JP2010528896A - Method for manufacturing hollow structural parts made of fiber reinforced plastic - Google Patents

Method for manufacturing hollow structural parts made of fiber reinforced plastic Download PDF

Info

Publication number
JP2010528896A
JP2010528896A JP2010510659A JP2010510659A JP2010528896A JP 2010528896 A JP2010528896 A JP 2010528896A JP 2010510659 A JP2010510659 A JP 2010510659A JP 2010510659 A JP2010510659 A JP 2010510659A JP 2010528896 A JP2010528896 A JP 2010528896A
Authority
JP
Japan
Prior art keywords
binder
water
filler
plastic
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010510659A
Other languages
Japanese (ja)
Inventor
シュレッケンベルク、シュテファン
ミュラー、イェンス
ヘルム、ベルンハルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of JP2010528896A publication Critical patent/JP2010528896A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/44Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
    • B29C33/52Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles soluble or fusible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/443Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum

Abstract


【目的】繊維強化プラスチック製の中空構造部品の製造用のRTM法のための、強化繊維で覆う際の高い引っ張り力に支障なく耐える水分散性支持中子を提供する。
【構成】繊維強化プラスチック製の中空構造部品の製造のために、少なくとも部分的に水溶性ケイ酸塩含有結合剤と充填材とからなる水溶性結合剤で調製された水分散性支持中子を強化繊維で覆う。支持中子上の繊維を硬化性プラスチックで含浸させ、プラスチックを硬化させ、続いて支持中子を水で洗い出す。前記結合剤が少なくとも部分的に水ガラスであるのが好ましい。

[Object] To provide a water-dispersible supporting core that can withstand high tensile force when covered with a reinforcing fiber without any hindrance for the RTM method for manufacturing a hollow structure part made of fiber-reinforced plastic.
[Structure] A water-dispersible supporting core prepared with a water-soluble binder consisting of a water-soluble silicate-containing binder and a filler at least partially for the production of hollow structural parts made of fiber reinforced plastic Cover with reinforcing fiber. The fibers on the supporting core are impregnated with a curable plastic, the plastic is cured, and then the supporting core is washed out with water. It is preferred that the binder is at least partially water glass.

Description

本発明は、請求項1の前提部に記載の繊維強化プラスチック製の中空構造部品の製造方法に関する。   The present invention relates to a method for producing a hollow structure part made of fiber-reinforced plastic according to the premise of claim 1.

繊維強化中空プラスチック部品の製造には、とりわけ、いわゆるRTM(樹脂トランスファー成形)法および真空注入法が使用される。   For the production of fiber-reinforced hollow plastic parts, the so-called RTM (resin transfer molding) method and the vacuum injection method are used, among others.

この目的には、例えば、1軸または2軸配向された強化繊維の少なくとも1層を加熱されたプレスの上型と下型との間に配置し、繊維層が上型と下型との間にある状態で熱硬化性プラスチック(例えば、硬化剤を有するエポキシ樹脂)が加圧下で型穴に注入され繊維層が熱硬化性プラスチックで含浸される。この手法は、真空注入法におけるものと類似しており、これによっては繊維層に熱硬化性プラスチックを吸い込ませるために、加圧する代わりに、真空にする。   For this purpose, for example, at least one layer of uniaxially or biaxially oriented reinforcing fibers is placed between the upper and lower molds of a heated press, the fiber layer being between the upper and lower molds. In this state, a thermosetting plastic (for example, an epoxy resin having a curing agent) is injected into the mold cavity under pressure, and the fiber layer is impregnated with the thermosetting plastic. This approach is similar to that in the vacuum injection method, where a vacuum is applied instead of pressurization to cause the fiber layer to draw the thermosetting plastic.

自動車には、例えば、支柱、ドア枠、バンパーなどの多数の中空構造部品が使用される。かかる中空部品は通常接合されている。しかしながら、接合点は破損につながり得る。さらに、接合された中空部品の寸法精度の改善が強く望まれている。   For example, many hollow structural parts such as support columns, door frames, and bumpers are used in automobiles. Such hollow parts are usually joined. However, junction points can lead to breakage. Furthermore, improvement in the dimensional accuracy of the joined hollow parts is strongly desired.

RTM法による中空部品の製造には、今日では蝋製の溶融中子を使用することが通例である。そのために用いられる工程は、中子の大きさのために非常に複雑である。さらに、蝋の熱膨張率が大きいために、必要とされる製造設備の複雑な調節が要求される。実際の部品製造後に、上記材料は再び溶かし出される。これにより型の内壁に残留物が残り、そしてこれは、まず部品重量を増加させ、また汚染物質およびラッカー親和性に関して不利である。   For the production of hollow parts by the RTM method, it is customary today to use a wax melt core. The process used for that is very complicated due to the size of the core. Furthermore, due to the high coefficient of thermal expansion of the wax, complicated adjustment of the required production equipment is required. After the actual part manufacture, the material is melted again. This leaves a residue on the inner wall of the mold, which first increases the part weight and is disadvantageous with respect to contaminants and lacquer affinity.

国際公開第02/072328号からは、水溶性結合剤としてポリビニルピロリドン(PVP)を含むプラスチック製の中空構造部品の製造のための支持中子が知られている。   From WO 02/072328 a supporting core for the production of plastic hollow structural parts containing polyvinylpyrrolidone (PVP) as a water-soluble binder is known.

支持中子を覆うため編組機を用いることができ、ここでは支持中子は編組機の中心に配置される一方で強化繊維は高張下で周囲から引っ張られる。しかしながら、国際公開第02/072328号に係る支持中子は、このような高い引っ張り力に耐えるには破壊強度が低すぎる。   A braiding machine can be used to cover the support core, where the support core is placed in the center of the braiding machine while the reinforcing fibers are pulled from the periphery under high tension. However, the supporting core according to WO 02/072328 has a fracture strength that is too low to withstand such a high tensile force.

低融点ビスマス合金製の支持中子もまた使用されている。しかしながら、中子を溶融するための投入エネルギーが高く、また重量が大きくそして結果として取り扱いが難しく、またビスマス蒸気の健康上のリスクのため、そのような中子は実際には使用できない。   Support cores made of low melting point bismuth alloys are also used. However, due to the high input energy for melting the core, the large weight and consequently the handling difficulty, and the health risks of bismuth vapor, such a core cannot be used in practice.

さらに、高密度発泡材製の支持中子が使用されており、これは部品の内部に残留し、したがってこれに応じた重量の増加をもたらす。   In addition, a support core made of high-density foam is used, which remains inside the part, thus resulting in a corresponding increase in weight.

したがって、本発明の目的は、繊維強化プラスチック製の中空構造部品の製造用のRTM法のための、強化繊維で覆う際の高い引っ張り力に支障なく耐える水分散性支持中子を提供することである。   Accordingly, an object of the present invention is to provide a water dispersible support core that can withstand high tensile forces when covered with reinforcing fibers without difficulty for the RTM method for the production of hollow structural parts made of fiber reinforced plastic. is there.

これは、本発明によれば請求項1に記載の方法により達成される。下位の請求項では、本発明の有利な実施形態が記載される。   This is achieved according to the invention by the method of claim 1. In the subclaims, advantageous embodiments of the invention are described.

本発明に従って使用される支持中子は、水溶性結合剤が少なくとも部分的にケイ酸塩を含むことを特徴とする。好ましく使用される結合剤は水ガラスである。結合剤は、SiO/MOの重量比が好ましくは1.6〜4.0、特に1.8〜3.5の範囲であることを特徴とし、ここでMはナトリウムイオンおよび/またはカリウムイオンおよび/またはリチウムイオンを表わす。結合剤は、好ましくは30〜60wt%の範囲のSiOとMOとの固形分を有する。 The supporting core used according to the invention is characterized in that the water-soluble binder comprises at least partly a silicate. The binder preferably used is water glass. The binder is characterized in that the weight ratio of SiO 2 / M 2 O is preferably in the range from 1.6 to 4.0, in particular from 1.8 to 3.5, where M is sodium ions and / or Represents potassium ion and / or lithium ion. The binder preferably has a solid content of SiO 2 and M 2 O in the range of 30-60 wt%.

支持中子は、好ましくは0.5〜8wt%、特に1〜5wt%という比較的小さな結合剤含有率、ひいては、相応して高い充填材含有率を有する。これにより高強度が達成され、したがって支持中子は、強化繊維でパッキング、すなわち覆い、特に編組する際の高い引っ張り力に耐える。   The supporting core preferably has a relatively small binder content of 0.5 to 8 wt.%, In particular 1 to 5 wt.% And thus a correspondingly high filler content. A high strength is thereby achieved, so that the supporting core can withstand high tensile forces when packing, ie covering, and braiding with reinforcing fibers.

使用される強化繊維は、好ましくは炭素繊維である。しかしながら、他の強化繊維、例えば、ガラス繊維を使用することも可能である。パッキングは、好ましくはケーブルやロープを編組するために使用されるような編組機で行なわれ、ここでは支持中子が編組機の中心においてケーブル芯線またはロープ芯線の位置を占めることになる。   The reinforcing fibers used are preferably carbon fibers. However, it is also possible to use other reinforcing fibers, for example glass fibers. Packing is preferably performed on a braiding machine such as used for braiding cables and ropes, where the support core occupies the position of the cable core or rope core in the center of the braiding machine.

繊維強化中空構造部品の製造は、次いで、好ましくはRTM法により達成される。すなわち、パッキングされた支持中子は、2つの型、例えば、加熱されたプレスの上型および下型の間に配置され、支持中子上の強化繊維は、支持中子が2つの型部品の間にある状態で、型穴に注入される熱硬化性プラスチック(例えば、エポキシ樹脂)で含浸される。ここで、10バール以上の加圧下で熱硬化性プラスチックが型穴に圧入される樹脂トランスファー成形(RTM)法、または熱硬化性プラスチックが型穴に吸い込まれる真空注入法を行なうことが可能である。樹脂の硬化後に、離型を行い、支持中子を水で洗い出して、繊維強化中空構造部品が形成される。   The production of fiber-reinforced hollow structural parts is then preferably achieved by the RTM method. That is, the packed support core is placed between two molds, for example, an upper mold and a lower mold of a heated press, and the reinforcing fibers on the support core are formed by the support core having two mold parts. In between, it is impregnated with a thermosetting plastic (eg, epoxy resin) injected into the mold cavity. Here, it is possible to perform a resin transfer molding (RTM) method in which a thermosetting plastic is press-fitted into the mold cavity under a pressure of 10 bar or more, or a vacuum injection method in which the thermosetting plastic is sucked into the mold cavity. . After the resin is cured, release is performed, and the supporting core is washed out with water to form a fiber-reinforced hollow structure part.

使用される水ガラスは、例えば、ケイ酸ナトリウムであってもよい。しかしながら、他の水ガラス、特にケイ酸カリウムまたはケイ酸リチウムを使用することも可能である。   The water glass used may be, for example, sodium silicate. However, it is also possible to use other water glasses, in particular potassium silicate or lithium silicate.

水ガラスに加えて、結合剤はさらにアルカリ金属化合物を含んでいてもよく、アルカリ金属化合物は固体形態でまたは水溶液として(例えば、水酸化ナトリウムまたは水酸化カリウム)あるいは溶解された形態(苛性ソーダまたは苛性カリ)で加えられてもよい。当該添加剤は、例えば、比率(SiO/MOの比)および固形分を制御するために使用されてもよい。 In addition to water glass, the binder may further contain an alkali metal compound, which may be in solid form or as an aqueous solution (eg sodium hydroxide or potassium hydroxide) or in dissolved form (caustic soda or caustic potash). ) May be added. The additive may be used, for example, to control the ratio (ratio of SiO 2 / M 2 O) and solids.

充填材は、不水溶性の粒子状物質、好ましくは少なくとも部分的に砂からなる。砂は、好ましくは100〜500μmの平均粒径を有する。   The filler consists of a water-insoluble particulate material, preferably at least partly sand. The sand preferably has an average particle size of 100 to 500 μm.

支持中子に強度を付与することに加えて、砂は、支持中子の製造において重要な作用も有している。本発明の方法のための支持中子は好ましくは、例えば、鋳造目的用の中子の製造に関して、独国特許出願公開第10200927号に記載されるように、中子製造機(core shooting machine)により製造される。ここで、鋳物砂と結合剤としての硫酸マグネシウム水溶液と水との混合物は、成形型に投入(shoot)される。続いて水を蒸発させて、鋳物の製造用の鋳造中子が形成される。   In addition to imparting strength to the support core, sand also has an important function in the production of the support core. The supporting core for the process according to the invention is preferably a core shooting machine, as described, for example, in German Offenlegungsschrift 10 2000 97 for the production of cores for casting purposes. Manufactured by. Here, a mixture of foundry sand, magnesium sulfate aqueous solution as a binder and water is shooted into a mold. Subsequently, the water is evaporated to form a casting core for producing a casting.

本発明による投入に好ましく使用される充填材と結合剤水溶液と水との混合物に、成形型に投入するために必要な流動性を持たせるため、充填材の砂含有率は少なくとも30wt%であることが好都合であることが分かった。   The sand content of the filler is at least 30 wt% in order to give the mixture of filler, aqueous binder solution and water preferably used for the injection according to the present invention the fluidity necessary for charging into the mold. Proved convenient.

さらに、充填材は、好ましくは、通常100μm〜2mmの平均粒径を有するプラスチック粒子を含む。プラスチック粒子は、好ましくは細切れにされたプラスチック廃棄物から形成される。粒子に比較的球形の形状を持たせるために、プラスチックペレットを使用することが好ましい。球形の形状は、したがって、充填材と結合剤溶液と水との混合物の上記流動性を増加させる。プラスチック粒子はさらに、支持中子の弾性を増加、つまりその脆さを減少させる。同時に、充填材としてプラスチック粒子を使用することにより支持中子の重量を実質的に低下させることができる。好ましくは、充填材中のプラスチックの含有率は少なくとも10wt%である。しかしながら、プラスチック含有率はかなり高く(50wt%以上に達する)てもよい。これにより、著しく軽い、ひいてはより取り扱い易い中子を得ることができる。   Furthermore, the filler preferably contains plastic particles having an average particle size of usually 100 μm to 2 mm. The plastic particles are preferably formed from chopped plastic waste. It is preferred to use plastic pellets in order to give the particles a relatively spherical shape. The spherical shape thus increases the fluidity of the mixture of filler, binder solution and water. The plastic particles further increase the elasticity of the supporting core, ie reduce its brittleness. At the same time, the weight of the support core can be substantially reduced by using plastic particles as the filler. Preferably, the plastic content in the filler is at least 10 wt%. However, the plastic content may be quite high (up to 50 wt% or more). This makes it possible to obtain a core that is significantly lighter and thus easier to handle.

中子の重量の減少は、セラミック粒子または中空ガラス球を用いてさらに達成可能である。セラミック粒子は、例えば、フライアッシュにより形成することができる。フライアッシュ粒子も同様に比較的球形形状であるので、フライアッシュ粒子は投入に必要な流動性も同時にもたらす。これはもちろん、充填材としての中空ガラス球に特に当てはまる。セラミック粒子および中空ガラス球の平均粒径は、例えば、50〜800μmであってもよい。   Reduction of the core weight can be further achieved with ceramic particles or hollow glass spheres. The ceramic particles can be formed by fly ash, for example. Since fly ash particles are also relatively spherical in shape, the fly ash particles also provide the fluidity required for input. This is of course especially true for hollow glass spheres as fillers. The average particle size of the ceramic particles and the hollow glass spheres may be, for example, 50 to 800 μm.

成形材料、すなわち、充填材と結合剤と水との混合物、の含水率は、充填材の重量に対して0.2〜5wt%が好ましい。これは、例えば、投入または圧入によって成形型の中へ挿入する際に成形材料を処理しやすくする。しかしながら、支持中子が必要な強度を有するように離型される前に乾燥されなければならないので、できるだけ低い含水率が選択される。   The water content of the molding material, that is, the mixture of the filler, the binder, and water is preferably 0.2 to 5 wt% with respect to the weight of the filler. This makes it easier to process the molding material when it is inserted into the mold, for example by injection or press fitting. However, the lowest possible moisture content is selected because the supporting core must be dried before it is released to have the required strength.

好ましい成形材料は、例えば、0.5〜5wt%、特に1〜2wt%のケイ酸塩含有水溶性結合剤(SiO/MOの比は好ましくは1.6〜4.0の範囲(ここでMはナトリウムイオンおよび/またはカリウムイオンおよび/またはリチウムイオンを表わす)および30〜60%の固形分)ならびに残部が砂からなる。 Preferred molding materials are, for example, 0.5 to 5 wt%, in particular 1 to 2 wt% of silicate-containing water-soluble binders (SiO 2 / M 2 O ratio is preferably in the range 1.6 to 4.0 M represents sodium ions and / or potassium ions and / or lithium ions) and 30-60% solids) and the balance consists of sand.

本発明の方法よれば、繊維強化プラスチック製の任意の中空構造部品を製造することができる。自動車分野では、かかる繊維強化中空構造部品の例として、特に、支柱、つまり、Aピラー、BピラーおよびCピラー、ドア枠ならびにバンパーが挙げられる。   According to the method of the present invention, any hollow structural part made of fiber reinforced plastic can be produced. In the automotive field, examples of such fiber-reinforced hollow structure parts include in particular struts, ie A pillars, B pillars and C pillars, door frames and bumpers.

国際公開第02/072328号International Publication No. 02/072328 独国特許出願公開第10200927号German Patent Application Publication No. 10200097

Claims (15)

水溶性結合剤と充填材とからなる水分散性支持中子が強化繊維で覆われており、前記支持中子上の前記繊維が硬化性プラスチックで含浸され、前記プラスチックが硬化され、かつ前記中子が水で洗い出される、繊維強化プラスチック製の中空構造部品の製造方法であって、前記結合剤が少なくとも部分的にケイ酸塩成分からなることを特徴とする方法。   A water-dispersible supporting core made of a water-soluble binder and a filler is covered with reinforcing fibers, the fibers on the supporting core are impregnated with a curable plastic, the plastic is cured, and the core A method for producing a hollow structural part made of fiber reinforced plastic, wherein the child is washed out with water, characterized in that the binder consists at least partly of a silicate component. 前記結合剤が少なくとも部分的に水ガラスからなる、請求項1に記載の方法。   The method of claim 1, wherein the binder is at least partially composed of water glass. 結合剤含有率が、前記充填材の重量に対して、0.5〜8wt%、好ましくは0.8〜4wt%、特に好ましくは1〜2.5wt%である、請求項1または2に記載の方法。   The binder content is from 0.5 to 8 wt%, preferably from 0.8 to 4 wt%, particularly preferably from 1 to 2.5 wt%, based on the weight of the filler. the method of. 前記結合剤が、1.6〜4.0、特に1.8〜3.5の範囲のSiO/MOの重量比を有し、ここでMはナトリウムイオンおよび/またはカリウムイオンおよび/またはリチウムイオンを表わす、請求項2または3に記載の方法。 The binder has a weight ratio of SiO 2 / M 2 O in the range of 1.6 to 4.0, in particular 1.8 to 3.5, where M is sodium ion and / or potassium ion and / or Or a process according to claim 2 or 3 which represents lithium ions. 前記結合剤が、30〜60wt%の範囲のSiOとMOとの固形分を有する、請求項1ないし4のいずれか一項に記載の方法。 It said binder has a solids content of SiO 2 and M 2 O in the range of 30 to 60 wt%, A method according to any one of claims 1 to 4. 前記結合剤が、少なくとも部分的にケイ酸ナトリウムおよび/またはケイ酸カリウムおよび/またはケイ酸リチウムからなる、請求項1ないし5のいずれか一項に記載の方法。   6. A method according to any one of the preceding claims, wherein the binder consists at least in part of sodium silicate and / or potassium silicate and / or lithium silicate. 前記結合剤が、前記水ガラスに加えて、少なくとも1種のさらなるアルカリ金属化合物を含む、請求項1ないし6のいずれか一項に記載の方法。   7. A method according to any one of the preceding claims, wherein the binder comprises at least one further alkali metal compound in addition to the water glass. 前記さらなるアルカリ金属化合物が、ナトリウム化合物および/またはカリウム化合物である、請求項7に記載の方法。   The method according to claim 7, wherein the further alkali metal compound is a sodium compound and / or a potassium compound. 前記充填材が少なくとも部分的に砂からなる、請求項1ないし8のいずれか一項に記載の方法。   9. A method according to any one of the preceding claims, wherein the filler is at least partly composed of sand. 前記充填材が少なくとも部分的にプラスチック粒子からなる、請求項1ないし9のいずれか一項に記載の方法。   10. A method according to any one of the preceding claims, wherein the filler is at least partially composed of plastic particles. 前記充填材が少なくとも部分的にセラミック粒子からなる、請求項1ないし10のいずれか一項に記載の方法。   11. A method according to any one of the preceding claims, wherein the filler is at least partially composed of ceramic particles. 前記プラスチック粒子またはセラミック粒子が球形形状を有する、請求項10または11に記載の方法。   The method according to claim 10 or 11, wherein the plastic particles or ceramic particles have a spherical shape. 前記充填材が少なくとも部分的にセラミックまたは中空ガラス球からなる、請求項1ないし12のいずれか一項に記載の方法。   13. A method according to any one of the preceding claims, wherein the filler is at least partly composed of ceramic or hollow glass spheres. 樹脂トランスファー成形法として行なわれる、請求項1ないし13のいずれか一項に記載の方法。   The method according to any one of claims 1 to 13, which is performed as a resin transfer molding method. 真空注入法として行なわれる、請求項1〜13のいずれか一項に記載の方法。   The method according to any one of claims 1 to 13, which is performed as a vacuum injection method.
JP2010510659A 2007-06-05 2008-05-09 Method for manufacturing hollow structural parts made of fiber reinforced plastic Pending JP2010528896A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007026229A DE102007026229A1 (en) 2007-06-05 2007-06-05 Process for producing a structural hollow component made of fiber-reinforced plastic
PCT/EP2008/003749 WO2008148452A2 (en) 2007-06-05 2008-05-09 Method for the production of a structural hollow part from fiber-reinforced plastic

Publications (1)

Publication Number Publication Date
JP2010528896A true JP2010528896A (en) 2010-08-26

Family

ID=39942064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010510659A Pending JP2010528896A (en) 2007-06-05 2008-05-09 Method for manufacturing hollow structural parts made of fiber reinforced plastic

Country Status (5)

Country Link
US (1) US20100212816A1 (en)
EP (1) EP2155459A2 (en)
JP (1) JP2010528896A (en)
DE (1) DE102007026229A1 (en)
WO (1) WO2008148452A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012196861A (en) * 2011-03-22 2012-10-18 Toray Ind Inc Method for manufacturing hollow fiber reinforced plastic
JP2015013711A (en) * 2013-07-04 2015-01-22 井前工業株式会社 Suction roller and method of manufacturing the same
JP2015016694A (en) * 2012-06-12 2015-01-29 三菱レイヨン株式会社 Method for molding fiber-reinforced plastic
JP2020026108A (en) * 2018-08-15 2020-02-20 マーシャル インダストリアル コープ. Manufacturing process for carbon fiber rim

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014224646A1 (en) 2014-12-02 2016-06-02 Bayerische Motoren Werke Aktiengesellschaft Process for producing a fiber composite plastic hollow component
US10538019B2 (en) * 2015-05-22 2020-01-21 The Boeing Company Coating soluble tooling inserts
DE102015223008A1 (en) * 2015-11-21 2017-05-24 H2K Minerals Gmbh Mold, process for its preparation and use
EP3423266A1 (en) * 2016-03-02 2019-01-09 LM WP Patent Holding A/S Method of molding a shell part of a wind turbine blade
DE102016208116A1 (en) * 2016-05-11 2017-11-16 Contitech Mgw Gmbh Method for producing a charge air tube
DE102016208115A1 (en) * 2016-05-11 2017-11-16 Contitech Mgw Gmbh Method for producing a charge air tube
CN106393522B (en) * 2016-08-31 2019-06-11 大冶市石开工艺青铜铸造股份有限公司 Silica gel turns over glass reinforced plastic forming method processed
CN106670390B (en) * 2016-11-21 2018-11-02 湖北三江航天红阳机电有限公司 A kind of solvable sand core forming method of band Dome winding shell
CN106863835B (en) * 2017-01-11 2019-05-28 北京汽车集团有限公司 The forming method of hollow vehicle component and hollow vehicle component and automobile
DE102017009521A1 (en) * 2017-10-11 2019-04-11 Eissmann Cotesa Gmbh A method for producing a hollow fiber composite component, mold core for forming a hollow fiber composite component and hollow fiber composite component
CN112406755B (en) * 2020-11-27 2022-04-29 中国第一汽车股份有限公司 Bumper beam and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039220A (en) * 1973-07-17 1975-04-11
JPS5158293A (en) * 1974-11-16 1976-05-21 Yokohama Rubber Co Ltd Mitsupeijoyokino seizohoho
JPS63178011A (en) * 1987-01-19 1988-07-22 Hino Motors Ltd Production equipment of hollow resin product
JPH03132313A (en) * 1989-10-18 1991-06-05 Mitsubishi Rayon Co Ltd Method of molding hollow body
JPH11138647A (en) * 1997-11-12 1999-05-25 Sakura Rubber Co Ltd Manufacture of hollow construction
JP2003094448A (en) * 2001-09-25 2003-04-03 Toray Ind Inc Manufacturing method for frp hollow structure
JP2003291149A (en) * 2002-04-05 2003-10-14 Kanto Auto Works Ltd Vacuum casting core, formation method therefor, and vacuum cast molding method using the core
WO2006024540A2 (en) * 2004-09-02 2006-03-09 AS Lüngen GmbH Material mixture for producing casting moulds for machining metal
JP2009507093A (en) * 2005-09-02 2009-02-19 アシュラント−ジュートヒェミー−ケルンフェスト ゲゼルシャフト ミット ベシュレンクテル ハフツング Molding material mixture containing borosilicate glass

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5035602A (en) * 1987-06-15 1991-07-30 Ford Motor Company Resin transfer molding core and preform
US5089186A (en) * 1990-07-11 1992-02-18 Advanced Plastics Partnership Process for core removal from molded products
US5492660A (en) * 1994-08-01 1996-02-20 Ford Motor Company Resin molding process utilizing a core prepared from glass beads and a binder
KR100209304B1 (en) * 1995-08-31 1999-07-15 최동환 Manufacturing method of insulation for composite material
US6828373B2 (en) 2001-03-07 2004-12-07 Advanced Ceramics Research, Inc. Water soluble tooling materials for composite structures
DE10200927A1 (en) 2001-08-10 2003-03-06 Laempe Joachim Method and device for producing molds or cores for foundry purposes
DE102005051439B4 (en) * 2004-11-05 2014-11-27 Bayerische Motoren Werke Aktiengesellschaft Application of a water-dispersible support core for producing a structural hollow component

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039220A (en) * 1973-07-17 1975-04-11
JPS5158293A (en) * 1974-11-16 1976-05-21 Yokohama Rubber Co Ltd Mitsupeijoyokino seizohoho
JPS63178011A (en) * 1987-01-19 1988-07-22 Hino Motors Ltd Production equipment of hollow resin product
JPH03132313A (en) * 1989-10-18 1991-06-05 Mitsubishi Rayon Co Ltd Method of molding hollow body
JPH11138647A (en) * 1997-11-12 1999-05-25 Sakura Rubber Co Ltd Manufacture of hollow construction
JP2003094448A (en) * 2001-09-25 2003-04-03 Toray Ind Inc Manufacturing method for frp hollow structure
JP2003291149A (en) * 2002-04-05 2003-10-14 Kanto Auto Works Ltd Vacuum casting core, formation method therefor, and vacuum cast molding method using the core
WO2006024540A2 (en) * 2004-09-02 2006-03-09 AS Lüngen GmbH Material mixture for producing casting moulds for machining metal
JP2009507093A (en) * 2005-09-02 2009-02-19 アシュラント−ジュートヒェミー−ケルンフェスト ゲゼルシャフト ミット ベシュレンクテル ハフツング Molding material mixture containing borosilicate glass

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012196861A (en) * 2011-03-22 2012-10-18 Toray Ind Inc Method for manufacturing hollow fiber reinforced plastic
JP2015016694A (en) * 2012-06-12 2015-01-29 三菱レイヨン株式会社 Method for molding fiber-reinforced plastic
JP2015013711A (en) * 2013-07-04 2015-01-22 井前工業株式会社 Suction roller and method of manufacturing the same
JP2020026108A (en) * 2018-08-15 2020-02-20 マーシャル インダストリアル コープ. Manufacturing process for carbon fiber rim

Also Published As

Publication number Publication date
US20100212816A1 (en) 2010-08-26
DE102007026229A1 (en) 2008-12-11
WO2008148452A2 (en) 2008-12-11
WO2008148452A3 (en) 2009-02-26
EP2155459A2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
JP2010528896A (en) Method for manufacturing hollow structural parts made of fiber reinforced plastic
KR102601424B1 (en) Method of manufacturing molds and cores suitable for manufacturing cast parts of metal or plastic or fiber composite bodies, mold substrates and binders used in said method and molds and cores manufactured according to said method
EP2190933B1 (en) Aggregate-based mandrels for composite part production and composite part production methods
US9314941B2 (en) Aggregate-based mandrels for composite part production and composite part production methods
JP4610679B2 (en) Manufacturing procedures for ferrules for molds, other feeding heads and feeding elements, and compositions for the production of said ferrules and elements
JP4352423B2 (en) Metal casting mold
WO2014059968A2 (en) Mould material mixtures on the basis of inorganic binders, and method for producing moulds and cores for metal casting
CN101434683A (en) Polymer graft modification composite hollow micro-bead and preparation thereof
KR20140147893A (en) Method for the production of a hollow metal part by means of casting
JP3278168B2 (en) Sleeve, its manufacturing method and application
CN109153068B (en) Core for casting and method for manufacturing same
DE102005051439B4 (en) Application of a water-dispersible support core for producing a structural hollow component
EP1695805B1 (en) Water dispersible core for producing fibre reinforced hollow objects and method for producing fibre reinforced hollow objects
JP4413780B2 (en) Sleeve, method for producing the same, and mixture for producing the same
JP6744109B2 (en) Method for producing solid waste of radioactive waste
DE102011010548A1 (en) Inorganic binding agent useful for producing molds and cores for casting of liquid metals, and for producing composite structures, comprises non-self-curing, aqueous alkali silicate solution
KR102580791B1 (en) Foundry articles for metalworking applications, methods of making such foundry articles, and particulate refractory compositions for use in the methods.
JP2013087307A (en) Manufacturing method of metal-ceramic composite material and metal-ceramic composite material
JP2007204839A (en) Method for producing fiber-reinforced metal matrix composite, and fiber-reinforced metal matrix composite
CN116791010A (en) Connection method of carbon fiber composite material and light alloy piece
JP2017087226A (en) Manufacturing method of ceramic casting mold
JPS6390350A (en) Production of composite mold by metal and inorganic materials
KR100890310B1 (en) Sleeve, procedure for the manufacture thereof and mixture for the production of said sleeve
KR20240034784A (en) inorganic binder system
JP2004344927A (en) Mold making method of mold for full mold casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120830

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121129

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130311