JP2010535324A - Methods and compositions for passivating heat exchanger systems - Google Patents

Methods and compositions for passivating heat exchanger systems Download PDF

Info

Publication number
JP2010535324A
JP2010535324A JP2010520091A JP2010520091A JP2010535324A JP 2010535324 A JP2010535324 A JP 2010535324A JP 2010520091 A JP2010520091 A JP 2010520091A JP 2010520091 A JP2010520091 A JP 2010520091A JP 2010535324 A JP2010535324 A JP 2010535324A
Authority
JP
Japan
Prior art keywords
phosphate
heat exchanger
containing solution
coolant
exchanger system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010520091A
Other languages
Japanese (ja)
Inventor
ジェイ. ペレット、レジス
ジー. クレイズ、サンドラ
エス. リーフェンス、セルジュ
ピー. ハンシッカー、ダグラス
Original Assignee
シェブロン ユー.エス.エー. インコーポレイテッド
キヤタピラー インコーポレーテツド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シェブロン ユー.エス.エー. インコーポレイテッド, キヤタピラー インコーポレーテツド filed Critical シェブロン ユー.エス.エー. インコーポレイテッド
Publication of JP2010535324A publication Critical patent/JP2010535324A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/66Treatment of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/20Antifreeze additives therefor, e.g. for radiator liquids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/18Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using inorganic inhibitors
    • C23F11/184Phosphorous, arsenic, antimony or bismuth containing compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

熱交換器系のパーツを処理する方法が提供される。この方法では、金属表面をホスフェート含有溶液と接触させることにより、ホスフェート含有溶液が、冷却液とのその後の接触に対して金属表面を不動態化するように、熱交換器系中の冷却液中の添加剤と化学的に及び有害に相互作用する金属表面を有する熱交換器パーツが処理される。  A method of processing heat exchanger system parts is provided. In this method, by contacting the metal surface with a phosphate-containing solution, the phosphate-containing solution passes through the coolant in the heat exchanger system so that the metal surface is passivated for subsequent contact with the coolant. Heat exchanger parts having metal surfaces that interact chemically and detrimentally with other additives are processed.

Description

本発明は、概して、熱伝達のために冷却剤を使用する熱交換器系中の構成材及びパーツの表面を不動態化するための組成物及び方法に関する。   The present invention relates generally to compositions and methods for passivating the surfaces of components and parts in heat exchanger systems that use a coolant for heat transfer.

熱交換系を製造する方法は、アルミニウム及びその合金などのより軽量の材料の使用の増加に伴い、長年にわたり変化してきた。構成方法も、ろう付け、例えば、制御雰囲気ろう付け又はフッ化アルミン酸カリウム融剤を用いる制御Nガス環境中でのろう付けを用いるCABの使用に伴い変化してきた。接合される熱交換パーツの表面に融剤が適用され、組み立てられたユニットがN環境中で加熱され、接合が起こる。 The method of manufacturing heat exchange systems has changed over the years with the increasing use of lighter materials such as aluminum and its alloys. Construction methods have also changed with the use of CAB with brazing, eg, controlled atmosphere brazing or brazing in a controlled N 2 gas environment using a potassium fluoroaluminate flux. A flux is applied to the surfaces of the heat exchange parts to be joined, and the assembled unit is heated in an N 2 environment and joining occurs.

冷却剤(熱伝達液)は、エンジンなどの熱交換系から熱を取り除くのに使用される。金属系の腐食を減少させるために冷却剤に腐食防止剤を加えることは公知である。例えば、米国特許第4664833号は、腐食防止量の硝酸塩を用いる冷却剤系を開示している。米国特許第4,587,028号は、安息香酸、ジカルボン酸及び硝酸のアルカリ金属塩を含むケイ酸塩でない不凍剤製剤を開示している。米国特許第4,647,392号は、脂肪族一酸又は塩、ハイドロカルビル二塩基酸又は塩及びハイドロカルボニルトリアゾールの組合せを含む腐食防止剤を開示している。   A coolant (heat transfer fluid) is used to remove heat from a heat exchange system such as an engine. It is known to add corrosion inhibitors to coolants to reduce metal-based corrosion. For example, US Pat. No. 4,664,833 discloses a coolant system that uses a corrosion inhibiting amount of nitrate. U.S. Pat. No. 4,587,028 discloses a non-silicate antifreeze formulation comprising an alkali metal salt of benzoic acid, dicarboxylic acid and nitric acid. US Pat. No. 4,647,392 discloses a corrosion inhibitor comprising a combination of an aliphatic monoacid or salt, a hydrocarbyl dibasic acid or salt and a hydrocarbonyltriazole.

ろう付けされた材料は冷却系に数十年にわたって使用されている。以前は(ASTM STP705(1979年4月)、「Corrosion Testing of Furnace and Vacuum Brazed−Aluminum Radiators」を参照)、アルミニウムをろう付けするために使用される材料は、冷却系液体に対して化学的に不活性であると考えられてきた。最近の研究によれば、ラジエーターなどの熱交換器系中に融剤が存在すると、一般に、系中に用いられている冷却液の腐食速度が増加することが示されている。Jeffcoateらによる、「Investigation of Interaction Between Coolant Formulations and Flux Loading/Compositions in Controlled Atmosphere Brazed (CAB) Aluminium Surfaces in Heat Exchanger Applications」、Journal of ASTM International、第4巻(1号)、報告書ID JAI100421を参照されたい。別の試験では、熱交換器中の冷却剤防止剤の中には、特に、窒素及びケイ酸ベースの防止剤が、系中に用いられる冷却液のpHが増加するとともに非常に早く消失するものがあり、そのことは冷却剤の性能に厳しい影響を与えることが示されている。   Brazed materials have been used in cooling systems for decades. Previously (see ASTM STP705 (April 1979), "Corrosion Testing of Furnace and Vacuum Brazed-Aluminum Radiators"), the materials used to braze aluminum are chemically resistant to cooling system liquids. It has been considered inert. Recent studies have shown that the presence of flux in heat exchanger systems such as radiators generally increases the corrosion rate of the coolant used in the system. By Jeffcoate et al., "Investigation of Interaction Between Coolant Formulations and Flux Loading / Compositions in Controlled Atmosphere Brazed (CAB) Aluminium Surfaces in Heat Exchanger Applications", Journal of ASTM International, Vol. 4 (No. 1), referring to the report ID JAI100421 I want to be. In another test, some coolant inhibitors in heat exchangers, especially nitrogen and silicate-based inhibitors, disappear very quickly as the pH of the coolant used in the system increases. Which has been shown to have a severe impact on the performance of the coolant.

接着性と抗腐食性を有し、電着コーティングのための下地コートとして特に有用な、均一で緻密なリン酸化コーティングを形成するのに十分な時間、亜鉛イオン及びリン酸イオンの制御量を含む酸性リン酸水溶液中に浸すことにより、金属表面を処理することは、当技術分野では公知である。しかし、リン酸塩がアルミニウムの腐食を防止することは公知ではあるが、独創的な装置製造者の多くには受け入れられない。例えば、Ford Engineering Material Specifications、「Coolant,Organic Additive Technology,Concentrate」、Specification No.WSS−M97BB44−Cを参照されたい。   Includes a controlled amount of zinc and phosphate ions, sufficient time to form a uniform and dense phosphorylated coating that is adhesive and anti-corrosive and is particularly useful as a base coat for electrodeposition coatings It is known in the art to treat metal surfaces by soaking in an aqueous acidic phosphoric acid solution. However, although it is known that phosphate prevents corrosion of aluminum, it is not acceptable to many original equipment manufacturers. For example, Ford Engineering Material Specifics, “Coolant, Organic Additive Technology, Concentrate”, Specification No. See WSS-M97BB44-C.

アルミニウムと合金のパーツを用いる熱交換器系、特に、ろう付けされたパーツを有する系において、冷却液の寿命を延長させる必要性が存在する。一実施形態では、本発明は、冷却液と接触させる前に熱交換器系のアルミニウムパーツ及び構成材を洗浄/不動態化するためにリン酸イオンを含む溶液を利用して、熱交換器系における冷却液の寿命を延長する新規な方法に関する。   There is a need to extend the life of the coolant in heat exchanger systems that use aluminum and alloy parts, particularly systems that have brazed parts. In one embodiment, the present invention utilizes a solution containing phosphate ions to clean / passivate the aluminum parts and components of the heat exchanger system prior to contact with the coolant, and the heat exchanger system The present invention relates to a novel method for extending the life of a coolant in

ある態様では、金属表面をホスフェート含有溶液と接触させることにより、ホスフェート含有溶液が、冷却液とのその後の接触に対して金属表面を不動態化するように、熱交換器系中のパーツを処理するための方法が提供されるが、前記パーツは、熱交換器系中の冷却液中の添加剤と化学的に及び有害に相互作用する金属表面を有する。   In some embodiments, the parts in the heat exchanger system are treated so that the phosphate-containing solution passivates the metal surface against subsequent contact with the coolant by contacting the metal surface with the phosphate-containing solution. Although the method is provided, the part has a metal surface that interacts chemically and detrimentally with additives in the coolant in the heat exchanger system.

別の態様では、本発明は、熱交換器系中のパーツを処理するための、4.0〜12.0のpHを有し、0.005〜30g/lのリン酸イオンを含む、ホスフェート含有溶液の使用に関するもので、前記パーツは、熱交換器系中の冷却液中の添加剤と化学的に及び有害に相互作用する金属表面を有する。前記処理方法においては、ホスフェート含有溶液中のリン酸イオンは、冷却液とのその後の接触に対して金属表面の化学的活性を減少させる。   In another aspect, the invention provides a phosphate for treating parts in a heat exchanger system, having a pH of 4.0-12.0 and comprising 0.005-30 g / l phosphate ions. With regard to the use of the containing solution, the part has a metal surface that interacts chemically and detrimentally with additives in the coolant in the heat exchanger system. In the treatment method, phosphate ions in the phosphate-containing solution reduce the chemical activity of the metal surface for subsequent contact with the coolant.

本発明のさらなる理解を進めるために、次の用語の定義を本明細書に提供する。   In order to facilitate a further understanding of the invention, the following term definitions are provided herein.

本明細書で用いる場合、「熱交換系」という用語は、これらに限られるわけではないが、燃料電池組立品、電化製品及びエンジンへの適用を含み、冷却系が使用される適用を意味する。非制限的な例としては、自動車、トラック、オートバイ、飛行機、列車、トラクター、発電機、コンプレッサー、種々の固定エンジン及び装置用、船舶用エンジン用などに普通に使用されるエンジンのための、加熱器コア及びラジエーターを含む。   As used herein, the term “heat exchange system” means an application in which a cooling system is used, including, but not limited to, application to fuel cell assemblies, appliances and engines. . Non-limiting examples include heating for engines commonly used in automobiles, trucks, motorcycles, airplanes, trains, tractors, generators, compressors, various stationary engines and equipment, marine engines, etc. Including a ceramic core and a radiator.

本明細書で用いる場合、「熱交換構成材」という用語は、これらに限られるわけではないが、ラジエーター、水流ポンプ、サーモスタット、エンジンヘッド、シリンダーライナー、燃料電池の分離板、加熱器コア、などを含み、熱交換系のパーツ、本体、又は構成材を意味する。   As used herein, the term “heat exchange component” includes but is not limited to radiators, water pumps, thermostats, engine heads, cylinder liners, fuel cell separators, heater cores, etc. Means a heat exchange part, main body, or component.

本明細書で用いる場合、「処理する」、「処理(すること)」、「処理される」という用語は、「不動態化する」、「不動態化(すること)」、「不動態化される」という用語と互いに置き換え可能に使用され得るが、熱交換器系中で冷却液とその後に接触することとなる洗浄された表面の化学的活性を減少させるために、熱交換器パーツが、ホスフェート含有溶液で洗浄され(と接触させられ)る、本発明の一実施形態を参照している。   As used herein, the terms “treating”, “treating”, and “treated” refer to “passivate”, “passivate”, “passivate”. In order to reduce the chemical activity of the cleaned surface that would subsequently come into contact with the coolant in the heat exchanger system. Reference is made to an embodiment of the invention which is washed (contacted) with a phosphate-containing solution.

「熱伝達液」という用語は、系中で発生する熱を、熱を利用又は放散できる別の系又は装置へ伝達し、その過熱を防止するために熱交換系を通して流れる液体を意味する。   The term “heat transfer liquid” refers to a liquid that flows through a heat exchange system to transfer heat generated in the system to another system or device that can utilize or dissipate the heat and prevent its overheating.

本明細書で用いる場合、「不凍剤」組成物(又は液若しくは濃縮物)という用語は、「冷却剤」、「熱伝達液」又は「除氷液」(組成物若しくは濃縮物)という用語と互いに置き換え可能に使用され得る。   As used herein, the term “antifreeze” composition (or liquid or concentrate) is the term “coolant”, “heat transfer liquid” or “deicing liquid” (composition or concentrate). And can be used interchangeably.

本明細書で用いる場合、「グリコールベースの」という用語は、グリコール、グリセリン、及びグリコールエーテルも含む。   As used herein, the term “glycol-based” also includes glycols, glycerin, and glycol ethers.

本発明の一実施形態では、熱交換器パーツ、例えば、加熱器コア、ラジエーター及びろう付けされたパーツなどの表面を処理するための方法が提供される。パーツは、その表面の化学的反応性を減少させるために不動態化溶液で処理される。   In one embodiment of the invention, a method is provided for treating surfaces of heat exchanger parts, such as heater cores, radiators and brazed parts. The part is treated with a passivating solution to reduce the chemical reactivity of its surface.

不動態化溶液:熱交換系中の表面を不動態化するための組成物は、pH範囲が4.0〜12.0であり、リン酸イオンをその本質的な成分として含む。第2の実施形態では、組成物は、6.5〜11のpHを有し、リン酸イオンを含む、中性からややアルカリ性の溶液である。   Passivation solution: The composition for passivating the surface in the heat exchange system has a pH range of 4.0 to 12.0 and contains phosphate ions as its essential component. In the second embodiment, the composition is a neutral to slightly alkaline solution having a pH of 6.5 to 11 and containing phosphate ions.

リン酸イオンは、冷却液と接触している表面の化学的活性を減少させるに十分な量で溶液中に存在する。ある実施形態では、リン酸イオンの十分な量は、溶液中0.005〜30g/lである。第2の実施形態では、リン酸イオンは、溶液中0.01〜25g/lの量で存在する。第3の実施形態では、1〜15g/lである。第4の実施形態では、0.5〜12g/lである。第5の実施形態では、0.3〜10g/lである。   Phosphate ions are present in the solution in an amount sufficient to reduce the chemical activity of the surface in contact with the coolant. In certain embodiments, a sufficient amount of phosphate ions is 0.005 to 30 g / l in solution. In a second embodiment, phosphate ions are present in the solution in an amount of 0.01 to 25 g / l. In 3rd Embodiment, it is 1-15 g / l. In 4th Embodiment, it is 0.5-12 g / l. In 5th Embodiment, it is 0.3-10 g / l.

リン酸イオンは、リン酸アルカリ金属塩、リン酸アンモニウム、ポリリン酸塩、ピロリン酸塩、リン酸、などを含む、いかなる可溶性リン酸化合物の形態でも溶液中へ導入し得る。ある実施形態では、不動態化溶液は、溶液中に、リン酸水素二カリウム(KHPO)を含む。第2の実施形態では、溶液は、水溶液中に、リン酸一カリウム(KHPO)を含む。第3の実施形態では、不動態化溶液は、リン酸二アンモニウムの溶液である。 Phosphate ions can be introduced into the solution in the form of any soluble phosphate compound, including alkali metal phosphates, ammonium phosphates, polyphosphates, pyrophosphates, phosphates, and the like. In certain embodiments, the passivating solution comprises dipotassium hydrogen phosphate (K 2 HPO 4 ) in the solution. In the second embodiment, the solution contains monopotassium phosphate (KH 2 PO 4 ) in an aqueous solution. In a third embodiment, the passivating solution is a diammonium phosphate solution.

ある実施形態では、不動態化溶液は、水、中性の水溶液、酸性水溶液及び塩基性水溶液からなる群から選択される水性の媒体を有する水ベースである。第2の実施形態では、不動態化溶液は、そのpHが7〜10の間になるように加えられる、十分な量の少なくとも1種のアルカリ金属水酸化物、例えば、NaOH又はKOHと共に、水ベース中にリン酸水素二カリウムを含む。第3の実施形態では、不動態化溶液は、そのベースとして、グリコールベース又は非グリコールベースの冷却剤を有し、したがってグリコール又は非グリコールベースの不凍剤が、熱伝達液として系に使用されることとなる。   In some embodiments, the passivating solution is water-based with an aqueous medium selected from the group consisting of water, neutral aqueous solution, acidic aqueous solution and basic aqueous solution. In a second embodiment, the passivating solution is water with a sufficient amount of at least one alkali metal hydroxide, such as NaOH or KOH, added so that its pH is between 7-10. Contains dipotassium hydrogen phosphate in the base. In a third embodiment, the passivating solution has as its base a glycol-based or non-glycol-based coolant, so that a glycol or non-glycol-based antifreeze is used in the system as a heat transfer liquid. The Rukoto.

ある実施形態では、ホスフェート含有不動態化溶液は、最終不動態化溶液の全重量の2〜97重量%の量で、グリコール又はグリコールエーテルを含むグリコールベースの溶液を、そのベースとして有する。第2の実施形態では、グリコール又はグリコールエーテルの量は、2〜50重量%の範囲である。非制限的な例としては、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール;トリエチレングリコール、テトラエチレングリコール、ペンタエチレングリコール、ヘキサエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ペンタプロピレングリコール、ヘキサプロピレングリコール、及びそれらの混合物などのアルキレングリコール並びにエチレングリコールのメチル、エチル、プロピル、及びブチルエーテル及びそれらの混合物などのグリコールモノエーテルを含む。   In certain embodiments, the phosphate-containing passivating solution has as its base a glycol-based solution comprising glycol or glycol ether in an amount of 2 to 97% by weight of the total weight of the final passivating solution. In a second embodiment, the amount of glycol or glycol ether ranges from 2 to 50% by weight. Non-limiting examples include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol; triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, pentapropylene Alkylene glycols such as glycol, hexapropylene glycol, and mixtures thereof, and glycol monoethers such as methyl, ethyl, propyl, and butyl ethers of ethylene glycol and mixtures thereof.

さらに別の実施形態では、ホスフェート含有不動態化溶液は、酢酸塩、蟻酸塩、プロピオン酸塩、アジピン酸塩、及びコハク酸塩から選択される陰イオンの少なくとも1種のアルカリ金属塩を、最終不動態化溶液の全重量の2〜97重量%の量で含む、非グリコールの水性媒体を、そのベースとして有する。非グリコールベースの水性媒体の適切な例としては、グリセリン、エタノール、蟻酸カリウム、プロピオン酸カリウム、酢酸カリウム、アジピン酸ジカリウム及びそれらの混合物が含まれるがこれらに限られるわけではない。   In yet another embodiment, the phosphate-containing passivating solution contains at least one alkali metal salt of an anion selected from acetate, formate, propionate, adipate, and succinate, It has as its base a non-glycolic aqueous medium containing in an amount of 2-97% by weight of the total weight of the passivating solution. Suitable examples of non-glycol based aqueous media include, but are not limited to, glycerin, ethanol, potassium formate, potassium propionate, potassium acetate, dipotassium adipate and mixtures thereof.

ある実施形態では、表面がリン酸イオンでより均一に処理されるようにするために、当技術分野で「リン酸化促進剤」として公知の1種又は複数の成分を、任意選択で、不動態化溶液中に加えることもできる。例としては、0.05〜2g/Lでm−ニトロベンゼンスルホン酸イオン、0.1〜10g/lで遊離又は結合形態でのヒドロキシルアミン、0.05〜2g/lでm−ニトロ安息香酸イオン、0.05〜2g/lでp−ニトロフェノール、1〜70mg/lで遊離又は結合形態での過酸化水素、0.05〜10g/lで有機N−オキシド、0.1〜3g/lでニトログアニジン、1〜500mg/lで亜硝酸イオン、及び0.5〜5g/lで塩素酸イオンが含まれる。   In certain embodiments, one or more ingredients known in the art as “phosphorylation promoters” are optionally added to passivate in order to allow the surface to be more uniformly treated with phosphate ions. It can also be added to the crystallization solution. Examples include m-nitrobenzenesulfonate ion at 0.05-2 g / L, hydroxylamine in free or bound form at 0.1-10 g / l, m-nitrobenzoate ion at 0.05-2 g / l. P-nitrophenol at 0.05-2 g / l, hydrogen peroxide in free or bound form at 1-70 mg / l, organic N-oxide at 0.05-10 g / l, 0.1-3 g / l Nitroguanidine, 1 to 500 mg / l nitrite ions, and 0.5 to 5 g / l chlorate ions.

さらに別の実施形態では、当技術分野で公知の従来の腐食防止剤を、0.005〜10重量%の範囲の量でホスフェート含有溶液中に、任意選択で加えることもできる。非制限的な例としては、トリアゾール、硝酸塩、亜硝酸塩、ケイ酸塩、ホウ酸塩、モリブデン酸塩、有機芳香族又は脂肪族の酸の塩、及びそれらの混合物が含まれる。ある実施形態では、ホスフェート含有不動態化溶液は、ホウ酸アルカリ金属塩、ケイ酸アルカリ金属塩、安息香酸アルカリ金属塩、硝酸アルカリ金属塩、亜硝酸アルカリ金属塩、モリブデン酸アルカリ金属塩、ハイドロカルビルチアゾール、及びそれらの混合物の群から選択される少なくとも1種の腐食防止剤をさらに含む。   In yet another embodiment, conventional corrosion inhibitors known in the art can optionally be added to the phosphate-containing solution in an amount ranging from 0.005 to 10% by weight. Non-limiting examples include triazoles, nitrates, nitrites, silicates, borates, molybdates, salts of organic aromatic or aliphatic acids, and mixtures thereof. In some embodiments, the phosphate-containing passivating solution comprises an alkali metal borate, an alkali metal silicate, an alkali metal benzoate, an alkali metal nitrate, an alkali metal nitrite, an alkali metal molybdate, hydrocarbyl It further comprises at least one corrosion inhibitor selected from the group of bilthiazole and mixtures thereof.

可溶性リン酸塩化合物及び任意選択での添加剤の組合せは、不動態化溶液を製剤化するために、単独で又は種々の副組合せの形で、水性の媒体マトリックス中へ混合され得る。不動態化溶液は、単一パッケージの形態でも、不動態化溶液(リン酸イオンと共に)を含む1つと、熱交換器系中に後で使用する冷却液の希釈形態であってもよい冷却剤を含む1つとの2つのパッケージの形態でもよい。   The combination of soluble phosphate compound and optional additives can be mixed into the aqueous medium matrix alone or in various subcombinations to formulate a passivating solution. The passivating solution may be in the form of a single package, or one containing the passivating solution (with phosphate ions) and a coolant dilution form for later use in the heat exchanger system. It may be in the form of two packages with one containing.

熱交換器系中の表面を処理/不動態化するための方法:ある実施形態では、処理/不動態化するプロセスは、不動態化溶液を20〜90℃の温度範囲に保って、10〜140℃の温度範囲で実行される。ある実施形態では、処理プロセスは、室温で実行される。   Method for treating / passivating a surface in a heat exchanger system: In one embodiment, the treating / passivating process comprises maintaining the passivating solution in a temperature range of 20-90 ° C. It is carried out in a temperature range of 140 ° C. In certain embodiments, the treatment process is performed at room temperature.

不動態化溶液は、吹き付け、浸漬、冷却系中に液体を循環させること又はローラーを用いるようなすすぎなしの方法によることを含み、当技術分野で公知の方法を用いて、処理される表面に適用し得る。不動態化溶液が、吹き付け、すすぎなしの方法、又は浸漬により適用されるかにかかわらず、ある実施形態において、処理時間は、5秒から12時間の間である。第2の実施形態では、時間は、30秒から6時間である。第3の実施形態では、処理時間は、5分と2時間の間である。第4の実施形態では、処理時間は、15〜60分の範囲である。   Passivation solutions can be applied to the surface to be treated using methods known in the art, including spraying, dipping, circulating liquids in a cooling system, or by a non-rinsing method such as using a roller. Applicable. Regardless of whether the passivating solution is applied by spraying, a non-rinsing method, or dipping, in certain embodiments, the treatment time is between 5 seconds and 12 hours. In the second embodiment, the time is 30 seconds to 6 hours. In the third embodiment, the processing time is between 5 minutes and 2 hours. In the fourth embodiment, the processing time ranges from 15 to 60 minutes.

ある実施形態において、不動態化溶液での処理後、熱交換器系は、水分を除いてもよく、処理されたパーツは、任意選択で、すすぎ溶媒、例えば、脱イオン化水ですすぐ。別の実施形態では、系は、熱交換器系に加えられる希釈濃度の冷却液ですすいでもよく、それにより、系中に留まり得る任意の不動態化溶液の量及び/又は任意の残留効果を最小限にし得る。最後に、処理(及び任意選択に行われるすすぎステップ)後に、熱交換器系の通常操作のための冷却液が最終的に系に加えられ得る。   In certain embodiments, after treatment with the passivating solution, the heat exchanger system may remove moisture, and the treated part is optionally rinsed with a rinsing solvent, such as deionized water. In another embodiment, the system may be rinsed with a dilute concentration of cooling liquid added to the heat exchanger system, thereby reducing the amount of any passivating solution that may remain in the system and / or any residual effects. Can be minimized. Finally, after processing (and optionally a rinsing step), a coolant for normal operation of the heat exchanger system can finally be added to the system.

ある実施形態では、不動態化溶液での処理は、熱交換系中のパーツ/構成材の表面を洗浄してもよい。溶液はまた、オイル、スラッジ、腐食生成物及びその他の望ましくない共雑物及び/又はパーツの表面上の沈着物を取り除いてもよい。組成物は、こうした化学種を溶液に分散及び/又は溶解してもよく、その溶液は、任意選択に行われるすすぎステップにおいて、望ましくない化学種と共にその後に取り除かれ/水抜きされる。   In some embodiments, the treatment with the passivating solution may clean the surfaces of the parts / components in the heat exchange system. The solution may also remove oil, sludge, corrosion products and other unwanted contaminants and / or deposits on the surface of the part. The composition may disperse and / or dissolve such chemical species in a solution, which is subsequently removed / drained with undesirable chemical species in an optional rinsing step.

適用:不動態化溶液は、冷却液中の添加剤と化学的に及び有害に相互作用する構成材を含む金属パーツを有する熱交換器系の処理に有用である。本明細書で用いる場合、「添加剤と化学的に及び有害に相互作用する」という用語は、冷却液中の少なくとも1種の添加剤が、添加剤中の活性成分量で測定して、腐食防止剤のような少なくとも1種の添加剤において、2週間の使用後に少なくとも25%の減少で、その効力及び/又は使用可能寿命において減少することを意味する。有害な化学的相互作用はまた、時間経過に伴う冷却剤のpHの変化、例えば、2週間後、少なくとも±1のpHの変化において示され得る。   Application: Passivation solutions are useful for the treatment of heat exchanger systems with metal parts containing components that interact chemically and detrimentally with additives in the coolant. As used herein, the term “chemically and detrimentally interacting with additives” means that at least one additive in the coolant is corrosive, as measured by the amount of active ingredient in the additive. In at least one additive, such as an inhibitor, means a decrease in its potency and / or useful life by at least a 25% decrease after 2 weeks of use. Adverse chemical interactions can also be shown in changes in the pH of the coolant over time, eg, at least ± 1 pH change after 2 weeks.

ある実施形態では、方法は、鋳造、圧延、成形、ろう付け、及びそれらの組合せを含むプロセスにより形成される熱交換器パーツを処理するためのものである。別の実施形態では、方法は、亜鉛、マグネシウム、アルミニウム、それらの材料の合金を含む熱交換器パーツを処理するためのものである。さらに別の実施形態では、方法は、アルミニウム及び/又はその合金を含む熱交換器パーツを処理するためのものである。   In certain embodiments, the method is for processing heat exchanger parts formed by processes including casting, rolling, forming, brazing, and combinations thereof. In another embodiment, the method is for processing heat exchanger parts comprising zinc, magnesium, aluminum, alloys of those materials. In yet another embodiment, the method is for processing heat exchanger parts comprising aluminum and / or alloys thereof.

ある実施形態では、方法は、冷却液中の添加剤と化学的に及び有害に相互作用する融剤材料を用いてろう付けされた熱交換器パーツを処理するためのものである。別の実施形態では、方法は、フッ素含有融剤でろう付けされたパーツを処理するためのものである。フッ素含有融剤材料の非制限的な例としては、ホウフッ化カリウム、フッ化アルミン酸カリウム、フッ化アルミン酸セシウム、フッ化亜鉛酸カリウム、フッ化亜鉛酸セシウム、及びそれらの混合物を含む。   In one embodiment, the method is for treating a heat exchanger part brazed with a flux material that interacts chemically and detrimentally with additives in the coolant. In another embodiment, the method is for treating parts brazed with a fluorine-containing flux. Non-limiting examples of fluorine-containing flux materials include potassium borofluoride, potassium fluorinated aluminate, cesium fluorinated aluminate, potassium fluorinated zincate, cesium fluorinated zincate, and mixtures thereof.

ある実施形態では、不動態化溶液を用いる処理は、熱交換器系中の金属表面の冷却液に対する化学的反応性を実質的に不活性化する。亜硝酸塩などの従来の防止剤を用いる有機酸技術(OAT)冷却剤のある実施形態においては、冷却液が処理されたパーツを使用している熱交換器系に加えられた場合、2週間使用後の亜硝酸塩の水準の減少が25%未満となるように、処理により、亜硝酸塩の消失が安定化される。第2の実施形態では、亜硝酸塩の減少水準は、10%未満である。第3の実施形態では、不動態化処理の安定化効果は、冷却剤のpHの水準において示され、冷却剤のpHは本質的に一定に保たれ、すなわち、2週間使用後に10%未満の変化を示す。   In certain embodiments, the treatment with the passivating solution substantially deactivates the chemical reactivity of the metal surface in the heat exchanger system to the coolant. In some embodiments of organic acid technology (OAT) coolants using conventional inhibitors such as nitrite, use for 2 weeks when coolant is added to the heat exchanger system using the treated parts The treatment stabilizes the disappearance of nitrite so that the subsequent decrease in nitrite level is less than 25%. In a second embodiment, the nitrite reduction level is less than 10%. In a third embodiment, the stabilizing effect of the passivation treatment is demonstrated at the coolant pH level, where the coolant pH remains essentially constant, i.e. less than 10% after 2 weeks of use. Showing change.

以下の実施例は、本発明の態様の非制限的な例示として与えられる。   The following examples are given as non-limiting illustrations of aspects of the present invention.

実施例においては、2種類の冷却剤製剤が使用され、OAT冷却剤及び従来の鉱物ベースの冷却剤であり、両方ともChevron Corporationからのものである。冷却剤は表1に示した成分を用いた組成を有する。

Figure 2010535324
In the examples, two types of coolant formulations are used, OAT coolants and conventional mineral-based coolants, both from Chevron Corporation. The coolant has a composition using the components shown in Table 1.
Figure 2010535324

実施例においては、ろう付けしたアルミニウムラジエーターパーツの1/2”〜1”の大きさの切り取り試験片(立方体)を、15分から1晩(10時間)洗浄液中浸漬により処理した。パーツは、融剤材料として、通常条件下では不活性材料であると従来考えられているフッ化アルミン酸カリウムでろう付けした。洗浄後、切り取り試験片をOAT冷却剤中に、2週間、冷却剤浴温を約195°F(90.56℃)に保って浸漬した。すべての実施例において、OAT冷却剤は、初期pHは8.5、亜硝酸塩水準は580ppmである。OAT冷却剤のpH水準、亜硝酸塩及びフッ化物含量を2週間の試験後に測定する。   In the examples, cut specimens (cubes) 1/2 "to 1" in size of brazed aluminum radiator parts were treated by immersion in a cleaning solution for 15 minutes to overnight (10 hours). The parts were brazed with potassium fluoroaluminate, conventionally considered to be an inert material under normal conditions as a flux material. After cleaning, the cut specimens were immersed in OAT coolant for 2 weeks with the coolant bath temperature maintained at about 195 ° F. (90.56 ° C.). In all examples, the OAT coolant has an initial pH of 8.5 and a nitrite level of 580 ppm. The pH level, nitrite and fluoride content of the OAT coolant are measured after 2 weeks of testing.

洗浄液処方Eは、1〜2重量%のリン酸水素二カリウム(KHPO)を使用した水溶液である。洗浄液処方C〜Gを構成する腐食防止剤成分は、以下の表2に示してあり洗浄液処方E〜G中のリン酸イオンは、洗浄水溶液中のリン酸水素二カリウム(KHPO)により供給される。

Figure 2010535324
The cleaning liquid formulation E is an aqueous solution using 1 to 2% by weight of dipotassium hydrogen phosphate (K 2 HPO 4 ). The corrosion inhibitor components constituting the cleaning liquid formulations C to G are shown in Table 2 below, and the phosphate ions in the cleaning liquid formulations E to G are due to dipotassium hydrogen phosphate (K 2 HPO 4 ) in the cleaning aqueous solution. Supplied.
Figure 2010535324

例1では、切り取り試験片は全く処理/洗浄しなかった。例2では、切り取り試験片は水で洗浄した。例3〜7においては、切り取り試験片は表2に示した組成を有する洗浄液で処理した。洗浄液組成E〜Gは、水中0.4〜2重量%のKHPO、OAT冷却剤、又は従来の鉱物冷却剤を有していた。 In Example 1, the cut specimen was not treated / washed at all. In Example 2, the cut specimen was washed with water. In Examples 3-7, the cut specimens were treated with a cleaning solution having the composition shown in Table 2. Cleaning composition E~G-water 0.4 to 2 wt% of K 2 HPO 4, OAT coolant, or had a conventional mineral coolant.

不動態化処理は、短い処理時間(例えば、15分)でもより長い処理時間(1晩)でも同様に効果的であることが見出された。表3の実施例の結果は、一度E及びFで処理された表面が、標準の冷却液と接触させても、異常な消失もpH変化のどちらも観測されない、ということを示している。さらに、熱交換器系に普通に使われる冷却液とのフッ化アルミン酸カリウムの反応性の指標であるフッ化物の激しい放出もない。

Figure 2010535324
Passivation treatment has been found to be equally effective with short treatment times (eg 15 minutes) or longer treatment times (overnight). The results of the examples in Table 3 show that once treated with E and F, neither abnormal disappearance nor pH change is observed when contacted with a standard coolant. Furthermore, there is no intense release of fluoride, which is an indicator of the reactivity of potassium fluoroaluminate with coolants commonly used in heat exchanger systems.
Figure 2010535324

本明細書及び付属の特許請求の範囲の目的のためには、別に記載しない限り、量、百分率、又は比率を表すすべての数字、及びその他の数値は、すべての場合において、「約」という用語により修飾されていると理解されるべきである。したがって、異なるように表示されていない限り、これまで述べた数値的なパラメーターは、本発明により得ようとしている所望の特性に従い変化し得る、近似値である。本明細書に記載の場合、単数表記は、明示的に及び明白に1つの指示対象に限定している場合を除き、複数の指示対象を包含することに留意されたい。本明細書に記載の場合、「含む」という用語及びその文法上の変化形は、非制限的なものであることを意図している。したがって、リストの形で項目を列挙することは、リストされた項目に置き換え又は加え得るようなその他の類似の項目を排除するためではない。   For purposes of this specification and the appended claims, unless expressly stated otherwise, all numbers, percentages, or ratios, and all other numbers, are in all cases the term “about”. Should be understood to be modified by Thus, unless expressed differently, the numerical parameters described so far are approximations that can vary according to the desired characteristics sought to be obtained by the present invention. It should be noted that as described herein, singular notation encompasses a plurality of indicating objects, unless explicitly and explicitly limited to a single indicating object. As used herein, the term “comprising” and its grammatical variations are intended to be non-limiting. Thus, listing items in the form of a list is not to exclude other similar items that may be replaced or added to the listed items.

記載された説明では、最善の態様を含んで、本発明を開示するために、及び当業者が本発明を作製及び使用し得るように、実施例を用いている。特許可能な範囲は、特許請求の範囲により定義されており、当業者が思いつく他の実施例を含み得る。そのような他の実施例は、それらが特許請求の範囲の文言から異ならない構造要素を有するならば、又はそれらが特許請求の範囲の文言に対して本質的でない差を有する等価な構造要素を含有するならば、特許請求の範囲内であることを意図している。本明細書において参照した引用はすべて、参照により明示的に本明細書に組み込まれる。   The written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to make and use the invention. The patentable scope is defined by the claims, and may include other examples that occur to those skilled in the art. Such other embodiments may have structural elements that do not differ from the language of the claims, or equivalent structural elements that have non-essential differences from the language of the claims. If included, it is intended to be within the scope of the claims. All citations referred to herein are expressly incorporated herein by reference.

Claims (12)

熱交換器系中の冷却液中の添加剤と化学的に及び有害に相互作用する金属表面を、少なくとも部分的に有する熱交換器系中のパーツを処理する方法であって、金属表面をホスフェート含有溶液と接触させるステップを含み、前記ホスフェート含有溶液が、冷却液とのその後の接触に対して金属表面を不動態化する方法。   A method of treating a part in a heat exchanger system having at least partially a metal surface that chemically and deleteriously interacts with an additive in a coolant in the heat exchanger system, the metal surface being phosphated A method comprising the step of contacting with a containing solution, wherein the phosphate containing solution passivates the metal surface for subsequent contact with a cooling liquid. 前記熱交換系が、アルミニウム及び/又はその合金を含む構成材を含み、前記ホスフェート含有溶液により不動態化される金属表面がろう付けされている、請求項1に記載の方法。   The method of claim 1, wherein the heat exchange system comprises a component comprising aluminum and / or an alloy thereof, and a metal surface to be passivated by the phosphate-containing solution is brazed. 前記金属表面が、フッ素含有融剤でろう付けされている、請求項2に記載の方法。   The method of claim 2, wherein the metal surface is brazed with a fluorine-containing flux. 前記フッ素含有融剤材料が、ホウフッ化カリウム、フッ化アルミン酸カリウム、フッ化アルミン酸カリウム、フッ化アルミン酸セシウム、フッ化亜鉛酸カリウム、フッ化亜鉛酸セシウム、及びそれらの混合物の群から選択される、請求項3に記載の方法。   The fluorine-containing flux material is selected from the group of potassium borofluoride, potassium fluorinated aluminate, potassium fluorinated aluminate, cesium fluorinated aluminate, potassium fluorinated zincate, cesium fluorinated zincate, and mixtures thereof 4. The method of claim 3, wherein: ラジエーター、水流ポンプ、サーモスタット、エンジンヘッド、シリンダーライナー、燃料電池の分離板、及び加熱器コアの群から選択される熱交換器系を処理するための、請求項1に記載の方法。   The method of claim 1 for treating a heat exchanger system selected from the group of radiators, water pumps, thermostats, engine heads, cylinder liners, fuel cell separators, and heater cores. 鋳造、ろう付け、成形、圧延、及びそれらの組合せのうちの少なくとも1種により形成されるパーツを有する熱交換器系を処理するための、請求項1に記載の方法。   The method of claim 1 for treating a heat exchanger system having a part formed by at least one of casting, brazing, molding, rolling, and combinations thereof. 前記ホスフェート含有溶液が、0.005〜30g/lのリン酸イオンを含み、4.0〜12.0のpHを有する、請求項1に記載の方法。   The method of claim 1, wherein the phosphate-containing solution comprises 0.005 to 30 g / l phosphate ions and has a pH of 4.0 to 12.0. 前記組成物が、6.5〜11のpHを有する、請求項7に記載の方法。   The method of claim 7, wherein the composition has a pH of 6.5-11. 前記ホスフェート含有溶液中のリン酸イオンが、リン酸アルカリ金属塩、リン酸アンモニウム、ポリリン酸塩、ピロリン酸塩、リン酸、及びそれらの混合物のうちの少なくとも1種から誘導される、請求項7に記載の方法。   The phosphate ion in the phosphate-containing solution is derived from at least one of an alkali metal phosphate, ammonium phosphate, polyphosphate, pyrophosphate, phosphoric acid, and mixtures thereof. The method described in 1. 前記ホスフェート含有溶液が、溶液中に1〜2重量%のKHP0を含む、請求項7に記載の方法。 The phosphate-containing solution comprises K 2 HP0 4 1-2 wt% in the solution, The method of claim 7. 熱交換器系における冷却液中の添加剤と化学的に及び有害に相互作用する金属表面を、少なくとも部分的に有する熱交換器系中のパーツを処理するための、4.0〜12.0のpHを有し、0.005〜30g/lのリン酸イオンを含むホスフェート含有溶液の使用であって、前記ホスフェート含有溶液中のリン酸イオンが、冷却液とのその後の接触に対して金属表面の化学的活性を減少させる、使用。   4.0 to 12.0 for treating parts in a heat exchanger system having at least partially a metal surface that interacts chemically and detrimentally with additives in the coolant in the heat exchanger system A phosphate-containing solution having a pH of 0.005 to 30 g / l of phosphate ions, wherein the phosphate ions in the phosphate-containing solution are metal for subsequent contact with the coolant. Use to reduce the chemical activity of the surface. 前記ホスフェート含有溶液中のリン酸イオンが、リン酸アルカリ金属塩、リン酸アンモニウム、ポリリン酸塩、ピロリン酸塩、リン酸、及びそれらの混合物のうちの少なくとも1種から誘導される、請求項11に記載の使用。   The phosphate ion in the phosphate-containing solution is derived from at least one of an alkali metal phosphate, ammonium phosphate, polyphosphate, pyrophosphate, phosphoric acid, and mixtures thereof. Use as described in.
JP2010520091A 2007-08-02 2008-07-25 Methods and compositions for passivating heat exchanger systems Pending JP2010535324A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US95362607P 2007-08-02 2007-08-02
PCT/US2008/071123 WO2009018123A1 (en) 2007-08-02 2008-07-25 Methods and compositions for passivating heat exchanger systems

Publications (1)

Publication Number Publication Date
JP2010535324A true JP2010535324A (en) 2010-11-18

Family

ID=39832716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010520091A Pending JP2010535324A (en) 2007-08-02 2008-07-25 Methods and compositions for passivating heat exchanger systems

Country Status (11)

Country Link
US (1) US20090045379A1 (en)
EP (1) EP2176446A1 (en)
JP (1) JP2010535324A (en)
CN (1) CN101809201A (en)
AU (1) AU2008282497A1 (en)
BR (1) BRPI0814734A2 (en)
CA (1) CA2695183A1 (en)
EA (1) EA201070223A1 (en)
MX (1) MX2010001299A (en)
WO (1) WO2009018123A1 (en)
ZA (1) ZA201001019B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137157A (en) * 2009-12-22 2011-07-14 Bayer Materialscience Ag Method and apparatus for preparing polycarbonate
JP2018185133A (en) * 2017-04-25 2018-11-22 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツングMAHLE International GmbH Manufacturing method of heat exchanger
JP2021127983A (en) * 2020-02-17 2021-09-02 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツングMAHLE International GmbH Method for filling cooling circuit of motor vehicle with coolant

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101448975B (en) 2006-05-10 2011-07-27 汉高股份及两合公司 Improved trivalent chromium-containing composition for use in corrosion resistant coating on metal surfaces
DE102010002349A1 (en) * 2010-02-25 2011-08-25 Behr GmbH & Co. KG, 70469 Additives for heating and cooling agents
US9115302B2 (en) 2012-09-05 2015-08-25 Chevron U.S.A. Inc. Coolant having rapid metal passivation properties
US10156016B2 (en) 2013-03-15 2018-12-18 Henkel Ag & Co. Kgaa Trivalent chromium-containing composition for aluminum and aluminum alloys
DE102019209249A1 (en) * 2019-06-26 2020-12-31 Mahle International Gmbh Process for passivating an aluminum surface provided with a flux
DE102021208231A1 (en) * 2021-07-29 2023-02-02 Mahle International Gmbh Radiator passivation method for a coolant radiator mounted in a motor vehicle of a radiator device, radiator device and use of a motor vehicle for passivating a coolant radiator of a radiator device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246969A (en) * 1988-08-09 1990-02-16 Furukawa Alum Co Ltd Production of brazed flat aluminum tube for heat exchanger
JPH04187782A (en) * 1990-11-21 1992-07-06 Nippon Parkerizing Co Ltd Surface treating solution for di can made of tin plate
JPH08267004A (en) * 1995-04-03 1996-10-15 Nippon Paint Co Ltd Rustproofing method and rustproofing composition for zinc coated and uncoated steel
JP2000239856A (en) * 1998-12-25 2000-09-05 Nippon Steel Corp Precoated steel sheet excellent in corrosion resistance
JP2001152355A (en) * 1999-09-17 2001-06-05 Kawasaki Steel Corp Surface treated steel sheet and producing method therefor
JP2001509840A (en) * 1996-05-28 2001-07-24 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン Zinc phosphate treatment with passivation after integration
JP2001276998A (en) * 2000-01-28 2001-10-09 Mazda Motor Corp Brazing flux
JP2005257257A (en) * 2004-02-12 2005-09-22 Showa Denko Kk Heat exchanger and its manufacturing method
JP2006008201A (en) * 2004-06-28 2006-01-12 Furukawa Sky Kk Aluminum alloy material for beverage container excellent in resistance to blackening by boiling water
WO2006134116A1 (en) * 2005-06-14 2006-12-21 Basf Aktiengesellschaft Method for the passivation of metal surfaces with polymers containing acid groups
WO2007002558A1 (en) * 2005-06-24 2007-01-04 Honeywell International Inc. Method for inhibiting corrosion in brazed metal surfaces and coolants and additives for use therein

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2438877A (en) * 1945-09-06 1948-03-30 American Chem Paint Co Composition for and method of coating aluminum
US4664833A (en) * 1982-03-31 1987-05-12 Union Carbide Corporation Organosiloxane-silicate copolymer antifreeze composition with nitrate corrosion inhibitor
JPH0349944A (en) * 1989-07-17 1991-03-04 Nippondenso Co Ltd Head exchanger make of aluminum and preparation thereof
US5538078A (en) * 1994-04-08 1996-07-23 Nippondenso Co., Ltd. Aluminum-containing metal composite material and process for producing same
US6153022A (en) * 1995-10-13 2000-11-28 Henkel Corporation Composition and process for surface treatment of aluminum and its alloys
US6248183B1 (en) * 1997-06-27 2001-06-19 Concurrent Technologies Corporation Non-chromate conversion coatings for aluminum and aluminum alloys
US5925173A (en) * 1997-08-11 1999-07-20 Prestone Products Corporation Method of inhibiting corrosion of flux-treated metal surfaces
JPH11131254A (en) * 1997-10-24 1999-05-18 Nippon Parkerizing Co Ltd Surface treatment of aluminum-containing metallic material
WO2005078372A1 (en) * 2004-02-12 2005-08-25 Showa Denko K.K. Heat exchanger and method for manufacturing the same
EP1624274B1 (en) * 2004-08-06 2007-07-11 Nippon Paint Co., Ltd. Surface treatment method for flux-brazed aluminum-made heat exchanger
CN102762708B (en) * 2009-07-06 2015-03-04 布拉斯通产品公司 Methods and composition for cleaning a heat transfer system having an aluminum component

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246969A (en) * 1988-08-09 1990-02-16 Furukawa Alum Co Ltd Production of brazed flat aluminum tube for heat exchanger
JPH04187782A (en) * 1990-11-21 1992-07-06 Nippon Parkerizing Co Ltd Surface treating solution for di can made of tin plate
JPH08267004A (en) * 1995-04-03 1996-10-15 Nippon Paint Co Ltd Rustproofing method and rustproofing composition for zinc coated and uncoated steel
JP2001509840A (en) * 1996-05-28 2001-07-24 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン Zinc phosphate treatment with passivation after integration
JP2000239856A (en) * 1998-12-25 2000-09-05 Nippon Steel Corp Precoated steel sheet excellent in corrosion resistance
JP2001152355A (en) * 1999-09-17 2001-06-05 Kawasaki Steel Corp Surface treated steel sheet and producing method therefor
JP2001276998A (en) * 2000-01-28 2001-10-09 Mazda Motor Corp Brazing flux
JP2005257257A (en) * 2004-02-12 2005-09-22 Showa Denko Kk Heat exchanger and its manufacturing method
JP2006008201A (en) * 2004-06-28 2006-01-12 Furukawa Sky Kk Aluminum alloy material for beverage container excellent in resistance to blackening by boiling water
WO2006134116A1 (en) * 2005-06-14 2006-12-21 Basf Aktiengesellschaft Method for the passivation of metal surfaces with polymers containing acid groups
WO2007002558A1 (en) * 2005-06-24 2007-01-04 Honeywell International Inc. Method for inhibiting corrosion in brazed metal surfaces and coolants and additives for use therein

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137157A (en) * 2009-12-22 2011-07-14 Bayer Materialscience Ag Method and apparatus for preparing polycarbonate
JP2018185133A (en) * 2017-04-25 2018-11-22 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツングMAHLE International GmbH Manufacturing method of heat exchanger
US11377741B2 (en) 2017-04-25 2022-07-05 Mahle International Gmbh Method for producing a heat exchanger
JP7105596B2 (en) 2017-04-25 2022-07-25 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Heat exchanger manufacturing method
JP2021127983A (en) * 2020-02-17 2021-09-02 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツングMAHLE International GmbH Method for filling cooling circuit of motor vehicle with coolant
JP7009660B2 (en) 2020-02-17 2022-01-25 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング How to fill a car cooling circuit with refrigerant

Also Published As

Publication number Publication date
EP2176446A1 (en) 2010-04-21
ZA201001019B (en) 2011-04-28
BRPI0814734A2 (en) 2017-06-06
EA201070223A1 (en) 2010-08-30
MX2010001299A (en) 2010-06-01
US20090045379A1 (en) 2009-02-19
AU2008282497A1 (en) 2009-02-05
CA2695183A1 (en) 2009-02-05
WO2009018123A1 (en) 2009-02-05
CN101809201A (en) 2010-08-18

Similar Documents

Publication Publication Date Title
JP2010535324A (en) Methods and compositions for passivating heat exchanger systems
JP3487874B2 (en) Antifreeze composition that inhibits corrosion
US4455248A (en) Antifreeze compositions
CA1258162A (en) Monobasic-dibasic acid/salt antifreeze corrosion inhibitor
US8617415B2 (en) Heat transfer fluids and corrosion inhibitor formulations for use thereof
CA1249430A (en) Corrosion inhibiting functional fluid
US5925173A (en) Method of inhibiting corrosion of flux-treated metal surfaces
KR101767805B1 (en) Alkaline cleaning compositions for metal substrates
JPS6017829B2 (en) Corrosion inhibitor for metal surfaces
WO2003018706A1 (en) Non-aqueous heat transfer fluid and use thereof
KR20030014205A (en) Process for producing part made of magnesium and/or magnesium alloy
KR20020026889A (en) Corrosion inhibiting compositions for heat transfer fluids
US20130099169A1 (en) Methods and compositions for passivating heat exchanger systems
MXPA01008616A (en) Monocarboxylic acid based antifreeze composition for diesel engines.
JP4119622B2 (en) Coolant composition
JP2004068155A (en) Antifreeze
JPWO2005037950A1 (en) Coolant composition
JP2005187905A (en) Cooling liquid composition
JPS60243186A (en) Anti-freeze
JPH1046134A (en) Antifreeze composition
JPH0542995B2 (en)
JP2002012980A (en) Method for manufacturing component made from magnesium and/or magnesium alloy
JP3651939B2 (en) Antifreeze composition
JPWO2005037951A1 (en) Coolant composition
EP4444932A1 (en) Antifreeze concentrate with corrosion protection and aqueous coolant composition produced therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130409