JP2010528504A - 適応MaxLogMAPタイプ受信器構造 - Google Patents

適応MaxLogMAPタイプ受信器構造 Download PDF

Info

Publication number
JP2010528504A
JP2010528504A JP2010508441A JP2010508441A JP2010528504A JP 2010528504 A JP2010528504 A JP 2010528504A JP 2010508441 A JP2010508441 A JP 2010508441A JP 2010508441 A JP2010508441 A JP 2010508441A JP 2010528504 A JP2010528504 A JP 2010528504A
Authority
JP
Japan
Prior art keywords
maxlogmap
ofdm
receiver
quality
bit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010508441A
Other languages
English (en)
Inventor
カール−エリック, ダブリュー. サンドバーグ,
ハララボス パパドパウロス,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Publication of JP2010528504A publication Critical patent/JP2010528504A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/39Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
    • H03M13/3905Maximum a posteriori probability [MAP] decoding or approximations thereof based on trellis or lattice decoding, e.g. forward-backward algorithm, log-MAP decoding, max-log-MAP decoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/005Iterative decoding, including iteration between signal detection and decoding operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0631Receiver arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03171Arrangements involving maximum a posteriori probability [MAP] detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03305Joint sequence estimation and interference removal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03312Arrangements specific to the provision of output signals
    • H04L25/03318Provision of soft decisions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/067Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing soft decisions, i.e. decisions together with an estimate of reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/2653Demodulators with direct demodulation of individual subcarriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03414Multicarrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/0342QAM
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03426Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03592Adaptation methods
    • H04L2025/03726Switching between algorithms

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Radio Transmission System (AREA)
  • Error Detection And Correction (AREA)

Abstract

適応MaclogMAPタイプ受信器構造の方法及び装置を本明細書で開示する。一実施形態では、デバイスは、OFDM及びビットインターリーブド符号化変調を使用して無線送信される送信器からの情報担持信号を受信する受信器を備え、受信器は、OFDMトーンの品質に基づいてメトリック訂正の度合を適合させるように動作可能な変更されたMaxLogMAPプロセスを使用して最尤送信シンボル推定を実行するマルチプルインマルチプルアウト(MIMO)ジョイントデマッパを有する内側復号器構造を具備する。
【選択図】 図1

Description

優先権
[0001]本願は、2007年5月18日に出願した対応する米国特許仮出願第60/930815号明細書、名称「Adaptive MaxLogMAP−type Receiver Structures for MIMO/OFDM/QAM Systems with BICM/ID」に対する優先権を主張し、これを参照によって組み込むものである。
[0002]本発明は、無線通信の分野に関し、より具体的には、本発明は、適応MaxLogMAPタイプ受信器に関する。
[0003]将来の無線システムは、所与の伝送帯域幅内で達成可能なデータレートを高めるために、無線周波数スペクトルのより有効な利用を必要とする。これは、信号処理と組み合わされた複数の送信アンテナ及び受信アンテナを使用することによって達成することができる。複数の最近開発された技法及び新生の標準規格は、無線システムの有効データレートを損なわずに無線媒体を介するデータ通信の信頼性を改善するために、基地局で複数のアンテナを使用することに基づく。いわゆる時空間ブロック符号(space−time block−code、STBC)が、この目的に使用される。
[0004]具体的に言うと、無線通信における最近の進歩は、基地局において時間及び送信アンテナにまたがってシンボルを一緒に符号化することによって、信頼性(ダイバーシティ)利益並びに基地局から各セルラユーザへの帯域幅の1単位あたりの有効データレートの増加を得ることができることを実証した。これらの多重化(スループット)利得及びダイバーシティ利益は、基地局で使用される時空間符号化技法に依存する。多重化利得及びダイバーシティ利益は、システム内の送信アンテナの個数及び受信アンテナの個数によって規定される多重化−ダイバーシティトレードオフ曲線によって基本的に制限されるという意味で、展開されているシステム内の送信アンテナ及び受信アンテナの個数にも本質的に依存する。
[0005]高データレート及び広帯域伝送に関して、OFDMの使用は、等化器を不必要にする。マルチレベルモデムを用いると、符号化変調システムを、たとえば畳み込み符号などの外側2進符号(outer binary code)及びいわゆるビットインターリーブド符号化変調(bit−interleaved coded modulation、BICM)システム内のインターリーバによって簡単に設計することができる。
[0006]多数の新生及び将来の無線ネットワークでは、任意の特定のセルユーザのデータを、複数の基地局から使用可能にすることができる。複数の基地局からのジョイントシグナリングは、伝送の範囲/カバレッジをたやすく拡張することができる。さらに、特定のユーザのデータを有する基地局のそれぞれを仮想アンテナアレイの要素(又は、複数の送信アンテナが各基地局に存在する場合には要素のグループ)と見なすことから、所望のユーザにダイバーシティ利益を提供するためにこれらの基地局にまたがって協力的信号符号化方式を使用することが提案される。しかし、符号化された信号は、空間的に散在する基地局によって送信されるので、お互いに関する別個の相対遅延を伴ってすなわち非同期で受信器に到着する。これらの相対遅延は、原理的には受信器で推定され得るが、受信器から送信する基地局への相対遅延情報フィードバックがなければ、送信する基地局では未知である(したがって、それについて調整することができない)。
[0007]STBCの大きい集団が、セルラシステムの順方向リンクで複数送信アンテナを活用することによってダイバーシティ及び/又は多重化利益を提供する手段として、近年に提案されてきた。重要なのは、STBC方式の実際のシンボルレートRであり、これは、k/t(すなわち、tに対するkの比率)と等しい。フルレートSTBCとは、そのレートRが1シンボル毎チャネル使用と等しいSTBCである。STBCのもう1つの重要な属性が、その復号の複雑さである。任意のSTBCの最適復号器の復号複雑さは、一緒に符号化されるシンボルの個数kにおいて指数関数的であるが、はるかにより低い複雑さを有する設計が存在する。直交時空間符号(orthogonal space−time code、OSTBC)と称する、設計の1つのそのような魅力的なクラスは、フルダイバーシティを提供できるが、その最適復号は、(線形処理とその後の)シンボルごとの復号に切り離される。フルレートOSTBCは、2送信アンテナシステムについてのみ存在する。3つ以上のアンテナについて、レートは、3/4シンボル/毎チャネル使用を超えることができない。このレートは、N=3及びN=4アンテナについて達成可能である。その結果、強要される直交性制約は、単純な復号構造をもたらすが、そのような方式によって提供できる多重化利得(したがって、スペクトル効率及びスループット)に制約を課す。
[0008]多くのMIMO/OFDMシステムは、サイズの大きいQAMコンステレーション及びBICM/IDを活用し、高い複雑さを有する内側MIMO検出器ブロックを有する。
[0009]複数の基地局から共通のオーディオ/ビデオ情報をブロードキャストするために展開された複数のシステムが、単一周波数ネットワーク概念の下で符号化OFDM伝送を活用している。これらのシステムは、ブロードキャストする基地局のそれぞれからの共通の符号化OFDMベースの伝送を使用する。OFDMベースの伝送は、複数の信号の非同期受信を可能にし、高められたカバレッジをもたらす。しかし、すべての基地局が情報担持信号の同一の符号化された版を送信するので、SFN(単一周波数ネットワーク)システムは、一般に、完全な符号化利得と共に完全な送信基地局ダイバーシティを提供はしない(このダイバーシティのある形は、調整されていないので制限されてはいるが、マルチパスダイバーシティの形で使用可能である)。内側の変更された直交STBCを用いる方式は、単一周波数ネットワークのOFDMベースの利益を提供すると同時に、ビットインターリーブド符号化変調と一緒に別個の基地局から別個の調整された送信を使用することによってシステムから収穫される完全な送信基地局ダイバーシティ及び周波数ダイバーシティを可能にする方法と見なすことができる。
[0010]高いスペクトル効率及び信頼できる伝送を実現できるクラスの方式は、OFDMを用いる時空間ビットインターリーブド符号化変調システムを含む。これらのシステムは、空間(送信アンテナ及び受信アンテナ)ダイバーシティ、周波数ダイバーシティを提供でき、非同期伝送に対処することができる。さらに、2進畳み込み符号をレート互換パンクチャード畳み込み符号(rate compatible punctured convolutional code)を伴うブロックに変更することによって、柔軟なUEPシステムを達成することができる。そのようなシステムに関連する1つの短所は、準最適受信器が、非常に複雑(計算集中型)になり得ることである。必要なジョイントデマッパユニット(内側のMAP復号器又はMaxLogMAP復号器)は、複雑さにおいて、送信アンテナの個数とモデムコンステレーションポイントあたりのビット数との積に伴って指数関数的に増大する。16QAM(4ビット/シンボル)及び4個の送信アンテナを有する例として、内側復号器での計算の複雑さは、24x4=216に比例する。
[0011]QAMコンステレーション用のグレイマッパが、非反復復号器のよい選択であるが、反復復号器のよい選択ではないことが周知である。
[0012]適応MaclogMAPタイプ受信器構造の方法及び装置を本明細書で開示する。一実施形態では、デバイスは、OFDM及びビットインターリーブド符号化変調を使用して無線送信される送信器からの情報担持信号を受信する受信器を備え、受信器は、OFDMトーンの品質に基づいてメトリック訂正の度合を適合させるように動作可能な変更されたMaxLogMAPプロセスを使用して最尤送信シンボル推定を実行し軟出力情報を提供するマルチプルインマルチプルアウト(MIMO)ジョイントデマッパを有する内側復号器構造を具備する。
[0013]本発明は、下で与えられる詳細な説明及び本発明のさまざまな実施形態の添付図面からより十分に理解されるが、下の説明及び添付図面は、本発明を特定の実施形態に限定するものと解釈されてはならず、説明及び理解のみのためのものである。
復号プロセスの一実施形態を示す流れ図である。 広帯域周波数選択性チャネルに関してOFDM変調と共にビットインターリーブド符号化変調(BICM)を用いる時空間符号化用の送信器の一実施形態を示すブロック図である。 OFDMシステムの時空間符号用の反復復号器を有する受信器の一実施形態を示す図である。 異なるOFDMトーン/サブチャネル用のMIMOジョイントデマッパユニットを有するMIMOデマッパ305の一実施形態を示すブロック図である。 いわゆるセットパーティション(set partition)タイプマッパの一実施形態を示す図である。 パスのソートされたリスト並びにビット値推定及び軟出力計算に使用される項の個数を判定するプロセスの一実施形態を示す流れ図である。 ビット位置の信頼性(軟出力)情報を判定するプロセスの一実施形態を示す流れ図である。
[0014]本発明の実施形態は、全般的に、複数の送信アンテナ及び複数の受信アンテナを有する無線システムを介してディジタル情報を受信する適応受信器構造に関する。この適応受信器構造は、MaxLogMAPアルゴリズムの改善された版に基づく柔軟で効率的なMIMOジョイントデマッパを有する。内側ジョイントデマッパ(MIMO検出器)を従来のMaxLogMAPからMAP性能に近づく改善されたアルゴリズムにアップグレードする効率的な方法をも開示する。さらに、訂正項の個数、反復の回数、及び経時的な割振りの使用によってOFDMトーンの品質を適合させることによって、全体的な複雑さ割振りが、改善された効率及び性能と共に達成される。
[0015]本発明の実施形態は、送信基地局ダイバーシティ、伝送帯域幅内で使用可能な周波数ダイバーシティ、複数の受信アンテナが使用される場合の受信アンテナダイバーシティ、及び拡張されたカバレッジを提供する形で、たとえば各送信する基地局から受信器への複数の独立にフェージングするパスを介する情報担持信号のインテリジェント広帯域伝送を活用するシステムの複雑さを減らされた受信器を含む。本発明は、同一位置基地局を有するシステムと非同一位置基地局を有するシステムとの両方の時空間符号化方式に適用可能である。一実施形態では、そのような方式について、時空間ブロック符号(STBC)が、複数送信アンテナを有する単一基地局が送信並びにOFDMベースのBICMシステムに使用される場合に、順方向リンク内でダイバーシティを提供するのに使用される。
[0016]本発明の実施形態は、上で説明した内側STBCを有するシステムに適用されるが、内側STBCを伴わないシステムに対してもさらに適用される。本発明の実施形態は、反復復号(ID)を用いるビットインターリーブド符号化変調(BICM)を使用するすべてのMIMO/OFDMベースのシステムに特によく適用される。低レート外側符号について、これらのシステムは、完全な空間ダイバーシティを有する。高レート符号について、高データレートを達成できるが、空間ダイバーシティの度合の減少がある。
[0017]一実施形態では、OFDMに基づく広帯域伝送及び外側2進符号を用いるビットインターリーブド符号化変調が使用される。直交周波数分割多重化(OFDM)が、柔軟な広帯域システムを達成するのに使用される。反復復号ID(受信器での)を用いるビットインターリーブド符号化変調BICM(送信器での)が、効率のために使用される。内側ジョイントデマッパが、OFDMトーンの品質に基づいて適応的に使用される。このシステムは、内側直交時空間ブロック符号と共に又はこれを伴わずに使用することができる。
[0018]次の説明では、本発明のより完全な説明を提供するために、多数の詳細を示す。しかし、本発明をこれらの特定の詳細なしで実践できることが、当業者には明白であろう。他の場合には、本発明を不明瞭にすることを避けるために、周知の構造及びデバイスを、詳細にではなくブロック図形式で示す。
[0019]次の詳細な説明のいくつかの部分は、コンピュータメモリ内のデータビットに対する動作のアルゴリズム及び記号表現に関して提示される。これらのアルゴリズム記述及び表現は、データ処理分野の技術者が自分たちの成果の実質を他の当業者に最も効果的に伝えるために使用する手段である。アルゴリズムは、本明細書では、及び一般に、所望の結果につながるステップの自己完結的シーケンスと考えられる。ステップは、物理的量の物理的操作を必要とするステップである。通常、必ずではないが、これらの量は、格納され、転送され、組み合わされ、比較され、他の形で操作され得る、電気信号又は磁気信号の形をとる。時々、主に一般的使用のために、これらの信号をビット、値、要素、シンボル、文字、項、数、又は類似物として参照することが便利であることがわかっている。
[0020]しかし、これら及び類似する項目のすべてが、適当な物理適量に関連付けられなければならず、これらの量に適用される単に便利なラベルであることに留意されたい。次の議論から明白として他の形で特に述べられない限り、本説明全体を通じて、「処理」、「コンピューティング」、「計算」、「判定」、「表示」、又は類似物などの用語を利用する議論は、コンピュータシステムのレジスタ及びメモリ内の物理的(電子的)量として表されるデータを操作し、コンピュータシステムメモリ若しくはレジスタ、又は他のそのような情報記憶デバイス、情報伝送デバイス、若しくは情報表示デバイス内の物理的量として同様に表される他のデータに変換する、コンピュータシステム若しくは類似する電子コンピューティングデバイスのアクション及びプロセスを指すことを了解されたい。
[0021]本発明は、本明細書の動作を実行する装置にも関する。この装置は、要求される目的のために特に構成されてもよく、或いは、コンピュータに格納されるコンピュータプログラムによって選択的にアクティブ化又は再構成される汎用コンピュータを含むことができる。そのようなコンピュータプログラムは、フロッピディスク、光ディスク、CD−ROM、及び光磁気ディスクを含む任意のタイプのディスク、読取り専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、EPROM、EEPROM、磁気カード若しくは光カード、又は電子命令の格納に適するすべてのタイプの媒体などであるがこれらに限定はされない、それぞれがコンピュータシステムバスに結合されるコンピュータ可読記憶媒体内に格納され得る。
[0022]本明細書で提示されるアルゴリズム及び表示は、特定のコンピュータ又は他の装置に本質的には関連しない。さまざまな汎用システムを、本明細書の教示によるプログラムと共に使用することができ、或いは、必要な方法ステップを実行するためにより特殊化された装置を構成することが便利であるとわかる場合がある。さまざまなこれらのシステムの必要な構造は、下の説明から明白になる。さらに、本発明は、特定のプログラミング言語に関して説明されるのではない。さまざまなプログラミング言語を使用して、本明細書に記載の発明の教示を実施できることを了解されたい。
[0023]機械可読媒体は、機械(たとえば、コンピュータ)によって読取り可能な形で情報を格納し又は伝送するすべての機構を含む。たとえば、機械可読媒体は、読取り専用メモリ(「ROM」)、ランダムアクセスメモリ(「RAM」)、磁気ディスク記憶媒体、光記憶媒体、フラッシュメモリデバイス、電気、光、音響、又は他の形の伝搬される信号(たとえば、搬送波、赤外線信号、ディジタル信号など)などを含む。
概要
[0024]無線通信システム 送信器を有する第1デバイス(たとえば、基地局)と、OFDM及びビットインターリーブド符号化変調を使用して無線送信された送信器からの情報担持信号を受信するための受信器を有する第2デバイス(たとえば、モバイル端末)と を説明する。一実施形態では、本明細書で説明される通信システムは、マルチキャリアOFDM変調と組み合わされるビットインターリーブド符号化変調を用いる時空間符号化を適用する送信器と、反復デマッピング及び復号を用いるOFDM復調を適用する受信器とを含む符号化変調システムである。本明細書で説明されるシステムは、N個の送信アンテナ及びN個の受信アンテナを有する。N個の受信アンテナのそれぞれは、N個の送信アンテナから送信された信号のチャネル歪み版の合計である信号を受信する。本発明によるそのような符号化変調システムを、無線ローカルエリア/広域ネットワーク(LAN/WAN)応用例で有利に使用することができる。
[0025]例示的実施形態を、ビットインターリーブド符号化変調を用いる時空間符号化に関して説明するが、時空間符号化に関する他のタイプの符号化変調を使用することができる。さらに、例示的実施形態を、QAMを使用するシンボルへのビットインターリーブド符号化データのマッピングについて説明するが、たとえば位相偏移キーイング(PSK)などであるがこれには限定されない他の変調方式を使用することができる。
[0026]一般に、受信器は、チャネル応答行列Hの要素の値を推定する回路網を含み、そのような推定値は、送信器によって受信器に送信される周期的テスト(パイロット)信号を使用して生成することができる。チャネルインパルス応答のそのような先験的情報を、シミュレーションを介して生成することもできる。行列Hは、第k OFDMトーンでのチャネル応答を示し、次元N×Nの行列である。
[0027]信号処理と組み合わされた時に、複数の送信アンテナ及び受信アンテナは、高められた帯域幅効率(データレート)、拡大された電力効率(範囲)、又はその両方を有する通信リンクをもたらすことができる。本発明の実施形態は、主に、順方向リンクすなわち伝送の基地局からモバイルへの伝送方向を扱う。MaxLogMAPベースの受信器構造に関する方法及び装置を開示する。
[0028]一実施形態では、受信器は、OFDMトーンの品質に基づいてメトリック訂正の度合を適合させるように動作可能な変更されたMaxLogMAPプロセスを使用して最尤送信シンボル推定を実行するマルチプルインマルチプルアウト(MIMO)ジョイントデマッパを有する内側復号器構造を有する。MaxLogMAP復号器の複雑さは、送信アンテナの個数(N)にコンステレーションポイントあたりのビット数(B)を乗じた値に伴って指数関数的に増える。積NBの小さい値及び適度な値について、近最適MaxLogMAPに似た網羅タイプ検出器が、実現可能である。一実施形態では、改善検出器の性能が最適最大事後確率(MAP)検出器に近付くことを可能にする、MaxLogMAPの性能を適応式に改善する方法(チャネル推定値に基づく)が使用される。
[0029]基本的なMaxLogMAPアルゴリズムに対する改善を使用する受信器の実施形態を、本明細書で説明する。本明細書で説明されるOFDMベースのシステムでは、すべてのトーンについて1つのMIMO検出器がある。これらのMaxLogMAPアルゴリズムのアップグレードの度合の割振りにおける適応性は、トーン品質に基づく複雑さの割振りによって達成される。一実施形態では、これが、そのトーン上の信号レベルに基づいて評価される。もう1つの実施形態では、これが、そのトーン上のSNRに基づいて評価される。
[0030]一実施形態では、受信器の復号器構造は、トーン品質に基づいて、基本MaxLogMAPアルゴリズム又はMaxLogMAPアルゴリズムの変更された版を使用するように適合する。高品質(「高」は、所定のしきい値より高い品質を意味する)のトーンについて、復号器構造は、MaxLogMAPが高SNRについて漸近的に最適であることがわかっているので、MaxLogMAPを使用する。したがって、MaxLogMAPは、これらのトーンに全く十分であり、これらのトーンについてアップグレードに投資することによって得られるものは、ほとんどない。その一方で、低い信号レベル又は低いSNRを有するトーンについては、MAPアルゴリズムが、MaxLogMAPよりよく動作すると期待される。一実施形態では、その場合に、復号器構造は、訂正項がMaxLogMAPメトリックに追加されるMAPアルゴリズムを使用する。一実施形態では、訂正項の追加及びその計算、並びにこれらを変更された対数尤度比値の計算に使用することを、リン(Lin)及びコステロ(Costello Jr.)、「Error Control Coding, Second Edition」、Prentice Hall、米国ニューヨーク州、2003年に記載されたものと同一の形で実行することができる。一実施形態では、訂正項は、網羅的距離メトリック計算中に保存されたK個の最小距離値を使用して計算される(MaxLogMAPで行われるように最小距離項だけを保存するのではなく)。一実施形態では、各ビットのMAPは、次のように信頼性を計算する。まず、すべてのシーケンス候補を、一方の集合は当該のビット位置に値0を有し、他方の集合は同一ビット位置に値1を有する、2つの集合に分割する。MAPは、第1集合のすべての項目の尤度の合計の対数と、他方の集合のすべての項目の尤度の合計の対数との差を計算する。MaxLogMAPは、そうではなく、近似すなわち、第1集合の最大の項目の対数と他方の集合の最大の項目の対数との間の差を計算する。改善されたMaxLogMAP版は、第1集合の最良のK個のパスの合計の対数から他方の集合の最良のK個のパスの合計の対数を引いたものを計算する。一般に、すべての可能な候補の対数(又はメトリック)が、改善されたMaxLogMAP計算の前に網羅的に計算される必要がある。必要ではないが、これらのメトリック項(改善されたMaxLogMAPによって各合計内で使用される部分集合)を、グレフ(N.Graef)、ハンマーシュミット(J.S.Hammerschmidt)、及びサンバーグ(C−E.W.Sundberg)、「A Low Complexity Max−Log−MAP Detector」、2007年2月に記載の形で効率的に計算することができる。各合計での複数の項目の使用(すなわち、改善されたMaxLogMAPの使用)は、従来のMaxLogMAPと比較した複雑さの少しの増加を犠牲にして、性能改善につながる。K値が大きければ大きいほど、性能がよりよくなり、複雑さがより高くなることに留意されたい。しかし、増やされた値のKを使用することによってもたらされる性能利益は、SNRの増加に伴って減少する。
[0031]一実施形態では、Kの値の選択は、トーンの品質に基づいて適応式に行われる。一実施形態では、これは、先験的に生成されたルックアップテーブルの使用によって達成される。Kにおけるこの適応性がSNRに基づくと仮定すると、このルックアップテーブルは、SNR軸をSNR範囲に区分する。具体的に言うと、このテーブルは、SNR範囲のそれぞれについて使用されなければならないKの値を提供する。一実施形態では、このテーブルは、次のように使用される。受信器での所与のOFDMトーン上のチャネル推定値を与えられて、有効SNR値が計算され、このSNR値を含むSNR範囲が見つけられ、テーブルルックアップが、そのOFDMトーンに対して内側復号器によって使用されなければならないKの対応する値を提供する。
[0032]一実施形態では、適応性は、Kすなわち対数尤度比に対する訂正項の個数の選択に影響するだけではなく、所与のトーンの反復受信器反復の回数(I)にも影響し得る。もう1つの実施形態では、適応性は、経時的なすなわち連続するOFDMシンボルにまたがるK及び/又はIの割振りに影響する場合がある。
[0033]MIMO検出器のアップグレードが、原理的に、すべての2進外側符号と共に働くことに留意されたい。この符号は、ターボ符号、LDPC符号、通常の畳み込み符号、又はRCPC符号とすることができる。外側符号用の復号器は、好ましくは、ソフトインソフトアウト(soft in soft out、SISO)タイプの復号器、たとえばMAPである。外側復号器は、反復復号のために内側MIMO検出器にソフト情報を供給する。そのような受信器の一実施形態を、下でさらに図3で説明する。反復受信器を有するそのような送信システムでは、外側符号のレートは、設計パラメータであり、これを使用して、より高い度合のダイバーシティ(低い符号レート)又は高いスループット(高い符号レート)を提供することができる。本発明の実施形態は、これらのケースのすべてに適用される。
[0034]図1は、復号プロセスの一実施形態の流れ図である。このプロセスは、ハードウェア(たとえば、専用論理、回路網など)、ソフトウェア(汎用コンピュータシステム又は専用機械で動作するものなど)、又はこの両方の組合せを含むことができる処理論理によって実行することができる。一実施形態では、復号プロセスが、無線通信システム内の受信器によって実行される。
[0035]図1を参照すると、このプロセスは、処理論理が無線通信システム内の受信器によって受信された個々のOFDMトーンの品質を評価すること(処理ブロック101)によって開始される。個々のOFDMトーン/サブチャネルの品質は、受信器で評価/推定される。一実施形態では、OFDMトーンの品質は、信号レベルに基づく。別の実施形態では、OFDMトーンの品質は、信号対雑音比(SNR)に基づく。
[0036]OFDMトーンの品質を評価した後に、第1レベルより高い品質を有するOFDMトーンに対してMaxLogMAPを使用する復号を実行することと、MaxLogMAPメトリックに1つ又は複数の訂正項を追加することによって第1レベルより低い品質を有するOFDMトーンに対して変更されたMaxLogMAPアルゴリズムを使用する復号を実行することとを含めて、最尤送信シンボル推定値及び軟出力情報を表す出力データの第1集合を作るために第1復号動作を実行する処理論理(処理ブロック102)。したがって、一実施形態では、良い品質すなわち高い信号レベル又は高い信号対雑音比(SNR)を有するOFDMトーンについては、MaxLogMAPが高いSNRについて漸近的に最適なので通常のMaxLogMAPが使用され、低い品質すなわち低い信号レベル又は低いSNRを有するOFDMトーンについては、訂正項が計算され、追加される。何が「高い」と指定され、何が「低い」と指定されるかの選択は、相対信号レベルに基づく設計の問題である。たとえば、あるしきい値より高いレベルを、「高い」と指定することができ、レベルの残りを低いと指定することができ、ここで、このしきい値は、先験的に決定され、ルックアップテーブルに格納される。
[0037]一実施形態では、変更されたMaxLogMAPアルゴリズムを使用して復号を実行するステップは、網羅的距離メトリック計算を実行するステップと、網羅的距離メトリック計算中に複数の最小距離値のうちの所定の個数の最小距離値を維持するステップと、所定の個数の最小距離値を使用して変更された対数尤度比値を計算するステップとを含む。一実施形態では、復号を実行するステップは、OFDMトーンの品質に基づいて適応式に所定の個数を選択するステップをも含む。
[0038]第1復号動作を実行した後に、処理論理は、2進外側コーダを用いて第2復号動作を実行する(処理ブロック103)。一実施形態では、外側復号器は、外側符号器に関する復号器である。外側コーダが畳み込み符号である場合には、外側復号器を、たとえば、MAP(BCJR)復号器若しくはMaxLogMAP復号器とすることができ、或いは、非反復ケースでは軟入力硬出力ビタビ復号器とすることができる。一般に、外側復号器は、レート互換パンクチャード畳み込み(RCPC)符号、ターボ符号、及びLDPC符号を含む関連する外側符号器に関する通常に使用される復号器のうちの1つを含むことができる。
[0039]一実施形態では、このプロセスは、個々のOFDMトーンの品質に適応式に基づいて所与のトーンの内側/外側復号器反復の回数を選択することをさらに含む。もう1つの実施形態では、このプロセスは、計算され、時間シーケンス内の異なるOFDMブロックに対するMaxLogMAPメトリックに追加されるべき1つ又は複数の訂正項の使用の適合をさらに含む。もう1つの実施形態では、このプロセスは、時間シーケンス内の異なるOFDMブロックへの複数の反復の適合を含む。
[0040]一実施形態では、このプロセスは、非反復的である。その場合に、軟出力は、内側適応MaxLogMAP復号器によって作られ、単純な外側復号器に渡され、この外側復号器は、この場合には、硬出力だけを作る。
送信器及び受信器の実施形態
[0041]図2及び3に、BICM及びIDを用いるMIMO/OFDMシステムの送信器及び受信器のブロック図を示す。より具体的には、図2は、広帯域周波数選択性チャネルのOFDM変調を伴うビットインターリーブド符号化変調(BICM)を用いる時空間符号化のための送信器の一実施形態のブロック図である。図2を参照すると、送信器200は、畳み込み符号器201、ビットインターリーバ202、直列並列変換器203、マッパモデム207〜207Nt、逆高速フーリエ変換(IFFT)モジュール208〜208Nt、及び送信アンテナ209〜209Ntを含む。IFFTモジュール208〜208Ntが、当技術分野で周知の形で実行される循環プレフィックス動作をも含むことに留意されたい。
[0042]データに対してBICM符号化を実行するために、畳み込み符号器201は、入力ビット(入力データ)210に対して2進畳み込み符号を適用する。次に、ビットインターリーバ202は、畳み込み符号器201からの符号化されたビットをインターリーブして、BICM符号化データを生成する。このビットインターリービングは、フェージングチャネルの相関を除去し、ダイバーシティを最大化し、畳み込みコーダ201からの畳み込み符号化ビットのシーケンス内の相関を除去し、反復復号の性能を高めるためにデータを条件付ける。畳み込みコーダ201及びビットインターリーバ202は、通常、データパケットなど、入力データの別個のブロックを操作することができる。
[0043]BICM符号化を実行した後に、OFDMが、BICM符号化データに適用される。直列並列変換器203は、ビットインターリーバ202から、直列BICM符号化ビットストリームを受け取る。直列並列変換器203が、受信器が情報の別個のブロックに対するその復号を同期化することを可能にするフレーミング情報をビットストリームに挿入するフレーミングモジュール(図示せず)を含むことができることに留意されたい。直列並列変換器203は、長さN長のワードを生成し、ワードの各要素は、マッパモデム207〜207Ntのうちの対応する1つに供給される。このワードの要素は、単一ビット値とすることができ、或いは、Bビット値とすることができ、ここで、Bは、各モデムコンステレーションシンボルによって表されるビット数である。
[0044]マッパモデム207〜207Ntのそれぞれは、Bビットを対応するシンボル(Q進シンボル空間の、Q=2である)に変換する。各モデムマッパ207の出力は、シンボルである。IFFTモジュール208〜208Ntのそれぞれは、F個までのシンボルを集め、その後、F個のシンボルのブロックに長さFのIFFT演算を適用する。Fは、その値を通常は64もの小さい値から4096までの範囲とすることができる整数であり、或いは、より大きく、使用可能な伝送帯域幅、搬送波周波数、及びシステムによって対処される必要があるドップラシフトの量に依存する。したがって、IFFTモジュール208〜208Ntのそれぞれは、対応するアンテナ209〜209Ntを介して送信できるF個の並列サブチャネルを生成する。各サブチャネルは、チャネルに送信される変調された副搬送波である。
[0045]図3は、OFDMシステムの時空間符号用の反復復号器を有する受信器の一実施形態のブロック図である。図3を参照すると、受信器300は、受信アンテナ301〜301Nr、高速フーリエ変換(FFT)モジュール302〜302Nr、復調器/検出器303、並列直列変換器307、ビットデインターリーバ308、最大事後(MAP)復号器309、ビットインターリーバ310、及び直列並列変換器311を含む。図示されてはいないが、FFTモジュール302〜302Nrのそれぞれには、フィルタリング、バンドレートサンプリング、及び循環プレフィックス除去動作を実行するフロントエンドが先行する。
[0046]広帯域システムについて、受信器300は、受信アンテナ3011−NrのそれぞれについてOFDM復調を実行し、復調及びデマッピングは、F個の並列サブチャネルにまたがって実行される。第i受信アンテナ301(i)は、N個の送信アンテナから送信された信号のさまざまな寄与(すなわち、図2の対応するアンテナ209〜209Ntを介して送信された複数F個の並列、狭帯域、フラットフェージングサブチャネルの寄与)からなる信号を感知する。FFTモジュール302〜302Nrのそれぞれは、受信アンテナ301〜301Nrの対応する信号にF点FFTを適用し、F個のサブチャネルのN個の並列集合を生成する。
[0047]一実施形態で、復調器/検出器303は、従来技術の狭帯域フラットフェージングシステムでのように1つのサブチャネル内のみではなく、F個のサブチャネル(フラットフェージングを伴ってゆっくり変化する)のそれぞれでビットを推定する。復調器304は、F個のサブチャネルのN個の並列集合のそれぞれについて、F個のサブチャネル搬送波をベースバンドに復調する。マルチインプットマルチアウトプット(MIMO)デマッパ305は、FFTモジュール302〜302NrからのF個のサブチャネルのN個の並列集合に基づいて、送信器内のN個のアンテナからのF個のサブチャネルのそれぞれのデマッピングされたビット(すなわち、コンステレーションシンボルからマッピングされたビット)のMAP推定値を作る。MIMOデマッパ305は、MAP復号器309による軟出力復号(再インターリービングが続く)によって生成された信頼性情報を使用して、デマッピングされたビットの推定値及びこれらのビットに関する信頼性情報を作る。
[0048]一実施形態では、MIMOデマッパ305は、ソフト値が正しいことの事後確率の推定値(近似)と一緒に、オーバーラップするF個のサブチャネルで送信されたビットのソフト値を計算する。これは、当技術分野で周知の形で実行される。
[0049]一実施形態では、MIMOデマッパ305は、サブチャネル内のオーバーラップするビットのすべての組合せを検討し、その後、各組合せを評価する。
[0050]図4は、異なるOFDMトーン/サブチャネル用のMIMOジョイントデマッパユニットを有するMIMOデマッパ305の一実施形態のブロック図である。図4を参照すると、N個の受信アンテナ301〜301Nrの各信号は、FFTを適用することによってF個のサブチャネルに分割され(図4には示されていない復調器304を介して)、対応するサブチャネルMIMOデマッパ401〜401に送られる。すべてのN個の受信アンテナの第kサブチャネルの信号出力は、第kサブチャネルMIMOデマッパ401(k)に供給され、信頼性情報は、以前の反復のMAP復号器309の出力から生成された外部情報を使用する。この外部情報は、当技術分野で周知の形で各反復のビットエラーレート性能を改善するために、MIMOデマッパ305とMAP復号器309との間で交換される。
[0051]図3に戻って、MIMOデマッパ305からのF個の並列ストリーム内のビットの推定値は、これらのビットの信頼性値と一緒に、送信器によって生成されたBICM符号化ビットストリームの推定値を再構成する並列直列変換器307に供給され、このBICM符号化ビットストリームの推定値は、受信器300によって推定されたものである。推定されたBICM符号化ビットストリームは、その後、ビットデインターリーバ308によってデインターリーブされ、情報担持信号を復号するためにMAP復号器309に印加される(これは、送信器によって適用された畳み込み符号化に関連する復号器である)。
[0052]Map復号器309は、当技術分野で周知の形で、送信された情報ビットの軟出力値を生成するためにMAP復号プロセスを実行する。MIMOデマッパ305を用いて反復プロセスを実行することによって、軟出力値を、より信頼できるものにすることができる。
[0053]MAP復号器309からの外部情報は、まず、ビットインターリーバ310に印加される。ビットインターリービングは、外部情報の要素をMIMOデマッパ305からのインターリーブされた推定されたBICM符号化ビットストリームに整列させる。さらに、インターリーブされた外部情報は、直列並列変換器311に印加され、直列並列変換器311は、送信器で形成された並列ビットストリームに対応する外部情報のN個の並列ストリームを形成する。
[0054]外部情報は、当技術分野で周知の形で、各反復のビットエラーレート性能を改善するために、MIMOデマッパ305とMAP復号器309との間で交換される。一実施形態では、LLRの計算に関する改善されたMax−Log近似が、MIMOデマッパ305と、畳み込み符号に関するMAP復号器309との両方で使用される。事後LLR値の計算に関するMax−Log近似は、LLRを計算するために更新された順方向再帰メトリックシーケンス、逆方向再帰メトリックシーケンス、及び分岐メトリックシーケンスを計算する時に、次の式のmax項関係を使用することができる。
max(x,y)=log(e+e)=max(x,y)+log(1+e−|x−y|
したがって、各構成するMIMOデマッパ305又はMAP復号器309は、max項目(max(x,y))及び訂正項である対数訂正項(log(1+e−|x−y|))の別々の計算によってmax項を計算する。MaxLogMAP、改善されたMaxLogMAP、及びMAPでは、2つの「集約効果」項が計算され、その差が形成される。「集約効果」項ごとに、MAPは、すべての項を使用し、MaxLogMAPは、「最良の」項(すなわち1項のみ)を使用し、改善されたMaxLogMAPは、最良のK個の項を使用する。この例では、K=2であり、示されるものは、2つの「集約効果」項のそれぞれに2つの最良の項を含めるのに必要な計算を実行する効率的な形である。
[0055]図5に、反復復号で使用される16QAM用のいわゆるセットパーティションタイプマッパの一実施形態を示す。これは、ビットインターリーブド符号化データをシンボルにマッピングするのに使用される。
[0056]一実施形態で、データの処理が1つの反復のみで行われることに留意されたい。その場合に、軟出力は、内側適応MaxLogMAP復号器によって作られ、より単純な外側復号器に渡され、この外側復号器は、この場合には硬出力だけを作る。
[0057]低い複雑さの受信器に関して本明細書で説明された技法が、OFDM変調を使用するシステムに限定される必要がないことに留意されたい。
[0058]図6は、パスのソートされたリスト並びに使用される項の個数を判定するプロセスの一実施形態の流れ図である。このプロセスは、ハードウェア(たとえば、回路網、専用論理など)、ソフトウェア(汎用コンピュータシステム又は専用機械で動作するものなど)、又はこの両方の組合せを含むことができる処理論理によって実行される。
[0059]図6を参照すると、このプロセスは、チャネル推定値を計算し、信号対雑音比(SNR)計算を実行する(610)ためにOFDMトーンfでのパイロット(テスト)測定値(602)を使用することを開始する。ルックアップテーブル(606)に入力されるSNR(又は他の信号レベル品質表示)に基づいて、ルックアップテーブル(606)は、改善されたMaxLogMAP内で使用される項の個数を表す数K(612)を生成する。
[0060]チャネル推定値及びSNRの計算は、パスのリスト生成ブロック(603)及びパスメトリック計算ブロック(604)に入力される。通常の(非テスト)信号を処理する時には、OFDMトーンfでの測定値(601)が、パスのリスト(603)及びそのメトリックを当技術分野で周知の形で判定するのに使用される。メトリックは、当技術分野で周知の形でリスト内のパスのそれぞれについて計算される(604)。パスメトリックを計算した後に、パスは、パスのソートされたリスト及びそのメトリック(611)を作るために、そのメトリックに基づいてソートされる(605)。パスのソートされたリスト及びそのメトリック(611)並びにK(612)は、図7のプロセスに入力される。
[0061]図7は、ビット位置の信頼性情報を判定するプロセスの一実施形態の流れ図である。このプロセスは、ハードウェア(たとえば、回路網、専用論理など)、ソフトウェア(汎用コンピュータシステム又は専用機械で動作するものなど)、又はこの両方の組合せを含むことができる処理論理によって実行される。
[0062]図7を参照すると、このプロセスは、入力として、ビット位置701、そのビット位置のパスのソートされたリスト及びそのメトリック(611)、並びにルックアップテーブル(606)からの数Kを有する。ビット位置(701)ごとに、処理論理は、パスのリストをそのメトリックに基づいて2つのサブリストすなわち所与のビット位置に1と等しいビット値を有するパスのサブリスト(704)及び0と等しいビット値を有するパスのもう1つのサブリスト(703)にソートする(702)。サブリスト703と704との両方から、K個の最良パス及びそのメトリックを選択する(705、706)。次に、ビット位置が0と等しい及びビット位置が1と等しい両方のサブリストのK個の最良パス及びそのメトリックから、それぞれ、処理ブロック707及び708で部分メトリックを計算する。0と等しいビット値及び1と等しいビット値のK個の最良パスについて部分メトリックを計算した後に、その計算の結果の間で差を計算する(709)。この差は、このビット位置の信頼性情報(710)を表す。
発明の実施形態の利益
[0063]本発明の実施形態の1つの利益は、上で説明したように基本MaxLogMAP検出器を超える複雑さリソースの適応割振りと共に近MAP MIMO検出器性能を提供できることである。本発明の実施形態は、上で説明したように送信アンテナの個数及びQAM信号点あたりのビット数が適度であるBICM/IDを用いるすべてのMIMO/OFDMシステムに適用可能である。N=4送信アンテナ及び16QAMすなわち信号点あたりb=4ビットを有する提案される4Gシステムは、MaxLogMAPでの網羅的検索において約64000個の候補を生成する。この動作は、すべての反復ですべてのトーンについて実行されなければならない。
[0064]本発明の多数の代替形態及び修正形態が、疑いなく、前述の説明を読んだ後に当業者に明白になるが、例示として図示され、説明された任意の特定の実施形態が、決して限定的と考えられることを意図されていないことを理解されたい。したがって、さまざまな実施形態の詳細への言及は、特許請求の範囲の範囲を限定することを意図されたものではなく、特許請求の範囲自体は、本発明に本質的であるものとみなされる特徴のみを列挙する。

Claims (2)

  1. 送信器を有する無線通信システムで使用されるデバイスであって、
    OFDM及びビットインターリーブド符号化変調を使用して無線送信される前記送信器からの情報担持信号を受信する受信器であって、OFDMトーンの品質に基づいてメトリック訂正の度合を適合させるように動作可能な変更されたMaxLogMAPプロセスを使用して最尤送信シンボル推定を実行するマルチプルインマルチプルアウト(MIMO)ジョイントデマッパを有する内側復号器構造を具備する、前記受信器
    を備えるデバイス。
  2. 無線通信システム内の受信器によって受信された個々のOFDMトーンの品質を評価するステップと、
    最尤送信ビット推定値を表す出力データ及びこれらの推定値のそれぞれの信頼性に関する情報の第1集合を作るために第1復号動作を実行するステップであって、
    第1レベルより高い品質を有するOFDMトーンに対してMaxLogMAPを使用して軟出力復号を実行するステップと、
    MaxLogMAPメトリックに1つ又は複数の訂正項を追加することによって、第1レベルより低い品質を有するOFDMトーンに対して変更されたMaxLogMAPアルゴリズムを使用して復号を実行するステップと
    を含む、前記ステップと
    を含む方法。
JP2010508441A 2007-05-18 2008-05-16 適応MaxLogMAPタイプ受信器構造 Pending JP2010528504A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US93081507P 2007-05-18 2007-05-18
US12/121,634 US8064548B2 (en) 2007-05-18 2008-05-15 Adaptive MaxLogMAP-type receiver structures
PCT/US2008/006287 WO2008143974A1 (en) 2007-05-18 2008-05-16 Adaptive maxlogmap-type receiver structures

Publications (1)

Publication Number Publication Date
JP2010528504A true JP2010528504A (ja) 2010-08-19

Family

ID=40027462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010508441A Pending JP2010528504A (ja) 2007-05-18 2008-05-16 適応MaxLogMAPタイプ受信器構造

Country Status (4)

Country Link
US (1) US8064548B2 (ja)
EP (1) EP2149242A1 (ja)
JP (1) JP2010528504A (ja)
WO (1) WO2008143974A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100542090B1 (ko) 2002-12-16 2006-01-11 한국전자통신연구원 무선 통신 시스템에서의 오류 제어 방법, 매체 접속 제어프레임 설계 방법 및 단말기 등록 방법과 기록 매체
US8223890B1 (en) * 2009-10-30 2012-07-17 The United States Of America As Represented By The Secretary Of The Army Asymptotically optimal modulation classification method for software defined radios
US8477862B2 (en) * 2010-10-14 2013-07-02 Nokia Corporation Apparatus and method for trellis-based detection in a communication system
US8559540B2 (en) 2010-10-14 2013-10-15 Nokia Corporation Apparatus and method for trellis-based detection in a communication system
CN107104716B (zh) * 2011-04-19 2020-10-02 太阳专利托管公司 信号生成方法及装置、信号处理方法及装置
US8903027B1 (en) * 2011-06-27 2014-12-02 Xilinx, Inc. Detector for a multiple-antenna receiver
WO2013133646A1 (en) * 2012-03-07 2013-09-12 Samsung Electronics Co., Ltd. Communication system with signal-to-noise ratio adjustment mechanism and method of operation thereof
US8848842B2 (en) 2012-08-16 2014-09-30 Xilinx, Inc. Recursion unit scheduling
US8885778B2 (en) 2012-12-14 2014-11-11 Intel Corporation Techniques to manage processing of multiple input multiple output communications
US9197267B2 (en) * 2013-04-09 2015-11-24 Qualcomm Incorporated Methods and apparatus for joint demodulation with max-log MAP (MLM)
US10205470B2 (en) 2014-02-14 2019-02-12 Samsung Electronics Co., Ltd System and methods for low complexity list decoding of turbo codes and convolutional codes
DE102015107509A1 (de) * 2014-10-14 2016-04-14 Infineon Technologies Ag Chip und Verfahren zum Betreiben einer Verarbeitungsschaltung
KR102397896B1 (ko) * 2015-05-29 2022-05-13 삼성전자주식회사 수신 장치 및 그의 신호 처리 방법
US10411836B2 (en) 2017-03-17 2019-09-10 Uurmi Systems Pvt. Ltd System and method for detecting spatially multiplexed and space time block coded multiple-input multiple-output (MIMO) signals
US10498486B1 (en) * 2018-08-23 2019-12-03 Avago Technologies General Ip (Singapore) Pte. Ltd. Maximum a posteriori iterative demapper for multi antenna communication system
TWI739074B (zh) * 2019-03-15 2021-09-11 瑞昱半導體股份有限公司 迭代式檢測與解碼電路、迭代式檢測與解碼方法及多輸入多輸出接收機
CN111726198B (zh) * 2019-03-22 2023-08-22 瑞昱半导体股份有限公司 迭代式检测与解码电路及其方法、多输入多输出接收机
CN111181651A (zh) * 2019-12-13 2020-05-19 重庆邮电大学 一种提高传输速率的四维编码调制系统

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5737691A (en) 1995-07-14 1998-04-07 Motorola, Inc. System and method for allocating frequency channels in a two-way messaging network
GB2304495B (en) 1995-08-15 1999-12-29 Nokia Mobile Phones Ltd Radio resource sharing
US5982327A (en) * 1998-01-12 1999-11-09 Motorola, Inc. Adaptive array method, device, base station and subscriber unit
DE69923970T2 (de) * 1999-09-14 2006-04-27 Lucent Technologies Inc. Kanaldecodiereinrichtung und Verfahren zum Kanaldecodieren
US7072295B1 (en) * 1999-09-15 2006-07-04 Tellabs Operations, Inc. Allocating network bandwidth
US6597743B1 (en) 1999-12-07 2003-07-22 Ericsson Inc. Reduced search symbol estimation algorithm
US7441045B2 (en) * 1999-12-13 2008-10-21 F5 Networks, Inc. Method and system for balancing load distribution on a wide area network
US6804307B1 (en) * 2000-01-27 2004-10-12 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for efficient transmit diversity using complex space-time block codes
ATE417423T1 (de) * 2000-03-01 2008-12-15 Spyder Navigations Llc Verkettete raum-zeit-kodierung
JP2001352258A (ja) 2000-06-08 2001-12-21 Sony Corp 復号装置及び復号方法
JP2002009692A (ja) * 2000-06-23 2002-01-11 Matsushita Electric Ind Co Ltd データ伝送装置及びデータ伝送方法
EP1204283A1 (en) 2000-11-06 2002-05-08 Telefonaktiebolaget L M Ericsson (Publ) Cellular radio network reusing frequencies
US7023840B2 (en) * 2001-02-17 2006-04-04 Alcatel Multiserver scheduling system and method for a fast switching element
US7421030B2 (en) * 2001-05-08 2008-09-02 Siemens Aktiengesellschaft Method and device for transferring data in a multi-carrier system having parallel concatenated encoding and modulation
US7243295B2 (en) * 2001-06-12 2007-07-10 Intel Corporation Low complexity channel decoders
US7042858B1 (en) * 2002-03-22 2006-05-09 Jianglei Ma Soft handoff for OFDM
US7251768B2 (en) * 2002-04-22 2007-07-31 Regents Of The University Of Minnesota Wireless communication system having error-control coder and linear precoder
US7184713B2 (en) * 2002-06-20 2007-02-27 Qualcomm, Incorporated Rate control for multi-channel communication systems
US7095812B2 (en) * 2002-06-24 2006-08-22 Agere Systems Inc. Reduced complexity receiver for space-time- bit-interleaved coded modulation
KR100487183B1 (ko) 2002-07-19 2005-05-03 삼성전자주식회사 터보 부호의 복호 장치 및 방법
DE50211427D1 (de) 2002-08-26 2008-02-07 Benninger Zell Gmbh Verfahren zum Schlichten von bahn- oder fadenförmiger Ware
GB2394389B (en) 2002-10-15 2005-05-18 Toshiba Res Europ Ltd Equalisation apparatus and methods
SE0203362D0 (sv) 2002-11-13 2002-11-13 Reddo Networks Ab A method and apparatus for transferring data packets in a router
US20040116146A1 (en) * 2002-12-13 2004-06-17 Sadowsky John S. Cellular system with link diversity feedback
US6862552B2 (en) * 2003-01-15 2005-03-01 Pctel, Inc. Methods, apparatus, and systems employing soft decision decoding
US7386057B2 (en) * 2003-02-20 2008-06-10 Nec Corporation Iterative soft interference cancellation and filtering for spectrally efficient high-speed transmission in MIMO systems
US7246295B2 (en) 2003-04-14 2007-07-17 Agere Systems Inc. Turbo decoder employing simplified log-map decoding
US7574518B2 (en) * 2003-06-23 2009-08-11 Microsoft Corporation System and method for computing low complexity algebraic network codes for a multicast network
JP4227481B2 (ja) * 2003-07-11 2009-02-18 パナソニック株式会社 復号装置および復号方法
US7391826B2 (en) * 2003-08-08 2008-06-24 Lucent Technologies Inc. Decoding method and apparatus
US7724838B2 (en) * 2003-09-25 2010-05-25 Qualcomm Incorporated Hierarchical coding with multiple antennas in a wireless communication system
KR100713403B1 (ko) 2003-09-30 2007-05-04 삼성전자주식회사 통신 시스템에서 채널 상태에 따른 송신 방식 제어 장치및 방법
EP1521375A3 (en) * 2003-10-03 2005-04-13 Kabushiki Kaisha Toshiba Signal decoding methods and apparatus
GB2407007B (en) 2003-10-09 2006-06-28 Toshiba Res Europ Ltd Estimator for mimo receiver
US8705659B2 (en) 2003-11-06 2014-04-22 Apple Inc. Communication channel optimization systems and methods in multi-user communication systems
EP1530387A1 (en) 2003-11-06 2005-05-11 Matsushita Electric Industrial Co., Ltd. Transmission power range setting during channel assignment for interference balancing in a cellular wireless communication system
US7308047B2 (en) * 2003-12-31 2007-12-11 Intel Corporation Symbol de-mapping methods in multiple-input multiple-output systems
US20050185707A1 (en) * 2004-02-24 2005-08-25 Hoo Min C. Method and system for antenna selection diversity with minimum threshold
FR2869182B1 (fr) * 2004-04-20 2008-03-28 Thales Sa Procede de routage dans un reseau ad hoc
AU2005241837B2 (en) * 2004-05-07 2008-04-24 Huawei Technologies Co., Ltd. Apparatus and method for encoding/decoding space time block code in a mobile communication system using multiple input multiple output scheme
KR20060048106A (ko) * 2004-05-25 2006-05-18 삼성전자주식회사 이동통신 시스템에서 섹터 다이버시티를 제공하는 직교주파수 분할 다중 심벌 전송 방법 및 장치와 시스템
US7564915B2 (en) * 2004-06-16 2009-07-21 Samsung Electronics Co., Ltd. Apparatus and method for coding/decoding pseudo orthogonal space-time block code in a mobile communication system using multiple input multiple output scheme
US7756051B2 (en) * 2004-07-02 2010-07-13 Microsoft Corporation Content distribution using network coding
US7397843B2 (en) * 2004-08-04 2008-07-08 Telefonaktiebolaget L L M Ericsson (Publ) Reduced complexity soft value generation for multiple-input multiple-output (MIMO) joint detection generalized RAKE (JD-GRAKE) receivers
US7894548B2 (en) 2004-09-03 2011-02-22 Qualcomm Incorporated Spatial spreading with space-time and space-frequency transmit diversity schemes for a wireless communication system
CN100589597C (zh) * 2004-10-01 2010-02-10 新加坡科技研究局 用于确定信号矢量的方法和系统
KR100938091B1 (ko) 2004-10-13 2010-01-21 삼성전자주식회사 직교주파수다중분할 이동통신시스템에서 블록 부호화기법과 순환 지연 다이버시티 기법을 사용하는 기지국송신 장치 및 방법
US7627051B2 (en) * 2004-11-08 2009-12-01 Samsung Electronics Co., Ltd. Method of maximizing MIMO system performance by joint optimization of diversity and spatial multiplexing
KR101099621B1 (ko) 2004-12-07 2011-12-29 에스케이 텔레콤주식회사 일반화된 직교 공간-시간 블록 부호 방식을 사용하는 다입다출력 이동통신 시스템에서의 최적 전력 할당 방법
US7414978B2 (en) * 2004-12-30 2008-08-19 Massachusetts Institute Of Technology Minimum-cost routing with network coding
US8102837B2 (en) * 2004-12-30 2012-01-24 Massachusetts Institute Of Technology Network coding approach to rapid information dissemination
US7433432B2 (en) 2004-12-31 2008-10-07 Broadcom Corporation Adaptive detector for multiple-data-path systems
JP4530274B2 (ja) * 2005-01-11 2010-08-25 株式会社リコー 符号処理装置、符号処理方法、プログラム及び情報記録媒体
US7593489B2 (en) * 2005-03-14 2009-09-22 Koshy John C Iterative STBICM MIMO receiver using group-wise demapping
JP4429945B2 (ja) 2005-03-23 2010-03-10 株式会社エヌ・ティ・ティ・ドコモ Mimo多重通信装置および信号分離方法
US8738053B2 (en) * 2005-09-21 2014-05-27 Broadcom Corporation Method and system for finding a threshold for semi-orthogonal user group selection in multiuser MIMO downlink transmission
US7948959B2 (en) 2005-10-27 2011-05-24 Qualcomm Incorporated Linear precoding for time division duplex system
CN101341665B (zh) 2005-12-22 2011-06-08 艾利森电话股份有限公司 基于令牌的无线电资源管理
US8660210B2 (en) 2006-01-23 2014-02-25 Qualcomm Incorporated Method of packet format dependent selection of MIMO-OFDM demodulator
CA2541567C (en) * 2006-03-31 2012-07-17 University Of Waterloo Parallel soft spherical mimo receiver and decoding method
US20100150274A1 (en) 2006-05-04 2010-06-17 Agency For Science, Technology And Research Method and System for Determining a Signal Vector
US8194760B2 (en) * 2006-06-01 2012-06-05 Ntt Docomo, Inc. Method and apparatus for distributed space-time coding in wireless radio networks
US7895497B2 (en) * 2006-06-26 2011-02-22 Samsung Electronics Co., Ltd. Apparatus and method using reduced memory for channel decoding in a software-defined radio system
US7818023B2 (en) 2006-10-27 2010-10-19 Qualcomm Incorporated Power allocation scheme
US8042031B2 (en) * 2006-12-21 2011-10-18 Industrial Technology Research Institute Maximum likelihood detection method and system
EP2149241A1 (en) 2007-05-18 2010-02-03 NTT DoCoMo Inc. Adaptive soft output m-algorithm receiver structures
US20090070746A1 (en) 2007-09-07 2009-03-12 Dinakar Dhurjati Method for test suite reduction through system call coverage criterion
US8279954B2 (en) * 2008-03-06 2012-10-02 Ntt Docomo, Inc. Adaptive forward-backward soft output M-algorithm receiver structures
US8451951B2 (en) 2008-08-15 2013-05-28 Ntt Docomo, Inc. Channel classification and rate adaptation for SU-MIMO systems

Also Published As

Publication number Publication date
US20080285671A1 (en) 2008-11-20
EP2149242A1 (en) 2010-02-03
WO2008143974A1 (en) 2008-11-27
US8064548B2 (en) 2011-11-22

Similar Documents

Publication Publication Date Title
US8064548B2 (en) Adaptive MaxLogMAP-type receiver structures
JP6542957B2 (ja) 連結コーディング・システムの先進繰り返しデコーディングおよびチャネル評価のためのシステムおよび方法
US7359313B2 (en) Space-time bit-interleaved coded modulation for wideband transmission
JP2010528503A (ja) 適応軟出力mアルゴリズム受信器構造
JP5395099B2 (ja) 適応前向き−後向き軟出力mアルゴリズムの受信機構造
US7251768B2 (en) Wireless communication system having error-control coder and linear precoder
US7095812B2 (en) Reduced complexity receiver for space-time- bit-interleaved coded modulation
JP5436453B2 (ja) ツリーポジション適応の軟出力mアルゴリズムの受信機構造
US20090285323A1 (en) Adaptive soft output m-algorithm receiver structures
KR101239760B1 (ko) Qr 분해를 이용하는 mmse mimo 디코더
US8027401B2 (en) Iterative detection and decoding apparatus and method in MIMO system
JP2010529781A (ja) 無線ラジオネットワーク上の複数の基地局からの送信の方法及び装置
EP1811706B1 (en) Method and system for an improved cellular interference cancelling diversity receiver
Syed et al. LDPC-based space–time coded OFDM systems with channel estimation
Oteri et al. Space-time-frequency coding for OFDM-based WLANs
Hu et al. Efficient LDPC‐Based, Threaded Layered Space‐Time‐Frequency System with Iterative Receiver
Awad et al. The Optimal Employment of CSI in COFDM-Based Receivers
SS LDPC based Full Rate Full Diversity Space Frequency Block Coded system under DVB-T2 standard