JP2010532147A - 相互変調歪みを改善した電気フィルタ - Google Patents

相互変調歪みを改善した電気フィルタ Download PDF

Info

Publication number
JP2010532147A
JP2010532147A JP2010515203A JP2010515203A JP2010532147A JP 2010532147 A JP2010532147 A JP 2010532147A JP 2010515203 A JP2010515203 A JP 2010515203A JP 2010515203 A JP2010515203 A JP 2010515203A JP 2010532147 A JP2010532147 A JP 2010532147A
Authority
JP
Japan
Prior art keywords
filter
band
resonant
imd
order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010515203A
Other languages
English (en)
Inventor
玄一 都築
ウィレムセン,バラム,エイ.
Original Assignee
スーパーコンダクター テクノロジーズ,インク.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スーパーコンダクター テクノロジーズ,インク. filed Critical スーパーコンダクター テクノロジーズ,インク.
Publication of JP2010532147A publication Critical patent/JP2010532147A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks

Abstract

帯域消去フィルタを構築する方法であって、信号伝送路と、前記信号伝送路に沿って設けられた共鳴素子と、前記共鳴素子を互いに結合して前記共鳴素子の各周波数に対応する伝送ゼロを有する阻止帯を形成する非共鳴素子とを具える帯域消去フィルタを設計するステップを含む。この方法はさらに、前記共鳴素子が信号伝送路に沿って配置された順番を変えて複数のフィルタソリューションを生成するステップと、各フィルタソリューションの性能パラメータを算出するステップと、前記性能パラメータを互いに比較するステップと、この比較に基づいて1のフィルタソリューションを選択するステップと、選択したフィルタソリューションを用いて前記帯域消去フィルタを構築するステップとを含む。別のRF帯域消去フィルタは、阻止帯を形成すべく互いに結合された共鳴素子を具え、少なくとも2の共鳴素子が、互いに異なる3次の相互変調歪み(IMD)成分を有し、このフィルタの3次のIMD成分が阻止帯の周りで非対称となっている。
【選択図】図5

Description

本発明は一般にマイクロ波回路に関し、特に、マイクロ波フィルタに関する。
電気信号を処理するのに電気フィルタが長年用いられている。具体的には、このような電気フィルタは、入力信号から所望の信号周波数を通過させることにより所望の電気信号周波数を選択し、他の望ましくない電気信号周波数をブロックまたは減衰させるのに用いられる。フィルタは、いくつかの一般的なカテゴリである低域フィルタ、広域フィルタ、帯域フィルタ、および帯域消去フィルタとに分類され、これらはフィルタが選択的に通過させる周波数の種類を示している。さらに、フィルタは、バターワース、チェビシェフ、逆チェビシェフ、および楕円(elliptic)などの種類に分けられ、これらは理想の周波数応答に関してフィルタが出力する周波数応答帯域形(周波数カットオフ特性)の種類を示す。
マイクロ波フィルタは、一般に、ある周波数fで非常に効率的にエネルギを保存する複数の共鳴器と、共鳴器間で電磁エネルギを結合して複数のステージまたは極を形成するカプリングとの2つの回路構築ブロックを用いて構築される。例えば、4極フィルタは4つの共鳴器を具える。与えられた結合の強度は、そのリアクタンス(すなわち、インダクタンスおよび/またはキャパシタンス)により決定される。結合の相対的な強度がフィルタ形状を決定し、結合のトポロジが、このフィルタが帯域通過または帯域消去機能を有するかを決める。共鳴周波数fは、各共鳴器のインダクタンスとキャパシタンスにより大まかに決定される。従来のフィルタ設計では、フィルタが活性化する周波数は、フィルタを構成する共鳴器の共鳴周波数により決定されていた。各共鳴器は非常に低い内部抵抗を有し、上述した理由によりフィルタの応答がシャープで選択しやすいようにする。低抵抗の要求は、与えられた技術における共鳴器のサイズとコストを跳ね上げる場合があった。
利用されるフィルタの種類は、往々にして使用目的による。通信アプリケーションでは、帯域フィルタが、携帯基地局や他の遠距離通信機器において1またはそれ以上の所定の帯域のRF信号を濾波あるいはブロックするのに従来から用いられている。例えば、このようなフィルタは通常受信器の入り口に用いられ、基地局や遠距離通信機器の受信器の要素を妨害しうるノイズや他の望ましくない信号を濾波する。シャープに規定した帯域フィルタを受信器アンテナ入力に直接配置すると、所望の信号周波数の近傍の周波数での強い干渉信号に起因する副作用が往々にして排除される。受信器のアンテナ入力でのフィルタの位置により、雑音指数を低下させないように挿入損は非常に低くなければならない。多くのフィルタ技術において、挿入損を低くするのに対応して、フィルタの勾配や選択性(steepness or selectivity)の妥協が必要であった。
商業的遠距離通信アプリケーションでは、狭域フィルタを用いてできる限り小さな帯域を濾波して、より多数の周波数帯域に分割される固定周波数スペクトルを実現し、これにより固定のスペクトル内に納めうる実際のユーザ数を増やすことが望まれる。特に重要なのは、アナログ携帯通信用の800−900MHzの周波数帯域と、個人通信サービス(PCS)用の1,800−2,000MHz帯域である。無線通信の爆発的増加に伴い、このようなフィルタリングは、ますます有害な周波数スペクトルのなかで、選択性(小さな周波数の違いで分けられる信号間の識別能力)と感度(微弱信号を受信する能力)の双方を高度に提供するべきとなった。
従来より、フィルタは通常の、すなわち超伝導でない導体を用いて製造されている。これらの導体は固有の損失(lossiness)があり、結果として、これらで構成される回路は様々な度合いのロスがある。共鳴回路において、このロスは特に重大となる。デバイスのクオリティファクタ(Q)は、その電力消失または損失の目安となる。例えば、Qが高い共鳴器はロスが少ない。マイクロストリップやストリップ線路構造において、通常の金属で製造される共鳴回路は、一般に最良で400のオーダーのQを有する。1986年に高温超伝導が発見されると、高温超伝導体(HTS)材料から電気デバイスを製造する試みがなされた。HTSのマイクロ波特性は、その発見から非常に改善された。エピタキシャル超伝導体薄膜が日常的に製造され、商業的に入手可能となっている。
現在、可能な限り小さくしたマイクロストリップ狭域フィルタが望まれる多くの応用例がある。これは、特にサイズが小さく共鳴器のQが非常に高いフィルタを得るために、HTS技術が用いられる無線アプリケーションで事実である。この望ましいフィルタは往々にしてとても複雑であり、いくつかの交差カプリングに沿って12以上の共鳴器を有する場合がある。さらに、利用可能な基板のサイズは通常制限されている。例えば、HTSフィルタに利用可能なウェハは、通常最大で2〜3インチの寸法しかない。それ故、高品質なパフォーマンスを維持しながら、フィルタを得る手段は可能な限り小さくすることが非常に望まれている。狭域マイクロストリップフィルタの場合(例えば、2%オーダーの帯域、より特定的には1%またはそれ以下)、このサイズの問題は非常に深刻となる。
サイズとロスの考慮に加え、本発明の特定の関心は、相互変調歪み(IMD)の低減にあり、これはマイクロ波およびRF増幅器の設計において重要度が増している。IMDは周波数が異なる2以上の信号が非線形デバイスの入力として供される場合に生じる望ましくない現象であり、これによりフィルタの所望の調和した周波数とは異なる周波数のスプリアス発射が発生する。相互変調生産物の周波数は、元の入力信号の周波数と数学的に関連し、式mf±nfで算出することができ、ここでfは第1の信号の周波数、fは第2の信号の周波数り、m,n=0,1,2,3,・・・である。相互変調生産物は多様な次数(order)で生成され、この歪み生産物の次数はm+nの和で与えられる。
図1に示すように、fとfでの2つの基本信号の2次の相互変調生産物は、f+f、f−f、2f、および2fで生じ、fとfでの2つの信号の3次の相互変調生産物は、2f+f、2f−f、f+2f、f−2f(または2f±fと2f±f)、3f、および3fで生じ、ここで2fはfの第2の高調波(harmonic)であり、2fはfの第2の高調波であり、3fはfの第3の高調波であり、3fはfの第3の高調波である。帯域フィルタリングは、対域内パフォーマンスに影響することなく望ましくない相互変調生産物の大部分を除去する有効な手段であるのに対し、3次の相互変調生産物2f−f、2f−fは、図1に示すように、通常は濾波する基本信号f、fと近すぎる。相互変調生産物が通過帯域内であれば、フィルタリングは不可能となる。
実践的な例として、例えば電話システムで共通するように、1以上の送信器から強い信号が受信器の入力に供されたら、IMD生産物が生成される。これらの望ましくないIMD生産物のレベルは、受信強度や受信器/プレアンプの線形性と相関する。一般的なルールとして、2次の相互変調生産物は入力信号の2乗のレートで増加し、3次の相互変調生産物は入力信号の3乗のレートで増加する。このように、2次の相互変調生産物は入力信号の2乗に比例する振幅を有し、3次の相互変調生産物は入力信号の3乗に比例する振幅を有する。
このように、大きさの等しい2つの入力信号がそれぞれ1dBの乗数で上昇したら(rise by 1dB)、2次の相互変調生産物は2dBの乗数で上昇し(rise by 2dB)、3次の相互変調生産物は3dBの乗数で上昇する(rise by 3dB)。このように、3次の相互変調生産物のレベルが低次の相互変調生産物(通常は優位を占める(dominate))と比較して当初は非常に小さい場合でも3次の相互変調生産物は高速で増加する。このため、増幅器のような非線形デバイスのパワーハンドリングを増強したい場合、関心ある通過帯域に近い3次の総合変調生産物(例えば2f−f、2f−f)が最も大きく関係する。
相互変調生産物の指数効果は、デバイスが線形領域にいる限り維持される。図2に示すように、デバイスは、デバイス出力がその入力に対し非線形となるポイントで圧縮(compression)となる。基本信号、2次の相互変調生産物、および3次の相互変調生産物の出力レベルを入力レベルに対してプロットした場合、これは、理論的には2次と3次の相互変調生産物のレベルが基本信号と交差するポイントとなる。これらのポイントはそれぞれ2次交差ポイント(SOI)と3次交差ポイント(TOI:IP3として知られている)として知られている。実践で重要なことは、デバイスはこの交差ポイントの遙かに手前で飽和するため、これは非現実的な条件であるということである。交差ポイントが生じる入力電力レベルは、IP値として参照される。IMD生産物の出力従属の指数がnの場合、IP値はIPで表される。例えば、2次のIMD生産物の場合、IP値はIPであり、3次のIMD生産物の場合はIP値はIPである。IMDの交差ポイントのコンセプトは、デバイスのIMD生産物の場合パフォーマンスの定量化を補助するために開発され、IP値が高くなるとIMDの性能が向上する。
多くの超伝導フィルタのロスはごく僅かであるが、これらのフィルタは本質的に非線形であり、例えば、基地局受信器のIP値を、特定の要求のアプリケーションには過小に制限してしまう。例えば、基地局が、他の携帯/PCSサービスプロバイダの強い特殊移動体通信(SMR)トランスミッタと一緒に配置されている場合の従来型の超電導フィルタは、これらの他のシステムからの帯域外信号の強度レベルが高すぎて、受信器の感度を低減させるIMDが生じてしまうため、無線通信ネットワークに効率的に利用できない場合がある。結果として、超電導フィルタは望まない帯域外信号を適切に濾波できないこととなる。
フィルタの性能はまた、共鳴器とフィルタの製造プロセスの変動により変化する。いくつかのフィルタは、競合するシステム帯域外信号を濾波すべく要求されたフィルタ機能を実現するよう製造されるが、これらの多くがこのようなアプリケーションで失敗し、それ故試験でソートされ、フィルタ製造の生産性を低下させている。HTS技術に関して、RFフィルタの非線形性、ひいてはフィルタが示すIMDは、フィルタのサイズを大きくすることで低減される。しかしながら、上述のように、HTSフィルタのサイズは可能な限り小さい方が望ましい。したがって、残りはフィルタのサイズを実質的に大きくすることなく、IMDを小さくする(これによりIP値を最大化する)需要がある。
本発明の一態様によれば、RF帯域消去フィルタの構築方法が提供される。一実施例において、帯域消去フィルタは、薄膜準集中エレメント構造(thin-film quasi-lumped element structure)を有する(例えば、高温超電導(HTS)材料でなるが、他の種類のフィルタをこの帯域消去フィルタに用いることもできる)。
この方法は、入力および出力を有する信号伝送路と、当該入出力間の信号伝送路に沿って設けられた複数の共鳴素子と、前記共鳴素子を互いに結合して前記共鳴素子の各周波数に対応する複数の伝送ゼロを有する阻止帯を形成する複数の非共鳴素子とを具える帯域消去フィルタを設計するステップを含む。一実施例では、4つの共鳴器が用いられるが、例えば2,8,16など様々な数の複数の共鳴器を用いることができる。
この方法はさらに、共鳴素子が信号伝送路に沿って配置された順番を変えて複数のフィルタソリューションを生成するステップと、各フィルタソリューションの性能パラメータを算出するステップと、この性能パラメータを互いに比較するステップとを含む。一実施例の方法において、性能パラメータは相互変調歪みの性能パラメータである(すなわち、3次のIMDまたは3次の交差(intercept))。この方法はさらに、算出した性能パラメータの比較に基づいて1のフィルタソリューションを選択するステップと、ここで選択したフィルタソリューションを用いて帯域消去フィルタを構築するステップとを含む。
ある方法において、前記非共鳴素子は、前記共鳴素子に並列および直列に結合されるアドミタンスインバータの形態をとる。この場合、各フィルタソリューションの結合マトリクス表現(coupling matrix representation)が生成され、各結合マトリクス表示から各フィルタソリューションの性能パフォーマンスが算出される。このフィルタ設計はそれぞれ、共鳴素子に並行に結合された非共鳴素子間のノードと、それぞれ共鳴素子に直列に結合された非共鳴素子間のノードと、前記入力と出力のノードとを具え、ここで前記結合マトリクスの各ディメンション(each dimension)がノードを具える。この場合、前記方法はさらに、各結合マトリクスをその最も単純な形に低減するステップと、この低減した結合マトリクスが互いに異なるかを判定するステップとを含む。この方法によると、フィルタソリューションがユニークなものであると確認することができる。別の方法では、帯域消去フィルタのうちの2つが、各阻止帯域の間に通過帯域を形成する方法で互いに結合される。
本発明の別の態様によると、無線周波数(RF)帯域消去フィルタが提供される。一実施例において、帯域消去フィルタは、薄膜準集中エレメント構造(thin-film quasi-lumped element structure)を有する(例えば、高温超電導(HTS)材料でなるが、他の種類のフィルタをこの帯域消去フィルタに用いることもできる)。
この帯域消去フィルタは、互いに結合して阻止帯を構成する複数の共鳴素子を具える。少なくとも2の共鳴素子が、互いに異なる3次の相互変調歪み(IMD)成分を有し(例えば、3次のIMD生産物2f−f、2f−f)、このフィルタの3次のIMD成分が阻止帯の周りで非対称となっている。この共鳴素子は、例えば、互いに少なくとも1波長異なる伝送ラインを有し、これによりIMD成分が非対称となる。
本発明のさらに別の態様では、無線周波数(RF)ネットワークが提供される。このフィルタネットワークは、通過帯域を生じるよう構成された帯域通過フィルタと、阻止帯域を形成するよう互いに結合された複数の共鳴素子を具える帯域消去フィルタとを具える。一実施例において、帯域消去フィルタは、薄膜準集中エレメント構造(thin-film quasi-lumped element structure)を有する(例えば、高温超電導(HTS)材料でなるが、他の種類のフィルタをこの帯域消去フィルタに用いることもできる)。
少なくとも2の共鳴素子が、互いに異なる3次の相互変調歪み(IMD)成分を有し(3次のIMD生産物2f−f、2f−f)、このフィルタの3次のIMD成分が阻止帯の周りで非対称となっている。一実施例では、通過帯域に最も近い3次のIMD成分は減衰される(例えば少なくとも10dB)。この共鳴素子は、例えば、互いに少なくとも1波長異なる伝送ラインを有し、これによりIMD成分が非対称となる。別の実施例では、フィルタネットワークがさらに、別の阻止帯を形成すべく互いに結合された別の複数の共鳴素子を有する別の帯域消去フィルタを具える。この別の共鳴素子の少なくとも2つは、互いに異なる別の3次の相互変調歪み(IMD)成分を有し、この別の3次のIMD成分が阻止帯の周りで非対称となっている。この場合、帯域通過フィルタと、別の帯域消去フィルタは、通過帯域のエッジの他方が敏感になるよう一緒に結合される。
図面は、本発明の実施例の設計と有用性を示しており、同じ要素は共通の参照番号で参照される。
図1は、従来技術のフィルタで生成される相互変調歪み(IMD)生産物の図である。 図2は、従来技術のフィルタにおけるIMD成分と基本信号との交差ポイントを示す図である。 図3は、本発明の一実施例により構築される通信システムのブロック図である。 図4は、図3の通信システムで用いられる帯域消去フィルタの1の代表例を示すブロック図である。 図5は、本発明により構築される図4の帯域消去フィルタの別の例を示すブロック図である。 図6は、図5の帯域消去フィルタの結合マトリクスの代表例である。 図7は、図6の結合マトリクスを例示的な結合値で埋めたものである。 図8は、図7の結合マトリクスにより構築された図5の帯域通過フィルタからの基本信号出力の周波数応答を示す図である。 図9aは、共鳴器マトリクスブロック(上)、電気ノード電流の周波数応答(中)、および低減させた結合マトリクス(下)であり、図5の帯域消去フィルタとは共鳴器の次数(order)が異なっている。 図9bは、共鳴器マトリクスブロック(上)、電気ノード電流の周波数応答(中)、および低減させた結合マトリクス(下)であり、図5の帯域消去フィルタとは共鳴器の次数(order)が異なっている。 図9cは、共鳴器マトリクスブロック(上)、電気ノード電流の周波数応答(中)、および低減させた結合マトリクス(下)であり、図5の帯域消去フィルタとは共鳴器の次数(order)が異なっている。 図9dは、共鳴器マトリクスブロック(上)、電気ノード電流の周波数応答(中)、および低減させた結合マトリクス(下)であり、図5の帯域消去フィルタとは共鳴器の次数(order)が異なっている。 図9eは、共鳴器マトリクスブロック(上)、電気ノード電流の周波数応答(中)、および低減させた結合マトリクス(下)であり、図5の帯域消去フィルタとは共鳴器の次数(order)が異なっている。 図9fは、共鳴器マトリクスブロック(上)、電気ノード電流の周波数応答(中)、および低減させた結合マトリクス(下)であり、図5の帯域消去フィルタとは共鳴器の次数(order)が異なっている。 図9gは、共鳴器マトリクスブロック(上)、電気ノード電流の周波数応答(中)、および低減させた結合マトリクス(下)であり、図5の帯域消去フィルタとは共鳴器の次数(order)が異なっている。 図9hは、共鳴器マトリクスブロック(上)、電気ノード電流の周波数応答(中)、および低減させた結合マトリクス(下)であり、図5の帯域消去フィルタとは共鳴器の次数(order)が異なっている。 図10aは、低減した結合マトリクス(上)、共鳴器内電流の周波数応答(左)、基本信号と3次IMDの周波数応答とを示し、ここで図5の帯域消去フィルタで特定の共鳴器の次数(order)を用いている。 図10bは、低減した結合マトリクス(上)、共鳴器内電流の周波数応答(左)、基本信号と3次IMDの周波数応答とを示し、ここで図5の帯域消去フィルタで特定の共鳴器の次数(order)を用いている。 図11は、860MHzと2MHzの帯域幅に設計された図5の帯域消去フィルタの算出された周波数応答である。 図12は、図11の阻止帯内での共鳴器電流の算出された周波数応答であり、ここで共鳴器は同一である。 図13は、図11の阻止帯内での共鳴器電力の算出された周波数応答であり、ここで共鳴器は同一である。 図14は、図11の阻止帯内での共鳴強度の算出された周波数応答であり、ここで第2の共鳴器は変更されている。 図15は、基本信号、同じ共鳴器を用いてのIMD信号、および第2の調整された共鳴器を用いたIMDである。 図16は、図5の帯域消去フィルタのうちの2つを用いて構築された帯域通過フィルタの回路図である。 図17は、図16の帯域通過フィルタに用いられる帯域消去フィルタのIMDの測定された周波数応答である。
図3を参照して、本発明により構築される無線周波数(RF)通信システム200について説明する。通信システム200は、例えば、基地局で用いられる。通信システム200は一般に、入口側の受信システム202と、送信システム204と、受信および送信システム202、204で共有されるアンテナ206とを具える。
受信システム202は、アンテナ206で受信されるRF信号210をフィルタリングするフィルタネットワーク208と、フィルタリングされたRF信号210をフィルタネットワーク208から受信する受信器212とを具える。このフィルタネットワーク208は、指定された通過帯域内の受信RF信号210を選択的に受信器212に通過させ、一方で受信器212の動作周波数の外側の干渉信号(典型的には、他の通信システムにより送信されるRF信号や、送信システム204で生成される同じ場所の送信信号を含む)を濾波するのに用いられる。
送信システム204は、RF信号216を生成する送信器214と、トランスミッタ214で生成されるRF信号をフィルタリングしてこれらのフィルタ済みRF信号をアンテナ206に送るフィルタネットワーク218とを具える。フィルタネットワーク218は、指定された通過帯域内の送信信号216を、アンテナ206を介して例えば携帯電話などの別の受信器(図示せず)へと通過させる。アンテナが信号の受信と送信で共有されていない場合、それぞれの信号に異なるアンテナ(図示せず)を用いてもよい。
受信システム202のフィルタネットワーク208は、非超電導フィルタ220と、好ましくは高温超電導(HTS)フィルタである超電導フィルタ222とを具える。非超電導フィルタ220の入力は、アンテナ206からのRF信号210を受信する。非超電導フィルタ220の出力は、超電導フィルタ222の入力に接続されており、この超電導フィルタ222の出力は受信器212に接続されている。したがって、非超電導フィルタ220は、受信RF信号210を超電導フィルタ222でフィルタリングされる前にプレフィルタリングする。
非超電導フィルタ220は、通信システム200(例えば、改良型移動電話サービス(AMPS)規格を用い、受信周波数帯が約824MHzから849MHz)の合計受信周波数範囲内における通過帯域内の受信RF信号210を通過させるよう調整された帯域フィルタである。超電導フィルタ222も帯域フィルタであるが、非超電導フィルタ220からのプレフィルタリングされた信号のうち、当該非超電導フィルタ220の通過帯域内に設定される通過帯域内のものを通過させるよう調整されている。この方法により、非超電導フィルタ220は、干渉信号が超電導フィルタ222に入力する前にフィルタリングし、他方で超電導フィルタ220は高精度な周波数選択性を受信器212に提供する。
送信システム204のフィルタネットワーク218は、非超電導フィルタ224と、好ましくは高温超電導(HTS)フィルタである超電導フィルタ226とを具える。超電導フィルタ226は、送信器214が生成したRF信号を受信する。この超電導フィルタ226の出力は非超電導フィルタ224の入力に接続され、非超電導フィルタ224の出力はアンテナ206に接続されている。したがって、超電導フィルタ226は、送信RF信号を非超電導フィルタ224でフィルタリングされる前にプレフィルタリングする。
非超電導フィルタ224は、通信システム200(例えば、改良型移動電話サービス(AMPS)規格を用い、送信周波数帯が約869MHzから894MHz)の合計送信周波数範囲内における通過帯域内の受信RF信号210を通過させるよう調整された帯域通過フィルタである。超電導フィルタ226は、所望の送信周波数の外側の送信信号をクリップまたは阻止し、残りの信号を非超電導フィルタ224に通過させるノッチフィルタまたは帯域消去フィルタである。この超電導フィルタ226は、送信通過帯域の下エッジおよび/または送信通過帯域の上エッジに近い送信信号をクリップする。送信通過帯域の下エッジと送信通過帯域の上エッジの双方でクリップすべき場合は、2つの超電導フィルタを用いてもよい。超電導フィルタ226が通過帯域のすぐ外側の周波数の信号をクリップまたは消去するよう調整することにより、この超電導フィルタ226を携帯電話基地局の送信器で用いられる典型的な帯域通過フィルタと同じハイパワー特性をもつ必要がなくなる。結果として、フィルタネットワーク218は、1以上の通過帯域のエッジで改善された損失性能を示す。
非超電導と超電導の組み合わせを通信システムで用いるさらなる詳細な説明が、米国特許公開番号2005−0164888に記載されている。以下の説明は、フィルタの物理的サイズを増大することなく、相互変調歪み(IMD)、ひいては、(例えば図3に関して上述した超電導フィルタ226などの)帯域消去フィルタまたはノッチフィルタの3次の交差ポイント(IP3)を改善する方法に関する。
図4、5を参照して、これらの特性を有する帯域消去フィルタ10の例示的な設計方法を説明する。この方法では、帯域消去フィルタ10は、最初に帯域消去フィルタ10が構成される結合マトリクス表現(coupling matrix representation)を形成することにより設計される。重要なことは、結合マトリクス表現は、S. Amari, "Synthesis of Cross-Coupled Resonator Filters Using an Analytical Gradient-Based Optimization Technique", IEEE Trans. Microwave Theroy & Tech., Vol.48, No. 9, pp.1559-1564, September 2000にあるように、非常に複雑な帯域通過フィルタを設計する際の非常に強力なツールとなっている。結合マトリクス表現は、低域通過フィルタや広域通過フィルタで大きな成功を奏しているが、ノッチフィルタや帯域消去フィルタには当てはまらない。
ノッチまたは帯域消去フィルタは従来から、インピーダンスインバータ(K)とシャントリアクタンス共鳴器(X)とを用いて設計される。特に、図4に示すように、帯域消去フィルタ10の一例は、通常(1)入力14(ラベルS)と出力16(ラベルL)を有する信号伝送路12と、(2)信号伝送路12に沿って直列配置された複数のノード18(本例では、4つのノード1−4)と、(3)各ノード18とアースとの間に接続された複数の共鳴素子20(本例では、4つのシャントリアクタンス共鳴器X、X、X、X)と、(4)ノード18がそれぞれ非共鳴素子22の間にあるように、入力14と出力16の間に直列接続された複数の非共鳴素子22(本例では、5つのインピーダンスインバータK01、K12、K23、K34、K45)とを具える。
フィルタ10を実現するために、図4に示す表現は図5に示す普遍化した表現まで拡張することができ、ここでは直列の素子がアドミタンスインバータ(J)であり、共鳴器がシャントサセプタンス(B)である。特に、帯域消去フィルタ10の表現は一般に、(1)入力54(ラベルS)と出力56(ラベルL)を有する信号伝送路52と、(2)信号伝送路52に直列配置された複数の非共鳴ノード58(本例では4つのノード1−4)と、(3)それぞれの非共鳴ノード58とアースの間に配置された複数の共鳴ノード60(本例では、4つのノード5−8)と、(4)それぞれの非共鳴ノード58とアースの間に接続された複数の共鳴素子62(本例では、4つのシャント利悪案巣共鳴器B 、B 、B 、B )、(5)第1の非共鳴素子64(1)(本例では、非共鳴ノード58がそれぞれ非共鳴素子64の間にくるように入力54と出力56の間に直列接続された5つのアドミタンスインバータ(J01、J12、J23、J34、J45))と、(6)第2の複数の非共鳴素子64(2)(本例では、各非共鳴ノード58と各共鳴ノード60との間に共鳴素子62に直列接続された4つのアドミタンスインバータ(J、J、J、J))と、(7)第3の複数の非共鳴素子64(3)(本例では、各入力54、非共鳴ノード58、出力56、およびアースの間に共鳴素子62と並列接続された6つのサセプタンス(B 、B 、B 、B 、B 、およびB ))とを具える。
説明した方法において、信号伝送路52は伝送線の形態をとるとともに、共鳴素子60は準集中エレメント電気素子であり、これは例えば誘導子やコンデンサなどであり、特に、二次元スパイラル構造(planar spiral structures)、ジグザグヘビ状構造、シングルコイル構造、およびダブルコイル構造などの薄膜準集中構造である。このような構造は、低損失基板にコンデンサと誘導子がパターン形成された薄膜エピタキシャル高温超電導体(HTS)を具える。高温超電導準集中エレメントフィルタのさらなる詳細な記述が、米国特許第5,616,539号に記載されている。
図6は、図5に示すフィルタ10の結合マトリクス表現を示す。ここには、ノードS、1−18、およびLがマトリクス表現の左側と上側に示され、結合マトリクス表現の本体部を形成する各ノードの間に結合値(サセプタンス値(B))とアドミタンスインバータ値(J)が示されている。結合マトリクス表現は逆数であるため、マトリクス表現の対角以下の値は「ゼロ」に設定される。
図6の結合マトリクス表現は、以下の4つのマトリクスブロックに分割することができる。
Figure 2010532147
ここで、m(C)は、非共鳴素子B 、B 、B 、B のサセプタンス値と非共鳴素子J、J、J、Jのアドミタンスインバータ値を含む非共鳴マトリクスブロックであり、m(Q)は非共鳴素子J12、J23、J34、J45のアドミタンスインバータ値を含む非共鳴マトリクスブロックであり、m(R)は非共鳴素子B 、B 、B 、B のサセプタンス値を含む共鳴マトリクスブロックである。慣例では、マトリクス表現の値は−1から1の周波数範囲に正規化される。
図7の結合マトリクス表現で提供される例示的な値を用いると、図8に示すフィルタ応答が生成され、ここには周波数応答の入力反射係数S11と、周波数応答のフォワード伝達係数S21が示されている。このフィルタ応答は、以下の式により表される:
Figure 2010532147
ここで、S11はフィルタの入力反射係数、S12はフォワード伝達係数、sは正規化された周波数、FとPは一般化した複素周波数のN次の多項式(Nは共鳴素子の数)、εは等リップル反射減衰量を規定する定数である。分子がN次数であるため、係数S11とS12は最大N個のゼロポイントを有することができる。係数S11とS12の双方がすべてNのゼロポイントを有すると、フィルタ応答は完全に楕円形と考えられる。フィルタのモデリングのさらなる説明が、"Microstrip Filters for RF/Microwave Application", Jia-Shen G. HongとM.J. Lancaster, Wiley Interscience 2001に記載されている。正規化周波数s=iwは以下の式により実周波数にマッピングできる:
Figure 2010532147
ここでfは実周波数、fは中心周波数、BWはフィルタの帯域幅である。正規化周波数から実周波数への変換のさらなる説明が、"Microwave Filters, Impedance-Matching Networks, and Coupling Structures", G. Matthaei, L. Young とE.M.T. Jones, McGraw-Hill(1964)に記載されている。
図8から分かるように、非共鳴素子64は、共鳴素子62の各周波数に対応する複数の伝送ゼロ68を有する阻止帯66を形成するように共鳴素子62を結合する(本例では、4つの共鳴素子62の周波数に対応する4つの伝送ゼロ68)。この特定の実施例では、伝送ゼロ68は正規化された周波数帯の0.9286、0.3944、−0.3944、−0.9286に位置され、これにより−1から1に正規化された周波数範囲を有する。図8に示すように、フィルタ応答はまた、−5から5に正規化された周波数範囲で見える一対の反射ゼロ70を有する。
重要なことは、4つの伝送ゼロ68は拡張結合マトリクスの共鳴マトリクスブロック内で正確に複製されることである。伝送ゼロ68の次数は特定されておらず、共鳴マトリクスブロックの伝送ゼロ68の次数を単に選択して低減した解の等級が可能である。すなわち、4つの共鳴素子62の周波数は同じに維持されるが、その信号伝送路52における次数は変化しうる。後述するように、1以上の性能パラメータ(本例では、3次の相互変調歪み成分)が各マトリクスの解で算出され、これにより最高のパフォーマンスを達成する解(例えば、共鳴素子62の次数)を選択することができ、これを帯域消去フィルタ10を物理的に構築するのに用いることができる。拡張結合マトリクスにおける残りの結合値は、共鳴素子62の各次数で同じ等級のフィルタ応答を生成すべく対応して修正される。
用いられる共鳴素子62の異なる次数(order)がユニークな解(solution)を提供するのを確認するには、異なる共鳴素子の次数で生成される対応結合マトリクスをその最も単純な形に低減することができる。特に、図6に示す方法で生成される結合マトリクス表現は、(2N+2)×(2N+2)のマトリクス要素を持ち、ここでNはこの結合マトリクスを生成するのに用いられる共鳴素子62の数である。本例では、マトリクス要素の数は((2)(4)+2)×((2)(4)+2)=100である。
図7に示すように、拡張結合マトリクスは、多くのマトリクス要素がゼロの値である点で比較的まばらである。標準的なマトリクス操作を用いて、この拡張結合マトリクスは、(N+2)×(N+2)=(4+2)×(4+2)=36のマトリクス要素をもつマトリクスに低減することができる。低減した結合マトリクスの共鳴周波数の値は最早伝送ゼロ68の位置とは相関しないため、回路を実現する際に特に有効とならず、これらは2つの拡張マトリクスが単に同じ解へ低減しないことを明確に示す。
例えば、図9a−9hは、(共鳴ノード5−8における)非共鳴素子J、J、J、Jを流れる予想される電流レベルを、異なる伝送ゼロの次数の8つの結合マトリクス表現の正規化された周波数に対しプロットして示す。各電流プロットについて、伝送ゼロの次数がその上に示され、低減したマトリクスが下に示されている。図示するように、ノード電流は異なる伝送ゼロの次数でそれぞれ異なる。重要なのは、2つのマトリクス間で、同じ周波数の伝送ゼロにおけるノード電流は、これらが異なる次数の場合に異なり、次数が同じである場合に同じとなる。このように、伝送ゼロは独立した設計パラメータとして扱うことができる。
例えば、図9aに示す共鳴器の次数構成におけるJ1電流周波数応答(ノード5)およびJ4電流周波数応答(ノード8)は、両構成における第1の共鳴器B は同じ周波数であり(すなわち0.928596)、両構成における第4の共鳴器B は同じ周波数である(すなわち−0.928596)ため、図9bに示す共鳴器の次数構成におけるJ1電流周波数応答(ノード5)およびJ4電流周波数応答(ノード8)と同じである。反対に、図9aに示す共鳴器の次数構成におけるJ2電流周波数応答(ノード6)とJ3電流周波数応答(ノード7)は、両構成の第2の共鳴器B の周波数が異なり(すなわち、0.394362と−0.394362)、第3の共鳴器B の周波数が異なる(すなわち、−0.394362と0.394362)ため、図9bに示す共鳴器の指数構成のJ3電流周波数応答(ノード6)およびJ3電流周波数応答(ノード7)とは異なる。
Dahm T., et al., "Analysis and Optimization of Intermodulation in High-Tc Superconducting Microwave Filter Design", IEEE Transactions on Applied Superconductivity, vol. 8, No. 4, Dec.. 1998, pp. 149-157と米国特許第6,633,208号に記載された標準的な技術を用いて、結合マトリクス表示にしたがって構築されたフィルタの未処理の電力ハンドリングと相互変調歪み(IMD)の双方を予測するのに、算出されたノード電流を用いることができる。
図10(a)、10(b)を参照すると、異なる共鳴器の次数の2つの結合マトリクス用に算出されたノード電流周波数応答と、基本信号周波数応答と、(3次の)IMD周波数応答とが、対応する低減したマトリクスとともに示されている。帯域消去フィルタ10が帯域通過フィルタの体周波数側を形成するノッチフィルタとして作用すると仮定すると、阻止帯の上の各共鳴器周波数における3次のIMD成分(とりわけ、2f−f、2f−fのIMD)が最も大きくなる。図示するように、これらのIMD成分の値は、図10(a)の構成でそれぞれ119dBmと−128dBmであり、図10(b)の構成の共鳴器でそれぞれ−117.3dBmと−131dBmである。
ここから明らかなように、図10(a)の構成で用いられる共鳴器の次数は、その最も悪い場合のIMDが図10(b)の構成で用いられる共鳴器の次数の最も悪い場合のIMD以下であるため、実際にフィルタを構築する際に選択される。これ故、信号伝送路52に沿った共鳴素子60が配置される順番を変えていくつかのフィルタソリューションを作成し、フィルタソリューションが達成するIMDの比較に基づいて帯域消去フィルタ10の構築に関する最良のフィルタソリューション(すなわち、最良のIMD(および電力ハンドリング)を提供する1つ)を選択することで、フィルタに適度な変更を加えるだけでIMD(および電力ハンドリング)性能の大きな改善を達成できることを理解できる。
IMDパフォーマンス、ひいては電力ハンドリングパフォーマンスを向上する別の方法は、阻止帯に対して非対称の3次のIMD周波数応答となる方法で、帯域消去フィルタ10の共鳴器60を個別に設計することである。これは特に、図3に関して上述したように、1または2の帯域消去フィルタ10を通過帯域の下エッジおよび上エッジの一方または双方をシャープにするために用いた場合に有効となる。重要なことは、阻止帯の一方の側に必要なIMD性能は、阻止帯の他方の側に必要なIMD性能ほど重大(critical)でないことである。例えば、通過帯域に近い阻止帯の側に必要なIMD性能は、通過帯域から遠い阻止帯の側に必要なIMD性能より重大となりうる。さらに、通過帯域の一方の側に必要なIMD性能は、通過帯域の他方の側に必要なIMD性能より重大でなくてもよい。例えば、通過帯域の低い側の干渉とは対照的に、信号から濾波する必要がある通過帯域の高い側に干渉がより多くある場合がある。
一例として、図5に示す帯域消去フィルタ10を2MHzの帯域幅で860MHzで動作するよう設計したら、フィルタの入力反射係数S11と基本信号の周波数応答のフォワード伝送係数S21は、図11に示すように算出される。
従来の方法では、フィルタ10の共鳴器60は、最初は同一に、それぞれ共鳴周波数で半波長伝送ラインを形成するよう設計される。各共鳴器を流れる電流と電力は、1W入力信号Pinの従来フィルタ用に算出される。各共鳴器内で算出された電流は、図12に示すように周波数に対してプロットされる。同様に、各共鳴器内の電力が、図13に示すように周波数に対してプロットされる。図12、13に示すように、電流と電力は第2の共鳴器B で最高となる。
重要なことに、従来型フィルタの共鳴器は、各共鳴器が同じ性能(例えば、ロス(Q)やIMD性能)となるよう設計されるが、個々の共鳴器は製造時にいくらかの変動を受けるものであり、この変動は望ましくないと考えられていた。しかしながら、新規な技術では、フィルタ10内の共鳴器60の1つは、特に第2の共鳴器B は、2波長伝送ラインを用いて変調される。共鳴器を形成するのに用いられる伝送ラインが長いほど、電力ハンドリング能力は向上する。代替的に、米国特許番号6,026,311で用いられるいずれかの共鳴器を、フィルタの電力ハンドリング能力を向上するために用いることができる。各共鳴器における電流と出力電力は、1W入力信号Pinへの応答で改良フィルタのために算出される。各共鳴器における算出された電力は、図14に示すように周波数に対してプロットされる。
図14の共鳴器電力と図13の共鳴器電力との比較から明らかなように、改良フィルタ(図14)内の第2の共鳴器B の電力は、従来型フィルタ(図13)内の第2の共鳴器B の電力と比較してかなり低減している。改良フィルタにおける残りの共鳴器は従来型フィルタのものと同一であるため、これらの共鳴器の電力は従来フィルタと改良フィルタとでほぼ等しい。図15に示すように、単位第2の共鳴器B に改良フィルタを用いるだけで、−15.46dBmから−31.03dBmの阻止帯の高周波数側でのIMDを飛躍的に改善することができる。したがって、この帯域消去フィルタを通過帯域の体周波数側に用いたら、通過帯域の低い周波数側のIMDはかなり低減される。
図15に示す結果は、平坦(planar)な高温超電導(HTS)構造を用いた図16に示す帯域消去フィルタ100のセットを製造することにより、経験則的に確認された。帯域消去フィルタ100のセットは、従来の帯域消去フィルタ102(1)と、改良帯域消去フィルタ102(2)の2つの帯域消去フィルタを具え、これらは双方とも同じHTSウェハで製造されてウェハ間のばらつきをなくしている。帯域消去フィルタ102(1)、102(2)は、名目上同一のフォワード伝送係数S21の周波数応答を有するよう設計される。改良帯域消去フィルタ102(1)内の第2の共鳴器B は、しかしながら、残りの共鳴器を形成するのに用いる伝送ラインの幅の2.5倍の幅の伝送ラインから形成される。合計の3次のIMDの周波数応答は、各帯域消去フィルタ102(1)、102(2)の出力で測定され、図17に示すように、改良帯域消去フィルタ102(1)の高周波数側の3次のIMDは、従来型帯域消去フィルタ102(2)に比べてかなり改善されている。
平坦なHTSフィルタに用いる帯域消去フィルタ10の設計方法について上述したが、この方法は様々なRFフィルタの実現方法に広く適用可能であり、これは限定しないが、空洞フィルタ、同軸フィルタ、組み合わせフィルタ、エアラインフィルタ、誘電パックフィルタ、MEMS(Micro Electro-Mechanical Systems)フィルタ、表面弾性波(SAW)フィルタ、FBAR(Film-Bulk Acoustic Resonator)フィルタ、バルク弾性波フィルタ、および準集中エレメントフィルタが含まれる。

Claims (20)

  1. 無線周波数(RF)帯域消去フィルタを構築する方法において、
    入力および出力を有する信号伝送路と、当該入力と出力間の信号伝送路に沿って設けられた複数の共鳴素子と、前記共鳴素子を互いに結合して前記共鳴素子の各周波数に対応する複数の伝送ゼロを有する阻止帯を形成する複数の非共鳴素子とを具える帯域消去フィルタを設計するステップと、
    前記共鳴素子が信号伝送路に沿って配置された順番(order)を変えて複数のフィルタソリューションを生成するステップと、
    各フィルタソリューションの性能パラメータを算出するステップと、
    前記性能パラメータを互いに比較するステップと、
    算出した性能パラメータの比較に基づいて1のフィルタソリューションを選択するステップと、
    選択したフィルタソリューションを用いて前記帯域消去フィルタを構築するステップとを含むことを特徴とする方法。
  2. 請求項1の方法において、前記帯域消去フィルタにおける共鳴素子の数が4であることを特徴とする方法。
  3. 請求項1の方法において、前記複数の非共鳴素子は、それぞれ前記共鳴素子に並列結合された非共鳴素子と、それぞれ前記共鳴素子に直列結合された非共鳴素子とを具えることを特徴とする方法。
  4. 請求項3の方法において、前記非共鳴素子はそれぞれアドミタンスインバータであることを特徴とする方法。
  5. 請求項3の方法において、さらに、前記フィルタソリューションのそれぞれについて結合マトリクス表現(coupling matrix representation)を作成するステップを含み、各フィルタソリューションの性能パラメータは各結合マトリクス表現から算出されることを特徴とする方法。
  6. 請求項5の方法において、前記フィルタの設計が、前記共鳴素子に並列結合された非共鳴素子間にそれぞれあるノードと、前記共鳴素子と前記共鳴素子に直列結合された非共鳴素子との間にそれぞれあるノードと、前記入力と出力間のノードとを具え、前記結合マトリクスの各ディメンションがノードを具えることを特徴とする方法。
  7. 請求項6の方法において、さらに、各結合マトリクスをその最も単純な形に低減(reduce)するステップと、この低減した結合マトリクスが互いに異なるかを判定するステップとを含むことを特徴とする方法。
  8. 請求項1の方法において、前記帯域消去フィルタが、薄膜準集中エレメント構造(thin-film quasi-lumped element structure)を有することを特徴とする方法。
  9. 請求項8の方法において、前記薄膜準集中エレメント構造が、高温超電導体(HTS)を含むことを特徴とする方法。
  10. 請求項1の方法において、前記性能パラメータは、相互変調歪み性能パラメータであることを特徴とする方法。
  11. 帯域通過無線周波数(RF)フィルタの性能を改善する方法において、
    請求項1の帯域消去フィルタを、前記帯域通過フィルタにより生成される通過帯域のエッジをシャープにするように前記帯域通過フィルタに結合するステップを含むことを特徴とする方法。
  12. 無線周波数(RF)帯域消去フィルタにおいて、
    互いに結合して阻止帯を形成する複数の共鳴素子を具え、少なくとも2の共鳴素子が、互いに異なる3次の相互変調歪み(IMD)成分を有し、前記フィルタの3次のIMD成分が前記阻止帯に対して非対称であることを特徴とするフィルタ。
  13. 請求項12の帯域消去フィルタにおいて、
    前記3次のIMD成分は、3次のIMD生産物2f−fおよび2f−fであることを特徴とするフィルタ。
  14. 請求項12の帯域消去フィルタにおいて、前記少なくとも2の共鳴素子が、互いに少なくとも1波長異なる伝送ラインを有することを特徴とするフィルタ。
  15. RFフィルタネットワークにおいて、
    通過帯域を生成すべく構成された帯域通過フィルタと、
    互いに結合して阻止帯を形成する複数の共鳴素子とを具え、少なくとも2の共鳴素子が、互いに異なる3次の相互変調歪み(IMD)成分を有し、前記フィルタの3次のIMD成分が前記阻止帯に対して非対称であり、前記帯域通過フィルタと前記帯域消去フィルタは前記通過帯域のいずれかのエッジをシャープにするように互いに結合されることを特徴とするフィルタネットワーク。
  16. 請求項15のフィルタネットワークにおいて、前記3次のIMD成分は、3次のIMD生産物2f−fおよび2f−fであることを特徴とするフィルタネットワーク。
  17. 請求項15のフィルタネットワークにおいて、前記少なくとも2の共鳴素子が、互いに少なくとも1波長異なる伝送ラインを有することを特徴とするフィルタネットワーク。
  18. 請求項15のフィルタネットワークにおいて、前記帯域消去フィルタが、各帯域幅の反対側に3次の相互変調成分の第1および第2のセットを具え、前記相互変調成分の第1のセットは、前記相互変調成分の第2のセットより前記通過帯域に近く、前記相互変調成分の第1のセットは、前記第2の相互変調セットより低いことを特徴とするフィルタネットワーク。
  19. 請求項18のフィルタネットワークにおいて、前記相互変調成分の第1のセットは、前記相互変調成分の第2のセットより少なくとも10dB低いことを特徴とするフィルタネットワーク。
  20. 請求項15のフィルタネットワークにおいて、さらに、別の阻止帯を形成すべく互いに結合された別の複数の共鳴素子を有する別の帯域消去フィルタを具え、前記別の共鳴素子の少なくとも2つは、互いに異なる別の3次の相互変調歪み(IMD)成分を有し、この別の3次のIMD成分が阻止帯の周りで非対称となっており、前記帯域通過フィルタと前記別の帯域消去フィルタは、前記通過帯域のエッジの他方をシャープにするよう互いに結合されることを特徴とするフィルタネットワーク。
JP2010515203A 2007-06-27 2008-06-27 相互変調歪みを改善した電気フィルタ Pending JP2010532147A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US93735507P 2007-06-27 2007-06-27
PCT/US2008/068678 WO2009003191A1 (en) 2007-06-27 2008-06-27 Electrical filters with improved intermodulation distortion

Publications (1)

Publication Number Publication Date
JP2010532147A true JP2010532147A (ja) 2010-09-30

Family

ID=40159683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010515203A Pending JP2010532147A (ja) 2007-06-27 2008-06-27 相互変調歪みを改善した電気フィルタ

Country Status (6)

Country Link
US (1) US7924114B2 (ja)
EP (1) EP2168238A1 (ja)
JP (1) JP2010532147A (ja)
KR (1) KR20100037116A (ja)
CN (1) CN101689843A (ja)
WO (1) WO2009003191A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015513245A (ja) * 2012-02-08 2015-04-30 アップル インコーポレイテッド 複数のフィード部を有する同調可能アンテナシステム
JP2015528607A (ja) * 2013-03-15 2015-09-28 レゾナント インコーポレイテッドResonant Inc. マイクロ波フィルタの要素除去設計
JP2016508303A (ja) * 2013-03-15 2016-03-17 レゾナント インコーポレイテッドResonant Inc. マイクロ音響波フィルタのネットワーク合成設計
JP2016181909A (ja) * 2013-03-15 2016-10-13 レゾナント インコーポレイテッドResonant Inc. マイクロ波音響波フィルタの改良された設計

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005027715B4 (de) * 2005-06-15 2020-01-02 Snaptrack, Inc. Elektroakustischer Resonator, Filter, Duplexer und Verfahren zur Bestimmung von Parametern eines Resonators
WO2009003190A1 (en) 2007-06-27 2008-12-31 Superconductor Technologies, Inc. Low-loss tunable radio frequency filter
US8902020B2 (en) * 2009-07-27 2014-12-02 Avago Technologies General Ip (Singapore) Pte. Ltd. Resonator filter with multiple cross-couplings
US8862192B2 (en) 2010-05-17 2014-10-14 Resonant Inc. Narrow band-pass filter having resonators grouped into primary and secondary sets of different order
CN101938022A (zh) * 2010-07-22 2011-01-05 成都九洲迪飞科技有限责任公司 可调带阻滤波器
WO2012025946A1 (en) 2010-08-25 2012-03-01 Commscope Italy S.R.L. Tunable bandpass filter
US8742871B2 (en) * 2011-03-10 2014-06-03 Taiwan Semiconductor Manufacturing Co., Ltd. Devices and bandpass filters therein having at least three transmission zeroes
CN102801418B (zh) * 2011-05-26 2018-11-13 特克特朗尼克公司 避免交织图像和畸变产物的数据转换器系统
CN103187605A (zh) * 2011-12-30 2013-07-03 北京有色金属研究总院 带有高温超导块材的低损耗微波腔体滤波器及其制造方法
US8990742B2 (en) 2013-03-15 2015-03-24 Resonant Inc. Network synthesis design of microwave acoustic wave filters
US9208274B2 (en) 2013-03-15 2015-12-08 Resonant Inc. Network synthesis design of microwave acoustic wave filters
WO2015199895A1 (en) * 2014-06-25 2015-12-30 Associated Universities, Inc. Sub-network enhanced reflectionless filter topology
DE102014111909B3 (de) * 2014-08-20 2016-02-04 Epcos Ag Abstimmbares HF-Filter mit Serienresonatoren
DE102014111901B4 (de) 2014-08-20 2019-05-23 Snaptrack, Inc. Duplexer
DE102014111912A1 (de) 2014-08-20 2016-02-25 Epcos Ag HF-Filter
DE102014111904A1 (de) * 2014-08-20 2016-02-25 Epcos Ag Abstimmbares HF-Filter mit Parallelresonatoren
US10707905B2 (en) * 2015-06-23 2020-07-07 Skyworks Solutions, Inc. Wideband multiplexer for radio-frequency applications
US9948277B2 (en) 2015-09-02 2018-04-17 Resonant Inc. Method of optimizing input impedance of surface acoustic wave filter
US9374061B1 (en) 2015-09-02 2016-06-21 Resonant Inc. Method of optimizing input impedance of surface acoustic wave filter
US10224723B2 (en) * 2015-09-25 2019-03-05 Intel Corporation Radio frequency filter for wireless power system
US9525393B1 (en) * 2015-11-13 2016-12-20 Resonant Inc. Technique for designing acoustic microwave filters using lcr-based resonator models

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6026311A (en) * 1993-05-28 2000-02-15 Superconductor Technologies, Inc. High temperature superconducting structures and methods for high Q, reduced intermodulation resonators and filters
US5616539A (en) * 1993-05-28 1997-04-01 Superconductor Technologies, Inc. High temperature superconductor lumped element band-reject filters
KR100267343B1 (ko) * 1996-10-29 2000-10-16 윤종용 부호분할 다중 접속방식 단말기의 외부 간섭신호 제거장치 및 방법
DE69916660T2 (de) * 1998-12-11 2005-04-21 Paratek Microwave Inc Elektrisch abstimmbare filter mit dielektrischen varaktoren
EP1352444A1 (en) * 2000-12-12 2003-10-15 Paratek Microwave, Inc. Electrically tunable notch filters
US20050164888A1 (en) * 2001-03-26 2005-07-28 Hey-Shipton Gregory L. Systems and methods for signal filtering
US6633208B2 (en) * 2001-06-19 2003-10-14 Superconductor Technologies, Inc. Filter with improved intermodulation distortion characteristics and methods of making the improved filter
WO2007001464A2 (en) * 2004-11-30 2007-01-04 Superconductor Technologies, Inc. Systems and methods for tuning filters
EP2013938B1 (en) * 2005-11-18 2016-01-13 Resonant Inc. Low-loss tunable radio frequency filter
US7592882B2 (en) * 2007-02-22 2009-09-22 John Mezzalingua Associates, Inc. Dual bandstop filter with enhanced upper passband response

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015513245A (ja) * 2012-02-08 2015-04-30 アップル インコーポレイテッド 複数のフィード部を有する同調可能アンテナシステム
JP2015528607A (ja) * 2013-03-15 2015-09-28 レゾナント インコーポレイテッドResonant Inc. マイクロ波フィルタの要素除去設計
JP2016508303A (ja) * 2013-03-15 2016-03-17 レゾナント インコーポレイテッドResonant Inc. マイクロ音響波フィルタのネットワーク合成設計
JP2016164799A (ja) * 2013-03-15 2016-09-08 レゾナント インコーポレイテッドResonant Inc. マイクロ波フィルタの要素除去設計
JP2016181909A (ja) * 2013-03-15 2016-10-13 レゾナント インコーポレイテッドResonant Inc. マイクロ波音響波フィルタの改良された設計
JP2017208822A (ja) * 2013-03-15 2017-11-24 レゾナント インコーポレイテッドResonant Inc. マイクロ音響波フィルタのネットワーク合成設計
JP2017215980A (ja) * 2013-03-15 2017-12-07 レゾナント インコーポレイテッドResonant Inc. マイクロ波フィルタの要素除去設計

Also Published As

Publication number Publication date
CN101689843A (zh) 2010-03-31
US7924114B2 (en) 2011-04-12
KR20100037116A (ko) 2010-04-08
US20090002102A1 (en) 2009-01-01
WO2009003191A1 (en) 2008-12-31
EP2168238A1 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
JP2010532147A (ja) 相互変調歪みを改善した電気フィルタ
JP5671717B2 (ja) 低損失同調型無線周波数フィルタ
US9515362B2 (en) Tunable bandpass filter
Lu et al. Wideband bandpass filters with SAW-filter-like selectivity using chip SAW resonators
EP1405364B1 (en) Filter with improved intermodulation distortion characteristics and methods of making the improved filter
Levy Realization of practical lumped element all-pass networks for delay equalization of RF and microwave filters
Park et al. Extremely miniaturized bandpass filters based on asymmetric coupled lines with equal reactance
Tang et al. Parallel-coupled stacked SIRs bandpass filters with open-loop resonators for suppression of spurious responses
JP6158780B2 (ja) 低損失の可変無線周波数フィルタ
Lu et al. A wideband bandpass filter with frequency selectivity controlled by SAW resonators
Tu Sharp-rejection broadband microstrip bandpass filters using loaded open-loop resonator
CN113630102A (zh) 一种声波滤波器
Lee et al. Practical design method of distributed-element reflectionless bandstop filters
Yamamura et al. Aperture-coupling effect of two-layered open-loop microstrip bandpass filters designed by the Cul-de-Sac coupling matrix
Yamamura et al. New Design Method of Two-Layered Open-Loop Microstrip Bandpass Filters Based on the Cul-de-Sac Coupling Matrix
Choi et al. A novel microstrip transversal bandpass filter with simultaneous size reduction and spurious responses suppression
d'Oro et al. Design of asymmetric filters with requirements in two bands of finite extension
Morgan Coupled-Ladder Reflectionless Filters
Choi et al. Design of a new elliptic function filter using a double spiral resonator with zero order characteristic
Gan et al. New coupled microstrip SIR bandpass filters with transmission zeros
Socheatra et al. Lossy reflection mode dual-band bandstop prototype network based on hybrid elliptic filtering function
Fang et al. Miniaturized multi-mode resonator bandpass filter based on integrated passive device technology
Segovia-Vargas et al. Passive Diplexers and Active Filters based on Metamaterial Particles