JP2010532850A - solenoid valve - Google Patents

solenoid valve Download PDF

Info

Publication number
JP2010532850A
JP2010532850A JP2010515469A JP2010515469A JP2010532850A JP 2010532850 A JP2010532850 A JP 2010532850A JP 2010515469 A JP2010515469 A JP 2010515469A JP 2010515469 A JP2010515469 A JP 2010515469A JP 2010532850 A JP2010532850 A JP 2010532850A
Authority
JP
Japan
Prior art keywords
mover
force
characteristic curve
flow
solenoid valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010515469A
Other languages
Japanese (ja)
Other versions
JP2010532850A5 (en
JP5535068B2 (en
Inventor
ハイアー クラウス
アンブローシ マッシミリアーノ
アイゼンラウアー ミヒャエル
リーチェ ミヒャエル
ティッシャー ミヒャエル
シュタインガス シュテファン
ヒルデン ミヒャエル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2010532850A publication Critical patent/JP2010532850A/en
Publication of JP2010532850A5 publication Critical patent/JP2010532850A5/ja
Application granted granted Critical
Publication of JP5535068B2 publication Critical patent/JP5535068B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves
    • F16K31/0665Lift valves with valve member being at least partially ball-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
    • B60T8/3615Electromagnetic valves specially adapted for anti-lock brake and traction control systems
    • B60T8/363Electromagnetic valves specially adapted for anti-lock brake and traction control systems in hydraulic systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Transportation (AREA)
  • Magnetically Actuated Valves (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Regulating Braking Force (AREA)
  • Electromagnets (AREA)

Abstract

本発明は、磁石構造群(13)と、磁極心(23,43)を備えた弁カートリッジ(22,42)と、前記磁極心(23,43)に接続された弁挿入体(25,45)と、該弁挿入体(25,45)内で閉鎖位置と開放位置との間で軸方向に可動にガイドされ、かつ閉鎖部材(28,48)に連結された可動子(24,44)と、前記弁挿入体(25,45)に接続され、かつ少なくとも1つの第1の貫流開口(31,51)と第2の貫流開口(32,52)との間に配置された主弁座(30,50)を備えた弁体(29,49)とを有しており、軸方向に可動な前記可動子(24,44)は、前記磁石構造群(13)に給電されると、弁挿入体(25,45)内に生ぜしめられた磁力(FMagnet)によってリターンスプリング(26,46)のばね力(FFeder)に抗して、かつ流体力(FHydraulik)に抗して、前記磁極心(23,43)に向かう方向に移動せしめられ、それによって、前記閉鎖部材(28,48)が前記主弁座(30,50)から持ち上げられて、少なくとも1つの第1の貫流開口(31,51)と第2の貫流開口(32,52)との間での流体貫流が可能となり、また、軸方向で可動な前記可動子(24,44)が前記リターンスプリング(26,46)のばね力(FFeder)によって前記弁挿入体(25,45)内で前記磁極心(23,43)から離れる方向に移動せしめられて、前記閉鎖部材(28,48)が前記主弁座(30,50)内に気密に押し付けられ、前記少なくとも1つの第1の貫流開口(31,51)と前記第2の貫流開口(32,52)との間での流体貫流が中断されるようになっている形式のものに関する。本発明によれば、前記可動子(24,44)のストロークに亘る、前記磁力(FMagnet)の特性曲線、前記ばね力(FFeder)の特性曲線及び前記流体力(FHydraulik)の特性曲線が、前記可動子(24,44)及び前記閉鎖部材(28,48)の閉鎖位置と開放位置との間における、負のフルパワー特性曲線勾配との力の釣り合い点を表す、少なくとも1つの広く安定した作業点が調節され得るように、組み合わされている。The present invention relates to a magnet structure group (13), a valve cartridge (22, 42) having magnetic poles (23, 43), and a valve insert (25, 45) connected to the magnetic poles (23, 43). ) And a movable element (24, 44) guided in a movable manner in the axial direction between the closed position and the open position in the valve insert (25, 45) and connected to the closing member (28, 48). And a main valve seat connected to the valve insert (25, 45) and disposed between at least one first through-opening (31, 51) and a second through-opening (32, 52) The movable element (24, 44) having a valve body (29, 49) provided with (30, 50) and movable in the axial direction is supplied with power to the magnet structure group (13). the valve insert (25, 45) force which is caused in the (F Magnet) by a return spring (26, 46 Against the spring force of (F Feder), and against the fluid force (F Hydraulik), is moved in a direction toward the pole center (23, 43), whereby the closure member (28 and 48 ) Is lifted from the main valve seat (30, 50) to allow fluid flow between the at least one first flow-through opening (31, 51) and the second flow-through opening (32, 52). Further, the movable element (24, 44) movable in the axial direction is moved by the spring force (F Feder ) of the return spring (26, 46) within the valve insert (25, 45). 43) is moved away from the closing member (28, 48) in an airtight manner into the main valve seat (30, 50), and the at least one first flow-through opening (31, 51). And the second through-flow opening (32, 52) Fluid flow is about of the type adapted to be suspended between. According to the present invention, the characteristic curve of the magnetic force (F Magnet ), the characteristic curve of the spring force (F Feder ) and the characteristic curve of the fluid force (F Hydraulik ) over the stroke of the mover (24, 44 ). At least one broadly representing a force balance point between the negative full power characteristic curve slope between the closed position and the open position of the mover (24, 44) and the closing member (28, 48). Combined so that a stable working point can be adjusted.

Description

本発明は、請求項1の上位概念部に記載した形式の電磁弁に関する。   The invention relates to a solenoid valve of the type described in the superordinate conceptual part of claim 1.

例えばアンチロック・ブレーキシステム(ABS)又はトラクションスリップ制御システム(ASR−System)又はエレクトロニック・スタビリティ・プログラムシステム(ESP−System)に使用されるハイドロリック装置のための従来の電磁弁は、図1に示されている。図1に示されているように、切換制御弁として構成された、従来の無励磁状態で閉鎖する電磁弁1は、弁カートリッジ2と磁石構造群13とを有している。前記弁カートリッジ2は、磁極心3と、該磁極心3に接続され、かつスリーブとして構成された弁挿入体5と、該弁挿入体5内で閉鎖位置と開放位置との間で軸方向に可動にガイドされ、かつ閉鎖部材8に連結された可動子4と、前記弁挿入体に接続され、かつ主弁座10を有する弁体9とを有しており、前記主弁座10が、少なくとも1つの第1の貫流開口11と第2の貫流開口12との間に配置されている。前記磁石構造群13は、巻線支持体13.1と、ケーシング周壁13.2と、電気接続部13.5を備えた巻線13.3と、カバーディスク13.4とを有している。軸方向に可動な可動子4は、磁石構造群13に給電されると、つまり電気接続部13.5を介して巻線に電流が印加されると、弁挿入体5内で生ぜしめられた磁力FMagnetによってリターンスプリング6のばね力FFederに抗して、及び流体力FHydraulikに抗して磁極心3に向かって移動せしめられ、閉鎖部材8が主弁座10から持ち上げられ、少なくとも1つの第1の貫流開口11と第2の貫流開口12との間の流体の貫流を可能にする。可動子4若しくは閉鎖部材8の最大可能なストロークは、磁極心3と可動子4との間におけるエアギャップ7によって予め与えられている。閉鎖部材8を主弁座10内に気密に押し付けて、少なくとも1つの第1の貫流開口11と第2の貫流開口12との間における流体の流れを遮断するために、軸方向に可動な可動子4が閉鎖部材8と共に、リターンスプリング6のばね力FFederによって、及び、弁挿入体5内の流体力FHydraulikによって、磁極心3から離れる方向で主弁座10に向かって移動せしめられる。磁極心3は、例えば溶接継ぎ目によって液密に弁挿入体5に接続されている。しかも、図示の電磁弁1は、かしめフランジ16を介して流体装置ブロック15にかしめ結合されている。ばね力FFeder、流体力FHydraulik及び磁力FMagnetの作用方向は、図1に矢印で示されている。 For example, a conventional solenoid valve for a hydraulic device used in an anti-lock braking system (ABS) or a traction slip control system (ASR-System) or an electronic stability program system (ESP-System) is shown in FIG. Is shown in As shown in FIG. 1, a conventional electromagnetic valve 1 configured as a switching control valve and closed in a non-excited state includes a valve cartridge 2 and a magnet structure group 13. The valve cartridge 2 includes a magnetic pole core 3, a valve insert 5 connected to the magnetic pole core 3 and configured as a sleeve, and an axial direction between a closed position and an open position within the valve insert 5. The movable member 4 is movably guided and connected to the closing member 8, and has a valve body 9 connected to the valve insert and having a main valve seat 10. At least one first through-opening 11 and a second through-opening 12 are arranged. The magnet structure group 13 includes a winding support 13.1, a casing peripheral wall 13.2, a winding 13.3 having an electrical connection 13.5, and a cover disk 13.4. . The axially movable mover 4 is generated in the valve insert 5 when power is supplied to the magnet structure group 13, that is, when a current is applied to the winding via the electrical connection 13.5. The closing member 8 is lifted from the main valve seat 10 by moving it toward the magnetic core 3 against the spring force F Feder of the return spring 6 and against the fluid force F Hydraulik by the magnetic force F Magnet . Allow fluid flow between two first through-openings 11 and second through-openings 12. The maximum possible stroke of the mover 4 or the closing member 8 is given in advance by the air gap 7 between the magnetic core 3 and the mover 4. Movable movable in the axial direction to airtightly press the closing member 8 into the main valve seat 10 and block the flow of fluid between the at least one first through-opening 11 and the second through-opening 12. The child 4 is moved together with the closing member 8 by the spring force F Feder of the return spring 6 and by the fluid force F Hydraulik in the valve insert 5 toward the main valve seat 10 in a direction away from the magnetic pole core 3. The magnetic pole core 3 is connected to the valve insert 5 in a fluid-tight manner, for example, by a welding seam. In addition, the illustrated solenoid valve 1 is caulked and coupled to the fluid device block 15 via the caulking flange 16. The action directions of the spring force F Feder , the fluid force F Hydraulik and the magnetic force F Magnet are indicated by arrows in FIG. 1.

ABS/ESPシステムにおける出口弁は従来では純粋な切換制御弁として構成されており、該切換制御弁は、準定常に単に完全に開放されるか又は完全に閉鎖されるようになっている。出口弁は、不連続的な切換制御弁として、典型的な形式で閉鎖ストローク方向において貫流されるようになっている。これは、高い車輪圧力が弁のシール性を促進するという背景に基づいている。これによって、僅かなばねプリロード(予備荷重)で十分であり、ひいてはフルパワーレベルが少なくて済み、また迅速な弁応答が可能である。   The outlet valve in the ABS / ESP system is conventionally configured as a pure switching control valve, which is simply fully opened or closed completely in a semi-steady state. The outlet valve is adapted to flow in the closing stroke direction in a typical manner as a discontinuous switching control valve. This is based on the background that high wheel pressure promotes valve sealing. As a result, a small spring preload is sufficient, and as a result, a full power level is reduced, and a quick valve response is possible.

切換制御弁に対して、定常弁は、完全に閉鎖した位置と完全に開放した位置との間におけるストロークの一部を調節することによって、任意に調節可能な中間位置が調節され、ひいては任意の貫流横断面が開放されるか若しくは任意の貫流量が弁を通って調節される、という利点を有している。このことはつまり、ABS/ESPシステムの弁のために、車輪圧力の増圧特性曲線勾配及び減圧特性曲線勾配を可変に調節でき、これによって車輪圧力の調量可能性が改善され、騒音を発生する圧力振動が減少される、ということを意味する。しかしながら、開放方向で貫流される定常弁は、必要な車輪圧力例えばロック圧レベルの車輪圧力をシールするために高いばねプリロードを必要とする。これによって、フルパワーレベルは非常に高くなり、磁石構造群への給電時に電流強さが過大になり、弁反応時間、流れ調節精度及び熱的な特性に関連して不都合となる。   In contrast to the switching control valve, the steady state valve is adjusted in an arbitrarily adjustable intermediate position by adjusting part of the stroke between the fully closed position and the fully open position, and thus any It has the advantage that the through-flow cross-section is opened or any through-flow rate is adjusted through the valve. This means that for the valves of the ABS / ESP system, the wheel pressure increase and depressurization curve slopes can be variably adjusted, thereby improving the wheel pressure meterability and generating noise. This means that the pressure oscillations that occur are reduced. However, steady valves that flow through in the open direction require a high spring preload to seal the required wheel pressure, for example the wheel pressure at the lock pressure level. This leads to very high full power levels, excessive current strength when powering the magnet structure group, which is disadvantageous in terms of valve reaction time, flow regulation accuracy and thermal characteristics.

発明の開示
これに対して、独立請求項1の特徴部に記載した特徴を有する本発明による電磁弁は、前記可動子のストロークに亘る、磁力の特性曲線、ばね力の特性曲線及び流体力の特性曲線が、前記可動子及び前記閉鎖部材の閉鎖位置と開放位置との間における、負のフルパワー特性曲線勾配(negativer Gesamtkraftgradient)との力の釣り合い点を表す、少なくとも1つの広く安定した作業点が調節され得るように、組み合わされていることを特徴としている。ばね力、磁力及び流体力の特性曲線を、弁ストロークに関連して特別に選択したことによって、閉鎖方向で貫流される切換制御弁として構成された電磁弁において、安定した作業点を調節することができ、これによってこの電磁弁を定常弁として駆動することができる。これによって、本発明による電磁弁は、定常弁の利点を有すると同時に、閉鎖方向で貫流する切換制御弁の、迅速な弁反応、少なくて済む全体的な力レベル及び任意の高さの圧力におけるシール性等の利点も有する。
DISCLOSURE OF THE INVENTION On the other hand, the solenoid valve according to the present invention having the characteristics described in the characterizing portion of the independent claim 1 is characterized in that a magnetic force characteristic curve, a spring force characteristic curve, and a fluid force At least one wide and stable working point, wherein the characteristic curve represents a force balance point with a negative full power characteristic curve gradient between the closed and open positions of the mover and the closure member It is characterized by being combined so that can be adjusted. Adjusting the stable working point in a solenoid valve configured as a switching control valve that flows through in the closing direction by specially selecting the characteristic curves of spring force, magnetic force and fluid force in relation to the valve stroke As a result, this electromagnetic valve can be driven as a steady valve. Thereby, the solenoid valve according to the present invention has the advantages of a steady valve, but at the same time the quick response of the switching control valve that flows through in the closing direction, at a reduced overall force level and at a pressure of any height. It also has advantages such as sealing properties.

従属請求項に記載した手段及び実施態様によって、独立請求項1に記載した電磁弁の有利な実施態様及び改良が可能である。   Advantageous embodiments and improvements of the solenoid valve according to the independent claim 1 are possible by means and embodiments as defined in the dependent claims.

特に有利には、本発明による電磁弁の構造群に給電することによって生ぜしめられる、記可動子及び閉鎖部材のストロークに亘る磁力の特性曲線が、可動子及び磁極心の与えられた幾何学形状によって可能な限りフラット(平坦)になるように調節されている。本発明による電磁弁によって、任意の減圧特性曲線勾配を調節できるようにするために、磁石構造群に給電するための電流が、圧力センサ信号に関連して、弁電流調整器によって制御される。しかも、磁石構造群に給電するための電流の強さは、圧力センサなしでも調節される。従って、可動子は閉鎖部材と共に、磁石構造群に給電するための電流の強さを調節することによって部分ストロークだけ移動せしめられ、それによって閉鎖部材が主弁座から持ち上がり、電磁弁は準定常形式で部分的に開放された状態で駆動される。例えば短いパルスのための電流の強さは、パルス幅変調比(PWM比)を予め設定することによって調節される。これによって、本発明による電磁弁は、切換制御弁とは異なり、完全ではなく、調節された電流強さによって可変である、所定の部分ストロークまでだけ開放せしめられる。これによって、純粋な切換制御弁におけるよりも微細に調量可能な減圧段階が可能であり、ひいては騒音特性も改善される。   Particularly advantageously, the characteristic curve of the magnetic force over the stroke of the mover and the closing member, which is generated by supplying power to the structure of the solenoid valve according to the invention, is given by the given geometry of the mover and the pole core. Is adjusted to be as flat as possible. In order to be able to adjust any depressurization characteristic curve slope by means of the solenoid valve according to the invention, the current for feeding the magnet structure is controlled by a valve current regulator in relation to the pressure sensor signal. Moreover, the strength of the current for supplying power to the magnet structure group can be adjusted without a pressure sensor. Therefore, the mover, together with the closing member, is moved by a partial stroke by adjusting the strength of the electric current for supplying power to the magnet structure group, so that the closing member is lifted from the main valve seat, and the electromagnetic valve is quasi-steady type It is driven in a partially opened state. For example, the current intensity for short pulses is adjusted by presetting the pulse width modulation ratio (PWM ratio). In this way, the solenoid valve according to the invention is opened only up to a predetermined partial stroke which, unlike the switching control valve, is not perfect and is variable with the adjusted current intensity. This allows a pressure-reducing step that can be metered more finely than in a pure switching control valve and thus improves the noise characteristics.

本発明による電磁弁の実施態様によれば、可動子が侵入型可動子として構成されており、該侵入型可動子が、この可動子に対応して構成された磁極心と共に、1段式の又は複数段式の侵入段部を形成している。選択的に、可動子が、フラットな磁極面を有する磁極心と協働する平型可動子として構成されていてもよい。この実施例においては、対応する磁力が、前記可動子と磁極心との間のエアギャップが所定の幅に達した時点から、フラットな特性曲線を有している。   According to the embodiment of the electromagnetic valve according to the present invention, the mover is configured as an intrusion-type mover, and the intrusion-type mover has a one-stage type together with the magnetic pole core configured corresponding to the mover. Alternatively, a multistage intrusion step portion is formed. Alternatively, the mover may be configured as a flat mover cooperating with a magnetic pole core having a flat magnetic pole surface. In this embodiment, the corresponding magnetic force has a flat characteristic curve from the time when the air gap between the mover and the magnetic pole core reaches a predetermined width.

本発明による電磁弁の別の実施態様によれば、ばね力を供給するための前記リターンスプリングが、大きいばね定数を有している。リターンスプリングは、例えば一定のばね定数を有する線状に設計されたばね特性曲線を有している。   According to another embodiment of the solenoid valve according to the invention, the return spring for supplying spring force has a large spring constant. The return spring has a spring characteristic curve designed in a linear shape having a constant spring constant, for example.

ストロークが大きくなりにつれてエアギャップが小さくなると、ストロークに亘っての磁力の特性曲線勾配も上昇し、これは調節可能な領域を小さいストロークに限定するので、リターンスプリングは選択的に、リターンスプリングによって供給されたばね力が、前記可動子及び前記閉鎖部材のストロークに亘って、プログレッシブ(漸進的)な特性曲線を有するように構成される。このことはつまり、リターンスプリングのばね定数が、可動子及び閉鎖部材のストロークに関連して、閉鎖位置と開放位置との間で変えられる、ということである。ばね力のプログレッシブな特性曲線によって、閉鎖部材を有する可動子の安定特性は改善され、安定した作業領域が広げられ、この場合、ばね力のプログレッシブな特性曲線は、ストロークに伴って上昇する磁力特性曲線勾配を過剰に補償する。リターンスプリングのプログレッシブなばね力特性曲線は、有利な形式で増大されたストローク領域に亘って負のフルパワー特性曲線勾配を生ぜしめる。しかも、小さいばね定数で小さいストロークは、構成部材の、より大きい公差を可能にし、これによって大量生産を容易にする。   As the air gap decreases as the stroke increases, the characteristic curve gradient of the magnetic force over the stroke also increases, which limits the adjustable region to a small stroke, so the return spring is selectively supplied by the return spring. The applied spring force is configured to have a progressive characteristic curve over the stroke of the mover and the closure member. This means that the spring constant of the return spring is changed between a closed position and an open position in relation to the stroke of the mover and the closing member. The progressive characteristic curve of the spring force improves the stability characteristics of the mover with the closing member and widens the stable working area, in which case the progressive characteristic curve of the spring force is a magnetic characteristic that increases with stroke Overcompensate the curve slope. The progressive spring force characteristic curve of the return spring produces a negative full power characteristic curve slope over an increased stroke area in an advantageous manner. Moreover, small spring constants and small strokes allow greater tolerances of the components, thereby facilitating mass production.

本発明による電磁弁の別の実施態様によれば、第1の貫流開口と第2の貫流開口との間での流体流によって生ぜしめられる、流体力の特性曲線が、前記可動子及び閉鎖部材のストロークに亘って、前記閉鎖部材及び主弁座のための予め設定された流れの幾何学形状によって、可能な限りフラットに設定されている。可動子及び閉鎖部材のストロークに亘っての流体力のフラットな特性曲線は、例えば閉鎖部材と前記主弁座との間の小さい開放角度によって予め与えられるようになっている。このために、閉鎖部材のシール領域が球状に構成されているか、又円錐形に構成されており、これに対して、主弁座のシール領域は中空円錐形に構成されている。   According to another embodiment of the solenoid valve according to the present invention, the characteristic curve of the fluid force generated by the fluid flow between the first and second flow-through openings is the movable element and the closure member. Is set as flat as possible by the preset flow geometry for the closure member and the main valve seat over the stroke. The flat characteristic curve of the fluid force over the stroke of the mover and the closing member is given in advance by a small opening angle between the closing member and the main valve seat, for example. For this purpose, the sealing region of the closing member is configured in a spherical shape or in a conical shape, whereas the sealing region of the main valve seat is configured in a hollow conical shape.

以下に記載された本発明の有利な実施例、並びに本発明の実施例を理解しやすくするために、上述した従来の実施例は、以下に図面で示されている。図面では、同じ若しくは類似の機能を有する構成部材若しくは部材には同じ符号が付けられている。   In order to facilitate understanding of the preferred embodiments of the present invention described below, as well as the embodiments of the present invention, the above-described conventional embodiments are shown in the drawings below. In the drawings, constituent members or members having the same or similar functions are denoted by the same reference numerals.

無励磁状態で閉鎖する、従来の電磁弁の概略的な断面図である。It is a schematic sectional drawing of the conventional solenoid valve closed in a non-excited state. 無励磁状態で閉鎖する、本発明による電磁弁の弁カートリッジの第1実施例の概略的な断面図である。1 is a schematic cross-sectional view of a first embodiment of a valve cartridge of a solenoid valve according to the present invention, which closes in a non-excited state. 無励磁状態で閉鎖する、本発明による電磁弁の弁カートリッジの第1実施例の、別の箇所の概略的な断面図である。FIG. 4 is a schematic cross-sectional view of another part of the first embodiment of the valve cartridge of the solenoid valve according to the present invention, which is closed in a non-excited state. 無励磁状態で閉鎖する、本発明による電磁弁の弁カートリッジの第1実施例の、別の箇所の概略的な断面図である。FIG. 4 is a schematic cross-sectional view of another part of the first embodiment of the valve cartridge of the solenoid valve according to the present invention, which is closed in a non-excited state. 無励磁状態で閉鎖する、本発明による電磁弁の弁カートリッジの第2実施例の概略的な断面図である。FIG. 6 is a schematic cross-sectional view of a second embodiment of the valve cartridge of the solenoid valve according to the present invention, which is closed in a non-excited state. 無励磁状態で閉鎖する、本発明による電磁弁の弁カートリッジの第2実施例の、別の箇所の概略的な断面図である。FIG. 6 is a schematic cross-sectional view of another part of the second embodiment of the valve cartridge of the solenoid valve according to the present invention, which closes in a non-excited state. 無励磁状態で閉鎖する、本発明による電磁弁の弁カートリッジの第2実施例の、別の箇所の概略的な断面図である。FIG. 6 is a schematic cross-sectional view of another part of the second embodiment of the valve cartridge of the solenoid valve according to the present invention, which closes in a non-excited state. 従来形式の電磁弁と本発明による電磁弁の、制御可能なパワー特性曲線を示す線図である。It is a diagram which shows the controllable power characteristic curve of the solenoid valve of a conventional type and the solenoid valve by this invention. 本発明の電磁弁のための、リターンスプリングの、ばねストロークに亘って変化するばね定数の概略的な線図である。FIG. 4 is a schematic diagram of a spring constant of a return spring that varies over the spring stroke for the solenoid valve of the present invention.

図4の線図に示されているように、閉鎖ストローク方向で流体が貫流する切換制御弁として構成された従来の電磁弁1は、図4の1段目に概略的に示された、磁力FMagnet、ばね力FFeder及び流体力FHydraulikの特性曲線を有している。開放ストローク方向で流体が貫流する定常弁(Stetigventil)として構成された電磁弁2は、図4の2段目に概略的に示された、磁力FMagnet、ばね力FFeder及び流体力FHydraulikの特性曲線を有している。そして、本発明に従って閉鎖ストローク方向で流体が貫流する定常弁として構成された電磁弁3は、図4の3段目に概略的に示された、磁力FMagnet、ばね力FFeder及び流体力FHydraulikの特性曲線を有している。図4の3段目に示されているように、磁力FMagnetのパワー特性曲線は、ストロークに亘ってほぼフラット(平坦)である。リターンスプリングはできるだけ急勾配に構成されていてよい。つまり、リターンスプリング26は、高いばね剛性を有していてよい。流体力FHydraulikのパワー特性曲線は、ストロークに亘って同様にできるだけフラットであってよい。可動子及び閉鎖部材のストローク特性曲線に基づく、磁力FMagnet、ばね力FFeder及び流体力FHydraulikの図示の特性曲線は、本発明によれば、可動子及び閉鎖部材の閉鎖位置と開放位置との間で、少なくとも1つの安定した作業点が調節されるように、組み合わされている。前記作業点は、負のフルパワー特性曲線勾配との力の釣り合い点を表す。本発明による電磁弁のためのフルパワー特性曲線勾配は、次の式(1)から得られる。 As shown in the diagram of FIG. 4, the conventional solenoid valve 1 configured as a switching control valve through which fluid flows in the closing stroke direction has a magnetic force schematically shown in the first stage of FIG. 4. It has characteristic curves of F Magnet , spring force F Feder and fluid force F Hydraulik . The solenoid valve 2 configured as a steady valve (Stetigventil) through which fluid flows in the direction of the open stroke is composed of a magnetic force F Magnet , a spring force F Feder and a fluid force F Hydraulik , schematically shown in the second stage of FIG. It has a characteristic curve. The electromagnetic valve 3 configured as a steady valve through which fluid flows in the closed stroke direction according to the present invention is schematically shown in the third stage of FIG. 4, the magnetic force F Magnet , the spring force F Feder and the fluid force F. It has the characteristic curve of Hydraulik . As shown in the third row in FIG. 4, the power characteristic curve of the magnetic force F Magnet is substantially flat (flat) over the stroke. The return spring may be configured as steep as possible. That is, the return spring 26 may have high spring rigidity. The power characteristic curve of the fluid force F Hydraulik may be as flat as possible over the stroke as well. The illustrated characteristic curves of the magnetic force F Magnet , the spring force F Feder and the fluid force F Hydraulik based on the stroke characteristic curves of the mover and the closing member are, according to the present invention, the closed and open positions of the mover and the closing member. In such a way that at least one stable working point is adjusted. The working point represents a balance point of force with the negative full power characteristic curve slope. The full power characteristic curve slope for the solenoid valve according to the present invention is obtained from the following equation (1).

Figure 2010532850
Figure 2010532850

図2a〜図2cに示されているように、本発明による電磁弁のための弁カートリッジ22の第1実施例は、図1に示した従来の電磁弁1と同様に、磁極心23と、該磁極心23に接続された弁挿入体25と、該弁挿入体25内において閉鎖位置と開放位置との間で軸方向可動にガイドされた可動子24(閉鎖部材28に連結されている)と、弁挿入体25に接続された弁体29とを有している。この弁体29は、少なくとも1つの第1の貫流開口31と第2の貫流開口32との間に配置された主弁座30を有している。弁挿入体25内で軸方向に可動な可動子24を閉鎖部材28と共に、リターンスプリング26のばね力FFeder及び流体力FHydraulikに抗して磁極心23に向かって移動させる磁力FMagnetを生ぜしめるために、図1に示した磁石構造群が使用される。磁石構造群に給電することによって生ぜしめられる磁力FMagnetによって、可動子24は磁極心23に向かって移動せしめられ、閉鎖部材28が主弁座30から持ち上げられ、それによって少なくとも1つの第1の貫流開口31と第2の貫流開口32との間での流体の流れが調節される。リターンスプリング26のばね力FFeder及び、第1の貫流開口31と第2の貫流開口32との間の流体流が可動子24及び閉鎖部材28に作用する圧力分布によって生ぜしめられる流体力FHydraulikによって、可動子24は弁挿入体25内で磁極心23から持ち上がり、閉鎖部材28を主弁座30に押し付け、少なくとも1つの第1の貫流開口31と第2の貫流開口32との間での流体の流れを遮断する。磁力FMagnet、ばね力FFeder及び流体力FHydraulikのストロークに関連した特性曲線は、可動子24及び磁極心23の幾何学形状によって、及びリターンスプリング26の設計によって、並びに第1の貫流開口31と第2の貫流開口32との間の流路のための幾何学形状によって、生ぜしめられる。 As shown in FIGS. 2a to 2c, the first embodiment of the valve cartridge 22 for the solenoid valve according to the present invention is similar to the conventional solenoid valve 1 shown in FIG. A valve insert 25 connected to the magnetic pole core 23, and a mover 24 (coupled to a closing member 28) guided in an axially movable manner between a closed position and an open position in the valve insert 25 And a valve body 29 connected to the valve insert 25. The valve body 29 has a main valve seat 30 arranged between at least one first through-opening 31 and second through-opening 32. A movable element 24 that is movable in the axial direction in the valve insert 25 and a closing member 28 generate a magnetic force F Magnet that moves toward the magnetic pole core 23 against the spring force F Feder and fluid force F Hydraulik of the return spring 26. In order to fix, the magnet structure group shown in FIG. 1 is used. Due to the magnetic force F Magnet generated by supplying power to the magnet structure group, the mover 24 is moved toward the magnetic core 23, and the closing member 28 is lifted from the main valve seat 30, thereby at least one first The fluid flow between the flow-through opening 31 and the second flow-through opening 32 is adjusted. The spring force F Feder of the return spring 26 and the fluid force F Hydraulik generated by the pressure distribution acting on the mover 24 and the closing member 28 by the fluid flow between the first through-flow opening 31 and the second through-flow opening 32. Thus, the mover 24 is lifted from the magnetic core 23 in the valve insert 25, pressing the closing member 28 against the main valve seat 30, and between the at least one first through-flow opening 31 and the second through-flow opening 32. Shut off fluid flow. The characteristic curves associated with the strokes of the magnetic force F Magnet , the spring force F Feder and the fluid force F Hydraulik depend on the geometry of the mover 24 and magnetic pole core 23, on the design of the return spring 26 and on the first through-flow opening 31. And the geometry for the flow path between the second through-flow opening 32 and the second through-flow opening 32.

図2bに示されているように、可動子が侵入型の可動子24として構成されていて、この可動子24は、対応して構成された磁極心23と協働して2段階の侵入段22.1を形成している。図2bに示されているように、侵入型の可動子24は2つの可動子段24.1を有していて、磁極心23は、対応する2つの磁極心段23.1を有しており、これらの磁極心段23.1は前記可動子段24.1内に侵入する。2段階の侵入段22.1として構成されたことによって、磁石構造群13に給電することによって生ぜしめられる、磁力FMagnetの特性曲線は、可動子24及び閉鎖部材28のストロークに亘って、所望であるように、できるだけフラットに調節される。図示していない選択的な実施例においては、可動子は平型可動子として構成されており、この平型可動子は、平らな極面を有する磁極心と協働する。しかしながら、このような選択的な構成においては、対応する磁力がフラットな特性曲線を得るのは、可動子と磁極心との間のエアギャップの幅が所定の幅になってからである。 As shown in FIG. 2 b, the mover is configured as an intrusion-type mover 24, which cooperates with a correspondingly configured magnetic core 23 and has two intrusion stages. 22.1 is formed. As shown in FIG. 2b, the interstitial mover 24 has two mover stages 24.1 and the magnetic core 23 has two corresponding magnetic pole stages 23.1. These magnetic core stages 23.1 penetrate into the mover stage 24.1. The characteristic curve of the magnetic force F Magnet generated by supplying power to the magnet structure group 13 by being configured as the two-stage intrusion stage 22.1 is desired over the strokes of the mover 24 and the closing member 28. To be as flat as possible. In an alternative embodiment not shown, the mover is configured as a flat mover, which cooperates with a magnetic pole core having a flat pole face. However, in such a selective configuration, a characteristic curve with a flat corresponding magnetic force is obtained after the width of the air gap between the mover and the magnetic core becomes a predetermined width.

図2cに示されているように、閉鎖部材28のシール領域28.1は球状に構成されていて、主弁座30のシール領域30.1は中空円錐形に構成されている。このような構成によって、この実施例では閉鎖部材28と主弁座30との間に小さい開放角度が形成され、この小さい開放角度によって、閉鎖位置と開放位置との間での閉鎖部材28及び可動子のストロークに亘って、流体力FHydraulikの所望のフラットな特性曲線が得られる。 As shown in FIG. 2c, the sealing region 28.1 of the closing member 28 is configured in a spherical shape, and the sealing region 30.1 of the main valve seat 30 is configured in a hollow conical shape. With this configuration, in this embodiment, a small opening angle is formed between the closing member 28 and the main valve seat 30, and this small opening angle allows the closing member 28 to move between the closing position and the opening position. The desired flat characteristic curve of the fluid force F Hydraulik is obtained over the stroke of the child.

図3a乃至3cに示されているように、本発明による電磁弁のための弁カートリッジ42の第2実施例が、図2a乃至図2cに示した、本発明による電磁弁の弁カートリッジ22の第1実施例と同様に、磁極心43と、この磁極心43に接続された弁挿入体45と、該弁挿入体45内において閉鎖位置と開放位置との間で軸方向に可動にガイドされた、閉鎖部材48と連結された可動子44と、前記弁挿入体45に接続された、主弁座50を備えた弁体49とを有しており、該弁体49は、少なくとも1つの第1の貫流開口51と第2の貫流開口52との間に配置されている。磁力FMagnetを生ぜしめるために、同様に、図1に示した磁石構造群が使用される。第1実施例と同様に、磁力FMagnet、ばね力FFeder及び流体力FHydraulikが、可動子及び磁極心43のための与えられた幾何学形状、リターンスプリング46の設計によって、及び第1の貫流開口51と第2の貫流開口52との間の流路のための与えられた幾何学形状によって、生ぜしめられる。 As shown in FIGS. 3a to 3c, a second embodiment of the valve cartridge 42 for the solenoid valve according to the present invention is shown in FIG. 2a to FIG. As in the first embodiment, the magnetic pole core 43, the valve insert 45 connected to the magnetic pole core 43, and the valve insert 45 are guided to be movable in the axial direction between the closed position and the open position. , And a valve body 49 having a main valve seat 50 connected to the valve insert 45, the valve body 49 having at least one first member. It is arranged between one through-opening 51 and the second through-opening 52. In order to generate the magnetic force F Magnet , similarly, the magnet structure group shown in FIG. 1 is used. Similar to the first embodiment, the magnetic force F Magnet , the spring force F Feder and the fluid force F Hydraulik depend on the given geometry for the mover and magnetic core 43, the design of the return spring 46 and the first This is caused by the given geometry for the flow path between the flow-through opening 51 and the second flow-through opening 52.

図3bに詳細が示されているように、第2実施例の可動子も侵入型の可動子44として構成されており、この可動子44は、対応する磁極心43と協働して2段階の侵入段42.1を形成する。図3bに示されているように、侵入型の可動子44は同様に2つの可動子段44.1を有していて、磁極心は2つの対応する磁極心段43.1を有しており、この磁極心段43.1は可動子段44.1内に侵入する。2段階の侵入段42.1として構成されていることによって、磁石構造群13に給電することによって生ぜしめられる、可動子44及び閉鎖部材48のストロークに亘っての磁力FMagnetの特性曲線は、所望にできるだけフラットに調節される。 As shown in detail in FIG. 3 b, the mover of the second embodiment is also configured as an intrusive mover 44, and this mover 44 cooperates with the corresponding magnetic core 43 in two stages. Intrusion stage 42.1 is formed. As shown in FIG. 3b, the interstitial mover 44 likewise has two mover stages 44.1, and the magnetic pole core has two corresponding magnetic pole stages 43.1. This magnetic core stage 43.1 penetrates into the mover stage 44.1. The characteristic curve of the magnetic force F Magnet over the stroke of the movable element 44 and the closing member 48 generated by supplying power to the magnet structure group 13 by being configured as the two-stage intrusion stage 42.1 is: Adjust as flat as possible.

図3cに詳しく示されているように、閉鎖部材48のシール領域48.1は円錐形であって、主弁座50のシール領域50.1は中空円錐形に構成されている。このような構成によって、閉鎖部材48と主弁座50との間に、第1実施例と同様に、小さい開放角度が形成されており、この小さい開放角度によって、例えば閉鎖位置と開放位置との間での可動子44及び閉鎖部材48のストロークに亘って、流体力FHydraulikの所望のフラットな特性曲線が得られる。 As shown in detail in FIG. 3c, the sealing region 48.1 of the closure member 48 is conical and the sealing region 50.1 of the main valve seat 50 is configured as a hollow cone. With such a configuration, a small opening angle is formed between the closing member 48 and the main valve seat 50 in the same manner as in the first embodiment. By this small opening angle, for example, between a closed position and an open position. The desired flat characteristic curve of the fluid force F Hydraulik is obtained over the stroke of the mover 44 and the closing member 48 between them.

本発明による電磁弁の以上2つの実施例のためには、ばね力FFederを生ぜしめるためのリターンスプリング26,46が大きいばね定数を有していて、ひいては高いばね剛性を有していることが重要である。リターンスプリング26,46によって生ぜしめられたばね力FFederが、可動子24,44及び閉鎖部材28,48のストロークに亘ってプログレッシブ(Progressiv;漸進的)な特性を有していれば、特に有利である。 For the above two embodiments of the solenoid valve according to the invention, the return springs 26, 46 for producing the spring force F Feder have a large spring constant and thus a high spring stiffness. is important. It is particularly advantageous if the spring force F Feder generated by the return springs 26, 46 has a progressive characteristic over the stroke of the movers 24, 44 and the closure members 28, 48. is there.

ばね力FFederがプログレッシブな特性を有するリターンスプリング26,46を選択することによって、本発明による電磁弁の安定特性は改善され、負のフルパワー特性曲線勾配を有する安定した作業領域が拡大される。この場合、ストロークと共に上昇する磁パワー特性曲線勾配は、ばね力FFederのプログレッシブな特性によって過補償される。付加的に、小さいストロークにおいて減少するばね定数は、構成部材の、より大きい公差を可能にし、これによって大量生産を容易にする。 By selecting the return springs 26 and 46 whose spring force F Feder has a progressive characteristic, the stability characteristic of the solenoid valve according to the present invention is improved and the stable working area having a negative full power characteristic curve gradient is expanded. . In this case, the magnetic power characteristic curve gradient that rises with the stroke is overcompensated by the progressive characteristic of the spring force F Feder . In addition, a spring constant that decreases with a small stroke allows for greater tolerances of the components, thereby facilitating mass production.

図5に示されているように、ばね定数C(h)の具体的な特性は、ストロークhに関連して、ばね定数C(h)minの最小可能な特性曲線とばね定数C(h)maxの最大可能な特性曲線との間に位置する。付加的に、図5に示した線図は、ばね定数C(h)optの最適な特性曲線を示している。図5によれば、ばね定数C(h)optの最適な特性曲線は、有利な形式で最小のストロークにおいて非常にプログレッシブであって、対応する本発明による電磁弁のための安定した作業点の存在を保証する。 As shown in Figure 5, the specific characteristics of the spring constant C (h), in conjunction with the stroke h, the spring constant C (h) smallest possible characteristic curves of the min and spring constant C (h) Located between the maximum possible characteristic curve of max. In addition, the diagram shown in FIG. 5 shows an optimum characteristic curve of the spring constant C (h) opt. According to FIG. 5, the optimum characteristic curve of the spring constant C (h) opt is very progressive at a minimum stroke in an advantageous manner, and a stable working point for the corresponding solenoid valve according to the invention. Guarantee existence.

全体的に、本発明による電磁弁は、広い流れ範囲に亘って上昇する特性曲線によって、所望の及び良好に調量された圧力段を生ぜしめることができる。本発明による電磁弁の調節可能な急勾配に調節可能なストロークによって、従来の切換制御弁と比較して、圧力低下は著しく小さい。発生する騒音に強く影響する、局所的に発生した圧力振動も、著しく減少される。例えば圧力センサ信号を評価する弁電流制御器によって、磁力FMagnetを生ぜしめるための電流の流れが与えられるので、車輪ブレーキ内の減圧のための所望の目標特性曲線勾配が大きな偏差なしに得られ、それによってスムーズな車輪圧力調整が可能である。しかも、磁石構造群に給電するための電流強さを、圧力センサなしでも調節することができる。従って、例えばパルス幅調整比(PWM比)を予め与えておくことによって調節可能な、可変な電流強さを有する短いパルス時間に対応する、電磁弁の磁石構造群に給電することができる。切換制御弁とは異なり、本発明による電磁弁は完全に開放するのではなく、調節された電流強さによって変えることができる所定の部分ストロークまで開放する。これによって、純粋な切換制御弁におけるよりも微細に調量可能な減圧段階が可能であり、ひいては騒音特性も改善される。 Overall, the solenoid valve according to the invention can produce a desired and well-metered pressure stage with a characteristic curve that rises over a wide flow range. Due to the adjustable steep adjustable stroke of the solenoid valve according to the present invention, the pressure drop is significantly smaller compared to conventional switching control valves. Locally generated pressure vibrations that strongly affect the generated noise are also significantly reduced. For example, a valve current controller that evaluates the pressure sensor signal provides a current flow for generating the magnetic force F Magnet , so that a desired target characteristic curve gradient for pressure reduction in the wheel brake can be obtained without significant deviation. Thus, smooth wheel pressure adjustment is possible. Moreover, the current intensity for supplying power to the magnet structure group can be adjusted without a pressure sensor. Therefore, it is possible to supply power to the magnet structure group of the electromagnetic valve corresponding to a short pulse time having a variable current intensity that can be adjusted by, for example, providing a pulse width adjustment ratio (PWM ratio) in advance. Unlike the switching control valve, the solenoid valve according to the invention does not open completely but opens up to a predetermined partial stroke which can be changed by the adjusted current strength. This allows a pressure-reducing step that can be metered more finely than in a pure switching control valve and thus improves the noise characteristics.

本発明に従って閉鎖ストローク方向で貫流する電磁弁は、有利な形式で、閉鎖方向で貫流する切換制御弁の、迅速な弁反応、少なくて済む全体的な力レベル及び任意の高さの圧力におけるシール性等の利点を有すると同時に、定常弁の利点も有している。   The solenoid valve that flows in the direction of the closing stroke according to the invention is advantageous in that it provides a quick valve response, a reduced overall force level and a pressure at any height of the switching control valve that flows in the closing direction. At the same time, it has the advantage of a steady valve.

Claims (11)

磁石構造群(13)と、磁極心(23,43)を備えた弁カートリッジ(22,42)と、前記磁極心(23,43)に接続された弁挿入体(25,45)と、該弁挿入体(25,45)内で閉鎖位置と開放位置との間で軸方向に可動にガイドされ、かつ閉鎖部材(28,48)に連結された可動子(24,44)と、前記弁挿入体(25,45)に接続され、かつ少なくとも1つの第1の貫流開口(31,51)と第2の貫流開口(32,52)との間に配置された主弁座(30,50)を備えた弁体(29,49)とを有しており、軸方向に可動な前記可動子(24,44)は、前記磁石構造群(13)に給電されると、前記弁挿入体(25,45)内に生ぜしめられた磁力(FMagnet)によってリターンスプリング(26,46)のばね力(FFeder)に抗して、かつ流体力(FHydraulik)に抗して、前記磁極心(23,43)に向かう方向に移動せしめられ、それによって、前記閉鎖部材(28,48)が前記主弁座(30,50)から持ち上げられて、少なくとも1つの第1の貫流開口(31,51)と第2の貫流開口(32,52)との間での流体貫流が可能となり、また、軸方向で可動な前記可動子(24,44)が前記リターンスプリング(26,46)のばね力(FFeder)によって前記弁挿入体(25,45)内で前記磁極心(23,43)から離れる方向に移動せしめられて、前記閉鎖部材(28,48)が前記主弁座(30,50)に気密に押し付けられ、前記少なくとも1つの第1の貫流開口(31,51)と前記第2の貫流開口(32,52)との間での流体貫流が中断されるようになっている形式のものにおいて、
前記可動子(24,44)のストロークに亘る、前記磁力(FMagnet)の特性曲線、前記ばね力(FFeder)の特性曲線及び前記流体力(FHydraulik)の特性曲線が、前記可動子(24,44)及び前記閉鎖部材(28,48)の閉鎖位置と開放位置との間における、負のフルパワー特性曲線勾配との力の釣り合い点を表す、少なくとも1つの広く安定した作業点が調節され得るように、組み合わされていることを特徴とする、電磁弁。
A magnet structure group (13), a valve cartridge (22, 42) having a magnetic core (23, 43), a valve insert (25, 45) connected to the magnetic core (23, 43), A movable element (24, 44) guided in a movable manner in the axial direction between a closed position and an open position in the valve insert (25, 45) and connected to a closing member (28, 48); A main valve seat (30, 50) connected to the insert (25, 45) and arranged between the at least one first through-opening (31, 51) and the second through-opening (32, 52). And the movable element (24, 44) movable in the axial direction is supplied with power to the magnet structure group (13). field (25, 45) is caused in the magnetic force (F Magnet) by a return spring (26, 46) Against the force (F Feder), and against the fluid force (F Hydraulik), it is moved in a direction toward the pole center (23, 43), whereby the closure member (28, 48) is Lifted from the main valve seat (30, 50) to allow fluid flow between the at least one first flow-through opening (31, 51) and the second flow-through opening (32, 52); The movable element (24, 44) movable in the axial direction is moved by the spring force (F Feder ) of the return spring (26, 46) in the valve insert (25, 45). The closing member (28, 48) is airtightly pressed against the main valve seat (30, 50), and the at least one first through-flow opening (31, 51) and the first Between the two flow-through openings (32, 52) In those forms the body flow is adapted to be suspended,
A characteristic curve of the magnetic force (F Magnet ), a characteristic curve of the spring force (F Feder ), and a characteristic curve of the fluid force (F Hydraulik ) over the stroke of the mover (24, 44) are represented by the mover ( 24, 44) and at least one wide and stable working point representing a force balance point with the negative full power characteristic curve slope between the closed and open positions of the closure member (28, 48). Solenoid valve, characterized in that it is combined so that it can be made.
前記磁石構造群(13)に給電することによって生ぜしめられる、前記可動子(24,44)及び閉鎖部材(28,48)のストロークに亘る磁力(FMagnet)の特性曲線が、可動子(24,44)及び磁極心(23,43)の与えられた幾何学形状によって可能な限りフラットになるように調節されている、請求項1記載の電磁弁。 A characteristic curve of the magnetic force (F Magnet ) over the strokes of the mover (24, 44) and the closing member (28, 48) generated by supplying power to the magnet structure group (13) is expressed by the mover (24 44) and the magnetic core (23, 43) are adjusted to be as flat as possible by the given geometry. 前記磁石構造群(13)に給電するための電流の強さを調節することによって、前記可動子(24,44)が前記閉鎖部材(28,48)と共にストロークの一部だけに亘って移動せしめられ、それによって前記閉鎖部材(28,48)が前記主弁座(30,50)から持ち上げられ、前記電磁弁(1)は準定常形式で部分的に開放した状態で駆動され、この際に、パルス幅調整比を予め設定することによって電流強さが調節されるようになっている、請求項1又は2記載の電磁弁。   By adjusting the intensity of the current for supplying power to the magnet structure group (13), the mover (24, 44) moves together with the closing member (28, 48) over a part of the stroke. Thereby, the closing member (28, 48) is lifted from the main valve seat (30, 50), and the solenoid valve (1) is driven in a semi-steady state, partially open, The electromagnetic valve according to claim 1, wherein the current intensity is adjusted by setting a pulse width adjustment ratio in advance. 前記可動子が侵入型可動子(24,44)として構成されており、該侵入型可動子(24,44)が、この可動子に対応して構成された磁極心(23,43)と共に、1段式の又は複数段式の侵入段部を形成している、請求項2又は3記載の電磁弁。   The mover is configured as an intrusion-type mover (24, 44), and the intrusion-type mover (24, 44) has a magnetic core (23, 43) configured corresponding to the mover, The solenoid valve according to claim 2 or 3, wherein a single-stage type or a multi-stage type intrusion step part is formed. 前記可動子が平型可動子として構成されており、該平型可動子が、フラットな磁極面を有する磁極心と協働するようになっていて、対応する磁力(FMagnet)が、前記可動子と磁極心との間のエアギャップが所定の幅に達した時点から、フラットな特性曲線を有するようになっている、請求項2又は3記載の電磁弁。 The mover is configured as a flat mover, and the flat mover cooperates with a magnetic core having a flat magnetic pole surface, and a corresponding magnetic force (F Magnet ) is applied to the movable element. 4. The solenoid valve according to claim 2, wherein the solenoid valve has a flat characteristic curve from the time when the air gap between the child and the magnetic pole core reaches a predetermined width. 前記ばね力(FFeder)を供給するための前記リターンスプリング(26,46)が、大きいばね定数を有している、請求項1から5までのいずれか1項記載の電磁弁。 6. The solenoid valve according to claim 1, wherein the return spring (26, 46) for supplying the spring force (F Feder ) has a large spring constant. 前記リターンスプリング(26,46)によって供給されたばね力(FFeder)が、前記可動子(24,44)及び前記閉鎖部材(28,48)のストロークに亘って、プログレッシブな特性曲線を有している、請求項1から6までのいずれか1項記載の電磁弁。 The spring force (F Feder ) supplied by the return spring (26, 46) has a progressive characteristic curve over the strokes of the mover (24, 44) and the closing member (28, 48). The electromagnetic valve according to any one of claims 1 to 6. 前記第1の貫流開口(31,51)と第2の貫流開口(32,52)との間における流体の流れによって生ぜしめられる、流体力(FHydraulik)の特性曲線が、前記可動子(24,44)及び閉鎖部材(28,48)のストロークに亘って、前記閉鎖部材(28,48)及び主弁座(30,50)のための予め設定された流れの幾何学形状によって、可能な限りフラットに設定されている、請求項1から7までのいずれか1項記載の電磁弁。 A characteristic curve of fluid force (F Hydraulik ) generated by the flow of fluid between the first through-flow opening (31, 51) and the second through-flow opening (32, 52) is expressed by the movable element (24 44) and over the stroke of the closure member (28, 48), the preset flow geometry for the closure member (28, 48) and the main valve seat (30, 50) is possible The solenoid valve according to any one of claims 1 to 7, wherein the solenoid valve is set as flat as possible. 前記可動子(24,44)及び前記閉鎖部材(28,48)のストロークに亘っての、前記流体力(FHydraulik)のフラットな特性曲線が、前記閉鎖部材(28,48)と前記主弁座(30,50)との間の小さい開放角度によって予め与えられるようになっている、請求項8記載の電磁弁。 A flat characteristic curve of the fluid force (F Hydraulik ) over the strokes of the mover (24, 44) and the closing member (28, 48) is expressed by the closing member (28, 48) and the main valve. 9. Solenoid valve according to claim 8, wherein the solenoid valve is preliminarily provided by a small opening angle between the seat (30, 50). 前記閉鎖部材(28)のシール領域(28.1)が球状に構成されていて、前記主弁座(30)のシール領域(30.1)が中空円錐形に構成されている、請求項9記載の電磁弁。   The sealing area (28.1) of the closure member (28) is configured in a spherical shape and the sealing area (30.1) of the main valve seat (30) is configured in a hollow conical shape. The solenoid valve described. 前記閉鎖部材(48)のシール領域(48.1)が円錐形に構成されていて、前記主弁座(50)のシール領域(50.1)が中空円錐形に構成されている、請求項9記載の電磁弁。   The sealing region (48.1) of the closure member (48) is configured in a conical shape and the sealing region (50.1) of the main valve seat (50) is configured in a hollow conical shape. 9. The solenoid valve according to 9.
JP2010515469A 2007-07-10 2008-07-02 solenoid valve Expired - Fee Related JP5535068B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007031981.0A DE102007031981B4 (en) 2007-07-10 2007-07-10 magnetic valve
DE102007031981.0 2007-07-10
PCT/EP2008/058469 WO2009007278A1 (en) 2007-07-10 2008-07-02 Solenoid valve

Publications (3)

Publication Number Publication Date
JP2010532850A true JP2010532850A (en) 2010-10-14
JP2010532850A5 JP2010532850A5 (en) 2012-09-13
JP5535068B2 JP5535068B2 (en) 2014-07-02

Family

ID=39952194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010515469A Expired - Fee Related JP5535068B2 (en) 2007-07-10 2008-07-02 solenoid valve

Country Status (6)

Country Link
US (1) US8596609B2 (en)
EP (1) EP2167857A1 (en)
JP (1) JP5535068B2 (en)
CN (1) CN101688625B (en)
DE (1) DE102007031981B4 (en)
WO (1) WO2009007278A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127462A (en) * 2010-12-17 2012-07-05 Toyota Motor Corp Solenoid type linear valve
WO2013065179A1 (en) * 2011-11-04 2013-05-10 トヨタ自動車株式会社 Electromagnetic linear valve

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009060294A1 (en) * 2009-12-23 2011-06-30 Robert Bosch GmbH, 70469 Solenoid valve and driver assistance device
DE102010002016A1 (en) * 2010-02-17 2011-08-18 Robert Bosch GmbH, 70469 Magnetic valve for controlling fluid, has anchor, pole core, where work gap is provided between anchor and pole core, and valve unit, which is connected with anchor
DE102010002224A1 (en) 2010-02-23 2011-08-25 Robert Bosch GmbH, 70469 Solenoid valve for controlling a fluid
DE102010002229B4 (en) * 2010-02-23 2022-07-21 Robert Bosch Gmbh Solenoid valve for controlling a fluid
DE102010002217B4 (en) 2010-02-23 2022-08-11 Robert Bosch Gmbh Solenoid valve for controlling a fluid
DE102010002221B4 (en) 2010-02-23 2022-07-28 Robert Bosch Gmbh Solenoid valve for controlling a fluid
DE102010002216B4 (en) 2010-02-23 2022-06-30 Robert Bosch Gmbh Solenoid valve with immersion level for controlling a fluid
DE102010002219A1 (en) 2010-02-23 2011-08-25 Robert Bosch GmbH, 70469 Magnet valve for controlling fluid, has anchor and valve element, which is connected with anchor and is moved with anchor, where valve body is provided with passage
DE102010002215A1 (en) 2010-02-23 2011-08-25 Robert Bosch GmbH, 70469 Electroless closed magnet valve for use as exhaust valves for controlling fluid in e.g. antilock brake system of motor car, has impact element arranged with predesignated backlash at holding device
DE102010003958A1 (en) * 2010-04-14 2011-10-20 Robert Bosch Gmbh magnetic valve
JP5344410B2 (en) * 2010-07-01 2013-11-20 Smc株式会社 Solenoid valve
CN103090021A (en) * 2013-02-25 2013-05-08 武汉元丰汽车电控系统有限公司 Linear electromagnetic normally-closed valve of automobile braking system
DE102013012565A1 (en) * 2013-07-29 2015-01-29 Man Diesel & Turbo Se Method for operating a gas engine
DE102015218293A1 (en) 2015-09-23 2017-03-23 Robert Bosch Gmbh Solenoid valve with an armature with movable stage
DE102016219939A1 (en) * 2016-10-13 2018-04-19 Robert Bosch Gmbh Solenoid valve and hydraulic brake system for a vehicle
DE102017203703A1 (en) * 2017-03-07 2018-09-13 Robert Bosch Gmbh Valve arrangement for a solenoid valve and corresponding solenoid valve
CN107289177B (en) * 2017-06-19 2023-06-06 万向钱潮股份公司 Continuous normally-closed electromagnetic valve for automobile braking
DE102017212084A1 (en) * 2017-07-14 2019-01-17 Robert Bosch Gmbh Bistable solenoid valve for a hydraulic brake system and method for controlling such a valve
CN109654286A (en) * 2018-12-29 2019-04-19 嘉兴科奥电磁技术有限公司 Multiple-pass solenoid valve
AT16929U1 (en) * 2019-05-28 2020-12-15 Zieger Dipl Ing Andreas Combination valve
EP3767142A1 (en) * 2019-07-19 2021-01-20 Fico Transpar, S.A. Electromagnetically operated valve
DE102019218480A1 (en) * 2019-11-28 2021-08-05 Robert Bosch Gmbh Method for controlling a solenoid valve and evaluation and control unit

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4635683A (en) * 1985-10-03 1987-01-13 Ford Motor Company Variable force solenoid
JP3038282B2 (en) * 1993-04-12 2000-05-08 株式会社日立製作所 Throttle valve opening / closing device
DE4444910A1 (en) * 1994-12-16 1996-06-27 Binder Magnete magnetic valve
DE19604315A1 (en) * 1996-02-07 1997-08-14 Bosch Gmbh Robert Electromagnetically operated valve, in particular for hydraulic brake systems in motor vehicles
DE19751240A1 (en) 1997-11-19 1999-05-20 Itt Mfg Enterprises Inc Solenoid valve with valve closing element fitted at magnet armature
DE19932762A1 (en) 1999-07-14 2001-01-18 Bosch Gmbh Robert Procedure for adjusting the valve lift of an injection valve
EP1232081B1 (en) 1999-11-16 2004-02-11 Continental Teves AG & Co. oHG Electromagnet valve
US6367283B1 (en) * 2000-04-14 2002-04-09 Ranco Incorporated Three-stage electronically variable orifice tube
DE10038091B4 (en) * 2000-08-04 2009-01-15 Robert Bosch Gmbh Solenoid valve, in particular for a slip-controlled, hydraulic vehicle brake system
US6422259B1 (en) 2000-11-03 2002-07-23 Delphi Technologies, Inc. Apparatus and method for actuator stroke and spring preload setting
DE10114175C1 (en) * 2001-03-23 2002-08-29 Dungs Karl Gmbh & Co Koaxialmagnetventil
US6805331B2 (en) * 2001-12-07 2004-10-19 Delphi Technologies, Inc. Electromagnetically energized actuator
JP2003322274A (en) * 2002-04-26 2003-11-14 Tgk Co Ltd Solenoid control valve
JP3819867B2 (en) * 2002-05-15 2006-09-13 日信工業株式会社 solenoid valve
DE10255740A1 (en) 2002-11-28 2004-06-09 Bosch Rexroth Ag Direct operated prop. Pressure relief valve
JP4010982B2 (en) 2003-06-03 2007-11-21 日信工業株式会社 solenoid valve
JP4235515B2 (en) * 2003-09-12 2009-03-11 株式会社テージーケー Constant differential pressure valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127462A (en) * 2010-12-17 2012-07-05 Toyota Motor Corp Solenoid type linear valve
WO2013065179A1 (en) * 2011-11-04 2013-05-10 トヨタ自動車株式会社 Electromagnetic linear valve
JPWO2013065179A1 (en) * 2011-11-04 2015-04-02 トヨタ自動車株式会社 Solenoid linear valve

Also Published As

Publication number Publication date
CN101688625B (en) 2014-01-01
JP5535068B2 (en) 2014-07-02
EP2167857A1 (en) 2010-03-31
DE102007031981B4 (en) 2023-01-12
US8596609B2 (en) 2013-12-03
WO2009007278A1 (en) 2009-01-15
CN101688625A (en) 2010-03-31
US20100301246A1 (en) 2010-12-02
DE102007031981A1 (en) 2009-01-15

Similar Documents

Publication Publication Date Title
JP5535068B2 (en) solenoid valve
JP2010532850A5 (en)
JP4549539B2 (en) Proportional pressure control valve
US7396090B2 (en) EHB proportional solenoid valve with stepped gap armature
JP2017211032A (en) Flow rate regulating valve
CN102947150B (en) Method for controlling the pressure in an electronically controlled hydraulic brake system
US9182048B2 (en) Switchable pressure limiting valve
JP2003526055A (en) Extended range proportional valve
CN101772666A (en) Solenoid valve
JP2008501917A (en) Electrically actuable valve
CN106989193B (en) Flow regulating valve
JP2015152156A (en) solenoid valve
JP2010510445A (en) Electro-pneumatic pressure transducer
JP2006349177A (en) Gas spring assembly with selectable intermediate stop
JPWO2013186859A1 (en) Normally closed solenoid valve
HU206912B (en) Valve system operated by electromagnet
US20220018417A1 (en) Damping force adjustable shock absorber
CN105952953A (en) Response time-adjustable pilot electromagnetic valve structure
JP2007506045A (en) Proportional pressure control valve
CN112747124B (en) Two-stage electromagnetic valve
KR20030019175A (en) Solenoid operated valve with integral magnetic separator
CN112368489B (en) Electromagnetic control device, in particular for an on-off valve device, valve device comprising such a control device, adjustable shock absorber comprising such a control device, and motor vehicle comprising such a shock absorber
RU2659900C1 (en) Household appliance having solenoid valve
JP4342978B2 (en) Electro-pneumatic regulator
US20210080122A1 (en) Coaxial Gas Valve Assemblies Including Electronically Controlled Solenoids

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120203

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120426

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120508

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20120724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130522

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140422

R150 Certificate of patent or registration of utility model

Ref document number: 5535068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees