JP2010537375A - LCD backlight with LED phosphor - Google Patents

LCD backlight with LED phosphor Download PDF

Info

Publication number
JP2010537375A
JP2010537375A JP2010521327A JP2010521327A JP2010537375A JP 2010537375 A JP2010537375 A JP 2010537375A JP 2010521327 A JP2010521327 A JP 2010521327A JP 2010521327 A JP2010521327 A JP 2010521327A JP 2010537375 A JP2010537375 A JP 2010537375A
Authority
JP
Japan
Prior art keywords
phosphor
liquid crystal
red
iii
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010521327A
Other languages
Japanese (ja)
Inventor
ヴィンクラー,ホルガー
ユステル,トーマス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of JP2010537375A publication Critical patent/JP2010537375A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/68Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals containing chromium, molybdenum or tungsten
    • C09K11/685Aluminates; Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7794Vanadates; Chromates; Molybdates; Tungstates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)
  • Planar Illumination Modules (AREA)

Abstract

本発明は、半導体ダイオードならびに、少なくとも2つの蛍光体の組合せからなる蛍光体層であって、少なくとも1種の蛍光体が赤色光を発し、および、少なくとも1種の蛍光体が緑色光を発するものを含む、白色光源を有するバックライトシステムを備えた液晶ディスプレイ、ならびにその製造方法に関する。  The present invention relates to a semiconductor diode and a phosphor layer composed of a combination of at least two phosphors, wherein at least one phosphor emits red light and at least one phosphor emits green light. The present invention relates to a liquid crystal display including a backlight system having a white light source, and a method for manufacturing the same.

Description

本発明は、半導体ダイオード、ならびに少なくとも2種類の蛍光体の組合せ、ここで少なくとも1種の蛍光体は赤色光を発し、少なくとも1種の蛍光体は緑色光を発する、を含む蛍光体層を含む白色光源を有するバックライトシステムを備えた液晶ディスプレイに関する。本発明はさらにバックライトシステムおよびその製造方法に関する。   The present invention includes a phosphor layer comprising a semiconductor diode and a combination of at least two phosphors, wherein at least one phosphor emits red light and at least one phosphor emits green light. The present invention relates to a liquid crystal display provided with a backlight system having a white light source. The invention further relates to a backlight system and a method for manufacturing the same.

液晶ディスプレイ(LCDs)は、受動ディスプレイシステムであり、すなわち、それら自体は発光しない。これらのディスプレイは光が液晶の層を通過するか否かという原理に基づいている。これは、外部光源が画像を作り出すために必要とされることを意味する。反射型液晶ディスプレイにおいては、周囲の光が外部光源として利用され、これは原理的にバックライトが不要であることを意味する。透過型液晶ディスプレイにおいては、光はバックライトシステムにおいて発生する。一方、トランスフレクタが、一般的に鑑賞者からそれる方向に向いた偏光子の背後に位置している、半透過型液晶ディスプレイ(同時に透過型および反射型である)はまたさらに重要な役割を果たす。ここでの各ピクセルは反射型サブピクセルおよび透過型サブピクセルに分割され、それらの関連する液晶層厚みは、およそ比率1:2である。反射型部分は外部光で機能し、例えばアルミニウムで作られた、反射基板層を有する。透過型部分は、例えば、TN(=ねじれネマチック)セルと同様に機能し、また特に、乏しい外部光条件における場合には、スイッチを入れることができるバックライトにより必要なコントラストを達成可能である。後者は、それらがとりわけ省電力であるため、例えば、PDA、ゲーム(ゲームボーイ)、デジタルカメラのためのファインダーにおいて、または(安価な)ノートブックにおいて今日用いられている。   Liquid crystal displays (LCDs) are passive display systems, i.e., they themselves do not emit light. These displays are based on the principle of whether light passes through a liquid crystal layer. This means that an external light source is required to produce the image. In a reflective liquid crystal display, ambient light is used as an external light source, which means that in principle, no backlight is required. In a transmissive liquid crystal display, light is generated in a backlight system. On the other hand, transflective liquid crystal displays (which are both transmissive and reflective at the same time), where the reflector is located behind a polarizer that is generally oriented away from the viewer, also play an even more important role. Fulfill. Each pixel here is divided into a reflective sub-pixel and a transmissive sub-pixel, and their associated liquid crystal layer thickness is approximately the ratio 1: 2. The reflective part functions with external light and has a reflective substrate layer, for example made of aluminum. The transmissive part functions in the same way as, for example, a TN (= twisted nematic) cell, and in particular in the case of poor external light conditions, the required contrast can be achieved by a backlight that can be switched on. The latter are used today, for example, in PDA, game (game boy), viewfinders for digital cameras, or (cheap) notebooks because they are particularly power-saving.

液晶ディスプレイにおいて、ピクセルの原色は、バックライトからの白色光を、例えば、青、緑および赤へカラーフィルターの補助でフィルタリングすることにより生成される。色の表示のために重要であるディスプレイが生成することのできる色空間は、青、緑および赤の原色の純度により制限される。CIE xy色度図で表すと、ディスプレイの赤、緑および青原色は、ディスプレイにより表示され得る色空間を示す三角形を形成する。この色空間の外側の色は、ディスプレイにより表示されない。   In a liquid crystal display, the primary color of the pixel is generated by filtering the white light from the backlight, for example, with the aid of a color filter to blue, green and red. The color space that a display that is important for color display can produce is limited by the purity of the primary colors of blue, green and red. Expressed in the CIE xy chromaticity diagram, the red, green and blue primaries of the display form a triangle that indicates the color space that can be displayed by the display. Colors outside this color space are not displayed on the display.

液晶ディスプレイにおいて、色空間は、いくつもの要素により決定される。
第一は、バックライトのための光源およびLCDパネルそれ自体の構造である:スクリーンの各ピクセルは、赤、緑および青領域からなる。これらの領域の色は、バックライトからカラーフィルター部を通る白色光の透過により生成される。カラーフィルターは、ディスプレイの色空間のための、決定要素の1つである。CCFLs(冷陰極蛍光灯=Hg低圧冷陰極放電ランプ)またはキセノン放電などの広帯域蛍光光源であって、例えば、オレンジ、黄色およびシアン等の所望されない色の成分を伴い広域の色スペクトルを発するものは、LCD用バックライトのために通常用いられる。スクリーンにより表示され得る色空間を最大化するためには、可能な限り高純度の赤、緑および青のみが要求される。一次光源からの白色光がカラーフィルターにより原色へ再分割されるため、原色は飽和されなければならない。
In a liquid crystal display, the color space is determined by a number of factors.
The first is the light source for the backlight and the structure of the LCD panel itself: each pixel of the screen consists of red, green and blue regions. The colors of these regions are generated by transmission of white light from the backlight through the color filter unit. The color filter is one of the determinants for the display color space. Wide-band fluorescent light sources such as CCFLs (cold cathode fluorescent lamps = Hg low-pressure cold cathode discharge lamps) or xenon discharges that emit a broad color spectrum with undesired color components such as orange, yellow and cyan, for example Usually used for LCD backlight. In order to maximize the color space that can be displayed by the screen, only the highest purity red, green and blue are required. Since white light from the primary light source is subdivided into primary colors by the color filter, the primary colors must be saturated.

色空間を拡大するためには、この場合、青、緑および赤成分のより狭いバンドを含むスペクトルへバックライトからの光を、追加のカラーフィルターの使用を通じて変換することが必要である。この型の追加のカラーフィルターの技術的複雑さに加え、光束がここで大きく減少し、スクリーンの輝度を減少させる。   In order to expand the color space, in this case it is necessary to convert the light from the backlight into a spectrum containing narrower bands of blue, green and red components through the use of additional color filters. In addition to the technical complexity of this type of additional color filter, the luminous flux here is greatly reduced, reducing the brightness of the screen.

したがって、広帯域バックライトのこれらの不利点を回避するために、追加の複雑なカラーフィルターにより、制約された色空間および減少したスクリーン輝度という結果となるCCFLは、LEDアレーにより置き換えられてきた。これらのアレーは、CCFLと比較して著しくより狭い帯域のスペクトルを発する青、緑および赤のLEDからなる。この理由から、単純なカラーフィルターのみが必要であるため、ディスプレイにより表示され得る色空間はより大きく、達成可能な輝度はより大きくなる。LEDにおけるバックライトの透過率(70%)が、CCFL(5%)よりも顕著に大きいため、そこから生じるさらなる有利点は、ディスプレイのより高いエネルギー効率である。さらに、LEDバックライトは、CCFL(CCFLの場合における5000稼働時間と比較して、LEDの場合においては100,000稼働時間)、よりも顕著に長い寿命を有し、そして、CCFLにおいて不可避である水銀はLEDにおいては用いられない。   Thus, to avoid these disadvantages of broadband backlights, the additional complex color filters have replaced the CCFL resulting in a constrained color space and reduced screen brightness with LED arrays. These arrays consist of blue, green and red LEDs that emit a much narrower spectrum compared to the CCFL. For this reason, only a simple color filter is required, so the color space that can be displayed by the display is larger and the achievable brightness is greater. A further advantage arising therefrom is the higher energy efficiency of the display, since the backlight transmission (70%) in the LED is significantly greater than the CCFL (5%). In addition, LED backlights have a significantly longer life than CCFLs (100,000 operating hours in the case of LEDs compared to 5000 operating hours in the case of CCFLs) and are inevitable in CCFLs. Mercury is not used in LEDs.

しかしながら、バックライトのための青、緑および赤のLEDの使用の場合における不利点は、LEDの半導体チップが異なることである:InGaNが青色光のために採用され、InGaNは、同様に(しかし、より高いIn含有量で)緑色光のために採用され、そして、InGaAlPが、赤色光のための材料の基礎として採用されている。これらの3種の材料は光の放出に関して異なる効率を示し、そして、異なる劣化挙動を有する。結果として、青、緑および赤のLEDからなる白色光の色の点を、LEDアドレッシングに携わる制御回路を介し定常的に維持する、複雑な能動制御システムを採用することが必要である。   However, the disadvantage in the case of the use of blue, green and red LEDs for the backlight is that the semiconductor chips of the LEDs are different: InGaN is adopted for blue light and InGaN is similar (but Adopted for green light (with higher In content), and InGaAlP has been adopted as the basis for materials for red light. These three materials exhibit different efficiencies for light emission and have different degradation behaviors. As a result, it is necessary to employ a complex active control system that constantly maintains the color point of white light consisting of blue, green and red LEDs via a control circuit engaged in LED addressing.

バックライトの、それぞれ個々のLED(最大数千個のLEDまで)のためのこの複雑な能動制御システムは、それを備えたLCD TVスクリーンがCCFLを備えたスクリーンよりも4〜10倍高価になるという高コストをもたらす。
高価格のせいで、質的にはるかに良いLEDバックライトの市場浸透が妨げられている。
This complex active control system for each individual LED (up to thousands of LEDs) in the backlight is 4 to 10 times more expensive for LCD TV screens with it than screens with CCFLs High cost is brought about.
The high price hinders market penetration of much better qualitative LED backlights.

WO 02/095791は、白色光源として気体放電ランプ(冷陰極ランプまたはXe放電ランプ)を備えた液晶スクリーンであって、赤、緑および青の光を発する蛍光体の組合せを含む蛍光層を含むものを記載している。   WO 02/095791 is a liquid crystal screen provided with a gas discharge lamp (cold cathode lamp or Xe discharge lamp) as a white light source, including a phosphor layer containing a combination of phosphors emitting red, green and blue light Is described.

本発明の目的は、R、G、B LEDバックライトとして(表示可能色空間および輝度に関して)同じ高品質を有するが、顕著に低コストでバックライトシステムを提供することであった。   The object of the present invention was to provide a backlight system with the same high quality (with respect to displayable color space and brightness) as an R, G, B LED backlight, but at a significantly lower cost.

驚くべきことに、特定のLEDの使用に関して、それぞれ個々のLEDのための複雑な能動制御システムの使用を省略することができ、これらのLEDを従来のバックライトシステムにおいて採用することができることが本発明により見出された。本発明のこれらのLEDは、従来のCCFLバックライトよりもスクリーンの寿命に関して計算して低コストと結びつく、より高価でないバックライトを許容する。   Surprisingly, with regard to the use of specific LEDs, it is possible to omit the use of complex active control systems for each individual LED, and that these LEDs can be employed in conventional backlight systems. Found by the invention. These LEDs of the present invention allow for less expensive backlights that are calculated with respect to screen life and associated with lower costs than conventional CCFL backlights.

したがって、本発明は、液晶ディスプレイであって、少なくとも1個の半導体ダイオード、好ましくは青色発光半導体ダイオード、ならびに、少なくとも2種の蛍光体の組合せここで少なくとも1種の蛍光体が赤色光を発し、および少なくとも1種の蛍光体が緑色光を発する、を含む少なくとも1個の蛍光体層を含む白色光源を有する、少なくとも1個のバックライトシステムを備えた前記液晶ディスプレイに関する。   Accordingly, the present invention is a liquid crystal display, wherein at least one semiconductor diode, preferably a blue light emitting semiconductor diode, and a combination of at least two phosphors, wherein at least one phosphor emits red light, And a liquid crystal display comprising at least one backlight system having a white light source comprising at least one phosphor layer comprising: and at least one phosphor emits green light.

図1は本発明の液晶ディスプレイ(直接照明設計)の図式的表現を示す。(1=バックライトなしのLCDユニット、2=バックライトユニット、3=ディフューザ、4=本発明の蛍光体層を備えたLED、5=バックライトユニットからの均一な光束)。FIG. 1 shows a schematic representation of the liquid crystal display (direct lighting design) of the present invention. (1 = LCD unit without backlight, 2 = backlight unit, 3 = diffuser, 4 = LED with the phosphor layer of the present invention, 5 = uniform light flux from the backlight unit). 図2は本発明の液晶ディスプレイ(側面照明設計)の図式的表現を示す。(1=バックライトなしのLCDユニット、2=バックライトユニット、3=ディフューザ、4=本発明の蛍光体層を備えたLED、5=バックライトユニットからの均一な光束)。FIG. 2 shows a schematic representation of the liquid crystal display (side illumination design) of the present invention. (1 = LCD unit without backlight, 2 = backlight unit, 3 = diffuser, 4 = LED with the phosphor layer of the present invention, 5 = uniform light flux from the backlight unit).

液晶ディスプレイは通常液晶ユニットおよびバックライトシステムを有する。液晶ユニットは、第1の偏光子および第2の偏光子ならびにそのそれぞれが光透過性導電体のマトリックスが付いた2層の透明層を有する液晶セルを典型的に含む。液晶材料は、2枚の基板の間に配置される。液晶材料は、例えば、TN(ねじれネマチック)液晶、STN(超ねじれ液晶)、DSTN(二重超ねじれ液晶)、FSTN(箔(foil)超ねじれネマチック)、VAN(垂直配列)液晶またはOCB(光学的補償屈曲)液晶を含む。液晶セルは、第2の偏光子が鑑賞者により見え得る形で、2枚の偏光子によってサンドイッチ様式で囲まれている。   A liquid crystal display usually has a liquid crystal unit and a backlight system. The liquid crystal unit typically includes a liquid crystal cell having a first polarizer and a second polarizer and two transparent layers each with a matrix of light transmissive conductors. The liquid crystal material is disposed between the two substrates. Examples of the liquid crystal material include TN (twisted nematic) liquid crystal, STN (super twisted liquid crystal), DSTN (double super twisted liquid crystal), FSTN (foil super twisted nematic), VAN (vertical alignment) liquid crystal, or OCB (optical). Compensated bending) including liquid crystal. The liquid crystal cell is surrounded by two polarizers in a sandwich manner so that the second polarizer can be seen by the viewer.

また、モニタ用途のために著しく高度に好適であるのは、IPS(in-plane switching)技術である。TNディスプレイと対照的に、液晶分子がスイッチされる電界における導電体は、IPSセルにおいて液晶層の1つの面上に位置するのみである。生じる電界は均一であり、そして、概略すると、基板表面に対して平行に配置される。分子は基板平面(平面内)において対応してスウィッチされ、これは、TNディスプレイに比して、顕著により低い伝達強度の視角依存性をもたらす。
さらに、広い視角にわたる優れた光学特性のためのあまり知られていない技術は、FFS技術およびそのさらなる発展であるAFFS(advanced fringe field switching)技術である。それは、IPS技術と同様の機能的原理を有する。
本発明は、さらに、半導体ダイオード、好ましくは青色発光半導体ダイオード、ならびに赤色および緑色光を発する少なくとも2種の蛍光体の組合せを含む蛍光体層を含む白色光源を有するバックライトシステムに関する。
Also, IPS (in-plane switching) technology is extremely highly suitable for monitoring applications. In contrast to the TN display, the conductor in the electric field where the liquid crystal molecules are switched is only located on one side of the liquid crystal layer in the IPS cell. The resulting electric field is uniform and is roughly arranged parallel to the substrate surface. The molecules are correspondingly switched in the substrate plane (in-plane), which results in a significantly lower transmission intensity viewing angle dependence compared to TN displays.
Furthermore, a lesser known technique for superior optical properties over a wide viewing angle is the FFS technique and its advanced fringe field switching (AFFS) technique. It has the same functional principle as IPS technology.
The invention further relates to a backlight system having a white light source comprising a semiconductor diode, preferably a blue light emitting semiconductor diode, and a phosphor layer comprising a combination of at least two phosphors emitting red and green light.

本発明のバックライトシステムは、例えば、「直接照明」バックライトシステム(図1参照)または光学的導波路および出力結合構造を有する「側面照明」バックライトシステム(図2参照)であり得る。バックライトシステムは白色光源を有し、これは通常、ハウジング中に位置し、好ましくは、これは内側にリフレクタを有する。さらに、バックライトシステムは少なくとも1つの拡散板を有しても良い。   The backlight system of the present invention may be, for example, a “direct illumination” backlight system (see FIG. 1) or a “side illumination” backlight system (see FIG. 2) having an optical waveguide and an output coupling structure. The backlight system has a white light source, which is usually located in the housing, preferably it has a reflector on the inside. Furthermore, the backlight system may have at least one diffusion plate.

カラー画像を生成および表示するために、液晶ユニットにはカラーフィルターが備えられている。カラーフィルターは、赤色、緑色または青色光のいずれかを伝達するモザイク様パターン中のピクセルを含む。カラーフィルターは、好ましくは第1の偏光子および液晶セルの間に配置されている。   In order to generate and display a color image, the liquid crystal unit is provided with a color filter. The color filter includes pixels in a mosaic-like pattern that transmits either red, green or blue light. The color filter is preferably disposed between the first polarizer and the liquid crystal cell.

白色の(1次)光源は、青色発光窒化インジウムアルミニウムガリウムであって、特に、式InGaAlN、式中、0≦i、0≦j、0≦kおよびi+j+k=1で表されるものである。好ましくは、InGaN半導体ダイオードであって、対応する変換蛍光体との組合せで、好ましくは、白色光または擬似白色光を発光する。このInGaN半導体ダイオードは、430〜480nmの間に最大発光を有し、そして、ごく僅かな効率の劣化のみで著しく高い効率および長寿命(>150,000時間)を有する。 The white (primary) light source is blue light emitting indium aluminum gallium nitride, in particular represented by the formula In i Ga j Al k N, where 0 ≦ i, 0 ≦ j, 0 ≦ k and i + j + k = 1. It is what is done. Preferably, the InGaN semiconductor diode emits white light or pseudo white light in combination with a corresponding conversion phosphor. This InGaN semiconductor diode has a maximum emission between 430 and 480 nm and has a very high efficiency and long life (> 150,000 hours) with only a slight efficiency degradation.

さらなる態様において、白色光源は、ZnO、TCO(透明導電性酸化物)、ZnSeまたはSiCをベースとする発光化合物でもあり得る。
原理的に、用途に応じて選択される多種多様な設計が、蛍光層との組合せで白色光を生成する青色発光半導体のために可能である。
本発明によれば、白色光源は赤および緑発光蛍光体の組合せを含む蛍光層を有する。
In a further aspect, the white light source can also be a light emitting compound based on ZnO, TCO (transparent conductive oxide), ZnSe or SiC.
In principle, a wide variety of designs selected depending on the application are possible for blue light emitting semiconductors that generate white light in combination with a phosphor layer.
According to the present invention, the white light source has a phosphor layer that includes a combination of red and green light emitting phosphors.

本発明はさらに、白色光源を有するバックライトシステムを備えた液晶ディスプレイの製造方法に関し、該方法は、次のステップを含む:
青色発光InGaAlN半導体、特に、式InGaAlN、式中、0≦i、0≦j、0≦kおよびi+j+k=1で表されるものおよび赤色発光蛍光体および緑色発光蛍光体の組合せを含む蛍光体層から構築された少なくとも1個のLEDを製造すること、
ハウジングに1または2個以上のLEDを設置して、ディフューザおよびリフレクタを含むバックライトシステムを提供すること、
バックライトシステムを、カラーフィルターシステムを有する正面プレートを含む、対応する液晶ユニットと組合せて、液晶ディスプレイを提供すること。
The invention further relates to a method of manufacturing a liquid crystal display with a backlight system having a white light source, which method comprises the following steps:
Blue light emitting InGaAlN semiconductors, in particular those represented by the formula In i Ga j Al k N, where 0 ≦ i, 0 ≦ j, 0 ≦ k and i + j + k = 1, and red and green light emitting phosphors Producing at least one LED constructed from phosphor layers comprising the combination;
Providing a backlight system including a diffuser and a reflector by installing one or more LEDs in a housing;
Combining a backlight system with a corresponding liquid crystal unit including a front plate with a color filter system to provide a liquid crystal display.

緑発光蛍光体は、青色発光1次光源により励起されるが、520〜550nmの間に最大発光を有する。本発明において好ましいのは、全てのセリウム(III)またはユーロピウム(II)活性蛍光体であって、チオガレート、シリケート、オキソニトリドシリケート、アルミネート、窒化物またはガーネットの群から選択されるものである。これら蛍光体の例として、(Y,Lu)(Al,Ga)12:Ce;SrSi:Eu;SrGa:Eu;(Sr,Ba)2S:EuおよびSrAl:Euをここで挙げることができる。 The green light emitting phosphor is excited by a blue light emitting primary light source, but has a maximum light emission between 520 and 550 nm. Preferred in the present invention are all cerium (III) or europium (II) active phosphors selected from the group of thiogallate, silicate, oxonitridosilicate, aluminate, nitride or garnet. . Examples of these phosphors include (Y, Lu) 3 (Al, Ga) 5 O 12 : Ce; SrSi 2 N 2 O 2 : Eu; SrGa 2 S 4 : Eu; (Sr, Ba) 2S i O 4 : Eu and SrAl 2 O 4 : Eu can be mentioned here.

これらは、従来の方法により固相合成を介してまたは湿式化学法(William M. Yen, Marvin J. Weber, Inorganic Phosphors, Compositions, Preparation and optical properties, CRC Press, New York, 2004参照)によっても調製される。   They are also prepared via solid phase synthesis by conventional methods or by wet chemical methods (see William M. Yen, Marvin J. Weber, Inorganic Phosphors, Compositions, Preparation and optical properties, CRC Press, New York, 2004). Is done.

赤色発光蛍光体は、好ましくはラインエミッタであり、青色発光一次光源によりまたは緑色発光蛍光体により励起される。赤色発光蛍光体は、好ましくはユーロピウム(III)またはクロム(III)賦活ラインエミッタである。本発明によると、590〜620nmの間の最大発光(Eu(III)賦活蛍光体)、または680〜700nmの間の最大(Cr(III)賦活蛍光体の場合)のいずれかを有する。蛍光体層は、特に好ましくは赤色発光蛍光体として、Al:Cr、Na0.5Gd0.3Eu0.2WO、Na0.50.4Eu0.1MoO、Na0.5La0.3Eu0.2WO、Na0.5La0.3Eu0.2MoO、Na0.5La0.3Eu0.2(WO0.5(MoO0.5、La1.2Eu0.8MoO、La1.2Eu0.8WO、(Gd0.6Eu0.4(WO1.5POの群から選択されるユーロピウムまたはクロム賦活ラインエミッタを含む。 The red-emitting phosphor is preferably a line emitter and is excited by a blue-emitting primary light source or by a green-emitting phosphor. The red-emitting phosphor is preferably a europium (III) or chromium (III) activated line emitter. According to the invention, it has either a maximum emission between 590 and 620 nm (Eu (III) activated phosphor) or a maximum between 680 and 700 nm (in the case of Cr (III) activated phosphor). The phosphor layer is particularly preferably a red light emitting phosphor such as Al 2 O 3 : Cr, Na 0.5 Gd 0.3 Eu 0.2 WO 4 , Na 0.5 Y 0.4 Eu 0.1 MoO 4. , Na 0.5 La 0.3 Eu 0.2 WO 4 , Na 0.5 La 0.3 Eu 0.2 MoO 4 , Na 0.5 La 0.3 Eu 0.2 (WO 4 ) 0.5 (MoO 4 ) 0.5 , La 1.2 Eu 0.8 MoO 4 , La 1.2 Eu 0.8 WO 4 , (Gd 0.6 Eu 0.4 ) 2 (WO 4 ) 1.5 PO 4 A europium or chromium activated line emitter selected from the group of

Al:Cr(ルビー)は、スペクトルの黄緑領域において効率的に誘導され、693nmでの暗赤色線を放出する。使用がユーロピウムの禁制内部f−f吸収遷移を(部分的に)許容するマトリックスで行われた場合、Eu(III)賦活蛍光体が採用され得る。 Al 2 O 3 : Cr (ruby) is efficiently induced in the yellow-green region of the spectrum and emits a dark red line at 693 nm. Eu (III) activated phosphors can be employed when the use is made with a matrix that allows (partially) the forbidden internal ff absorption transition of europium.

本発明による好ましい赤色ラインエミッタAl:Cr(ルビー)は、湿式化学法により調製され得る(DE 102006054328.9およびDE 102007001903.5参照)。これらのルビーは結果的に非常に安価に製造され、高い効率および暗赤色発光による優れた色再現を伴う暖白色光の生成のためのpcLED用変換蛍光体として好適である。これらの蛍光体は湿式化学プロセスにおいて調製され得、Cr3+またはCrが0.01〜10重量%注入されたAl粒子を生じ、これは調製可能なサイズおよび統一されたモルホロジーを有する。 Preferred red line emitters Al 2 O 3 : Cr (rubies) according to the invention can be prepared by wet chemical methods (see DE 102006054328.9 and DE 102007001903.5). These rubies are consequently manufactured very inexpensively and are suitable as pcLED conversion phosphors for the production of warm white light with high efficiency and excellent color reproduction with dark red emission. These phosphors can be prepared in a wet chemical process, resulting in Al 2 O 3 particles implanted with 0.01 to 10% by weight of Cr 3+ or Cr 2 O 3 , which can be prepared in size and unified morphology. Have

蛍光体調製のための開始物質は、基礎材料(例えば、アルミニウムの塩溶液)および少なくとも一種のクロム(III)含有ドーパントからなる。好適な開始材料は、金属、半金属、遷移金属および/または希土類の硝酸塩、炭酸塩、炭酸水素塩、リン酸水素塩、リン酸塩、カルボン酸塩、アルコラート、酢酸塩、シュウ酸塩、ハロゲン化物、硫酸塩、有機金属化合物、水酸化物および/または酸化物であり、無機および/または有機液体中に溶解および/または懸濁されている。必要な化学量論的比率において対応する元素を含む混合硝酸溶液、塩化物または水酸化物溶液の使用が好ましい。   The starting material for phosphor preparation consists of a base material (eg, an aluminum salt solution) and at least one chromium (III) containing dopant. Suitable starting materials are metals, metalloids, transition metals and / or rare earth nitrates, carbonates, bicarbonates, hydrogen phosphates, phosphates, carboxylates, alcoholates, acetates, oxalates, halogens Compounds, sulfates, organometallic compounds, hydroxides and / or oxides, which are dissolved and / or suspended in inorganic and / or organic liquids. Preference is given to using mixed nitric acid solutions, chlorides or hydroxide solutions containing the corresponding elements in the required stoichiometric proportions.

本発明の赤色発光蛍光体のさらなる有利点は、温度上昇に伴い、蛍光体の発光が増すことである。蛍光体の発光は通常、温度上昇に伴い減少するため、このことは驚きである。150℃より高い稼動温度に至ることが可能であるため、高出力LED(>1ワットエネルギー消費)における蛍光体の使用時に、本発明のこの有利な特性は特に重要である。   A further advantage of the red-emitting phosphor of the present invention is that the emission of the phosphor increases with increasing temperature. This is surprising because the phosphor emission usually decreases with increasing temperature. This advantageous property of the present invention is particularly important when using phosphors in high power LEDs (> 1 watt energy consumption) because it is possible to reach operating temperatures higher than 150 ° C.

湿式化学調製は一般に生成した物質が化学量論的組成、粒子サイズおよび本発明の赤色ラインエミッタが調製される粒子のモルホロジーに関してより優れた均一性を有する。蛍光体の湿式化学調製は、好ましくは、沈殿および/またはゾル−ゲル法により行われる。   Wet chemical preparation generally has better uniformity with respect to the stoichiometric composition, particle size and morphology of the particles from which the red line emitter of the present invention is prepared. The wet chemical preparation of the phosphor is preferably carried out by precipitation and / or sol-gel methods.

本発明のラインエミッタの調製は、対応する金属および/または希土類塩から、好ましくは、硫酸アルミニウム、硫酸カリウム、硫酸ナトリウムおよびクロム・ミョウバン溶液から、従来の方法により行われる。調製方法は、EP763573中に詳細が記載されている。   The line emitters of the present invention are prepared by conventional methods from the corresponding metal and / or rare earth salts, preferably from aluminum sulfate, potassium sulfate, sodium sulfate and chromium alum solutions. The preparation method is described in detail in EP 763573.

蛍光体またはその前駆体は、当業者に知られたプロセス条件下、ここにルビー粒子に対して、適用される。懸濁液からの分離後、物質は乾燥され、数多くのステップおよび(部分的に)1700℃までの温度での還元条件下において行われ得る焼成プロセスを受ける。複数の精製ステップの後、蛍光体は600℃〜1800℃、好ましくは、800℃〜1700℃の温度で何時間もの間焼成される。蛍光体前駆体はここで実際の蛍光体へと変換される。   The phosphor or its precursor is applied here to the ruby particles under process conditions known to those skilled in the art. After separation from the suspension, the material is dried and subjected to a number of steps and a calcination process which can be carried out under reducing conditions at temperatures up to (partially) 1700 ° C. After multiple purification steps, the phosphor is fired for many hours at a temperature of 600 ° C to 1800 ° C, preferably 800 ° C to 1700 ° C. The phosphor precursor is now converted into the actual phosphor.

少なくとも部分的に還元条件下焼成が行われることが好まれる(例えば、一酸化炭素、フォーミングガス、純粋または希釈水素または少なくとも真空もしくは酸素欠乏大気を用いる)。   It is preferred that the calcination be carried out at least partially under reducing conditions (eg using carbon monoxide, forming gas, pure or diluted hydrogen or at least vacuum or oxygen-deficient atmosphere).

さらに、本発明の赤色ラインエミッタは、単結晶合成法によっても調製され得る(例えば、ベルヌーイ法により、Kontakte (Merck) 1991, No.2, 17-32または、Ullmann (4.) 15, 146、出典:CD Roempp Chemie Lexikon [CD Roempp's Lexicon of Chemistry] - Version 1.0, Stuttgart/New York: Georg Thieme Verlag 1995参照)。   Furthermore, the red line emitters of the present invention can also be prepared by single crystal synthesis methods (for example, by the Bernoulli method, Kontakte (Merck) 1991, No. 2, 17-32 or Ullmann (4.) 15, 146, Source: CD Roempp Chemie Lexikon [CD Roempp's Lexicon of Chemistry]-Version 1.0, Stuttgart / New York: Georg Thieme Verlag 1995).

記述された方法は、キロプロス、ブリッジマン−ストックバーガー、チョクラルスキー、ベルヌーイ法等の名の下で、水熱合成として用いられる。るつぼ非接触式ゾーン溶解(crucible-free zone melting)とるつぼドローイング(crucible drawing)もまた区別される(出典:CD Roempp Chemie Lexikon [CD Roempp's Lexicon of Chemistry] - Version 1.0, Stuttgart/New York: Georg Thieme Verlag 1995)。   The described method is used as hydrothermal synthesis under the names of Kilopros, Bridgeman-Stockburger, Czochralski, Bernoulli method and the like. A distinction is also made between crucible-free zone melting and crucible drawing (Source: CD Roempp Chemie Lexikon [CD Roempp's Lexicon of Chemistry]-Version 1.0, Stuttgart / New York: Georg Thieme Verlag 1995).

赤色発光ラインエミッタNa0.5Gd0.3Eu0.2WO、Na0.50.4Eu0.1MoO、Na0.5La0.3Eu0.2WO、Na0.5La0.3Eu0.2(WO0.5(MoO0.5、La1.2Eu0.8MoO、La1.2Eu0.8WO、(Gd0.6Eu0.4(WO1.5POは、好ましくは湿式化学法および連続した熱処理により調製される(参照DE 102006027026.6)。調製のために採用され得る出発物質は、対応する金属、半金属、遷移金属および/または希土類の硝酸塩、ハロゲン化物および/またはリン酸塩である。 Red light emitting line emitter Na 0.5 Gd 0.3 Eu 0.2 WO 4 , Na 0.5 Y 0.4 Eu 0.1 MoO 4 , Na 0.5 La 0.3 Eu 0.2 WO 4 , Na 0.5 La 0.3 Eu 0.2 (WO 4 ) 0.5 (MoO 4 ) 0.5 , La 1.2 Eu 0.8 MoO 4 , La 1.2 Eu 0.8 WO 4 , (Gd 0.6 Eu 0.4 ) 2 (WO 4 ) 1.5 PO 4 is preferably prepared by wet chemical methods and continuous heat treatment (reference DE 102006027026.6). Starting materials that can be employed for the preparation are the corresponding metal, metalloid, transition metal and / or rare earth nitrates, halides and / or phosphates.

本発明によると、溶解または懸濁された出発物質は、界面活性剤、好ましくは、グリコールと長時間共に加熱され、生成する中間体は、有機沈殿剤、好ましくはアセトンを用いて室温で分離される。精製および中間体の乾燥後、後者は長時間600〜1200℃の間の温度で熱処理を受け、最終生成物としての赤色ラインエミッタ蛍光体を生じる。   According to the invention, the dissolved or suspended starting material is heated together with a surfactant, preferably glycol, for a long time and the resulting intermediate is separated at room temperature using an organic precipitating agent, preferably acetone. The After purification and drying of the intermediate, the latter is subjected to a heat treatment at a temperature between 600-1200 ° C. for a long time, resulting in a red line emitter phosphor as the final product.

蛍光体層である赤色発光および緑色発光変換蛍光体の両方は、LED稼動の間分解に対し化学的に安定であり、即ち、それらは加水分解およびそれらの環境からの物質との反応を起こす傾向を示さない。   The phosphor layers, both red-emitting and green-emitting conversion phosphors, are chemically stable to degradation during LED operation, i.e., they tend to undergo hydrolysis and reaction with substances from their environment. Not shown.

後に続く例は、本発明を例示することを意図する。しかしながら、それらは全く限定として認識されるべきではない。組成物において用いられ得る全ての化合物または成分は、既知および商業的に入手可能か、または既知の方法により合成可能である。   The examples that follow are intended to illustrate the invention. However, they should not be recognized as limitations at all. All compounds or components that can be used in the compositions are known and commercially available or can be synthesized by known methods.


例1:組成Al1.991:Cr0.009の赤色発光蛍光体粒子の製造
223.8gの硫酸アルミニウム18水和物、114.5gの硫酸ナトリウム、93.7gの硫酸カリウムおよび2.59gのKCr(SOx12HO(クロムミョウバン)は450mlの約75℃で450mlの脱イオン水中に溶解する。2.0gの34.4%硫酸チタン溶液をこの混合物中に加え、水性溶液(a)を生じる。
0.9gのリン酸三ナトリウム12水和物および107.9gの炭酸ナトリウムを250mlの脱イオン水に溶解し、水性溶液(b)を生じる。
2種の水性溶液(a)および(b)を同時に200mlの脱イオン水に15分間にわたり撹拌しつつ加える。混合物をさらに15分間撹拌する。生成する溶液を乾燥するまでエバポレーションし、生成する固体を5時間約1200℃で焼成する。遊離硫酸塩を洗い落とすために水を加える。水による慣用の精製ステップおよび乾燥により、所望の蛍光体Al1.991:Cr0.009を生じる。
Examples Example 1: Preparation of red emitting phosphor particles of composition Al 1.991 O 3 : Cr 0.009 223.8 g aluminum sulfate 18 hydrate, 114.5 g sodium sulfate, 93.7 g potassium sulfate and 2 .59 g of KCr (SO 4 ) 2 × 12H 2 O (Chromium alum) dissolves in 450 ml of deionized water at about 75 ° C. 2.0 g of 34.4% titanium sulfate solution is added into this mixture, resulting in an aqueous solution (a).
0.9 g of trisodium phosphate dodecahydrate and 107.9 g of sodium carbonate are dissolved in 250 ml of deionized water to produce an aqueous solution (b).
Two aqueous solutions (a) and (b) are simultaneously added to 200 ml of deionized water with stirring for 15 minutes. The mixture is stirred for an additional 15 minutes. The resulting solution is evaporated to dryness and the resulting solid is calcined at about 1200 ° C. for 5 hours. Add water to wash away free sulfate. Conventional purification steps with water and drying yield the desired phosphor Al 1.991 O 3 : Cr 0.009 .

例2:赤色蛍光体Na0.5Gd0.3Eu0.2WO
2.708gの硝酸ガドリニウム6水和物および1.784gの硝酸ユーロピウム6水和物を100mlのエチレングリコール中に溶解させる[溶液1]。同時に、50mlの脱イオン水中1.550gのタングステン酸ナトリウム2水和物の溶液を調製する[溶液2]。40mlの溶液1を最初に導入し、45mlの溶液2、45mlのエチレングリコールおよび3mlのNaOH溶液(1M)の混合物をそれに滴下して加える。滴下での添加後(溶液は7.5のpHを有する)、混合物を6時間の間還流下で加熱する。反応溶液を冷却後、200mlのアセトンを滴下して加え、沈殿をその後遠心分離して除き、アセトンで再度洗浄し、そして空気の流れの中で乾燥し、磁器の皿の上に移し、そして600℃で5時間焼成する。
Example 2: Red phosphor Na 0.5 Gd 0.3 Eu 0.2 WO 4
2.708 g gadolinium nitrate hexahydrate and 1.784 g europium nitrate hexahydrate are dissolved in 100 ml ethylene glycol [solution 1]. At the same time, a solution of 1.550 g sodium tungstate dihydrate in 50 ml deionized water is prepared [Solution 2]. 40 ml of solution 1 is initially introduced and a mixture of 45 ml of solution 2, 45 ml of ethylene glycol and 3 ml of NaOH solution (1M) is added dropwise thereto. After the dropwise addition (the solution has a pH of 7.5), the mixture is heated under reflux for 6 hours. After cooling the reaction solution, 200 ml of acetone are added dropwise, the precipitate is then centrifuged off, washed again with acetone, dried in a stream of air, transferred onto a porcelain dish and 600 Bake at 5 ° C. for 5 hours.

例3:赤色蛍光体Na0.50.4Eu0.1MoOの調製
3.06gの硝酸イットリウム6水和物および0.892gの硝酸ヨーロピウム6水和物を100mlのエチレングリコール中に溶解させる[溶液1]。同時に、50mlの脱イオン水中1.210gのモリブデン酸ナトリウム2水和物の溶液を調製する[溶液2]。20mlの溶液1を最初に導入し、45mlの溶液2、45mlのエチレングリコールおよび3mlのNaOH溶液(1M)の混合物をそれに滴下して加える。滴下での添加後、混合物を6時間の間還流下で加熱する。反応溶液を冷却後、200mlのアセトンを滴下して加え、沈殿をその後遠心分離して除き、アセトンで再度洗浄し、そして空気の流れの中で乾燥する。
そのバッチをマッフル炉中に移し、600℃で5時間焼成する。
Example 3: Preparation of red phosphor Na 0.5 Y 0.4 Eu 0.1 MoO 4 3.06 g of yttrium nitrate hexahydrate and 0.892 g of europium nitrate hexahydrate in 100 ml of ethylene glycol Dissolve [Solution 1]. At the same time, a solution of 1.210 g sodium molybdate dihydrate in 50 ml deionized water is prepared [Solution 2]. 20 ml of solution 1 is initially introduced and a mixture of 45 ml of solution 2, 45 ml of ethylene glycol and 3 ml of NaOH solution (1M) is added dropwise thereto. After the dropwise addition, the mixture is heated at reflux for 6 hours. After cooling the reaction solution, 200 ml of acetone are added dropwise and the precipitate is subsequently removed by centrifugation, washed again with acetone and dried in a stream of air.
The batch is transferred into a muffle furnace and baked at 600 ° C. for 5 hours.

例4:赤色蛍光体Na0.5La0.3Eu0.2WOの調製(沈殿反応)
2.120gの塩化ランタニウム6水和物および1.467gの塩化ヨーロピウム6水和物を100mlの脱イオン水に溶解する[溶液1]。同時に、100ml脱イオン水中4.948gのタングステン酸ナトリウム2水和物の溶液を調製する[溶液2]。100mlの溶液1を最初に導入し、溶液2をそこへ滴下して加える(検出pHは7.5〜8の範囲にあるべきであり、必要な場合、NaOH溶液(1M)を用いて調整する)。混合物はその後6時間の間還流下加熱する。反応溶液を冷却後、沈殿を吸引しながらろ過して除き、乾燥し、白色沈殿を生じる。
そのバッチは600℃で5時間焼成する。
Example 4: Preparation of red phosphor Na 0.5 La 0.3 Eu 0.2 WO 4 (precipitation reaction)
2. 120 g of lanthanum chloride hexahydrate and 1.467 g of europium chloride hexahydrate are dissolved in 100 ml of deionized water [Solution 1]. At the same time, a solution of 4.948 g sodium tungstate dihydrate in 100 ml deionized water is prepared [Solution 2]. 100 ml of solution 1 is first introduced and solution 2 is added dropwise thereto (detection pH should be in the range of 7.5-8, if necessary adjusted with NaOH solution (1M) ). The mixture is then heated at reflux for 6 hours. After cooling the reaction solution, the precipitate is filtered off with suction and dried to produce a white precipitate.
The batch is fired at 600 ° C. for 5 hours.

例5:クエン酸との錯体形成による赤色蛍光体Na0.5La0.3Eu0.2MoOの調製
1.024gの酸化モリブデン(IV)を穏やかに加熱して10mlのH(30%)中に溶解する。4.608gのクエン酸を、10mlの蒸留HOと共に、黄色溶液に加える。
1.040gのLa(NO)x6HOおよび0.714gのEu(NO)x6HOおよび0.340gのNaNOもまた続いて加え、混合物は40mlになるようにする。
黄色溶液は真空乾燥棚中で乾燥され、青色泡が最初に形成し、そこから青色粉末が最終的に生成する。固体をその後800℃で5時間焼成する。
Example 5: Preparation of red phosphor Na 0.5 La 0.3 Eu 0.2 MoO 4 by complexation with citric acid 1.024 g of molybdenum (IV) oxide is gently heated to 10 ml of H 2 O 2 Dissolve in (30%). 4.608 g of citric acid is added to the yellow solution along with 10 ml of distilled H 2 O.
1.040 g La (NO 3 ) × 6H 2 O and 0.714 g Eu (NO 3 ) × 6H 2 O and 0.340 g NaNO 3 are also subsequently added so that the mixture is 40 ml.
The yellow solution is dried in a vacuum drying shelf, a blue foam is first formed from which a blue powder is finally produced. The solid is then calcined at 800 ° C. for 5 hours.

例6:赤色蛍光体Na0.5La0.3Eu0.2(WO0.5(MoO0.5の調製
2.120gの塩化ランタニウム6水和物および1.467gの塩化ヨーロピニウム6水和物を100mlの脱イオン水中に溶解する[溶液1]。同時に、100ml脱イオン水中1.815gのモリブデン酸ナトリウム2水和物および2.474gのタングステン酸ナトリウム2水和物の溶液を調製する[溶液2]。100mlの溶液1を最初に導入し、溶液2をそこへ滴下して加える(pHは7.5〜8の範囲にあるべきであり、必要な場合、NaOH溶液(1M)を用いて調整する)。混合物をその後6時間の間還流下加熱する。反応溶液を冷却後、沈殿を吸引しながらろ過して除き、乾燥し、そのバッチをその後600℃で5時間焼成する。
Example 6: Preparation of red phosphor Na 0.5 La 0.3 Eu 0.2 (WO 4 ) 0.5 (MoO 4 ) 0.5 2. 120 g of lanthanum chloride hexahydrate and 1.467 g of chloride Europium hexahydrate is dissolved in 100 ml of deionized water [Solution 1]. At the same time, a solution of 1.815 g sodium molybdate dihydrate and 2.474 g sodium tungstate dihydrate in 100 ml deionized water is prepared [Solution 2]. 100 ml of solution 1 is initially introduced and solution 2 is added dropwise thereto (pH should be in the range 7.5-8, adjusted if necessary with NaOH solution (1M)) . The mixture is then heated under reflux for 6 hours. After cooling the reaction solution, the precipitate is filtered off with suction, dried and the batch is then calcined at 600 ° C. for 5 hours.

例7:クエン酸との錯体形成による赤色蛍光体La1.2Eu0.8MoOの調製
1.024gの酸化モリブデン(IV)を穏やかに加熱して10mlのH(30%)中に溶解する。4.608gのクエン酸を、10mlの蒸留HOと共に、黄色溶液に加える。
1.040gのLa(NO)x6HOおよび0.714gのEu(NO)x6HOおよび0.340gのNaNOもまた続いて加え、混合物は40mlになるようにする。
黄色溶液は真空乾燥棚中で乾燥され、青色泡が最初に形成し、そこから青色粉末が最終的に生成する。固体をその後600℃で5時間焼成する。
Example 7: Preparation of red phosphor La 1.2 Eu 0.8 MoO 4 by complexation with citric acid 1.024 g of molybdenum (IV) oxide is gently heated to 10 ml of H 2 O 2 (30%) Dissolve in. 4.608 g of citric acid is added to the yellow solution along with 10 ml of distilled H 2 O.
1.040 g La (NO 3 ) × 6H 2 O and 0.714 g Eu (NO 3 ) × 6H 2 O and 0.340 g NaNO 3 are also subsequently added so that the mixture is 40 ml.
The yellow solution is dried in a vacuum drying shelf, a blue foam is first formed from which a blue powder is finally produced. The solid is then calcined at 600 ° C. for 5 hours.

例8:クエン酸との錯体形成による赤色蛍光体La1.2Eu0.8WO4の調製
0.9711gの酸化タングステン(IV)を穏やかに加熱して10mlのH(30%)中に溶解する。同時に、40mlの水中の0.7797gのLa(NO・6HO、0.5353gのEu(NO・6HOおよび1.8419gのクエン酸を調製し、青色タングステン酸溶液に加える。青色溶液は真空乾燥棚中で乾燥、最初に青色泡が形成し、そこから青色粉末が最終的に生成する。固体はその後600℃で5時間焼成する。
Example 8: Preparation of red phosphor La1.2Eu0.8WO4 by complexation with citric acid 0.9711 g of tungsten (IV) oxide is gently heated and dissolved in 10 ml of H 2 O 2 (30%). At the same time, 0.7797 g La (NO 3 ) 3 · 6H 2 O, 0.5353 g Eu (NO 3 ) 3 · 6H 2 O and 1.8419 g citric acid in 40 ml of water were prepared and the blue tungstic acid solution Add to. The blue solution is dried in a vacuum drying shelf, initially forming a blue foam, from which a blue powder is finally produced. The solid is then calcined at 600 ° C. for 5 hours.

例9:赤色蛍光体(Gd0.6Eu0.4(WO1.5POの調製
2.23gのGdClx6HOおよび1.465gのEuClx6HOを100mlのエチレングリコールに溶解する(溶液1)。
1.73gのNaWOを70mlのHOに溶解する(溶液2)。
0.74gKPOを70mlのエチレングリコール中に溶解する(溶液3)。
Example 9: Preparation of red phosphor (Gd 0.6 Eu 0.4 ) 2 (WO 4 ) 1.5 PO 4 2.2 ml gdCl 3 x6H 2 O and 1.465 g EuCl 3 x6H 2 O in 100 ml Dissolve in ethylene glycol (Solution 1).
1.73 g Na 2 WO 4 is dissolved in 70 ml H 2 O (solution 2).
0.74 g K 3 PO 4 is dissolved in 70 ml of ethylene glycol (solution 3).

100mlの溶液1を最初にコニカルフラスコ中に導入する。第1に70mlの溶液3をそこへ加える。溶液は曇ってくるが、短時間攪拌後再び透明になる。70mlの溶液2および5mlのNaOH溶液(1M)の混合物をその後滴下して加える。
反応混合物は3つ口フラスコに移され、そして少なくとも6時間攪拌しながら還流下加熱する。
250mlのアセトンを反応溶液に滴下して加える。沈殿をその後遠心分離で除き、アセトンで再度洗浄する。
生成物をその後4時間の間オーブンで、650℃で焼成する。
100 ml of solution 1 is first introduced into the conical flask. First, 70 ml of solution 3 is added thereto. The solution becomes cloudy but becomes clear again after stirring for a short time. A mixture of 70 ml of solution 2 and 5 ml of NaOH solution (1M) is then added dropwise.
The reaction mixture is transferred to a three neck flask and heated under reflux with stirring for at least 6 hours.
250 ml of acetone is added dropwise to the reaction solution. The precipitate is then removed by centrifugation and washed again with acetone.
The product is then calcined at 650 ° C. in an oven for 4 hours.

例10:緑色発光蛍光体BaSiO:Euの調製
390gの炭酸バリウム、3.5の酸化ヨーロピウム(III)、63gのシリカゲル(SiO)および5.4gの塩化アンモニウムをすり潰すことにより混合する。混合物を8時間の時間に渡り1100℃でCO雰囲気中焼成する。細かくすり潰した後、さらに5.4gの塩化アンモニウムを加え、よく混合して均一な混合物を生じる。この混合物をその後14時間1200℃でCO雰囲気中再度焼成する。すり潰した後、粉末を過剰なハロゲン化物を除去するため水で洗浄し、空気中で乾燥する。
Example 10: Preparation of green-emitting phosphor Ba 2 SiO 4 : Eu 390 g of barium carbonate, 3.5 of europium (III) oxide, 63 g of silica gel (SiO 2 ) and 5.4 g of ammonium chloride were mixed by grinding. To do. The mixture is calcined at 1100 ° C. in a CO atmosphere for 8 hours. After fine grinding, an additional 5.4 g of ammonium chloride is added and mixed well to produce a uniform mixture. The mixture is then fired again in a CO atmosphere at 1200 ° C. for 14 hours. After grinding, the powder is washed with water to remove excess halide and dried in air.

例11:緑色発光蛍光体LuAl12:Ceの調製
537.6gの炭酸水素アンモニウムを3リットルの脱イオン水に溶解する。205.216gの塩化アンモニウム6水和物、228.293gの塩化リチウム水和物(xHO)および3.617gの塩化セリウム6水和物を約400mlの脱イオン水中に溶解し、急速に炭化水素溶液に滴下し、この追加の間、濃アンモニアを加えることにより、pHは8に保たなければならない。混合物をその後さらに1時間撹拌する。熟成後沈殿をろ過して除き、約120℃で、乾燥棚中で乾燥する。
Example 11 Preparation of Green Luminescent Phosphor Lu 3 Al 5 O 12 : Ce 537.6 g ammonium bicarbonate is dissolved in 3 liters of deionized water. Dissolve 205.216 g ammonium chloride hexahydrate, 228.293 g lithium chloride hydrate (xH 2 O) and 3.617 g cerium chloride hexahydrate in about 400 ml deionized water and rapidly carbonize. The pH must be maintained at 8 by adding dropwise to the hydrogen solution and adding concentrated ammonia during this addition. The mixture is then stirred for a further hour. After aging, the precipitate is removed by filtration and dried in a drying cabinet at about 120 ° C.

乾燥した沈殿をすり潰し、その後4時間、1000℃で、空気中で焼成する。生成物をその後再度すり潰し、1700℃でフォーミングガス中8時間焼成する。   The dried precipitate is ground and then calcined in air at 1000 ° C. for 4 hours. The product is then ground again and calcined at 1700 ° C. in forming gas for 8 hours.

例12:LEDの製造および液晶ディスプレイにおける設置
例10からの蛍光体(緑色蛍光体)および例6からの赤色蛍光体を1:2.17の混合比で、ダウコーニング製のAおよびB両方のシリコーン樹脂システムOE6336中、タンブルミキサーの補助で、2種のコンポーネントAおよびB中の蛍光体濃度が10重量%となるよう混合する。2.2重量%のメルク製シリカゲル粉末をその後両方の混合物にそれらをチクソ性にするために加え、そして、生成した混合物はタンブルミキサー中再度均一化する。5mlのコンポーネントAおよび5mlのコンポーネントBはそれぞれの場合において混合されて均一な混合物を生じ、そしてディスペンサの計量バルブに接続されるカートリッジ中に導入される。COB(チップオンボード)粗製LEDであって、1mmの表面積を有するボンディングされたInGaNチップからなり、450nmの波長を発するものを、ディスペンサ中に固定する。ドームをディスペンサバルブのXYZ位置決めにより各チップに配置する。ドームは、チクソ性にされた、2種のシリコーンコンポーネントおよび2種の蛍光体ならびにシリカゲル粉末混合物からなる。このように処理されたCOB−LEDはそれからシリコーンが固化する150℃の温度にされる。LEDはそれから稼動することができ、6000Kの色温度を有する白色光を発する。上記で製造したいくつかのLEDを、次いで液晶ディスプレイのバックライトシステム中に設置する。
Example 12: Manufacture of LEDs and installation in a liquid crystal display The phosphor from Example 10 (green phosphor) and the red phosphor from Example 6 in a mixing ratio of 1: 2.17 for both A and B manufactured by Dow Corning In the silicone resin system OE6336, mixing is performed with the aid of a tumble mixer so that the phosphor concentration in the two components A and B is 10% by weight. 2.2% by weight Merck silica gel powder is then added to both mixtures in order to make them thixotropic and the resulting mixture is homogenized again in a tumble mixer. 5 ml of component A and 5 ml of component B are mixed in each case to produce a homogeneous mixture and introduced into a cartridge connected to the dispenser metering valve. A COB (chip on board) crude LED consisting of a bonded InGaN chip with a surface area of 1 mm 2 and emitting a wavelength of 450 nm is fixed in a dispenser. Domes are placed on each chip by XYZ positioning of the dispenser valve. The dome consists of two silicone components and two phosphors made thixotropic and a silica gel powder mixture. The COB-LED thus treated is then brought to a temperature of 150 ° C. at which the silicone solidifies. The LED can then be activated and emits white light having a color temperature of 6000K. Several of the LEDs produced above are then installed in the backlight system of the liquid crystal display.

Claims (17)

少なくとも1個の半導体ダイオードならびに、少なくとも2種の蛍光体の組合せ(ここで少なくとも1種の蛍光体が赤色光を発し、および、少なくとも1種の蛍光体が緑色光を発する)を含む少なくとも1個の蛍光体層を含む、少なくとも1個の白色光源を有するバックライトシステムを備えた液晶ディスプレイ。   At least one comprising at least one semiconductor diode and a combination of at least two phosphors, wherein at least one phosphor emits red light and at least one phosphor emits green light. A liquid crystal display comprising a backlight system having at least one white light source, comprising: 白色光源が、発光窒化インジウムアルミニウムガリウム半導体、特に、式InGaAlN、式中、0≦i、0≦j、0≦kおよびi+j+k=1で表されるものを含むことを特徴とする請求項1に記載の液晶ディスプレイ。 The white light source includes a light emitting indium aluminum gallium nitride semiconductor, in particular ones represented by the formula In i Ga j Al k N, where 0 ≦ i, 0 ≦ j, 0 ≦ k and i + j + k = 1 The liquid crystal display according to claim 1. 白色光源が青色発光InGaN半導体を含むことを特徴とする、請求項1および/または2に記載の液晶ディスプレイ。   The liquid crystal display according to claim 1 and / or 2, wherein the white light source comprises a blue-emitting InGaN semiconductor. 蛍光体層が、赤色発光蛍光体として、ユーロピウム(III)またはクロム(III)賦活ラインエミッタを含むことを特徴とする、請求項1〜3のいずれか一項に記載の液晶ディスプレイ。   4. The liquid crystal display according to claim 1, wherein the phosphor layer includes a europium (III) or chromium (III) activated line emitter as a red light emitting phosphor. 5. 蛍光体層が、赤色発光蛍光体として、Al:Cr、Na0.5Gd0.3Eu0.2WO、Na0.50.4Eu0.1MoO、Na0.5La0.3Eu0.2WO、Na0.5La0.3Eu0.2MoO、Na0.5La0.3Eu0.2(WO0.5(MoO0.5、La1.2Eu0.8MoO、La1.2Eu0.8WO、(Gd0.6Eu0.4(WO1.5POの群から選択されるユーロピウム(III)またはクロム(III)賦活ラインエミッタを含むことを特徴とする、請求項4に記載の液晶ディスプレイ。 Phosphor layer, as a red-emitting phosphor, Al 2 O 3: Cr, Na 0.5 Gd 0.3 Eu 0.2 WO 4, Na 0.5 Y 0.4 Eu 0.1 MoO 4, Na 0 .5 La 0.3 Eu 0.2 WO 4, Na 0.5 La 0.3 Eu 0.2 MoO 4, Na 0.5 La 0.3 Eu 0.2 (WO 4) 0.5 (MoO 4 ) 0.5 , La 1.2 Eu 0.8 MoO 4 , La 1.2 Eu 0.8 WO 4 , (Gd 0.6 Eu 0.4 ) 2 (WO 4 ) 1.5 PO 4 5. Liquid crystal display according to claim 4, characterized in that it comprises selected europium (III) or chromium (III) activated line emitters. 蛍光体層が、緑色発光蛍光体として、チオガレート、シリケート、オキソニトリドシリケート、アルミネート、窒化物またはガーネットの群から選択されるセリウム(III)またはユーロピウム(II)賦活蛍光体を含むことを特徴とする、請求項1〜5のいずれか一項に記載の液晶ディスプレイ。   The phosphor layer includes, as a green light emitting phosphor, a cerium (III) or europium (II) activated phosphor selected from the group of thiogallate, silicate, oxonitridosilicate, aluminate, nitride or garnet The liquid crystal display according to any one of claims 1 to 5. 少なくとも1個の半導体ダイオードならびに赤色および緑色光を発する少なくとも2種の蛍光体の組合せを含む少なくとも1個の蛍光体層を含む、少なくとも1個の白色光源を有するバックライトシステム。   A backlight system having at least one white light source comprising at least one semiconductor diode and at least one phosphor layer comprising a combination of at least two phosphors emitting red and green light. 白色光源が、発光窒化インジウムアルミニウムガリウム半導体、特に、式InGaAlN、式中、0≦i、0≦j、0≦kおよびi+j+k=1で表されるものを含むことを特徴とする請求項7に記載のバックライトシステム。 The white light source includes a light emitting indium aluminum gallium nitride semiconductor, in particular ones represented by the formula In i Ga j Al k N, where 0 ≦ i, 0 ≦ j, 0 ≦ k and i + j + k = 1 The backlight system according to claim 7. 白色光源が青色発光InGaN半導体を含むことを特徴とする、請求項7または8に記載のバックライトシステム。   9. The backlight system according to claim 7, wherein the white light source includes a blue light emitting InGaN semiconductor. 蛍光体層が、赤色発光蛍光体として、ユーロピウム(III)またはクロム(III)賦活ラインエミッタを含むことを特徴とする、請求項7〜9のいずれか一項に記載のバックライトシステム。   10. The backlight system according to claim 7, wherein the phosphor layer includes europium (III) or chromium (III) activated line emitter as a red-emitting phosphor. 10. 蛍光体層が、赤色蛍光体として、Al:Cr、Na0.5Gd0.3Eu0.2WO、Na0.50.4Eu0.1MoO、Na0.5La0.3Eu0.2WO、Na0.5La0.3Eu0.2MoO、Na0.5La0.3Eu0.2(WO0.5(MoO0.5、La1.2Eu0.8MoO、La1.2Eu0.8WO、(Gd0.6Eu0.4(WO1.5POの群から選択されるユーロピウムまたはクロム賦活ラインエミッタを含むことを特徴とする、請求項7〜10のいずれか一項に記載のバックライトシステム。 When the phosphor layer is a red phosphor, Al 2 O 3 : Cr, Na 0.5 Gd 0.3 Eu 0.2 WO 4 , Na 0.5 Y 0.4 Eu 0.1 MoO 4 , Na 0. 5 La 0.3 Eu 0.2 WO 4 , Na 0.5 La 0.3 Eu 0.2 MoO 4 , Na 0.5 La 0.3 Eu 0.2 (WO 4 ) 0.5 (MoO 4 ) Selected from the group of 0.5 , La 1.2 Eu 0.8 MoO 4 , La 1.2 Eu 0.8 WO 4 , (Gd 0.6 Eu 0.4 ) 2 (WO 4 ) 1.5 PO 4 11. A backlight system according to any one of claims 7 to 10, characterized in that it comprises an activated europium or chromium activated line emitter. 蛍光体層が、緑色発光蛍光体として、チオガレート、シリケート、オキソニトリドシリケート、アルミネート、窒化物およびガーネットの群から選択されるセリウム(III)またはユーロピウム(II)賦活蛍光体を含むことを特徴とする、請求項7〜11のいずれか一項に記載のバックライトシステム。   The phosphor layer includes, as a green light-emitting phosphor, a cerium (III) or europium (II) activated phosphor selected from the group of thiogallate, silicate, oxonitridosilicate, aluminate, nitride and garnet The backlight system according to any one of claims 7 to 11. 青色発光窒化インジウムアルミニウムガリウム半導体、特に、式InGaAlN、式中、0≦i、0≦j、0≦kおよびi+j+k=1で表されるもの、および赤色および緑色光を発する少なくとも2種の蛍光体の組合せを含む蛍光体層を含む白色光源。 Blue-emitting indium aluminum gallium nitride semiconductors, particularly those of the formula In i Ga j Al k N, where 0 ≦ i, 0 ≦ j, 0 ≦ k and i + j + k = 1, and emit red and green light A white light source comprising a phosphor layer comprising a combination of at least two phosphors. 青色発光InGaN半導体を含むことを特徴とする、請求項13に記載の白色光源。   The white light source according to claim 13, comprising a blue light emitting InGaN semiconductor. 蛍光体層が、赤色発光蛍光体として、ユーロピウム(III)またはクロム(III)賦活ラインエミッタを含むことを特徴とする、請求項13または14に記載の白色光源。   15. The white light source according to claim 13 or 14, wherein the phosphor layer includes a europium (III) or chromium (III) activated line emitter as a red light emitting phosphor. 蛍光体層が、緑色発光蛍光体として、チオガレート、シリケート、オキソニトリドシリケート、アルミネート、窒化物およびガーネットの群から選択されるセリウム(III)またはユーロピウム(II)賦活蛍光体を含むことを特徴とする、請求項13〜15のいずれか一項に記載の白色光源。   The phosphor layer includes, as a green light-emitting phosphor, a cerium (III) or europium (II) activated phosphor selected from the group of thiogallate, silicate, oxonitridosilicate, aluminate, nitride and garnet The white light source according to any one of claims 13 to 15. 白色光源を有するバックライトシステムを備えた液晶ディスプレイの製造方法であって、以下のステップ、
青色発光InGaAlN半導体、特に、式InGaAlN、式中、0≦i、0≦j、0≦kおよびi+j+k=1で表されるもの、および赤色発光蛍光体および緑色発光蛍光体の組合せを含む蛍光体層から構築された少なくとも1個のLEDを製造すること、
ハウジングに1または2個以上のLEDを設置して、ディフューザおよびリフレクタを含むバックライトシステムを提供すること、
バックライトシステムを、カラーフィルターシステムを有する正面プレートを含む、対応する液晶ユニットと組合せ、液晶ディスプレイを提供すること、
を含む前記方法。
A method of manufacturing a liquid crystal display including a backlight system having a white light source, the following steps:
Blue light emitting InGaAlN semiconductors, in particular those represented by the formula In i Ga j Al k N, where 0 ≦ i, 0 ≦ j, 0 ≦ k and i + j + k = 1, and red light emitting phosphors and green light emitting phosphors Producing at least one LED constructed from phosphor layers comprising a combination of:
Providing a backlight system including a diffuser and a reflector by installing one or more LEDs in a housing;
Combining a backlight system with a corresponding liquid crystal unit including a front plate having a color filter system to provide a liquid crystal display;
Including said method.
JP2010521327A 2007-08-20 2008-07-23 LCD backlight with LED phosphor Pending JP2010537375A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007039260A DE102007039260A1 (en) 2007-08-20 2007-08-20 LCD backlight with LED phosphors
PCT/EP2008/006007 WO2009024229A1 (en) 2007-08-20 2008-07-23 Lcd backlighting with led phosphors

Publications (1)

Publication Number Publication Date
JP2010537375A true JP2010537375A (en) 2010-12-02

Family

ID=39790999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010521327A Pending JP2010537375A (en) 2007-08-20 2008-07-23 LCD backlight with LED phosphor

Country Status (8)

Country Link
US (1) US20110299008A1 (en)
EP (1) EP2179323A1 (en)
JP (1) JP2010537375A (en)
KR (1) KR20100074142A (en)
CN (1) CN101784948A (en)
DE (1) DE102007039260A1 (en)
TW (1) TW200925742A (en)
WO (1) WO2009024229A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109287110A (en) * 2017-07-20 2019-01-29 日本梅克特隆株式会社 Substrate position identification device, position identification processing unit (plant) and manufacture of substrates

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2240819A1 (en) * 2008-01-03 2010-10-20 Koninklijke Philips Electronics N.V. Display device and illumination device
WO2011144236A1 (en) * 2010-05-17 2011-11-24 Goodrich Lighting Systems Gmbh Light for the interior of an aircraft
DE102010045368A1 (en) 2010-09-14 2012-03-15 Merck Patent Gmbh Silicophosphate phosphors
TWI457418B (en) * 2010-09-29 2014-10-21 Au Optronics Corp White light emitting diode device, light emitting apparatus and liquid crystal display device
CN102367382B (en) * 2011-11-14 2014-10-15 陕西科技大学 Chromium doped alumina sheet shape self-assembly microballoon luminescent material and its preparation method
JP2013205661A (en) * 2012-03-29 2013-10-07 Nichia Chem Ind Ltd Display device and display method using the same
US9328878B2 (en) 2014-07-02 2016-05-03 General Electric Company Phosphor compositions and lighting apparatus thereof
DE102014113068A1 (en) 2014-09-10 2016-03-10 Seaborough Ip I B.V. Light-emitting device
US10151960B2 (en) * 2015-09-25 2018-12-11 Microsoft Technology Licensing, Llc Backlight assembly with tunable grating layer for local dimming
EP3408348B1 (en) * 2016-01-26 2020-03-18 Merck Patent GmbH Use of color converting sheet
CN107916104B (en) * 2017-11-16 2020-08-18 华南理工大学 Tetravalent chromium doped near-infrared luminescent temperature detection nano material and preparation and application thereof
WO2020227916A1 (en) * 2019-05-14 2020-11-19 瑞仪(广州)光电子器件有限公司 Light source structure, backlight module and display device
CN110764309B (en) * 2019-10-31 2022-07-15 深圳市德仓科技有限公司 Backlight module, display screen and terminal
CN116875308A (en) * 2023-07-17 2023-10-13 中国科学院长春应用化学研究所 Luminescent material, preparation method thereof and LED light source

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270022A (en) * 2001-03-14 2002-09-20 Stanley Electric Co Ltd Side light type surface light source device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3242561B2 (en) 1995-09-14 2001-12-25 メルク・ジヤパン株式会社 Flaky aluminum oxide, pearlescent pigment and method for producing the same
JP4406490B2 (en) * 2000-03-14 2010-01-27 株式会社朝日ラバー Light emitting diode
JP2002170989A (en) * 2000-12-04 2002-06-14 Sharp Corp Nitride based compound semiconductor light emitting element
DE10125547A1 (en) 2001-05-23 2002-11-28 Philips Corp Intellectual Pty Liquid crystal picture screen has background lighting system with white light source coated with specified combination of red-, green- and blue-emitting phosphors
JP2005179498A (en) * 2003-12-19 2005-07-07 Nec Lighting Ltd Red phosphor material, white light-emitting diode using the same, and illuminator using the white light-emitting diode
US20070018573A1 (en) * 2004-02-18 2007-01-25 Showa Denko K,K. Phosphor, production method thereof and light-emitting device using the phosphor
KR101142519B1 (en) * 2005-03-31 2012-05-08 서울반도체 주식회사 Backlight panel employing white light emitting diode having red phosphor and green phosphor
JP5235266B2 (en) * 2005-09-29 2013-07-10 株式会社東芝 White LED manufacturing method, backlight manufacturing method using the same, and liquid crystal display device manufacturing method
DE102006027026A1 (en) 2006-06-08 2007-12-13 Merck Patent Gmbh Process for the preparation of a line emitter phosphor
DE102007001903A1 (en) 2006-11-17 2008-05-21 Merck Patent Gmbh Fluorescent body containing ruby for white or color-on-demand LEDs

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270022A (en) * 2001-03-14 2002-09-20 Stanley Electric Co Ltd Side light type surface light source device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109287110A (en) * 2017-07-20 2019-01-29 日本梅克特隆株式会社 Substrate position identification device, position identification processing unit (plant) and manufacture of substrates
CN109287110B (en) * 2017-07-20 2021-05-11 日本梅克特隆株式会社 Substrate position recognition device, position recognition processing device, and substrate manufacturing method

Also Published As

Publication number Publication date
KR20100074142A (en) 2010-07-01
EP2179323A1 (en) 2010-04-28
US20110299008A1 (en) 2011-12-08
TW200925742A (en) 2009-06-16
DE102007039260A1 (en) 2009-02-26
CN101784948A (en) 2010-07-21
WO2009024229A9 (en) 2009-06-18
WO2009024229A1 (en) 2009-02-26

Similar Documents

Publication Publication Date Title
JP2010537375A (en) LCD backlight with LED phosphor
CN108291141B (en) Narrow band red phosphor
US8178000B2 (en) Deep red phosphor and method of manufacturing the same
WO2006118104A1 (en) White led, and backlight and liquid crystal display device using the same
JP5808745B2 (en) Phosphor mixtures containing europium-doped orthosilicates
CN101331206A (en) Blue light emitting alkaline earth chlorophosphate phosphor for cold cathode fluorescent lamp, cold cathode fluorescent lamp, and color liquid crystal display device
JP5832654B2 (en) Light source having phosphor and lighting unit having the light source
WO2010024480A1 (en) Red phosphor and forming method thereof for use in solid state lighting
JP2004359842A (en) Red light-emitting phosphor and light-emitting device
US8975619B2 (en) Silicate-based phosphor
US7940354B2 (en) Liquid crystal display device
KR100634304B1 (en) Fluorescent material and light emitting diode using the same
TW201910490A (en) Fluorescent substance, production method thereof, fluorescent substance sheet, and lighting device
US20070182308A1 (en) Borate chloride-based phosphor, and light-emitting diode, fluorescent lamp and plasma display panel including the same
EP1999232A1 (en) Fluorescent material and light emitting diode using the same
KR100625551B1 (en) Vacuum ultraviolet excited green phosphor material and light-emitting device using the same
Peng et al. Enhancement of luminescence and thermal stability in Sr2. 92-xTmxSiO5: Eu2+ for white LEDs
CN102020989B (en) Flourescent material and manufacturing method thereof as well as luminous device containing flourescent material
Cao et al. Phosphor-Converted LED for Backlighting
Liu et al. Phosphor-Converting LED for Lighting
KR100656993B1 (en) Phospher including sulfur and manufacturing method for it
Wang et al. Selective addition of Al3+ into Ba2SiO4: Eu2+ phosphor to improve its luminescence and thermal stability
Dong et al. Hydrothermal Synthesis and Photoluminescent Properties of (Ca/Sr) 2P2O7: Eu2+ Pyrophosphate-Based Blue-Emission phosphors
Ayoub et al. Nanotechnology-Enabled Next-Generation LED Lights
JP2005068412A (en) Green light-emitting phosphor and light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130702