、被処理液を急速凍結することを前提としたものである。特許文献3には−80℃のディープフリーザーや−200℃の液体窒素などを利用することが好ましいと記載されている(第7頁第28−30行を参照)。特許文献3に記載の方法にあっては、このように急速凍結を行う反面、凍結物をゆっくりと時間をかけて融解する。特許文献3の請求項2に規定された式2によれば、融解時間T(分)の下限値は凍結物の重量A(g)と凍結物の表面積A(cm)とによって規定される。この方法では融解に長時間を要し、単位時間あたりに十分量の液を処理できないという問題があった。 On the other hand, the method described in Patent Document 3 is premised on rapidly freezing the liquid to be treated. Patent Document 3 describes that it is preferable to use a deep freezer at −80 ° C. or liquid nitrogen at −200 ° C. (see page 7, lines 28-30). In the method described in Patent Document 3, while quick freezing is performed in this way, the frozen material is slowly melted over time. According to Equation 2 defined in claim 2 of Patent Document 3, the lower limit value of the melting time T (min) is defined by the weight A (g) of the frozen material and the surface area A (cm 2 ) of the frozen material. . This method has a problem that it takes a long time to melt and a sufficient amount of liquid cannot be processed per unit time.

本発明は、上記実情に鑑みてなされたものであり、省エネルギーでありながら溶質分を十分高度に分離できるとともに、処理速度の向上が可能な凍結濃縮方法及び凍結濃縮装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a freeze concentration method and a freeze concentration apparatus capable of separating solute components to a sufficiently high degree while saving energy and improving the processing speed. To do.

本発明は、被処理液を凍結することによって当該被処理液に含まれる溶質分を濃縮する凍結濃縮方法であって、伝熱面を有する製氷室に被処理液を供給する供給工程と、製氷室内において被処理液を凍らせる凍結工程と、被処理液よりも溶質分の濃度が高い高濃度液と被処理液の氷体とを接触させて氷体の一部を融解させる第1融解工程と、第1融解工程において使用した高濃度液と氷体の融解液との混合液を回収する濃縮液回収工程と、濃縮液回収工程後、氷体を凍結した状態で又はこれを融解して液体の状態にして回収する分離液回収工程とを備える凍結濃縮方法を提供する。   The present invention relates to a freeze concentration method for concentrating a solute contained in a liquid to be treated by freezing the liquid to be treated, a supply step of supplying the liquid to be treated to an ice making chamber having a heat transfer surface, A freezing step for freezing the liquid to be treated in the room, and a first melting step for melting a part of the ice body by bringing the high-concentration liquid having a higher solute concentration than the liquid to be treated into contact with the ice body of the liquid to be treated. And a concentrated liquid recovery process for recovering a mixture of the high-concentration liquid used in the first melting process and the ice melt, and after the concentrate recovery process, the ice body is frozen or thawed. There is provided a freeze concentration method comprising a separation liquid recovery step of recovering in a liquid state.

上記方法の凍結工程においては、被処理液を流下させたり攪拌したりせず、静的な状態で凍結させる。被処理液に対して剪断力を付与するための動力が不要となり、省エネルギーが達成される。静的な状態で凍結させると、氷体の内部に広く溶質が残留することになるが、第1融解工程において、高濃度液と氷体とを接触させることで、溶質分を高濃度に含有する部分を選択的に融解できるとともに、凍結せずに残存している濃縮部を高濃度液で流すことができる。その後、濃縮液回収工程及び分離液回収工程を実施することで、溶質分を高濃度に含有する濃縮液及び溶質分が低減された分離液を別々に回収できる。   In the freezing step of the above method, the liquid to be treated is frozen in a static state without flowing down or stirring. Power for applying a shearing force to the liquid to be treated is unnecessary, and energy saving is achieved. When frozen in a static state, a large amount of solute remains inside the ice body, but in the first melting step, the solute content is contained at a high concentration by bringing the high-concentration liquid into contact with the ice body. As a result, it is possible to selectively melt the portion to be melted and to flow the concentrated portion remaining without freezing with a high-concentration liquid. Thereafter, the concentrated liquid recovery step and the separated liquid recovery step are performed, whereby the concentrated liquid containing the solute component at a high concentration and the separated liquid with the reduced solute content can be recovered separately.

上記方法は、氷体の一部を融解させるものであり、また融解に際して氷体と高濃度液とを固液接触させるため、空気中で融解を行う場合と比較して融解に要する時間を大幅に短縮できる。このため、単位時間あたりの処理量を向上できる。   In the above method, a part of ice body is melted, and since the ice body and the high-concentration liquid are brought into solid-liquid contact at the time of melting, the time required for melting is greatly increased compared with the case of melting in air. Can be shortened. For this reason, the processing amount per unit time can be improved.

上記の供給工程から分離液回収工程までの一連の工程を繰り返して実施する場合においては、濃縮液回収工程を経て得られた混合液を融解工程における高濃度液として使用することが好ましい。   When a series of steps from the above supply step to the separation liquid recovery step is repeatedly performed, it is preferable to use the mixed liquid obtained through the concentrated liquid recovery step as a high concentration liquid in the melting step.

本発明の凍結濃縮方法は、凍結工程後に氷体を破砕する破砕工程を更に備え、第1融解工程において氷体の破砕物と高濃度液とを接触させることが好ましい。氷体を破砕して氷片とすることで、第1融解工程における固液接触効率が高まり、溶質分を一層高度の分離できるとともに、当該処理をより短時間で行うことができる。   It is preferable that the freeze concentration method of the present invention further includes a crushing step of crushing the ice body after the freezing step, and bringing the crushed ice body into contact with the high-concentration liquid in the first melting step. By crushing the ice body into ice pieces, the solid-liquid contact efficiency in the first melting step is increased, so that the solute content can be separated to a higher degree and the treatment can be performed in a shorter time.

供給工程が被処理液の一部を製氷室に供給するものである場合において、上記凍結濃縮方法は、第1融解工程後、被処理液の氷体と残りの被処理液とを接触させて当該氷体の一部を更に融解させる第2融解工程と、第2融解工程において使用した残りの被処理液と氷体の融解液との混合液を回収する被処理液回収工程とを更に備え、被処理液回収工程後に分離液回収工程を実施することが好ましい。第2融解工程を実施することにより、氷体に残存する溶質分をより一層低減できる。   In the case where the supplying step supplies a part of the liquid to be processed to the ice making chamber, the freeze concentration method is to bring the ice body of the liquid to be processed and the remaining liquid to be processed into contact after the first thawing step. A second melting step for further melting a part of the ice body; and a treatment liquid recovery step for recovering a mixed liquid of the remaining liquid to be processed and the melted ice body used in the second melting step. The separation liquid recovery step is preferably performed after the process liquid recovery step. By performing the second melting step, the solute content remaining in the ice body can be further reduced.

更に、本発明は、被処理液を凍結することによって当該被処理液に含まれる溶質分を濃縮する凍結濃縮装置であって、被処理液を収容する第1タンクと、伝熱面を有し、第1タンクから供給される被処理液を凍結させる製氷室と、被処理液よりも溶質分の濃度が高い高濃度液と被処理液の氷体とを接触させる固液接触手段と、固液接触手段から移送される高濃度液と氷体の融解液との混合液を収容する第2タンクとを備える凍結濃縮装置を提供する。   Furthermore, the present invention is a freeze concentration apparatus for concentrating a solute contained in the liquid to be processed by freezing the liquid to be processed, and has a first tank for storing the liquid to be processed and a heat transfer surface. An ice making chamber for freezing the liquid to be treated supplied from the first tank, a solid-liquid contact means for bringing a high-concentration liquid having a higher solute concentration than the liquid to be treated and an ice body of the liquid to be treated; There is provided a freeze concentration apparatus including a second tank for storing a mixed liquid of a high concentration liquid transferred from a liquid contact means and a melt of ice body.

上記製氷室は、被処理液を流下させたり攪拌したりする機能を要せず、静的な状態で被処理液を凍結させる。このため、被処理液に対して剪断力を付与するための動力が不要となり、省エネルギーが達成される。静的な状態で凍結させると、氷体の内部に広く溶質が残留することになるが、固液接触手段において、高濃度液と氷体とを接触させることで、溶質分を高濃度に含有する部分を選択的に融解できるとともに、凍結せずに残存している濃縮部を高濃度液で流すことができる。溶質分を高濃度で含有する混合液を第2タンクに移送することで、溶質分が低減された氷体(又はその融解液)と濃縮液と分離できる。   The ice making chamber does not require a function of flowing down or stirring the liquid to be processed, and freezes the liquid to be processed in a static state. For this reason, the power for giving a shearing force with respect to a to-be-processed liquid becomes unnecessary, and energy saving is achieved. When frozen in a static state, a large amount of solute remains inside the ice body, but the solid-liquid contact means contains a high concentration of solute by bringing the high-concentration liquid into contact with the ice body. As a result, it is possible to selectively melt the portion to be melted and to flow the concentrated portion remaining without freezing with a high-concentration liquid. By transferring the mixed solution containing the solute component at a high concentration to the second tank, the ice body (or a melt thereof) having a reduced solute component and the concentrated solution can be separated.

上記凍結濃縮装置は、氷体の一部を融解させるのに氷体と液体(高濃度液)とを固液接触させるため、融解に要する時間を大幅に短縮できる。このため、単位時間あたりの処理量を向上できる。   In the freeze concentration apparatus, since the ice body and the liquid (high-concentration liquid) are brought into solid-liquid contact to melt a part of the ice body, the time required for melting can be greatly shortened. For this reason, the processing amount per unit time can be improved.

上記凍結濃縮装置は、製氷室の伝熱面は鉛直方向に延在しているとともに、当該伝熱面の下方に被処理液の氷体の破砕物を収容する融解槽を更に備えることが好ましい。かかる構成を採用することにより、被処理液を凍結させた後、伝熱面に接する氷体の表層部を融解させることで、氷体を融解槽内へと落下させることができる。落下の衝撃により、氷体を破砕することができる。   In the freeze concentration apparatus, the heat transfer surface of the ice making chamber extends in the vertical direction, and it is preferable that the freeze concentrator further includes a melting tank that accommodates crushed pieces of ice bodies of the liquid to be processed below the heat transfer surface. . By adopting such a configuration, after freezing the liquid to be treated, the ice layer can be dropped into the melting tank by melting the surface layer portion of the ice body in contact with the heat transfer surface. Ice bodies can be crushed by the impact of falling.

本発明によれば、被処理液を凍結することによって当該被処理液に含まれる溶質分を濃縮するに際し、省エネルギーでありながら溶質分を十分高度に分離できるとともに、処理速度の向上が可能である。   According to the present invention, when concentrating the solute contained in the liquid to be treated by freezing the liquid to be treated, the solute can be separated to a sufficiently high degree while saving energy, and the processing speed can be improved. .

本発明に係る凍結濃縮装置の好適な実施形態を示す模式図である。It is a mimetic diagram showing a suitable embodiment of a freeze concentration device concerning the present invention. 凍結槽及び融解送の内部の状態をそれぞれ示す模式断面図であり、(a)は供給工程後の状態を示し、(b)は破砕工程後の状態を示す。It is a schematic cross section which shows the state inside a freezing tank and thawing, respectively, (a) shows the state after a supply process, (b) shows the state after a crushing process. 凍結槽及び融解槽の内部の状態をそれぞれ示す模式断面図であり、(a)は第1融解工程を実施している状態示し、(b)は分離液回収工程を実施している状態を示す。It is a schematic cross section which shows the state inside a freezing tank and a melting tank, respectively, (a) shows the state which is implementing the 1st melting | fusing process, (b) shows the state which is implementing the separated liquid recovery process. . 参考試験の結果を示すグラフである。It is a graph which shows the result of a reference test.

図面を参照しながら、本発明の好適な実施形態について詳細に説明する。   A preferred embodiment of the present invention will be described in detail with reference to the drawings.

<凍結濃縮装置>
図1に示す凍結濃縮装置100は、被処理液を凍結することによって当該被処理液に含まれる溶質分を濃縮し、原液(被処理液)を濃縮液と分離液とに分離するためのものである。凍結濃縮装置100は、原液を収容するタンク(第1タンク)10と、濃縮液を収容するタンク(第2タンク)20と、分離液を収容するタンク30とを備える。また、凍結濃縮装置100は、原液を凍結させるための凍結槽40と、凍結槽40の下方に設けられた融解槽50とを備えるとともに、凍結槽40が具備する伝熱管(製氷室)42の外側に冷ブライン又は温ブラインを供給するチラーユニット45,46を備える。これらのタンク等はライン(配管)で接続されており、ラインの途中にはポンプP1−P6及びバルブV1−V16が配設されている。
<Freeze concentration device>
The freeze concentration apparatus 100 shown in FIG. 1 is for concentrating the solute contained in the liquid to be processed by freezing the liquid to be processed, and separating the stock solution (liquid to be processed) into a concentrated liquid and a separated liquid. It is. The freeze concentration apparatus 100 includes a tank (first tank) 10 that stores a stock solution, a tank (second tank) 20 that stores a concentrated solution, and a tank 30 that stores a separated solution. In addition, the freeze concentration apparatus 100 includes a freezing tank 40 for freezing the stock solution and a melting tank 50 provided below the freezing tank 40, and a heat transfer tube (ice making chamber) 42 included in the freezing tank 40. Chiller units 45 and 46 for supplying cold brine or warm brine to the outside are provided. These tanks and the like are connected by a line (pipe), and pumps P1-P6 and valves V1-V16 are arranged in the middle of the line.

タンク10,20,30としては、原液の種類に応じて好適な貯留槽を選択すればよい。分離液タンク30には、得られた分離液の量を測定するための計器LIを設けることが好ましい。なお、必要に応じて配管をタンク内に浸漬するなどして冷熱回収できる構成としてもよい。例えば、原液タンク10内又は濃縮液タンク20内に分離液の配管を浸漬させ、これらのタンクに収容された液を事前に冷却できるようにしてもよい。   As the tanks 10, 20, and 30, a suitable storage tank may be selected according to the type of the stock solution. The separation liquid tank 30 is preferably provided with a meter LI for measuring the amount of the obtained separation liquid. In addition, it is good also as a structure which can collect cold heat by immersing piping in a tank as needed. For example, the pipe of the separation liquid may be immersed in the stock solution tank 10 or the concentrate tank 20 so that the liquid stored in these tanks can be cooled in advance.

凍結槽40は、複数の伝熱管42と、ブラインを収容して伝熱管42の温度を調整するためのブライン循環槽43とを有する。所定の温度のブラインを循環させることによって、伝熱管42の伝熱面42aの温度を調整できるようになっている。チラーユニット45,46は、冷ブライン及び温ブラインの温度調節をそれぞれ行うためのものである。チラーユニット45,46はブライン槽45a,46aをそれぞれ有する。   The freezing tank 40 includes a plurality of heat transfer tubes 42 and a brine circulation tank 43 that accommodates brine and adjusts the temperature of the heat transfer tubes 42. The temperature of the heat transfer surface 42a of the heat transfer tube 42 can be adjusted by circulating brine at a predetermined temperature. The chiller units 45 and 46 are for adjusting the temperature of the cold brine and the warm brine, respectively. The chiller units 45 and 46 have brine tanks 45a and 46a, respectively.

図1に示すように、伝熱管42の伝熱面42aは鉛直方向に延在している。伝熱管42の上端から下端までの長さは0.5〜3m程度とすることができる。伝熱管42は、凍結槽40と融解槽50とを仕切る隔壁44を貫通するように設けられている。この構成により、原液を凍結させた後、温ブラインを循環させることで、氷体を融解槽50内へと落下させることができる。   As shown in FIG. 1, the heat transfer surface 42a of the heat transfer tube 42 extends in the vertical direction. The length from the upper end to the lower end of the heat transfer tube 42 can be about 0.5 to 3 m. The heat transfer tube 42 is provided so as to penetrate the partition wall 44 that partitions the freezing tank 40 and the melting tank 50. With this configuration, the ice solution can be dropped into the melting tank 50 by circulating the warm brine after freezing the stock solution.

伝熱管42の断面形状は、氷体が下方に落下する妨げとなるようなものでなければ特に制限はなく、矩形や円形のいずれであってもよい。また、伝熱管42の材質は、処理すべき原液の種類等によって適宜選択することが好ましく、例えば、有機系廃水を処理する装置にあっては、金属材料(ステンレスなど)が好ましく、腐食性の高い無機酸を含有する廃水を処理する装置にあっては、有機系材料(塩化ビニル、ポリエチレン、ポリプロピレンなど)が好ましい。   The cross-sectional shape of the heat transfer tube 42 is not particularly limited as long as it does not prevent the ice body from falling downward, and may be either rectangular or circular. The material of the heat transfer tube 42 is preferably selected as appropriate depending on the type of the stock solution to be treated. For example, in an apparatus for treating organic wastewater, a metal material (such as stainless steel) is preferred and corrosive. In an apparatus for treating waste water containing a high inorganic acid, organic materials (vinyl chloride, polyethylene, polypropylene, etc.) are preferable.

融解槽50は、凍結槽40から落下した氷体と液体とを接触させる固液接触手段を有し、これを用いて氷体を効率的に融解させるためのものである。伝熱管42内において無攪拌下で凍結した氷体は、攪拌下で凍結したものと比較して強度が低いため、落下の衝撃によって破砕されて融解槽50内で氷片となる。   The melting tank 50 has solid-liquid contact means for bringing the ice body dropped from the freezing tank 40 into contact with the liquid, and is used for efficiently melting the ice body. Since the ice body frozen in the heat transfer tube 42 without stirring is lower in strength than that frozen in the stirring, it is crushed by the impact of dropping and becomes ice pieces in the melting tank 50.

融解槽50における伝熱管42の下端から融解槽50の底面50aまでの距離は、伝熱管42内の被処理液の全量が凍結し、それが融解槽50に落下したとしても氷片が伝熱管42の下端に当らない程度とすることが好ましい。具体的には、氷体の安息角を45°と仮定した場合、上記距離は伝熱管42の内容積(m)を0.3乗して得られる値(m)程度をすることが好ましい。融解槽50は、底面50a上に堆積する氷片に対して液体を噴射するための複数のノズル52を備える。融解槽50内の液体は、排出口50bを通じて排出できるようになっている。 The distance from the lower end of the heat transfer tube 42 in the melting tank 50 to the bottom surface 50a of the melting tank 50 is such that even if the entire amount of the liquid to be processed in the heat transfer tube 42 is frozen and falls into the melting tank 50, the ice pieces are transferred to the heat transfer tube. It is preferable that the width does not hit the lower end of 42. Specifically, when the repose angle of the ice body is assumed to be 45 °, the distance is preferably about a value (m) obtained by multiplying the internal volume (m 3 ) of the heat transfer tube 42 to the 0.3th power. . The melting tank 50 includes a plurality of nozzles 52 for injecting a liquid onto ice pieces deposited on the bottom surface 50a. The liquid in the melting tank 50 can be discharged through the discharge port 50b.

<凍結濃縮方法>
凍結濃縮装置100を用いて原液を凍結濃縮する方法について説明する。まず、タンク10に収容された原液をポンプP1によって濃縮液タンク20に液送する。最初液送量は凍結槽40の伝熱管42の全容積及び融解槽50の容積を満たす量とする。凍結槽40のブライン循環槽43内に冷ブラインを充填し、凍結に備えて伝熱面42aの温度を所定の温度(−20〜−3℃程度)に調整する。次いで、ポンプP2によりタンク20内の原液を融解槽50へ供給する。伝熱管42の下端は融解槽50と連通し上端は開放されているため、融解槽50が満水となった後、更に原液の供給を続けることにより、図2(a)に示すように伝熱管42の上部まで原液の液面が上昇する(供給工程)。
<Freeze concentration method>
A method for freezing and concentrating a stock solution using the freeze concentration apparatus 100 will be described. First, the stock solution stored in the tank 10 is sent to the concentrate tank 20 by the pump P1. The initial liquid feed amount is an amount that satisfies the total volume of the heat transfer tube 42 of the freezing tank 40 and the volume of the melting tank 50. The brine circulation tank 43 of the freezing tank 40 is filled with cold brine, and the temperature of the heat transfer surface 42a is adjusted to a predetermined temperature (about -20 to -3 ° C) in preparation for freezing. Next, the stock solution in the tank 20 is supplied to the melting tank 50 by the pump P2. Since the lower end of the heat transfer tube 42 communicates with the melting tank 50 and the upper end is opened, the supply of the stock solution is further continued after the melting tank 50 is full, so that the heat transfer tube as shown in FIG. The liquid level of the stock solution rises to the top of 42 (supply process).

満水となった時点でポンプP2を停止し、攪拌等することなく、そのままの状態で冷ブラインによって冷却し、原液が伝熱面42aに着氷するのを待つ(凍結工程)。その間、ポンプP5で冷ブラインを循環させる。   When the water is full, the pump P2 is stopped, and it is cooled by cold brine as it is without stirring, and waits for the stock solution to be iced on the heat transfer surface 42a (freezing step). Meanwhile, cold brine is circulated by the pump P5.

所定時間経過後、バルブV5を開き、排出口50bから濃縮液タンク20へと融解槽50内の液を排出する。このとき、伝熱管42内の未凍結液は重力の影響によって融解槽50内に流れ込み、これも濃縮液タンク20へと排出される。   After a predetermined time has elapsed, the valve V5 is opened, and the liquid in the melting tank 50 is discharged from the discharge port 50b to the concentrate tank 20. At this time, the unfrozen liquid in the heat transfer tube 42 flows into the melting tank 50 due to the influence of gravity and is also discharged into the concentrate tank 20.

融解槽50内の液の排出操作と同時期に、バルブV12を開き、冷ブラインをブライン槽45aに排出する。融解槽50内の液及び冷ブラインの排出完了を確認後、ポンプP6によって温ブラインをブライン循環槽43内に供給する。温ブラインは、伝熱面42aに付着した氷体を剥離するためのものであり、凍結点以上の温度(0〜20℃程度)であることが好ましい。   At the same time as the operation of discharging the liquid in the melting tank 50, the valve V12 is opened and the cold brine is discharged to the brine tank 45a. After confirming the completion of discharge of the liquid in the melting tank 50 and the cold brine, warm brine is supplied into the brine circulation tank 43 by the pump P6. The warm brine is for peeling off the ice body adhering to the heat transfer surface 42a, and is preferably at a temperature above the freezing point (about 0 to 20 ° C.).

温ブラインの供給により、伝熱面42aから氷体を剥離させ、液体を排出済みの空の融解槽50へと落下させる(破砕工程)。原液にほとんど攪拌を与えずに凍結させた氷体は、濃縮液を内包しており、落下の衝撃で容易に崩れる程度の強度である。このため、図2(b)に示すように、融解槽50の底面50a上に氷片が堆積する。   By supplying the warm brine, the ice body is peeled off from the heat transfer surface 42a, and the liquid is dropped into the empty melting tank 50 that has been discharged (crushing step). Ice bodies frozen with almost no agitation of the stock solution contain the concentrated solution and have a strength that can be easily broken by the impact of dropping. For this reason, as shown in FIG. 2 (b), ice pieces accumulate on the bottom surface 50 a of the melting tank 50.

融解槽50内の氷片の一部を融解させ、溶質分を高濃度で含む初期の融解液を回収する。氷片を融解させる際、自然融解では時間がかかるため、バルブV5,V6を開き、ポンプP3が配設されたラインを通じてタンク20内の濃縮液を融解槽50に供給する。この濃縮液は、図3(a)に示すように、融解槽50内の上方に設けられたノズル52から噴射される(第1融解工程)。このような固液接触を行うことで氷片の融解が促進される。濃縮液はバルブV5が配設されたラインを通じて濃縮液タンク20に回収する(濃縮液回収工程)。タンク20に回収される融解液の量が所定量(概ね氷体の体積の1/4程度)に達した時点で、バルブV5を閉じるとともに、ポンプP3を停止する。   A part of ice pieces in the melting tank 50 is melted, and an initial melt containing a high concentration of solute is recovered. When melting ice pieces, since natural melting takes time, the valves V5 and V6 are opened, and the concentrated liquid in the tank 20 is supplied to the melting tank 50 through a line in which the pump P3 is disposed. As shown in FIG. 3A, this concentrated liquid is sprayed from a nozzle 52 provided above the melting tank 50 (first melting step). By performing such solid-liquid contact, melting of ice pieces is promoted. The concentrate is recovered in the concentrate tank 20 through a line in which the valve V5 is disposed (concentrate recovery step). When the amount of the melt recovered in the tank 20 reaches a predetermined amount (approximately ¼ of the ice body volume), the valve V5 is closed and the pump P3 is stopped.

濃縮液の回収後、中期の融解液を原液タンク10に回収するため、原液タンク10内の液を融解槽50に供給して氷片の融解処理を実施することが好ましい。すなわち、バルブV7,V2を開き、ポンプP1によってタンク10内の液を融解槽50に供給してノズル52から噴射する(第2融解工程)。中期の融解液はバルブV7が配設されたラインを通じて原液タンク10に回収する(被処理液回収工程)。タンク20に回収される融解液の量が所定量(概ね氷体の体積の1/4程度)に達した時点で、バルブV7を閉じるとともに、ポンプP1を停止する。   After recovering the concentrated liquid, it is preferable to carry out the melting process of the ice pieces by supplying the liquid in the raw liquid tank 10 to the melting tank 50 in order to collect the middle-stage molten liquid in the raw liquid tank 10. That is, the valves V7 and V2 are opened, and the liquid in the tank 10 is supplied to the melting tank 50 by the pump P1 and sprayed from the nozzle 52 (second melting step). The middle-stage melt is recovered in the stock solution tank 10 through a line in which the valve V7 is disposed (processed liquid recovery step). When the amount of the melt recovered in the tank 20 reaches a predetermined amount (approximately about 1/4 of the ice body volume), the valve V7 is closed and the pump P1 is stopped.

中期の融解液の回収後、最後の残氷分を分離液タンク30へ回収するため、分離液タンク30内の液を融解槽50に供給して氷片の融解処理を実施することが好ましい。すなわち、バルブV9,V8を開き、ポンプP4によってタンク30内の液を融解槽50に供給してノズル52から噴射する(第3融解工程)。残氷分の融解液又はシャーベット状の流体は、図3(b)に示すように、排出口50bから流出させ、分離液タンク30に回収する(分離液回収工程)。   In order to collect the last remaining ice content in the separation liquid tank 30 after the middle-stage melting liquid is collected, it is preferable to supply the liquid in the separation liquid tank 30 to the melting tank 50 and perform the ice piece melting treatment. That is, the valves V9 and V8 are opened, and the liquid in the tank 30 is supplied to the melting tank 50 by the pump P4 and sprayed from the nozzle 52 (third melting step). As shown in FIG. 3B, the melted solution or sherbet-like fluid of the remaining ice flows out from the discharge port 50b and is collected in the separation liquid tank 30 (separation liquid collection step).

上記処理の完了に合わせて温ブラインを冷ブラインに切り替え、最初の凍結開始前の状態に戻す。このような濃縮処理を複数回くり返して濃縮度を高める必要がある場合は、濃縮液タンク20に原液を液送することによって濃縮液タンク20内の液量を所定量としてから、上記濃縮処理を行えばよい。なお、濃縮液タンク20に液送する原液は、前回の濃縮処理によって原液タンク10及び分離液タンク30に回収された液体量に相当する量とすればよい。積算流量計IFによって測定される積算流量Vと回収された濃縮液の体積Vとの比率(V/V)が所定の値となったら、一連の濃縮処理を終了する。濃縮液をバルブV4が配設されたラインを通じて、他方、分離液をバルブV10が配設されたラインを通じて排出し、これにより1バッチの処理が完了する。 When the above process is completed, the hot brine is switched to the cold brine to return to the state before the first freezing start. If it is necessary to repeat the concentration process a plurality of times to increase the concentration, the stock solution is sent to the concentrate tank 20 to set the liquid amount in the concentrate tank 20 to a predetermined amount, and then the concentration process is performed. Just do it. The stock solution fed to the concentrate tank 20 may be an amount corresponding to the amount of liquid recovered in the stock solution tank 10 and the separation solution tank 30 by the previous concentration process. When the ratio (V 1 / V 2 ) between the integrated flow rate V 1 measured by the integrated flow meter IF and the volume V 2 of the collected concentrated liquid reaches a predetermined value, the series of concentration processes is terminated. The concentrated liquid is discharged through the line provided with the valve V4, and the separated liquid is discharged through the line provided with the valve V10, whereby one batch of processing is completed.

上記実施形態に係る凍結濃縮装置及びこれを用いた凍結濃縮方法によれば、以下のような効果が奏される。
(1)被処理液を凍結させる際、当該液を流動させる設備が不要であり、流動に必要な設備コスト及び動力コストを低減できる。
(2)被処理液の氷体を融解する際、液体と接触させることで、融解が促進され、従来の装置において性能律速となる濃縮液の回収に要する時間を大幅に短縮できる。これにより、装置全体の処理能力が向上する。
(3)無攪拌下において被処理液を凍結させることにより、凍結速度の高低に関わらず、濃縮液を内包し容易に融解する氷体を得ることができる。このため、凍結速度を厳密に管理する必要がないという利点がある。
According to the freeze concentration apparatus and the freeze concentration method using the same according to the above embodiment, the following effects are exhibited.
(1) When freezing the liquid to be treated, the equipment for flowing the liquid is unnecessary, and the equipment cost and power cost necessary for the flow can be reduced.
(2) When the ice body of the liquid to be treated is melted, by bringing it into contact with the liquid, the melting is promoted, and the time required for collecting the concentrated liquid, which is performance-limited in the conventional apparatus, can be greatly shortened. This improves the processing capability of the entire apparatus.
(3) By freezing the liquid to be treated without stirring, it is possible to obtain an ice body that contains the concentrated liquid and melts easily regardless of the freezing speed. For this reason, there is an advantage that it is not necessary to strictly control the freezing rate.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。例えば、上記実施形態においては融解槽50内に設けたノズル52から液体を噴射して固液接触を行う場合を例示したが、その手法はこれに限定されるものではなく、氷体の破砕物を融解槽50内の液体(例えば、濃縮液、原液)に浸漬させる手段を採用してもよい。具体的には、バルブV5,V7,V9を閉じた状態で、融解槽50に液体を供給することによって、融解槽50内の液位を徐々に上げて氷片が液体に浸漬するようにしてもよい。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment. For example, in the above embodiment, the case where the liquid is ejected from the nozzle 52 provided in the melting tank 50 and solid-liquid contact is performed is exemplified, but the method is not limited to this, and the crushed ice body You may employ | adopt the means to immerse this in the liquid (For example, concentrate, undiluted | stock solution) in the melting tank 50. FIG. Specifically, by supplying liquid to the melting tank 50 with the valves V5, V7, and V9 closed, the liquid level in the melting tank 50 is gradually raised so that the ice pieces are immersed in the liquid. Also good.

また、上記実施形態においては、特に好ましい例として氷体を融解槽50内に落下させ、その衝撃によって氷体を破砕する場合を例示したが、機械的な手段によって氷体を破砕してもよく、あるいは、凍結の程度によっては必ずしも氷体を破砕しなくてもよい。   Moreover, in the said embodiment, although the ice body was dropped in the melting tank 50 as a particularly preferable example, and the ice body was crushed by the impact, the ice body may be crushed by mechanical means. Alternatively, depending on the degree of freezing, the ice body may not necessarily be crushed.

<凍結濃縮試験>
本発明の効果を試験的に示すため、N,N−ジメチルホルムアミド(DMF)を含有する液(CODcr=45000mg/L)の凍結操作を以下の手順で行った。すなわち、上記被処理液700gをスチール製シリンダ(内径65mm)の中に入れ、その外側を−5℃のブラインで2時間にわたって冷却して被処理液を凍結させた。凍結させる過程において被処理液の攪拌は行わなかった。
<Freeze concentration test>
In order to experimentally show the effect of the present invention, a freezing operation of a liquid (CODcr = 45000 mg / L) containing N, N-dimethylformamide (DMF) was performed according to the following procedure. That is, 700 g of the liquid to be treated was placed in a steel cylinder (inner diameter 65 mm), and the outside was cooled with brine at −5 ° C. for 2 hours to freeze the liquid to be treated. The liquid to be treated was not stirred during the freezing process.

冷却後、氷体と未凍結液とを別々に回収したところ、氷体は148gであり、未凍結液のCODcrは57000mg/Lであった。この未凍結液のDMF濃度(CODcr=57000mg/L)と同等の濃度のDMF含有液(150ml、18℃)と上記氷体とを4.8分間にわたって接触させた結果、35gの融解液が回収された。その後、上記被処理液のDMF濃度(CODcr=45000mg/L)と同等の濃度のDMF含有液(160ml、18℃)と残りの氷体とを5.1分にわたって接触させた結果、37gの融解液が回収された。最終的に残った氷体76gの融解液は、CODcrが3800mg/Lであった。   After cooling, the ice body and the unfrozen liquid were separately collected. As a result, the ice body was 148 g and the CODcr of the unfrozen liquid was 57000 mg / L. As a result of contacting the ice body with the DMF-containing solution (150 ml, 18 ° C.) having a concentration equivalent to the DMF concentration (CODcr = 57000 mg / L) of the unfrozen solution for 4.8 minutes, 35 g of the melt was recovered. It was done. Thereafter, a DMF-containing liquid (160 ml, 18 ° C.) having a concentration equivalent to the DMF concentration (CODcr = 45000 mg / L) of the liquid to be treated was brought into contact with the remaining ice body over 5.1 minutes. Liquid was recovered. The final melt of 76 g of ice body had a CODcr of 3800 mg / L.

上記の通り、氷体とDMF含有液とを接触させることによって、約10分(4.8分+5.1分)の融解時間で、氷体の重量を半減させることができた。このとき、被処理液に含まれるDMFに対しDMFの残存量が8%の氷体が得られた。空気中で氷体を自然融解させると、30分で10〜70g程度の融解量に止まるが(下記の参考試験結果を参照)、上記手法を採用することにより、氷体に残存する溶質量を低率に維持したまま、短時間で融解処理を終えることができることが示された。なお、上述の特許文献3において規定された式2に、本試験における数値を代入すると、融解時間Tの下限値は23分と算出される。   As described above, by bringing the ice body into contact with the DMF-containing liquid, the weight of the ice body could be halved in a melting time of about 10 minutes (4.8 minutes + 5.1 minutes). At this time, ice bodies in which the residual amount of DMF was 8% with respect to DMF contained in the liquid to be treated were obtained. When the ice body is naturally melted in the air, the melting amount is about 10 to 70 g in 30 minutes (see the following reference test result), but by adopting the above method, the dissolved mass remaining in the ice body is reduced. It was shown that the melting process can be completed in a short time while maintaining a low rate. In addition, if the numerical value in this test is substituted into Formula 2 prescribed | regulated in the above-mentioned patent document 3, the lower limit of the melting time T will be calculated with 23 minutes.

また、被処理液を凍結させる際に強制的な攪拌を行わない場合、溶質濃縮液が氷体の内部に一部内包されるものの、氷晶そのものに溶質が混入する程度は低く、温度が高い液と接触させることで、内包液の流出流路が融解開放され、氷晶の融解を抑制しつつ、内包された濃縮液を効果的に流出させることができたものと推察される。本試験により、被処理液から3種類の液を回収可能であることが示された。すなわち、凍結点の低い未凍結液を濃縮液として回収し、中期の融解液を被処理液とともに回収し、残りの氷体の融解液を分離液として回収可能であることが示された。   If forced stirring is not performed when freezing the liquid to be treated, the solute concentrate is partially contained in the ice body, but the degree of solute contamination in the ice crystal itself is low and the temperature is high. It is surmised that, by contacting with the liquid, the flow path of the encapsulated liquid was melted and released, and the encapsulated concentrated liquid could be effectively flowed out while suppressing the melting of ice crystals. This test showed that three types of liquids can be recovered from the liquid to be treated. That is, it was shown that an unfrozen solution having a low freezing point can be recovered as a concentrated solution, a medium-term melt can be recovered together with the liquid to be treated, and the remaining ice melt can be recovered as a separated solution.

<参考試験>
NaCl水溶液(濃度3wt%、凍結点−1.6℃)の凍結操作を以下の手順で行った。すなわち、上記被処理液700gをスチール製シリンダ(内径65mm)の中に入れ、その外側を−3℃のブラインで20時間にわたって冷却して被処理液を凍結させた。凍結させる過程において被処理液の攪拌は行わなかった。
<Reference test>
A freezing operation of an aqueous NaCl solution (concentration 3 wt%, freezing point −1.6 ° C.) was performed according to the following procedure. That is, 700 g of the liquid to be treated was placed in a steel cylinder (inner diameter 65 mm), and the outside was cooled with -3 ° C. brine for 20 hours to freeze the liquid to be treated. The liquid to be treated was not stirred during the freezing process.

冷却後、シリンダ内面には380gの氷体が付着していた。シリンダから氷体を回収した後、ビーカに手動にてゆっくり移し替える際、氷体が氷片となって崩れ落ちた。ブライン温度が被処理液の凍結点に近く、20時間かけてゆっくりと凍結させた場合であっても、無攪拌下で形成された氷体はその物理的強度が脆弱なものであった。   After cooling, 380 g of ice was adhered to the inner surface of the cylinder. After recovering the ice body from the cylinder, when it was slowly transferred to the beaker manually, the ice body collapsed as an ice piece. Even when the brine temperature was close to the freezing point of the liquid to be treated and it was frozen slowly over 20 hours, the ice body formed without stirring had a weak physical strength.

上記氷体を室内(15℃)で自然融解させた際の融解液及び最終残氷の溶質濃度を測定した。これらの測定値から氷量残存量に対する氷中溶質残存率を算出した。なお、氷量残存量は融解前の氷体重量に対する残存氷体重量の比を意味し、氷中溶質残存率は被処理液に対する濃度比率を意味する。図4に結果を示す。   The solute concentrations in the melt and final residual ice when the ice body was naturally melted indoors (15 ° C.) were measured. From these measured values, the solute residual rate in ice relative to the residual amount of ice was calculated. The residual ice amount means the ratio of the residual ice body weight to the ice body weight before melting, and the solute residual rate in ice means the concentration ratio to the liquid to be treated. The results are shown in FIG.

氷体の融解時間に関し、本試験においては氷体の重量を半減させるまでに1時間15分要し、全量融解させるまでに2時間50分要した。なお、図4のグラフから氷体が50%融解した残氷の氷中溶質残存率は0.1程度である。ゆっくりとして凍結条件であっても、無攪拌下で形成された氷体は、融解操作により溶質分離度の高い残氷が得られることが分る。   Regarding the melting time of ice bodies, in this test, it took 1 hour and 15 minutes to halve the weight of ice bodies, and 2 hours and 50 minutes to melt the whole amount. From the graph of FIG. 4, the solute residual rate in ice of the residual ice in which 50% of the ice body melted is about 0.1. It can be seen that ice bodies formed under no stirring even under slow freezing conditions can yield residual ice with a high degree of solute separation by melting operation.

10…原液タンク(第1タンク)、20…濃縮液タンク(第2タンク)、30…分離液タンク、40…凍結槽、42…伝熱管(製氷室)、42a…伝熱面、43…ブライン循環槽、44…隔壁、45,46…チラーユニット、45a,46a…ブライン槽、50…融解槽(固液接触手段)、50a…融解槽の底面、50b…融解槽の排出口、52…ノズル(固液接触手段)、100…凍結濃縮装置、IF…積算流量計、P1−P6…ポンプ、V1−V16…バルブ。   DESCRIPTION OF SYMBOLS 10 ... Raw liquid tank (1st tank), 20 ... Concentrated liquid tank (2nd tank), 30 ... Separation liquid tank, 40 ... Freezing tank, 42 ... Heat transfer pipe (ice-making room), 42a ... Heat transfer surface, 43 ... Brine Circulating tank, 44 ... partition wall, 45, 46 ... chiller unit, 45a, 46a ... brine tank, 50 ... melting tank (solid-liquid contact means), 50a ... bottom of melting tank, 50b ... outlet of melting tank, 52 ... nozzle (Solid-liquid contact means), 100 ... Freeze concentrator, IF ... Integrated flow meter, P1-P6 ... Pump, V1-V16 ... Valve.

Claims (6)

被処理液を凍結することによって当該被処理液に含まれる溶質分を濃縮する凍結濃縮方法であって、
伝熱面を有する製氷室に前記被処理液を供給する供給工程と、
前記製氷室内において前記被処理液を凍らせる凍結工程と、
前記被処理液よりも溶質分の濃度が高い高濃度液と前記被処理液の氷体とを接触させて前記氷体の一部を融解させる第1融解工程と、
前記第1融解工程において使用した前記高濃度液と前記氷体の融解液との混合液を回収する濃縮液回収工程と、
前記濃縮液回収工程後、前記氷体を凍結した状態で又はこれを融解して液体の状態にして回収する分離液回収工程と、
を備えることを特徴とする凍結濃縮方法。
A freeze concentration method for concentrating a solute contained in a liquid to be treated by freezing the liquid to be treated,
A supply step of supplying the liquid to be treated to an ice making chamber having a heat transfer surface;
A freezing step of freezing the liquid to be treated in the ice making chamber;
A first melting step in which a high-concentration liquid having a higher solute concentration than the liquid to be treated is brought into contact with an ice body of the liquid to be treated to melt a part of the ice body;
A concentrated liquid recovery process for recovering a mixed liquid of the high-concentration liquid used in the first melting process and the melt of the ice body;
After the concentrated liquid recovery step, a separated liquid recovery step for recovering the ice body in a frozen state or in a liquid state by melting it,
A freeze concentration method comprising the steps of:
前記供給工程から前記分離液回収工程までの一連の工程を繰り返して実施する場合において、前記濃縮液回収工程を経て得られた前記混合液を前記融解工程における前記高濃度液として使用することを特徴とする、請求項1に記載の凍結濃縮方法。   When the series of steps from the supply step to the separation liquid recovery step is repeatedly performed, the liquid mixture obtained through the concentrate recovery step is used as the high concentration liquid in the melting step. The freeze concentration method according to claim 1. 前記凍結工程後に前記氷体を破砕する破砕工程を更に備え、前記第1融解工程において前記氷体の破砕物と前記高濃度液とを接触させることを特徴とする、請求項1又は2に記載の凍結濃縮方法。   The crushing step of crushing the ice body after the freezing step is further provided, and the crushed material of the ice body and the high-concentration liquid are brought into contact in the first melting step. Freeze concentration method. 前記供給工程が前記被処理液の一部を前記製氷室に供給するものである場合において、前記第1融解工程後、前記被処理液の氷体と残りの被処理液とを接触させて当該氷体の一部を更に融解させる第2融解工程と、
前記第2融解工程において使用した前記残りの被処理液と前記氷体の融解液との混合液を回収する被処理液回収工程と、
を更に備え、
前記被処理液回収工程後に前記分離液回収工程を実施することを特徴とする、請求項1〜3のいずれか一項に記載の凍結濃縮方法。
In the case where the supplying step supplies a part of the liquid to be processed to the ice making chamber, after the first melting step, the ice body of the liquid to be processed and the remaining liquid to be processed are brought into contact with each other. A second melting step for further melting a part of the ice body;
A liquid recovery process for recovering a liquid mixture of the remaining liquid to be processed used in the second melting process and the melt of the ice body;
Further comprising
The freeze concentration method according to any one of claims 1 to 3, wherein the separation liquid recovery step is performed after the processing liquid recovery step.
被処理液を凍結することによって当該被処理液に含まれる溶質分を濃縮する凍結濃縮装置であって、
前記被処理液を収容する第1タンクと、
伝熱面を有し、前記第1タンクから供給される前記被処理液を凍結させる製氷室と、
前記被処理液よりも溶質分の濃度が高い高濃度液と前記被処理液の氷体とを接触させる固液接触手段と、
前記固液接触手段から移送される前記高濃度液と前記氷体の融解液との混合液を収容する第2タンクと、
を備えることを特徴とする凍結濃縮装置。
A freeze concentration apparatus that concentrates a solute contained in a liquid to be treated by freezing the liquid to be treated,
A first tank for storing the liquid to be treated;
An ice making chamber having a heat transfer surface and freezing the liquid to be treated supplied from the first tank;
Solid-liquid contact means for contacting a high-concentration liquid having a higher concentration of solute than the liquid to be treated and an ice body of the liquid to be treated;
A second tank for storing a mixture of the high-concentration liquid transferred from the solid-liquid contact means and the melt of the ice body;
A freeze concentrating device comprising:
前記製氷室の前記伝熱面は鉛直方向に延在しているとともに、当該伝熱面の下方に前記被処理液の氷体の破砕物を収容する融解槽を更に備えることを特徴とする、請求項5に記載の凍結濃縮装置。   The heat transfer surface of the ice making chamber extends in the vertical direction, and further comprises a melting tank for storing crushed pieces of ice of the liquid to be treated below the heat transfer surface. The freeze concentration apparatus according to claim 5.
JP2009145707A 2009-06-18 2009-06-18 Freeze concentration method and freeze concentration apparatus Pending JP2011000541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009145707A JP2011000541A (en) 2009-06-18 2009-06-18 Freeze concentration method and freeze concentration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009145707A JP2011000541A (en) 2009-06-18 2009-06-18 Freeze concentration method and freeze concentration apparatus

Publications (1)

Publication Number Publication Date
JP2011000541A true JP2011000541A (en) 2011-01-06

Family

ID=43558965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009145707A Pending JP2011000541A (en) 2009-06-18 2009-06-18 Freeze concentration method and freeze concentration apparatus

Country Status (1)

Country Link
JP (1) JP2011000541A (en)

Similar Documents

Publication Publication Date Title
US11254589B2 (en) Systems and methods for separating surface materials from a fluid using acoustic pressure shock waves
JP2007040548A (en) Method and device for manufacturing salt water soft ice
JP5935782B2 (en) Radioactive material contaminated water treatment method
BRPI0709878A2 (en) SYSTEM AND METHOD FOR DESALINATING SEA WATER
EP0088468B1 (en) Heat pump
Rahman et al. Freezing‐Melting Desalination Process
WO1998056480A1 (en) Freeze-concentrating apparatus for aqueous solutions, ice pillar producing apparatus, and freeze-concentrating method for aqueous solutions
WO2018212335A1 (en) State change control device and state change control method
JP2011000541A (en) Freeze concentration method and freeze concentration apparatus
JP2006239677A (en) Method and device of treating shellfish
JP3308030B2 (en) Solution desalination system
JP3690797B2 (en) Freeze concentration method and apparatus thereof
WO2006003968A1 (en) Apparatus for separating concentrate and suspended solid matter by freezing/thawing
CN106629952A (en) Solid-liquid phase transition brine concentration method
JP3814716B2 (en) Method and apparatus for purifying contaminated soil
JP2003275748A (en) Frozen and concentrated waste water treatment device
JP2006239485A (en) Frozen and concentrated waste water treatment device
JPH1128455A (en) Freezing concentration method and device thereof
JP7093443B1 (en) Freeze concentration method
RU2345954C1 (en) Water purifier
JP2003311262A (en) Production separator for desalted and water salt- concentrated water of deep seawater
JP3521077B2 (en) Freeze-thaw tank, sludge treatment equipment and freeze-thaw method
CN113443772B (en) Freezing-ultrasonic sea water desalting device and sea water desalting method using same
RU2786296C1 (en) Heat exchanger for water purification system by recrystallization method
CN106629951A (en) Solid and liquid phase inversion saline water concentration device