JP2010521896A - 光通信のための光受信機 - Google Patents

光通信のための光受信機 Download PDF

Info

Publication number
JP2010521896A
JP2010521896A JP2009553833A JP2009553833A JP2010521896A JP 2010521896 A JP2010521896 A JP 2010521896A JP 2009553833 A JP2009553833 A JP 2009553833A JP 2009553833 A JP2009553833 A JP 2009553833A JP 2010521896 A JP2010521896 A JP 2010521896A
Authority
JP
Japan
Prior art keywords
signal
optical
additive
output
fsr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009553833A
Other languages
English (en)
Inventor
マロイン,クリスチャン
ジェイ. シュミット,セオドア
エル. ヘフナー,ブライアン
Original Assignee
ストレータライト コミュニケーションズ,インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/724,017 external-priority patent/US7983573B2/en
Priority claimed from US11/726,557 external-priority patent/US20080232821A1/en
Priority claimed from US11/799,435 external-priority patent/US20080225381A1/en
Priority claimed from US11/799,218 external-priority patent/US20080225380A1/en
Priority claimed from US11/807,840 external-priority patent/US7970289B2/en
Priority claimed from US11/935,345 external-priority patent/US7991300B2/en
Application filed by ストレータライト コミュニケーションズ,インコーポレーテッド filed Critical ストレータライト コミュニケーションズ,インコーポレーテッド
Publication of JP2010521896A publication Critical patent/JP2010521896A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • H04B10/676Optical arrangements in the receiver for all-optical demodulation of the input optical signal
    • H04B10/677Optical arrangements in the receiver for all-optical demodulation of the input optical signal for differentially modulated signal, e.g. DPSK signals

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

光信号を受信及び処理する装置及び技術は、差動符号化位相偏移変調受信機の加算的伝達関数及び相殺的伝達関数を調整し、光学系における符号間干渉を低減する装置及び方法を含む。

Description

優先権の主張
このPCT出願は、以下の6つの米国特許出願の優先権を主張する。
1.2007年3月14日に出願された米国特許出願番号第11/724,017号、発明の名称「OPTICAL RECEIVER HAVING FSR PHASE COMPENSATION」。
2.2007年3月22日に出願された米国特許出願番号第11/726,557号、発明の名称「OPTICAL RECEIVER HAVING TRANSFER FUNCTION BANDWIDTH SELECTION」。
3.2007年5月1日に出願された米国特許出願番号第11/799,435号、発明の名称「DELAY LINE INTERFEROMETER HAVING A STEPPED DELAY ELEMENT」。
4.2007年5月30日に出願された米国特許出願番号第11/807,840号、発明の名称「DECODER HAVING BANDWIDTH CONTROL FOR ISI COMPENSATION」。
5.2007年5月1日に出願された米国特許出願番号第11/799,218号、発明の名称「DELAY LINE INTERFEROMETER HAVING A MOVABLE MIRROR」。
6.2007年11月5日に出願された米国特許出願番号第11/935,345号、発明の名称「OPTICAL RECEIVER HAVING BANDWIDTH CONTROL FOR INTERSYMBOL INTERFERENCE COMPENSATION」。
上の特許出願の開示は、引用によってこのPCT出願に援用される。
本発明は、光通信及び光通信における光受信機に関する。
フィルタを有する光学システムでは、複数のフィルタの有効な連結された帯域幅(effective concatenated bandwidth)が符号間干渉(intersymbol interference:ISI)を誘導する。ISIは、信号の歪みを引き起こし、受信機における判定品質(ビットの論理値が「1」であるか「0」を正確に検出する能力)を低下させる。この判定品質は、誤りビットの数を計数し、これを送信されたビットの総数で除算することによって定量化できる。これにより得られる比をビット誤り率(bit error ratio:BER)と呼ぶ。受信機における信号の品質を論ずる他の手法としては、erfc−1を逆相補誤差関数として、
Figure 2010521896
を用いて、BERをQと呼ばれるパラメータに変換する手法がある。信号品質に対するISIの歪み効果は、一般的に、変調信号のベースバンドアイダイヤグラム(baseband eye diagram)によって視覚化でき、ISIは、「1」のシンボルレベルと「0」のシンボルレベルとの間の間隙をシンボルの前縁及び後縁によって部分的に埋めてしまう。
光信号は、一般的に2位相偏移(binary phase shift keyed:BPSK)変調を使用し、ここでは、搬送波は、0ラジアン及びπラジアンの位相シフトによって、論理値「0」及び「1」のデータビットに変調される。論理値「0」又は「1」は、受信機において、検出された信号が、IQ平面とも呼ばれる信号ベクトル図の垂直な虚軸の左にあるか又は右にあるかを判定することによって復号される。極検出器(polar detector)とみなすことができる検出器は、受信した位相の絶対値が、π/2より大きければ「0」、π/2より小さければ「1」と判定する。直角検出器(rectangular detector)とみなすことができる検出器は、信号の位相のコサインが負であれば「0」、正であれば「1」と判定する。
BPSK光信号は、差動符号化位相偏移(differentially-encoded phase shift keyed:DeBPSK又はDPSK)変調フォーマットを使用してもよい。DPSK変調フォーマットは、2つの連続して送信されたシンボル間の差分として入力データを符号化する。入力データは、前のシンボルを参照して電気的「遅延+加算(delay + add)」関数によって予め差動符号化され、これにより入力データビットの論理値「0」又は「1」は、前のビットに対する0ラジアン又はπラジアンの搬送波位相の変化として符号化される。検出器では、現ビットを前ビットと比較することによって逆の処理を行う。
DPSK復号機能は、遅延線干渉計(delay line interferometer:DLI)及びバランスド検出器(balanced detector)を用いて実行してもよい。干渉計は、同じ位相を有する2つの波は、互いに加算され、逆の位相を有する2つの波は、互いに相殺し合う傾向があるという原理に基づいて動作する。干渉計は、光信号を受信する入力ポートと、2つの出力ポート、すなわち、加算される波を発行する加算的出力ポート(constructive output port)と、相殺し合う傾向がある波を発行する相殺的出力ポート(destructive output port)とを有する。
DPSK信号のための遅延線干渉計(DLI)は、DPSK変調のシンボル時間Tに略々等しい、2つの波の間の内部遅延差分の更なる要素を有する。加算的出力ポートは、信号Ec=E(t)+E(t−T)を発行し、相殺的出力ポートは、信号Ed=E(t)−E(t−T)を発行する。時間Tの影響によって、2つの出力ポートにおける信号が逆になり、これにより連続するビットがπラジアン異なる場合、波は、相殺的出力ポートにおいて加算され、加算的出力ポートにおいて相殺される。EcとEdとの間の差分は、直接強度検出受信機(direct detection intensity receiver)によって検出でき、2つの連続するビット間で、信号の位相の変化があるか判定することができ、これにより、DPSK変調によって搬送される論理ビットを推定することができる。
この遅延差分の影響によって、入力ポートから各出力ポートへの伝達関数は、(周波数領域において)正弦波振幅応答(sinusoidal amplitude response)を有することになる。伝達関数のサイクルのスペクトル周期は、1/Tに等しく、自由スペクトル領域(free spectral range:FSR)と呼ばれる。FSRに比例する正弦波幅(sinusoidal width)は、DLI入力から加算的出力及び相殺的出力に渡される信号の周波数帯域を有効に制限する。伝達関数の周波数領域サイクルの位相は、FSR位相と呼ばれる。
本出願は、差動符号化位相偏移変調受信機(differentially encoded phase shift keyed receiver)の加算的伝達関数及び相殺的伝達関数を調整し、光学系における符号間干渉を低減する装置及び方法を含む、光信号を受信及び処理する装置及び技術を含む。
一側面においては、光受信機は、差動変調を有する光信号を受信して復調する、加算的伝達関数及び相殺的伝達関数を有する信号プロセッサを備える。好ましい実施の形態では、信号プロセッサは、遅延線干渉計(DLI)と、自由スペクトル領域(FSR)位相コントローラと、利得不均衡化器とを備える。DLIは、差動変調信号を復調し、加算的伝達関数及び相殺的伝達関数の自由スペクトル領域(FSR)帯域幅を定義する2つの信号パス間の通過時間差分Yを有する。FSRは、伝達関数を制御することによって得られる、IS1歪みを低減する性能利益が、時間差分Yが変調信号のシンボル時間に等しくないときに加算的出力及び相殺的出力における復調された信号を最大にしないことによって失われる性能を上回るように、算出又は調整される。FSR位相コントローラは、加算的伝達関数及び相殺的伝達関数の位相を調整して、変調された光信号の搬送波に対してFSR伝達関数を調節する。利得不均衡化器は、算出又は調整された等しくない利得を加算的パス及び相殺的パス内の信号に適用し、加算的伝達関数及び相殺的伝達関数を決定又は変更する。
他の側面においては、光入力信号を差動復調する遅延線干渉計は、入力信号を、加算的出力及び相殺的出力の少なくとも1つに差動復調された信号を提供する通過時間差分を有する2つの信号パスに分離する光学スプリッタと、信号パスの1つにおける第1の方向に沿って、第2の方向における遅延要素の位置に基づいて選択された光遅延によって、信号を遅延させる位置決め可能遅延要素(positionable delay element)と、第2の方向において、通過時間差分を制御するために遅延要素を位置決めする位置決めデバイスとを備える。
他の側面においては、遅延線干渉計において、光入力信号を差動復調する方法は、入力信号を、加算的出力及び相殺的出力の少なくとも1つに差動復調された信号を提供する通過時間差分を有する2つの信号パスに分離するステップと、信号パスの1つにおける第1の方向に沿って、位置決め可能遅延要素を横断する信号を、第2の方向における遅延要素の位置に依存する選択された光遅延によって遅延させるステップと、第2の方向において、通過時間差分を制御するために遅延要素を位置決めするステップとを有する。
他の側面においては、光入力信号を差動復調する遅延線干渉計は、入力信号を、加算的出力及び相殺的出力の少なくとも1つに差動復調された信号を提供する通過時間差分を有する2つの信号パスに分離する光学スプリッタと、信号パスの1つに信号を反射する可動ミラーと、ミラーを選択可能な位置に位置決めして通過時間差分を制御する位置決めデバイスとを備える。
他の側面においては、遅延線干渉計において、光入力信号を差動復調する方法は、入力信号を、加算的出力及び相殺的出力の少なくとも1つに差動復調された信号を提供する通過時間差分を有する2つの信号パスに分離するステップと、可動ミラーによって信号パスの1つの信号を反射するステップと、ミラーを選択可能な位置に位置決めして通過時間差分を制御するステップとを有する。
他の側面においては、光受信機は、変調された光入力信号を受信し、それぞれ加算的出力及び相殺的出力において信号を発行する、加算的伝達関数及び相殺的伝達関数を有する信号プロセッサと、信号プロセッサ内に配設され、伝達関数の少なくとも1つに、入力信号の周波数に対して制御可能な伝達関数位相を提供する少なくとも1つの伝達位相要素と、伝達位相要素に接続され、伝達関数位相を制御し、加算的出力及び相殺的出力の信号パワー間の差分を最大にする伝達位相コントローラとを備える。
他の側面においては、光信号を受信する方法は、変調された光入力信号に、少なくとも一方が制御可能な伝達関数位相を有する加算的伝達関数及び相殺的伝達関数を適用して、それぞれ加算的出力及び相殺的出力において信号を提供するステップと、光信号の周波数に対して伝達関数位相を制御し、加算的出力及び相殺的出力の信号パワーの間の差分を最大にするステップとを有する。
他の側面においては、光受信機は、変調された光入力信号を処理し、加算的出力及び相殺的出力のそれぞれにおいて信号を発行し、少なくともどちらか1つが制御可能な帯域幅を有する加算的伝達関数及び相殺的伝達関数を有する信号プロセッサと、信号プロセッサ内に配置され、入力信号の有効帯域幅に基づいて帯域幅を選択して、入力信号における信号劣化を補償する帯域幅制御要素とを備える。
他の側面においては、変調された光信号を受信する方法は、加算的伝達関数及び相殺的伝達関数に基づいて、変調された光入力信号を処理し、それぞれ、加算的出力及び相殺的出力において信号を発行するステップを有し、加算的伝達関数及び相殺的伝達関数の少なくとも1つは、制御可能な帯域幅を有する。この方法は、入力信号の有効帯域幅に基づいて、帯域幅を制御し、入力信号における信号劣化を補償するステップを含む。
他の側面においては、変調された光信号を受信する光受信機は、変調された光入力信号を加算的信号パス及び相殺的信号パスに分離する信号プロセッサと、信号パスの少なくとも1つに配置され、入力信号の有効帯域幅に基づいて、信号パスの間で光学的利得不均衡を選択し、入力信号における信号劣化を補償する光学的利得不均衡化器とを備える。
他の側面においては、変調された光信号を受信する方法は、変調された光入力信号を光学的な加算的信号パス及び相殺的信号パスに分離するステップと、入力信号の有効帯域幅に基づいて、信号パスの間で光学的利得不均衡を選択し、入力信号における信号劣化を補償するステップとを有する。
他の側面においては、変調された光入力信号を受信する光受信機は、入力信号を、加算的出力及び相殺的出力の少なくとも1つに差動復調された信号を提供する、FSR帯域幅を定義する自由スペクトル領域(FSR)を定義する通過時間差分を有する2つの信号パスに分離するデコーダと、信号パスのうちの第1の信号パスにおける周期的位相応答対周波数を有し、FSR帯域幅を変更して、復調された信号のための再構成された帯域幅を提供する周期的位相フィルタとを備える。
他の側面においては、変調された光入力信号を受信する方法は、入力信号を通過時間差分を有する2つの信号パスに分離するステップと、FSR帯域幅を定義するための自由スペクトル領域(FSR)を定義する通過時間差分に基づいて、入力信号を差動復調するステップと、復調された信号を加算的出力及び相殺的出力の少なくとも1つに発行するステップと、信号パスのうちの第1の信号パスにおける信号をフィルタリングして、周期的位相応答対周波数を提供し、FSR帯域幅を変更して、復調された信号のための再構成された帯域幅を提供するステップとを有する。
他の側面においては、光受信機は、変調された光入力信号を受信し、加算的出力及び相殺的出力のそれぞれにおいて信号を発行する、加算的伝達関数及び相殺的伝達関数を有する信号プロセッサと、信号プロセッサ内に配置され、加算的伝達関数及び相殺的伝達関数の少なくとも1つの伝達関数帯域幅を制御する伝達帯域幅要素とを備え、伝達関数帯域幅は、入力信号において符号間干渉を補償するよう選択される。
更に他の側面においては、上述した装置及び技術に基づいて光受信機を構成し、加算的伝達関数及び相殺的伝達関数を制御することによって、差動符号化された変調伝送システムにおける符号間干渉(ISI)を緩和する。
一具体例においては、チャネル間隔によって分離された搬送波周波数を有する通信システムを介して、変調された光入力信号によって搬送されるデータを推定するように構成された光受信機は、チャネル間隔に略々等しいDLI自由スペクトル範囲を有し、搬送波周波数において周期的伝送通過帯域を提供し、差動復号された加算的干渉信号を発行する遅延線干渉計(DLI)と、チャネル間隔に略々等しいエタロン自由スペクトル領域を有し、搬送波周波数において周期的伝送阻止帯域を提供し、加算的干渉信号をフィルタリングするエタロンと、フィルタリングされた加算的干渉信号を用いてデータを推定するように構成されたデータ推定器とを備える。
他の具体例においては、通信システムを介して、変調された光入力信号によって搬送されるデータを推定するように構成された光受信機は、入力信号を受信し、入力信号の搬送波周波数において伝送通過帯域を有する差動復号された加算的干渉信号を発行するように構成された遅延線干渉計(DLI)と、搬送波周波数において伝送阻止帯域を有し、加算的干渉信号をフィルタリングする光フィルタと、フィルタリングされた加算的干渉信号を用いてデータを推定するように構成されたデータ推定器とを備える。
他の具体例においては、チャネル間隔によって分離された搬送波周波数を有する通信システムを介して、変調された光入力信号によって搬送されるデータを推定する方法は、チャネル間隔に略々等しい自由スペクトル領域によって入力信号を差動復号し、光干渉を用いて、搬送波周波数において周期的伝送通過帯域を提供して、差動復号された加算的干渉信号を発行するステップと、チャネル間隔に略々等しい自由スペクトル領域によって加算的干渉信号をフィルタリングして、搬送波周波数において周期的な阻止帯域を提供するステップと、フィルタリングされた加算的干渉信号を用いて、データを推定するステップとを有する。
他の具体例においては、通信システムを介して、変調された光入力信号によって搬送されるデータを推定する方法は、入力信号を差動復号し、入力信号上の光干渉を用いて、入力信号の搬送波周波数において伝送通過帯域を有する差動復号された加算的干渉信号を発行するステップと、加算的干渉信号を、搬送波周波数において、伝送阻止帯域によって光学的にフィルタリングするステップと、フィルタリングされた加算的干渉信号を用いて、データを推定するステップとを有する。
更に他の具体例においては、光通信における光送信信号を受信する光受信機は、受信した光伝送信号を第1の光信号及び第2の光信号に分離する光学スプリッタと、第1の光信号を受け取る第1の光路と、第2の光信号を受け取る第2の光路と、第1及び第2の光路を結合し、第1及び第2の光路との間で光干渉を引き起こし、光学的な加算的干渉信号及び光学的な相殺的干渉信号を生成する光カプラと、光学的な加算的干渉信号を受け取る加算的出力ポートと、光学的な相殺的干渉信号を受け取る相殺的出力ポートと、第1及び第2の光路の間の相対位相遅延を制御し、光学的な加算的干渉信号が光伝送信号の搬送波周波数において伝送通過帯域を有するようにするメカニズムと、を備える光遅延干渉計を備える。光フィルタは、第1及び第2の光路の1つに位置し、光をフィルタリングし、搬送波周波数において伝送阻止帯域を有するように構成されている。光受信機は、更に、光学的な加算的信号を第1の電気検出器出力に変換する第1の光学検出器と、光学的な相殺的信号を第2の電気検出器出力に変換する第2の光学検出器と、第1及び第2の光学検出器と通信し、第1及び第2の電気検出器出力を受信し、第1及び第2の電気検出器出力の間の差分を、光送信信号によって搬送されたデータを搬送する電気信号として生成する電気信号結合器とを備える。
装置及び技術のこれらの及びこの他の実施例及び具体例は、添付の図面、詳細な説明及び特許請求の範囲に詳細に開示されている。
BPSK信号のベクトル図である。 可調整自由スペクトル領域(FSR)に関する、遅延線干渉計(DLI)における加算的伝達関数及び相殺的伝達関数を示す図である。 変調された光信号を受信するための例示的な光送信システムのブロック図である。 図3のシステムの光受信機の包括的なブロック図である。 遅延線干渉計(DLI)を含む図3のシステムの光受信機の詳細なブロック図である。 図5の受信機の遅延線干渉計(DLI)を示す図である。 図5の受信機の遅延線干渉計(DLI)を示す図である。 図5の受信機の遅延線干渉計(DLI)を示す図である。 自由スペクトル領域の段階的傾斜を有する図5の受信機のDLIを示す図である。 自由スペクトル領域の滑らかな傾斜を有する図5の受信機のDLIを示す図である。 自由スペクトル領域を選択するための可動ミラーを有する図5の受信機のDLIを示す図である。 図5の遅延線干渉計のために用いることができる第1のGTデコーダの具体例を示す図である。 図5の遅延線干渉計のために用いることができる第2のGTデコーダの具体例を示す図である。 図17の光受信機の遅延線干渉計(DLI)を示す図である。 変調された光信号を受信するための例示的な方法の単純化されたフローチャートである。 算出されたFSR及び算出された利得不均衡を使用する例示的な方法のフローチャートである。 最良の信号品質のためにFSR及び利得不均衡が調整される例示的な方法のフローチャートである。 システム帯域幅に基づいて、図3のシステムにおけるISIを補償するためのFSRの演算を示すグラフ図である。 システム帯域幅及びFSRに基づいて、図3のシステムにおけるISIを補償するための利得不均衡の演算を示すグラフ図である。 図6DのDLIのための段階的傾斜FSR遅延要素の具体例を示す図である。 図6DのDLIのための段階的傾斜FSR遅延要素の具体例を示す図である。 図6EのDLIのための滑らかな傾斜FSR遅延要素の具体例を示す図である。 図6EのDLIのための滑らかな傾斜FSR遅延要素の具体例を示す図である。 図6EのDLIのための滑らかな傾斜FSR遅延要素の具体例を示す図である。 傾斜を用いて図6A〜図6GのDLIのFSR位相を調整する伝達(FSR)位相要素を示す図である。 図6G及び図6HのGTデコーダ内のエタロンフィルタの周期的位相応答を示すグラフ図である。 図6G及び図6HのGTデコーダを調節する方法のフローチャートである。 標準の遅延線干渉計の伝達関数を示すグラフ図である。 図6G及び図6HのGTデコーダの再構成された伝達関数を示すグラフ図である。 図3のシステムのためのエタロンノッチフィルタを含む例示的な光受信機の詳細なブロック図である。 図17の受信機のエタロンフィルタの第1の具体例を示す図である。 図17の受信機のエタロンフィルタの第2の具体例を示す図である。 図17の受信機のエタロンフィルタの第3の具体例を示す図である。 図17の光受信機を構成する例示的な方法のフローチャートである。 図6IのDLIの自由スペクトル領域位相を整列させる方法のフローチャートである。 図17の受信機のデータを推定する方法のフローチャートである。 図17の受信機における加算的干渉信号及び相殺的干渉信号の透過伝達関数を示すグラフ図である。 図17の受信機の加算的干渉信号について、最適な帯域幅を決定するためのグラフ図である。 図17のエタロンの反射係数を構成するためのグラフ図である。 図17のエタロンのための最適な帯域幅を示すグラフ図である。 図17の受信機の加算的干渉信号パスのための最適な帯域幅を示すグラフ図である。
光通信において光信号を受信する装置、システム及び技術の様々な実施例及び実装例を説明する。なお、光信号の受信及び検出において、ここに説明する特徴に関する技術的詳細の全てを採用する必要はない。ここに説明する技術的詳細は、特定の要求又はニーズに基づいて、特定の実装例に合わせて組み合わせてもよく、適応化させてもよい。
以下に説明する特定の実施例及び実装例は、差動符号化BPSK(differentially-encoded BPSK:DeBPSK又はDPSK)変調フォーマットを用いる2位相偏移変調(binary phase shift keyed:BPSK)信号を用いる。但し、例えば、4位相偏移変調(quadrature phase shift keyed:QPSK)、4QAM、8PSK、16QAM等のより高次の変調フォーマットを含む他の変調フォーマットを用いて、本出願に開示する1つ以上の技術的特徴を具現化してもよい。特定の実施例として、差動符号化QPSK(differentially-encoded QPSK:DQPSK)を用いてもよい。
図1は、0ラジアン及びπラジアンの位相状態を有する2位相偏移変調(BPSK)光信号のベクトル表現である。複素BPSK光信号の実数(同相又は「I」)部及び虚数(直交位相又は「Q」)部は、それぞれ、水平軸及び垂直軸上に示されている。0の位相状態とπの位相状態との間のBPSK信号は、IQ平面における純粋な位相変調の軌跡(一定の振幅で継続的に位相が変化する)、又はIQ平面におけるマッハツェンダー変調(Mach-Zehnder modulation)の軌跡(ゼロ振幅から継続的に振幅が変化する)、又はこれらの間の軌跡を有する。DPSK変調フォーマットでは、論理ビットは、連続する位相状態の間の差分として符号化される。
図2は、遅延線干渉計(DLI)を有する信号プロセッサの入力ポートと、加算的出力ポート及び相殺的出力ポートとの間の例示的な加算的伝達関数及び相殺的伝達関数のグラフを示しており、以下ではこれらをG(f)及びH(f)と呼ぶ。伝達関数G(f)及びH(f)は、伝送された光パワー対周波数の周波数応答である。図の縦軸は、パワー伝送を示している。図の横軸は、伝達関数の中心周波数に対して変調シンボルレートRにスケーリングされた光入力信号の周波数を示している。伝達関数の中心周波数は、ゼロとして示している。スケーリング係数Rは、光信号によって搬送される変調位相状態のシンボル時間Tの逆数である。
DLIは、差動変調された信号を復調するための通過時間差分(transit time difference)Yを有する。通過時間差分Y(図4及び図5)は、場合によっては、差分通過時間(differential transit time)Y又は単に時間Yと呼ばれることもある。時間Yの逆数は、DLIの自由スペクトル領域(FSR)である。視点を変えれば、DLIのFSRは、伝達関数G(f)及びH(f)の周期として定義される。ここでは、1.0R、1.1R、1.2R及び1.3Rの自由スペクトル領域(FSR)について、加算的伝達関数G(f)及び相殺的伝達関数H(f)を示している。FSRを増加させると、加算的伝達関数及び相殺的伝達関数の帯域幅が有効に増加する。この場合の加算的伝達関数の帯域幅は、最大振幅の1/2の点又は加算的伝達関数及び相殺的伝達関数が交差する点の間の周波数スペクトルである。相殺的伝達関数の帯域幅は、加算的伝達関数の阻止帯域又は加算的伝達関数及び相殺的伝達関数が交差する帯域幅であると理解される。式1及び式2は、それぞれ、DLIの加算的伝達関数G(f)及び相殺的伝達関数及びH(f)を示している。
Figure 2010521896
FSR伝達関数G(f)及びH(f)は、周波数領域において周期的であることがわかる。周期的伝達関数の位相は、(周波数領域におけるオフセット)は、FSR位相と呼ばれる。差動変調を用いる光学システムにおいては、伝達関数G(f)及びH(f)が光信号の搬送波周波数又は変調された光信号のスペクトルのエネルギの中心において、最大の比率又は正規化された差分(合計によってスケーリングされた差分)を有するようにFSR位相が調整された場合、最良の信号品質を得ることができる。図2は、最大伝達関数差分のための伝達関数位相又はFSR位相の正しい調整を示しており、伝達関数の中心周波数は、対称的な光入力信号スペクトルのために、受信した光入力信号の中心周波数及び搬送波周波数に整列されている。
図3は、参照符号10で示すデータ伝送システムの具体例のブロック図である。システム10は、光送信機12及び光受信機20を含む。送信機12及び受信機20は、光送信リンク16を介して接続されている。送信リンク16は、波長分離多重(wavelength division multiplexing:WDM)を使用し、異なる光搬送波周波数を同時に用いて複数の光信号を搬送してもよい。
送信機12は、入力データの論理値1及び0を隣接する(時間的に連続する)位相状態の間の位相差として符号化する差動符号化位相偏移(DPSK)変調フォーマットを用いて光信号を送信する。例えば、DPSKでは、隣接する0ラジアンの位相状態及び連続するπラジアンの位相状態は、何れも論理値「0」を有するデータビットを搬送し、πラジアンの位相状態に続く0ラジアンの位相状態及び0ラジアンの位相状態に続くπラジアンの位相状態は、何れも論理値「1」を有するデータビットを搬送する。もちろん、一般性を失うことなく、論理値「0」及び論理値「1」を逆にすることもできる。また、DPSK変調には、πラジアンによって分離される如何なる2つの位相状態を用いてもよい。
送信機12は、入力データの論理ビットのための差動符号化位相偏移(DPSK)変調によって変調された光信号22によってリンク16の一端を照射する。信号22は、リンク16を通過し、受信機20によって受信される変調された光信号24として、リンク16の他端に現れる。リンク16は、フィルタ26によって表される1つ以上のフィルタによって生じる有効光帯域幅を有する周波数応答を有する。リンク16の光帯域幅は、入力信号24のスペクトルの有効光帯域幅になる。
受信機20は、信号24を復調し、その入力データの最適推定である出力データを提供する。出力データは、入力データの正確な複製であることが望ましい。しかしながら、送信リンク16は、受信信号24の品質を劣化又は減損させ、信号品質のこの劣化又は減損によって、受信機20が提供する出力データにおいて誤りが発生することがある。信号劣化の根本原因の1つは、フィルタ26によって引き起こされる、リンク16内の符号間干渉(intersymbol interference:ISI)である。受信機20は、出力データの誤りを低減するために、リンク16における品質劣化、特にISIを補償するように設計されている。
受信機20における装置及び方法は、信号品質の測定、並びにリンク16の有効光帯域幅及び/又は入力信号24の有効光帯域幅に基づく演算を用いて、以下に限定されるものではないが、ISI、信号依存性雑音(signal-dependent noise)、信号非依存性雑音(signal independent noise)を含む、入力信号における1つ以上の信号劣化又は減損を補償する。信号品質測定は、ビット誤り率(bit error ratio:BER)測定又はアイ開口率(eye opening ratio)測定であってもよい。幾つかの場合、信号品質測定は、受信機20における光学的又は電気的な加算的パス信号及び相殺的パス信号から得られる信号対雑音測定を用いることができる。一具体例においては、受信機20は、リンク16の有効光帯域幅に基づく演算を用いて、受信した入力信号24のBERを最小化する。
図4は、参照符号20で示す光受信機の具体例のブロック図である。受信機20は、光信号24を受信し、送信機12によって送信された入力データの受信機20による最適推定である出力データを提供する。
受信機20は、復調器30及びデータ推定器32を備える。受信機20又は外部のコンピュータは、帯域幅制御アルゴリズム33を備える。復調器30は、光入力信号24を復調し、電気ベースバンド信号を発行する。データ推定器32は、ベースバンド信号を処理し、出力データを発行する。また、受信機20は、光信号24が波長分離多重(WDM)され複数のチャネルを含んでいる場合、光信号24をチャネルにフィルタリングする入射光フィルタを備えていてもよい。
復調器30は、信号プロセッサ34、検出器装置(detector apparatus)35、結合器36及び伝達位相コントローラ37を備える。信号プロセッサ34は、2つの部分、すなわち、光信号プロセッサ34A及び電気信号プロセッサ34Bを備える。光信号プロセッサ34Aは、入力ポート42において信号24を受信し、信号24を光学的な加算的干渉信号及び相殺的干渉信号に分離し、差分通過時間Yによって信号24を差動復調し、それぞれ加算的出力ポート及び相殺的出力ポート43A、44Aにおいて、信号を発行する。検出器装置35は、ポート43A、44Aから光学的な加算的パス信号及び相殺的パス信号を受信し、光信号に対する変調のために、光子を電子に変換し、電流i及びiとして示す電気的な加算的パス信号及び相殺的パス信号を提供する。
信号プロセッサ34Bは、電気信号を処理し、処理された電気信号を、それぞれ加算的出力ポート及び相殺的出力ポート43B、44Bを介して、結合器36に渡す。結合器36は、加算的パス信号の瞬間的信号レベルと、相殺的パス信号の瞬間的信号レベルとの間の差分を取り、ベースバンド信号を提供する。受信機20の変形例では、データ推定器32がポート43B、44Bに接続され、差動電気信号を受信する。
光干渉を用いて入力信号24を加算的パス及び相殺的パスに分離することにより、信号プロセッサ34Aにおいて、それぞれ加算的伝達関数及び相殺的伝達関数G(f)及びH(f)が提供される。伝達関数G(f)及びH(f)は、それぞれ、信号プロセッサ34及び検出器装置35によって、入力ポート42から加算的出力ポート及び相殺的出力ポート43B、44Bに提供される加算的伝達関数及び相殺的伝達関数の一部である。一具体例においては、加算的伝達関数及び相殺的伝達関数は、信号プロセッサ34A内で主に判定され、出力ポート43A、44Aに供給される。
伝達位相コントローラ37は、出力ポート43A、44A(又は43B、44B)における信号のパワーに関連するレベルを測定し、平均する検出器45を備える。測定されるパワーに関連するレベルは、出力ポート43A、44A(又は出力ポート43B、44B)における信号パワーを示し、又はこの信号パワーと単調関係を有する。例えば、測定値は、信号パワー、信号の大きさの平均、信号レベルの二乗、又は任意の指数による信号レベルの絶対値であってもよい。伝達位相コントローラ37は、測定値を用いて、ポート43Aの信号パワー対ポート44Aの信号パワーの比(又はポート43Bの信号パワー対ポート44Bの信号パワーの比)を最大にするフィードバック信号を提供する。また、この思想は、逆のモードにおいて、ポート44Aの信号パワー対ポート43Aの信号パワーの比(又はポート44Bの信号パワー対ポート43Bの信号パワーの比)を最大にするために用いることもできる。
信号プロセッサ34Aは、加算的伝達関数及び相殺的伝達関数の可調整位相シフトΦG及びΦHを提供する制御可能な伝達位相要素(transfer phase element)46G、46Hを有する。要素46G、46Hは、同じ物理的な要素46であってもよく、位相シフトΦG及びΦHは、同じ位相シフトΦであってもよい。伝達位相コントローラ37は、検出器45からのパワーに関連する測定値を用いて、要素46G、46H又は要素46を制御し、位相ΦG、ΦH又は位相Φを調整し、加算的ポート43A(又は43B)及び相殺的ポート44A(又は44B)の信号間の正規化された信号パワー差分が最大になるよう、伝達関数の位相をシフトさせる。この処理は、変調された光信号24の搬送波周波数及び変調された光信号24におけるエネルギの中心周波数に対して伝達関数G(f)及びH(f)を調節するために用いてもよい。
信号プロセッサ34Aは、選択可能又は制御可能な帯域幅(bandwidth:BW)を提供する伝達帯域幅要素(transfer bandwidth element)48を有する。加算的伝達関数及び相殺的伝達関数の少なくとも1つは、この帯域幅に少なくとも部分的に依存する。一具体例においては、光信号プロセッサ34Aは、遅延線干渉計(delay line interferometer:DLI)を含んでいてもよい。この場合、帯域幅は、時間Yの逆数によって定義され、又は変更される。
受信機20の設計又は設営の間、又は受信機20の動作中に、出力データの信号品質又はビット誤り率について、演算若しくは検査を行い、又は能動フィードバックを提供する。システム10の信号品質の主な劣化は、フィルタ26によって引き起こされる符号間干渉(ISI)である。帯域幅制御アルゴリズム33は、図10に示すように、伝達帯域幅要素48を判定又は制御するために演算を行い又はフィードバックを提供する。演算若しくは検査、又は能動フィードバックは、要素48を選択又は制御して、帯域幅を選択又は調整し、システム10において最良の信号品質又は最小のISIを実現するために用いられる。光学的又は電気的信号の信号品質は、ベースバンド信号におけるアイ開口を測定することによって、又はビット誤り率(BER)を測定することによって測定してもよい。
信号品質を最適化するために、利得不均衡(gain imbalance)を算出し、又は信号品質データから信号プロセッサ34へのフィードバックを提供して、光プロセッサ34A若しくは電気プロセッサ34B又はこれらの両方に供給する不均衡制御アルゴリズム(imbalance control algorithm)64を設けてもよい。信号プロセッサ34は、利得不均衡演算又はフィードバックを用いて、加算的パス信号と相殺的パス信号との間で利得を不均衡化する。利得不均衡演算は、リンク16及び入力信号24の有効光帯域幅に基づいて行うことができる。
通過時間差分Yの選択を変更する副次的作用として、伝達関数G(f)及びH(f)の伝達関数位相又はFSR位相が入力信号24の周波数に対して多サイクル分スライドすることがある。一般則では、FSR遅延が変更された場合、伝達関数位相シフトΦ又は位相シフトΦG及びΦHは、伝達(FSR)位相コントローラ37によって、伝達(FSR)位相要素46又は46G及び46Hを調整して伝達関数G(f)及びH(f)をその最適な周波数位置に再び中心を合わせることによって再調整しなければならない。受信した光スペクトルが対称的である場合、最適な位置は、入力された光信号24の搬送波周波数に一致する。一方、FSR帯域幅に対する位相シフトΦ又は位相シフトΦG及びΦHの変更の影響は、小さく、重要ではない。
また、受信機20は、信号品質フィードバック92のためのパスを有していてもよい。信号品質のためのデータは、信号品質フィードバック92を介して処理され、伝達位相コントローラ37に渡される。伝達位相コントローラ37は、処理された信号品質データを用いて、伝達位相要素46の位相遅延を微調節して、信号品質を改善及び最適化する。好ましくは、要素46は、まず、フィードバックループにおいて、パワーに関連する測定に基づいて調節され、次に、第2のフィードバックループにおいて、ビット誤り率(BER)を最小化するために微調節される。信号品質データは、BERを直接測定することによって、ベースバンド信号のアイ開口率を測定することによって、及び/又は光学的又は電気的な加算的パス信号及び相殺的パス信号の信号対雑音比(SNR)を測定することによって得ることができる。
図5は、参照符号120で示される光受信機の具体例の詳細なブロック図である。受信機120は、システム10について上述した受信機20の具体例である。受信機20の要素に類似し、又はその実施の形態である受信機120の要素は、参照符号に100を加えることによって示している。
受信機120は、復調器130、データ推定器132及びビット誤り率(BER)検出器138を含む。また、受信機120又は外部のコンピュータは、帯域幅(FSR)制御アルゴリズム133及び不均衡制御アルゴリズム164を備える。復調器130は、光信号24を復調し、復調された電気信号をデータ推定器132に渡す。データ推定器132は、電気信号を処理し、元の入力データの最適な推定を行い、最適に推定された入力データを出力データとして発行する。BER検出器138は、出力データのBERを推定する。BERは、信号品質データとして用いることができる。復調器130は、アルゴリズム133、164、192による信号品質データを使用する。
復調器130は、信号プロセッサ134、検出器装置135、結合器136及び伝達自由スペクトル領域(free spectral range:FSR)位相コントローラ137を備える。信号プロセッサ134は、光信号プロセッサ134A及び電気信号プロセッサ134Bを備える。光信号プロセッサ134Aは、入力信号ポート142において光入力信号24を受信し、信号24を光学的な加算的干渉信号及び相殺的干渉信号に分離し、信号24を差分時間Yで差動復調し、それぞれ加算的出力ポート及び相殺的出力ポート143A、144Aから検出器装置135に信号を発行する。
検出器装置135は、光学的な加算的パス信号及び相殺的パス信号に施されている変調を電気信号に変換し、その電気信号を電気信号プロセッサ134Bに渡す。電気信号プロセッサ134Bは、電気信号を処理し、処理された電気信号を、それぞれ加算的出力ポート及び相殺的出力ポート143B、144Bにおいて、結合器136に発行する。結合器136は、加算的パス信号の瞬間的信号レベルと、相殺的パス信号の瞬間的信号レベルとの間の差分を取り、ベースバンド信号を提供する。受信機120の変形例では、データ推定器132がポート143B、144Bに接続され、差動電気信号を受信する。
光信号プロセッサ134Aは、遅延線干渉計(DLI)150及び光学的不均衡化器(optical imbalancer)152を備える。電気信号プロセッサ134Bは、電気的不均衡化器156を備える。DLI150は、復調器130の入力ポート142に接続されて信号24を受け取る入力ポート165を有する。DLI150の入力ポート165とその加算的出力ポート166との間の加算的伝達関数は、式1の伝達関数G(f)を含む。DLI150の入力ポート165とその相殺的出力ポート168との間の相殺的伝達関数は、式2の伝達関数H(f)を含む。
信号プロセッサ134の入力ポート142と加算的出力ポート143Bとの間の加算的伝達関数は、DLI150の加算的伝達関数と、光学的不均衡化器152、検出器装置135及び電気的不均衡化器156の加算的信号パスの伝達関数とを含む。同様に、信号プロセッサ134の入力ポート142と相殺的出力ポート144Bとの間の相殺的伝達関数は、DLI150の相殺的伝達関数と、光学的不均衡化器152、検出器装置135及び電気的不均衡化器156の相殺的信号パスの伝達関数とを含む。
加算的出力ポート及び相殺的出力ポート166、168における信号は、ポート165において入力信号を2つのパスに分離し、次に信号を再結合することによって、光干渉によって生成できる。DLI150は、伝達自由スペクトル領域(FSR)帯域幅要素148と呼ばれる第1の信号遅延要素と、伝達(FSR)位相要素146と呼ばれる第2の信号遅延要素とを有する。FSR位相要素146は、DLI150内の信号パスにおける信号通過時間の間に遅延差分を提供し、また、DLI150のための加算的自由スペクトル領域伝達関数及び相殺的自由スペクトル領域伝達関数に伝達関数位相シフトΦを提供する。FSR帯域幅要素148は、DLI150の信号パス内の信号通過時間の間に信号遅延Z(図6A〜図6C)を提供する。
FSR帯域幅要素148によって提供される信号遅延Zは、FSR遅延と呼ばれ、FSR位相要素146が提供するFSR位相遅延と呼ばれる信号遅延差分と区別される。なお、ここでは、2つの異なる種類の位相、すなわち、周期的信号の位相と、周期的伝達関数G(f)及びH(f)の位相とについて説明している。入力信号24を差動復調するための信号通過時間差分Yへの主要な貢献は、FSR遅延Zが担っている。なお、受信機120にとって、時間差分Yは、包括的には、変調信号24のシンボル時間Tと同じにならない。典型的なシステム10では、受信機120の時間差分Yは、シンボル時間Tの約83%未満である。
時間差分Yの逆数は、DLI150の加算的伝達関数及び相殺的伝達関数の自由スペクトル領域(FSR)及び帯域幅を定義する。DLI150の自由スペクトル領域は、DLI150の加算的伝達関数及び相殺的伝達関数G(f)及びH(f)を決定し、又はDLI150の加算的伝達関数及び相殺的伝達関数G(f)及びH(f)に貢献する。FSR帯域幅要素148のFSR遅延Zは、リンク16の既知の又は測定された特性に基づいて選択又は調整され、時間差分Yを提供し、時間差分Yは、DLI150のための所望の自由スペクトル領域(FSR)を提供し、システム10の性能を向上させ、特に、フィルタ26によって引き起こされる符号間干渉(ISI)に起因する信号品質劣化を抑制する。帯域幅(FSR)制御アルゴリズム133は、図10のグラフに示すように、要素148を決定又は制御するための演算を行い、又はフィードバックを提供する。幾つかの実施の形態では、FSR帯域幅要素148及びFSR位相要素146を、位相シフトΦを提供するための小さい可調整範囲を有する大きい遅延Zを有する単一の要素として結合してもよい。
FSR位相要素146は、伝達関数G(f)及びH(f)の周期的な周波数応答の位相Φを微調節し、変調された入力信号24の搬送波周波数に対して伝達関数G(f)及びH(f)を調節するために使用される。一般的に言えば、FSR遅延Zが新たに選択又は調整される都度、FSR位相を再調整する必要がある。FSR位相要素146は、DLI150に含まれているメカニズム174によって制御でき、メカニズム174は、FSR位相コントローラ137によって制御される。メカニズム174は、要素146の温度を制御するための加熱器(oven)であってもよい。
受信機120は、光信号24が波長分離多重(WDM)された複数のチャネルを含んでいる場合、光信号24をチャネルにフィルタリングする入射光フィルタを備えていてもよい。入射光フィルタは、リンク16内のフィルタ26の1つとみなすこともできる。コスト及び利便性の観点から、あらゆるチャネルについて同じプロセッサ134及び同じDLI150を用いることが望ましい。
上述した一般側の例外として、FSR帯域幅要素148が、チャネルの周波数間隔の逆数に正確に等しい時間差分Yを提供するように選択される場合、FSR位相コントローラ137及びFSR位相要素146は、不要である。例えば、チャネル間隔が50GHzであり、シンボル時間が23ピコ秒であれば、時間差分Yは、20ピコ秒となる。但し、この特別なケースでは、DLI150のFSRは、最良のBERのために最適化できないこともある。受信機120では、FSR帯域幅要素148は、最良のBERのための通過時間差分Y及びFSRを提供するために、送信リンク16におけるISIを補償するための基準に基づいて選択され、時間差分Yは、チャネル間隔の逆数ではない。
光学的不均衡化器152は、出力ポート166、168からの信号にそれぞれ適用される光学的利得を制御し、出力ポート143A、144Aへの加算的信号及び相殺的信号の間に利得不均衡を提供する加算的可変利得要素176及び相殺的可変利得要素178を含む。要素176、178の利得は、不均衡制御アルゴリズム164によって制御でき、加算的パス及び相殺的パスのためのパワー利得の比を変更し、それぞれ式3及び式4に基づく加算的伝達関数g(f)及び相殺的伝達関数h(f)を提供する。式3及び式4において、シンボルβとして示す光学的利得不均衡は、マイナス1からプラス1に変化する。
Figure 2010521896
不均衡演算は、BER検出器138からのBERを最小化するように、能動フィードバックを用いる閉ループにおいて、動的に行ってもよい。または、不均衡演算は、BERを測定した後に(再び設定及び放置されるまで)「設定及び放置(set and forget)」してもよい。または、不均衡演算は、リンク16の既知又は測定された特性からの演算に基づく開ループであってもよい。この演算については、図11を用いて後述する。利得要素176、178は、利得比を提供するために可変増幅又は可変減衰を使用してもよい。可変利得比を提供するためには、利得要素176、178の一方のみが可変であればよい。
検出器装置135は、それぞれポート143A、144Aの光信号を検出し、光子を電子に変換することによって、電気的不均衡化器156に電気信号を提供する加算的光検出器182及び相殺的光検出器184を含む。検出器182、184のためにフォトダイオードを用いてもよい。各フォトダイオード182、184は、検出された光パワーに比例する電気信号を生成する。入力ポート165から検出器装置135の電気的出力への加算的伝達関数及び相殺的伝達関数は、それぞれ式5及び式6の項を含む。
Figure 2010521896
FSR位相コントローラ137は、FSR位相要素146の位相遅延を制御し、加算的検出器及び相殺的検出器182、184における光パワーの比を最大にする。一具体例においては、FSR位相コントローラ137は、加算的信号パス及び相殺的信号パスにおける信号のパワーに関連する測定を行う検出器145を含む。検出器145は、それぞれ光電流A及びAを測定することによって、加算的検出器及び相殺的検出器182、184における光パワーを測定し、平均化する。光電流は、検出器182、184における光子から電子への変換によって生じる電流である。光電流は、検出器182、184を流れる電流を測定し、次に、平均化を行って高周波成分を取り除くことによって測定される。高周波成分は、光学的変調の帯域幅より低い通過帯域を有する低域通過電気フィルタによって取り除くことができる。
FSR位相コントローラ137内のアルゴリズムは、FSR位相要素146の位相遅延を制御して、伝達関数の比、差分又は正規化された差分を最大にする。正規化された差分は、加算的信号パス及び相殺的信号パスのパワーに関連する測定値の差を加算的信号パス及び相殺的信号パスのパワーに関連する測定値の和によって除算した値である。FSR位相コントローラ137は、式7に示すように、平均光電流から測定される正規化された差分ΔBを最大にするように構成してもよい。
Figure 2010521896
また、受信機120は、信号品質フィードバック192のためのパスを含んでいてもよい。信号品質に関するデータは、信号品質フィードバック192を介して処理され、FSR位相コントローラ137に渡される。FSR位相コントローラ137は、処理された信号品質データを使用して、FSR位相要素146の位相遅延を微調節し、信号品質を改善及び最適化する。好ましくは、FSR位相要素146は、まず、フィードバックループにおいて加算的−相殺的正規化パワー差分を最大化するように調節され、次に、ビット誤り率(BER)を最小化するために微調節される。信号品質データは、BERを直接測定することによって、ベースバンド信号のアイ開口率を測定することによって、及び/又は光学的又は電気的な加算的パス信号及び相殺的パス信号の信号対雑音比(SNR)を測定することによって得ることができる。
電気的不均衡化器156は、加算的検出器及び相殺的検出器182、184からの信号にそれぞれ適用される電気的利得を制御し、出力ポート143B、144Bから信号を発行する加算的可変利得要素及び相殺的可変利得要素186、188を含む。要素186、188の利得は、不均衡制御アルゴリズム164によって制御でき、加算的パス及び相殺的パスのための利得の比を変更し、それぞれ式8及び式9に基づく加算的伝達関数g(f)及び相殺的伝達関数h(f)を提供する。式8及び式9において、シンボルβとして示す電気利得不均衡は、マイナス1からプラス1に変化する。
Figure 2010521896
BER検出器138からのBERを最小化するように、能動フィードバックを用いる閉ループにおいて、不均衡演算を動的に行ってもよい。または、不均衡演算は、BERを測定した後に(再び設定及び放置されるまで)「設定及び放置(set and forget)」してもよい。または、不均衡演算は、リンク16の既知又は測定された特性からの演算に基づいて提供される開ループであってもよい。この演算については、図11を用いて後述する。利得要素186、188は、利得比を提供するために可変増幅又は可変減衰を使用してもよい。可変利得比を提供するためには、利得要素186、188の一方のみが可変であればよい。
結合器136は、加算的出力ポート及び相殺的出力ポート143B、144Bからの電気信号間の差分を取り、この差分をベースバンド信号としてデータ推定器132に渡す。ベースバンド信号は、入力信号24に対応する復調された信号である。
ベースバンド信号は、システム内で劣化が生じなければ、データクロックに同期されたサンプル時における入力データを正確に表現する瞬間的信号レベルを有する。例えば、サンプル時において、入力データのある信号レベルは、論理値「1」を表し、他の信号レベルは、論理値「0」を表す。しかしながら、様々な信号劣化、特に、リンク16のフィルタ26に起因する符号間干渉(ISI)によって、サンプル時におけるベースバンド信号の信号レベルが様々なレベルを有するようになり、「1」が「0」と判定され、又は「0」が「1」と判定されるようなレベルになることさえある。データクロックに同期され、同じディスプレイに繰り返し表示されるベースバンド信号は、アイダイヤグラムとして現れ、ここで、アイの開口は、復調された信号の品質の尺度となる。
データ推定器132は、フレーム及びデータクロック信号を復元し、誤り検出及び訂正技術を使用し、入力データの最適推定を生成する。データ推定器132は、この入力データの最適推定を出力データとして発行する。BER検出器138は、データ推定器132からの誤り検出及び訂正情報及び/又は予測される出力データに関するプログラミングされた知識を用いてビット誤り率(BER)を推定する。動的な動作のために、BER検出器138は、復調器130内の不均衡制御アルゴリズム164にBERを渡す。BER測定又はフィードバックを提供するBER検出器138の機能は、ベースバンド信号の信号品質を測定するデバイスによって置換又は拡張できる。信号品質デバイス及び/又は測定機能は、受信機120の内部に設けてもよく、外部に設けてもよい。外部機器として、信号品質又はBERを測定するための検査装置を用いてもよい。
FSR遅延Zの選択を変更する副次的作用として、伝達関数G(f)及びH(f)の伝達関数位相又はFSR位相が入力信号24の周波数に対して多サイクル分スライドすることがある。一般則では、FSR遅延が変更された場合、伝達関数位相シフトΦ又は位相シフトΦG及びΦHは、伝達(FSR)位相コントローラ137によって、FSR位相要素146を調整して伝達関数G(f)及びH(f)を入力光信号24の周波数に再調節することによって再調整しなければならない。一方、FSR帯域幅に対する位相シフトΦ又は位相シフトΦG及びΦHの変化の影響は、小さく、重要ではない。
受信機20、120は、メモリに保存された命令に基づいて受信機20、120を動作させるマイクロプロセッサシステムを含む。これらの命令は、上述した帯域幅(FSR)制御アルゴリズム33、133、不均衡制御アルゴリズム64、164及び信号品質フィードバック92、192を含む。受信機20、120に関する信号品質は、BER、ISI、アイ開口率及び/又は信号対雑音比(SNR)に関して定義することができる。通常、光学的及び電気的な加算的パス信号及び相殺的パス信号における最小のBER、ISIの最良の補償、最大のアイ開口及び最高の信号対雑音比(SNR)は、受信機20、120内の同じ選択及び調整について、最適化又は略々最適化される。アルゴリズム192は、BERを最小化するためのフィードバックループにおいて動作してもよい。
図6Aは、DLI150の具体例として、遅延線干渉計(DLI)150Aを示している。DLI150に関連する要素に類似するDLI150Aに関連する要素は、参照符号に文字「A」を付加することによって示している。DLI150Aは、入力ポート165A、伝達(FSR)位相要素146A、メカニズム又は加熱器174A、部分反射性の第1のミラー202A、第2のミラー204A、第3のミラー208A、加算的出力ポート166A及び相殺的出力ポート168Aのための構造的要素を備える。
DLI150Aの構造的要素は、以下のように配置されている。入力光信号24は、部分反射性の第1のミラー202Aの表面を照射する。第1のミラー202Aは、光信号24のパスに対して、信号24の一部が信号212Aとして反射され、信号24の一部が信号214Aとして通過されるような角度に設定されている。信号212Aは、第2のミラー204Aから信号216Aとして反射され、第1のミラー202Aの表面に戻る。信号214Aは、要素146Aを照射し、微調節位相遅延の後に信号218Aとして現れる。信号218Aは、第3のミラー208Aから信号222Aとして反射する。
信号222Aは、要素146Aを照射し、位相遅延の後に信号224Aとして現れる。信号224Aは、第1のミラー202Aの裏面を照射する。信号224Aの一部は、第1のミラー202Aの裏面から反射され、第1のミラー202Aの表面を通過した信号216Aの一部と結合し、加算的出力ポート166Aにおいて信号226Aが生成される。信号224Aの一部は、第1のミラー202Aの裏面を通過し、第1のミラー202Aの表面から反射した信号216Aの一部と結合し、相殺的出力ポート168Aにおいて信号228Aが生成される。
DLI150Aの要素は、入力信号24を第1のパス232Aと第2のパス234Aとに分離する。第1のパス232Aの通過時間は、信号212A、216Aの通過時間の合計である。第2のパス234Aの通過時間は、信号214A、218A、222A及び224Aの通過時間の和と、要素146Aの位相遅延の2倍との合計である。第1及び第2のパスの通過時間の間の差分は、入力光信号24の復調のために用いられる差分通過時間Yである。時間Yは、要素146Aにおいて、信号位相遅延を調整し、DLI150AのFSR位相を調整して、加算的伝達関数及び相殺的伝達関数G(f)及びH(f)の伝達関数位相を調整することによって微調節される(図2参照)。
要素146Aの材料は、温度に依存する光屈折率を有するように選択される。FSR位相コントローラ137Aは、加熱器174Aの温度を調整して、要素146Aの遅延を微調節し、DLI150Aの加算的伝達関数及び相殺的伝達関数G(f)及びH(f)の中心を入力光信号24の光搬送波周波数に合わせる制御信号を提供する。
図6Bは、DLI150の具体例として遅延線干渉計(DLI)150Bを示している。DLI150に関連する要素に類似するDLI150Bに関連する要素は、参照符号に文字「B」を付加することによって示している。DLI150Bは、入力ポート165B、伝達FSR帯域幅要素148B、伝達(FSR)位相要素146B、メカニズム又は加熱器174B、部分反射性の第1のミラー202B、第2のミラー204B、第3のミラー208B、加算的出力ポート166B及び相殺的出力ポート168Bのための構造的要素を備える。
DLI150Bの構造的要素は、以下のように配置されている。入力光信号24は、部分反射性の第1のミラー202Bの表面を照射する。第1のミラー202Bは、光信号24のパスに対して、信号24の一部が信号212Bとして反射され、信号24の一部が信号214Bとして通過されるような角度に設定されている。信号212Bは、第2のミラー204Bから信号216Bとして反射され、第1のミラー202Bの表面に戻る。信号214Bは、要素148Bを照射し、遅延Zの後に信号217Bとして現れる。信号217Bは、要素146Bを照射し、微調節位相遅延の後に信号218Bとして現れる。信号218Bは、第3のミラー208Bから信号222Bとして反射する。
信号222Bは、要素146Bを照射し、位相遅延の後に信号223Bとして現れる。信号223Bは、要素148Bを照射し、遅延Zの後に信号224Bとして現れる。信号224Bは、第1のミラー202Bの裏面を照射する。信号224Bの一部は、第1のミラー202Bの裏面から反射され、第1のミラー202Bの表面を通過した信号216Bの一部と結合し、加算的出力ポート166Bにおいて信号226Bが生成される。信号224Bの一部は、第1のミラー202Bの裏面を通過し、第1のミラー202Bの表面から反射した信号216Bの一部と結合し、相殺的出力ポート168Bにおいて信号228Bが生成される。
DLI150Bの要素は、入力信号24を第1のパス232Bと第2のパス234Bとに分離する。第1のパス232Bの通過時間は、信号212B、216Bの通過時間の合計である。第2のパス234Bの通過時間は、信号214B、217B、218B、222B、223B及び224Bの通過時間の和と、要素146Bの位相遅延の2倍と、遅延Zの2倍との合計である。第1及び第2のパスの通過時間の間の差分は、入力光信号24の復調のために用いられる差分通過時間Yである。FSR遅延Zは、通過時間差分Yの一部である。帯域幅(FSR)制御アルゴリズム133B(図10)は、要素148Bの遅延Zを選択又は調整することによって時間Yを提供し、DLI150Bの加算的伝達関数及び相殺的伝達関数G(f)及びH(f)(図2)のFSR及び帯域幅を選択又は調整する演算又は制御信号を提供する。
要素146Bの材料は、温度に依存する光屈折率を有するように選択される。FSR位相コントローラ137Bは、加熱器174Bの温度を調整して、要素146Bの遅延を微調節し、DLI150Bの加算的伝達関数及び相殺的伝達関数G(f)及びH(f)(図2)の中心を入力光信号24の光搬送波周波数に合わせる制御信号を提供する。
図6Cは、DLI150の具体例として遅延線干渉計(DLI)150Cを示している。DLI150に関連する要素に類似するDLI150Cに関連する要素は、参照符号に文字「C」を付加することによって示している。DLI150Cは、入力ポート165C、結合された伝達FSR帯域幅要素及び位相要素148C、146C、メカニズム又は加熱器174C、部分反射性の第1のミラー202C、第2のミラー204C、第3のミラー208C、加算的出力ポート166C及び相殺的出力ポート168Cのための構造的要素を備える。
DLI150Cの構造的要素は、以下のように配置されている。入力光信号24は、部分反射性の第1のミラー202Cの表面を照射する。第1のミラー202Cは、光信号24のパスに対して、信号24の一部が信号212Cとして反射され、信号24の一部が信号214Cとして通過されるような角度に設定されている。信号212Cは、第2のミラー204Cから信号216Cとして反射され、第1のミラー202Cの表面に戻る。信号214Cは、要素148C、146Cを照射し、遅延Z及び微調節位相遅延による調整の後に信号218Cとして現れる。信号218Cは、第3のミラー208Cから信号222Cとして反射する。
信号222Cは、要素148C、146Cを照射し、遅延Z及び位相遅延による調整の後に信号224Cとして現れる。信号224Cは、第1のミラー202Cの裏面を照射する。信号224Cの一部は、第1のミラー202Cの裏面から反射され、第1のミラー202Cの表面を通過した信号216Cの一部と結合し、加算的出力ポート166Cにおいて信号226Cが生成される。信号224Cの一部は、第1のミラー202Cの裏面を通過し、第1のミラー202Cの表面から反射した信号216Cの一部と結合し、相殺的出力ポート168Cにおいて信号228Cが生成される。
DLI150Cの要素は、入力信号24を第1のパス232Cと第2のパス234Cとに分離する。第1のパス232Cの通過時間は、信号212C、216Cの通過時間の合計である。第2のパス234Cの通過時間は、信号214C、218C、222C及び224Cの通過時間の和と、要素148C、146Cの位相遅延の調整による遅延Zの2倍との合計である。第1及び第2のパスの通過時間の間の差分は、入力光信号24の復調のために用いられる差分通過時間Yである。FSR遅延Zは、通過時間差分Yの一部である。帯域幅(FSR)制御アルゴリズム133C(図10)は、要素148C、146Cの遅延Zを選択又は調整することによって時間Yを提供し、DLI150Cの加算的伝達関数及び相殺的伝達関数G(f)及びH(f)(図2)のFSR及び帯域幅を選択又は調整する演算又は制御信号を提供する。
要素148C、146Cの材料は、温度に依存する光屈折率を有するように選択される。FSR位相コントローラ137Cは、加熱器174Cの温度を調整して、要素146Cの位相遅延を微調節し、DLI150Cの加算的伝達関数及び相殺的伝達関数G(f)及びH(f)(図2)の中心を入力光信号24の光搬送波周波数に合わせる制御信号を提供する。
図6Dは、DLI150の具体例として、自由スペクトル領域のための離散ステップを有する遅延線干渉計(DLI)150Dを示している。DLI150の要素に類似するDLI150Dの要素は、参照符号に文字「D」を付加することによって示している。DLI150Dは、伝達FSR帯域幅要素148Dを備える。遅延要素148Dとも呼ばれる伝達FSR帯域幅要素148Dは、階段状断面を有する。要素148Dは、要素148DをDLI150E内の信号に対して位置決めすることによって、遅延Zのための離散固定ステップを提供するように位置決め可能である。
DLI150Dは、以下のように配置された入力ポート165D、伝達(FSR)位相要素146D、位置決め可能遅延要素148D、メカニズム又は加熱器174D、位置決めデバイス175D、部分反射性の第1のミラー202D、第2のミラー204D、第3のミラー208D、加算的出力ポート166D、相殺的出力ポート168Dを備える。入力光信号24は、部分反射性の第1のミラー202Dの表面を照射する。第1のミラー202Dは、光信号24のパスに対して、信号24の一部が信号212Dとして反射され、信号24の一部が信号214Dとして通過されるような角度に設定されている。信号212Dは、第2のミラー204Dから信号216Dとして反射され、第1のミラー202Dの表面に戻る。信号214Dは、要素148Dを照射し、遅延Zの後に信号217Dとして現れる。信号217Dは、要素146Dを照射し、可調整微調節遅延の後に信号218Dとして現れる。信号218Dは、第3のミラー208Dから信号222Dとして反射する。
信号222Dは、要素146Dを照射し、位相遅延の後に信号223Dとして現れる。信号223Dは、要素148Dを照射し、FSR遅延Zの後に信号224Dとして現れる。信号224Dは、第1のミラー202Dの裏面を照射する。信号224Dの一部は、第1のミラー202Dの裏面から反射され、第1のミラー202Dの表面を透過した信号216Dの一部と結合し、加算的出力ポート166Dにおいて信号226Dが生成される。信号224Dの一部は、第1のミラー202Dの裏面を透過し、第1のミラー202Dの表面から反射した信号216Dの一部と結合し、相殺的出力ポート168Dにおいて信号228Dが生成される。典型的には、要素148D、146Dは、バルク光群屈折率を有し(時間遅延は、群屈折率に距離を乗算し、真空中の光速によって除算した値に等しい。)、これは、要素148D、146Dの外で信号212D、216D、214D、217D、218D、222D、223D及び224Dが経験する群屈折率より遙かに大きい。
DLI150Dの要素は、入力信号24を第1のパス232Dと第2のパス234Dとに分離する。第1のパス232Dの通過時間は、信号212D、216Dの通過時間の合計である。第2のパス234Dの通過時間は、信号214D、217D、218D、222D、223D及び224Dの通過時間の和と、要素146Dの可調整遅延の2倍と、要素148DのFSR遅延Zの2倍との合計である。第1及び第2のパスの通過時間の間の差分は、入力光信号24の復調のために用いられる差分通過時間Yである。要素146D、148Dの一方又は両方は、2つのピースから構成してもよく、一方のピースは、信号パス232D内にあり、他方のピースは、信号パス234D内にあり、これによって、2つの要素ピースの信号遅延の間の差分として信号遅延を提供してもよい。
要素148Dは、2つ以上の階段ライザ(蹴上げ:riser)242Dと、階段トレッド(踏面:tread)244Dとを有する階段状断面を有する。これに代えて、要素148Dは、異なる群屈折率を有するセグメントを有していてもよい。位置決めデバイス175Dは、信号214Dがライザ242Dの1つにおいて要素148Dに入り、信号224Dがライザ242Dの1つにおいて要素148Dから出るように要素148Dを位置決めする。これに代えて、要素148Dの反対側に階段を設け、信号223Dが要素148Dに入り、ライザ242Dの1つにおいて信号217Dが要素148Dから出るようにしてもよい。遅延ステップサイズは、トレッド244Dの物理的長さに比例する。
位置決めデバイス175Dは、要素148Dを、信号214D、217D、223D及び224Dに略々垂直な方向に段階的に位置決めし、要素148Dの有効光路長を増加又は減少させて、FSR遅延Zを増加又は減少させる。遅延Zの離散ステップは、差分通過時間Yの離散ステップを提供し、これにより、DLI150Dの加算的伝達関数及び相殺的伝達関数G(f)及びH(f)のFSR帯域幅に離散ステップを提供する。離散ステップは、要素148Dの位置の僅かな狂いを許容するため有益であることがある。
帯域幅(FSR)制御アルゴリズム133Dは、位置決めデバイス175Dを制御して、要素148Dを位置決めする。制御アルゴリズム133Dは、受信機20、120の外部にあってもよく、受信機20、120内に含まれていてもよい。技術者が、制御アルゴリズム133Dからの情報を用いて位置決めデバイス175Dを操作してもよく、又は制御アルゴリズム133Dからの情報は、位置決めデバイス175Dの自動動作のためのフィードバックループの一部であってもよい。
要素146Dの材料は、温度に依存する群屈折率を有するように選択される。FSR位相コントローラ137Dは、加熱器174Dの温度を調整して、要素146Dの位相遅延を微調節し、DLI150Dの加算的伝達関数及び相殺的伝達関数G(f)及びH(f)の中心を入力光信号24の光搬送波周波数に合わせる制御信号を提供する。要素148Dのために温度に依存する群屈折率を有する材料を使用して、(図6Cにおいて、要素146C、148Cとして示すように)伝達位相要素146D及び段階的FSR遅延要素148Dの機能を結合してもよい。
図6Eは、DLI150の具体例として、自由スペクトル領域のための滑らかな調整傾斜を有する遅延線干渉計(DLI)150Eを示している。DLI150に関連する要素に類似するDLI150Eに関連する要素は、参照符号に文字「E」を付加することによって示している。DLI150Eは、伝達FSR帯域幅要素148Eを備える。遅延要素148Eとも呼ばれる伝達FSR帯域幅要素148Eは、滑らかな変化又は傾斜を有する断面を有する。要素148Eは、要素148EをDLI150E内の信号に対して位置決めすることによって、遅延Zの連続的な変化を提供するように位置決め可能である。
DLI150Eは、以下のように配置された入力ポート165E、伝達(FSR)位相要素146E、位置決め可能遅延要素148E、メカニズム又は加熱器174E、位置決めデバイス175E、部分反射性の第1のミラー202E、第2のミラー204E、第3のミラー208E、加算的出力ポート166E及び相殺的出力ポート168Eを備える。入力光信号24は、部分反射性の第1のミラー202Eの表面を照射する。第1のミラー202Eは、光信号24のパスに対して、信号24の一部が信号212Eとして反射され、信号24の一部が信号214Eとして通過されるような角度に設定されている。信号212Eは、第2のミラー204Eから信号216Eとして反射され、第1のミラー202Eの表面に戻る。信号214Eは、要素148Eを照射し、FSR遅延Zの後に信号217Eとして現れる。信号217Eは、要素146Eを照射し、可調整微調節遅延の後に信号218Eとして現れる。信号218Eは、第3のミラー208Eから信号222Eとして反射する。
信号222Eは、要素146Eを照射し、位相遅延の後に信号223Eとして現れる。信号223Eは、要素148Eを照射し、FSR遅延Zの後に信号224Eとして現れる。信号224Eは、第1のミラー202Eの裏面を照射する。信号224Eの一部は、第1のミラー202Eの裏面から反射され、第1のミラー202Eの表面を通過した信号216Eの一部と結合し、加算的出力ポート166Eにおいて信号226Eが生成される。信号224Eの一部は、第1のミラー202Eの裏面を通過し、第1のミラー202Eの表面から反射した信号216Eの一部と結合し、相殺的出力ポート168Eにおいて信号228Eが生成される。典型的には、要素148E、146Eは、バルク群屈折率を有し、これは、要素148E、146Eの外で信号212E、216E、214E、217E、218E、222E、223E及び224Eが経験する群屈折率より遙かに大きい。
DLI150Eの要素は、入力信号24を第1のパス232Eと第2のパス234Eとに分離する。第1のパス232Eの通過時間は、信号212E、216Eの通過時間の合計である。第2のパス234Eの通過時間は、信号214E、217E、218E、222E、223E及び224Eの通過時間の和と、要素146Eの可調整遅延の2倍と、要素148EのFSR遅延Zの2倍との合計である。第1及び第2のパスの通過時間の間の差分は、入力光信号24の復調のために用いられる差分通過時間Yである。要素146E、148Eの一方又は両方は、2つのピースから構成してもよく、一方のピースは、信号パス232E内にあり、他方のピースは、信号パス234E内にあり、これによって、2つの要素ピースの信号遅延の間の差分として信号遅延を提供してもよい。
要素148Eは、連続的に変化する光遅延を提供するために、物理的長さの滑らかな変化又は傾斜を有する断面を有する。これに代えて、要素148Eは、光学的群屈折率の滑らかな傾斜を有していてもよい。位置決めデバイス175Eは、要素148Eを、信号214E、217E、223E及び224Eに垂直な方向に移動させ、要素148Eの有効光路長を増加又は減少させて、FSR遅延Zを増加又は減少させる。連続的な可変FSR遅延Zは、連続的な可変差分通過時間Yを提供し、これにより、DLI150Eの加算的伝達関数及び相殺的伝達関数G(f)及びH(f)に、滑らかな、連続的な可変FSR帯域幅を提供する。
帯域幅(FSR)制御アルゴリズム133Eは、位置決めデバイス175Eを制御して、要素148Eを位置決めする。制御アルゴリズム133Eは、受信機20、120の外部にあってもよく、受信機20、120内に含まれていてもよい。技術者が制御アルゴリズム133Eからの情報を用いて位置決めデバイス175Eを操作してもよく、又は制御アルゴリズム133Eからの情報によって位置決めデバイス175Eを自動的に動作させ、要素148Eを、光信号214E、217E、223E及び224Eに対してより垂直にまたは垂直でなくなる方向に移動させてもよい。
要素146Eの材料は、温度に依存する光学的群屈折率を有するように選択される。FSR位相コントローラ137Eは、加熱器174Eの温度を調整して、要素146Eの位相遅延を微調節し、DLI150Eの加算的伝達関数及び相殺的伝達関数G(f)及びH(f)の中心を入力光信号24の光搬送波周波数に合わせる制御信号を提供する。
要素148E、146Eは、(図6Cにおいて、要素146C、148Cとして示すように)要素148EのFSR遅延Z及び要素146Eの微調節されたFSR位相調整を提供する有効光路長を有する単一の要素に結合してもよい。更に、位置決めデバイス175Eは、要素148Eを微細に位置決めすることによって、微細な位相遅延制御を提供してもよい。
図6Fは、DLI150の具体例として、自由スペクトル領域の選択又は調整のための可動ミラー208Fを有する遅延線干渉計(DLI)150Fを示している。DLI150に関連する要素に類似するDLI150Fに関連する要素は、参照符号に文字「F」を付加することによって示している。可動ミラー208Fは、DLI150Fの信号パスに選択可能な光路長を提供することによって、伝達FSR帯域幅要素として機能する。光路長の調整は、DLI150F内の2つの信号パスの間で遅延Zを制御することによって、DLI150Fの自由スペクトル領域の制御を提供する。遅延Zは、信号パスに対するミラー208Fの位置246Fを選択することによって選択される。
DLI150Fは、以下のように配置された入力ポート165F、伝達(FSR)位相要素146F、メカニズム又は加熱器174F、位置決めデバイス175F、部分反射性の第1のミラー202F、第2のミラー204F、可動ミラーである第3のミラー208F、加算的出力ポート166F及び相殺的出力ポート168Fを備える。入力された光信号24は、部分反射性の第1のミラー202Fの表面を照射する。第1のミラー202Fは、光信号24のパスに対して、信号24の一部が信号212Fとして反射され、信号24の一部が信号214Fとして通過されるような角度に設定されている。信号212Fは、第2のミラー204Fから信号216Fとして反射され、第1のミラー202Fの表面に戻る。信号214Fは、要素146Fを照射し、微調節信号遅延の後に信号218Fとして現れる。信号218Fは、遅延Zを透過し、第3のミラー208Fから信号222Fとして反射する。
信号222Fは、遅延Zを通過し、要素146Fを照射し、位相遅延の後に信号224Fとして現れる。信号224Fの一部は、第1のミラー202Fの裏面から反射され、第1のミラー202Fの表面を通過した信号216Fの一部と結合し、加算的出力ポート166Fにおいて信号226Fが生成される。信号224Fの一部は、第1のミラー202Fの裏面を通過し、第1のミラー202Fの表面から反射した信号216Fの一部と結合し、相殺的出力ポート168Fにおいて信号228Fが生成される。典型的には、要素146Fは群屈折率を有し、これは、要素146Fの外で信号212F、216F、214F、218F、222F及び224Fが経験する群屈折率より遙かに大きい。
DLI150Fの要素は、入力信号24を第1のパス232Fと第2のパス234Fとに分離する。第1のパス232Fの通過時間は、信号212F、216Fの通過時間の合計である。第2のパス234Fの通過時間は、信号214F、218F、222F及び224Fの通過時間の和と、要素146Fの位相遅延の2倍と、可動ミラー208Fの機械的な長さ調整によるFSR遅延Zの2倍との合計である。第1及び第2のパスの通過時間の間の差分は、入力光信号24の復調のために用いられる差分通過時間Yである。要素146Fは、信号パス232F内の1つのピースと、信号パス234F内の1つのピースとを有し、2つのパス232F、234Fにおける信号遅延の間の差分である信号遅延を微調節してもよい。ミラー204F、208Fの何れか又は両方を、選択可能な位置246Fを有する可動ミラーとして構成してもよい。
位置決めデバイス175Fは、ミラー208Fを信号218F、222Fの方向に移動させ、DLI150Fの信号パス232Fと信号パス234Fとの間の有効光路長を増加又は減少させ、FSR遅延Zを増加又は減少させる。連続的な可変FSR遅延Zは、連続的な可変差分通過時間Yを提供し、これにより、DLI150Fの加算的伝達関数及び相殺的伝達関数G(f)及びH(f)に、滑らかな、連続的な可変FSR帯域幅を提供する。
帯域幅(FSR)制御アルゴリズム133Fは、位置決めデバイス175Fを制御して、ミラー208Eを位置決めする。制御アルゴリズム133Fは、受信機20、120の外部にあってもよく、受信機20、120内に含まれていてもよい。技術者が制御アルゴリズム133Fからの情報を用いて位置決めデバイス175Fを操作してもよく、又は制御アルゴリズム133Fからの情報によって位置決めデバイス175Fを自動的に動作させ、要素148Fを移動させ、光信号218F、222Fが横断する距離を短縮又は延長してもよい。位置決めデバイス175Fは、後述する位置決めデバイス175Dの構成と同様の手法によって構成することができる。
要素146Fの材料は、温度に依存する光学的群屈折率を有するように選択される。FSR位相コントローラ137Fは、加熱器174Fの温度を調整して、要素146Fの遅延を微調節し、DLI150Fの加算的伝達関数及び相殺的伝達関数G(f)及びH(f)の中心を入力光信号24の光搬送波周波数に合わせる制御信号を提供する。可動ミラー208Fは、FSR遅延Zを選択する機能とFSR位相を微調節する機能とを結合してもよい。
図7は、伝送リンクチャネルを介して伝送された差分位相偏移変調(DPSK)された光信号を受信する方法の具体例の単純化されたフローチャートである。これらのステップの1つ又は任意の組合せは、コンピュータが読取可能な形式で、コンピュータにステップを実行させる命令として、タンジブルメディア300に保存してもよい。
ステップ301では、加算的伝達関数及び相殺的伝達関数を演算し、又は演算に基づくルックアップテーブルを読み出し、又は能動的に調節を行って、符号間干渉(ISI)の影響を最小化し、信号品質を改善する。伝達関数は、遅延線干渉計(DLI)の信号パスの遅延Zを選択して、DLIの自由スペクトル領域(FSR)を選択することによって実装できる。遅延Zは、差動復調を提供するための、通常、DPSKシンボル時間Tに等しくない差分時間Yに貢献する。信号品質は、出力データのビット誤り率(BER)によって判定してもよい。第1の実施の形態では、遅延Zは、BERを最小化するために、信号品質測定からのフィードバックによって遅延Zを動的に調整することによって選択される。第2の実施の形態では、遅延Zは、試行錯誤によって、測定BERを最小化するように選択される。第3の実施の形態では、遅延Zは、同じチャネル帯域幅を有することが既知である他の光学伝送リンクチャネルにおけるBER測定値に基づいて選択される。第4の実施の形態では、遅延Zは、既知のチャネル又はスペクトル帯域幅からの演算によって選択される。第5の実施の形態では、遅延Zは、BERを最小化するためのチャネル帯域幅又はスペクトルに基づく演算結果を有するテーブルから選択される。FSRの演算は、図10に示している。BER検出に代えて、又はこれに加えて、遅延Zの選択、調整又は制御のために、BER以外の信号品質の解析及び測定、例えば、アイ開口の測定を用いてもよい。なお、新たなFSR遅延Zが選択されると、受信機20は、入力信号24上の同期(lock)を失う場合がある。
ステップ302では、最良の信号品質のために、(FSR遅延Zについて上述したように)加算的出力ポート信号と相殺的出力ポート信号との間の光学的利得不均衡を選択する。利得不均衡のための演算は、図11に示している。信号品質は、上述のようにして判定してもよい。
ステップ303では、光学的な加算的パス信号及び相殺的パス信号の間の信号パワー差分を最大にするように加算的伝達関数と相殺的伝達関数の位相を調整する。伝達関数の位相は、システムを動作させて、出力データを提供させながら、出力データを過剰に劣化させることなく、DLIの信号パス内の信号遅延要素の遅延を微調節することによって、FSR位相として調整してもよい。オプションとして、FSR位相は、最良の信号品質のために更に調節してもよい。FSR位相調整は、入力光信号の搬送波周波数に対して加算的伝達関数及び相殺的伝達関数を調節する。
図8は、算出されたFSR及び算出された利得不均衡を用いて、伝送リンクチャネルを介して伝送された差分位相偏移変調(DPSK)された光信号を受信する方法の具体例の単純化されたフローチャートである。これらのステップの1つ以上は、コンピュータが読取可能な形式で、コンピュータにステップを実行させる命令として、タンジブルメディア310に保存してもよい。以下のステップの詳細では、システム10及び光受信機20、120を参照する。
ステップ320では、設計、検査又は設営の間の何れかにおいて、伝送システム10の特徴、特にリンク16の帯域幅に基づいて、最良の信号品質及び/又は最低のビット誤り率(BER)が得られる遅延線干渉計(DLI)の自由スペクトル領域(FSR)を算出する。ステップ322では、DLIのFSR、シンボルレートR及び伝送システム10の特徴、特にフィルタ26の帯域幅に基づいて、最良の信号品質及び/又は最低のビット誤り率(BER)が得られる光学的及び/又は電気的な利得不均衡を算出する。
実際の動作では、受信機20、120は、ステップ324において変調された入力信号24を受信する。ステップ330では、予め算出されたFSRを有するDLIが、信号24を差動復号し、光干渉を用いて、信号を加算的信号パス及び相殺的信号パスに分離する。ステップ332では、FSR位相を調整し、信号24の搬送波に対してFSR伝達関数を調節する。ステップ334では、加算的信号パス及び相殺的信号パス内の信号に光学的利得不均衡を適用し、光学的な加算的信号出力及び相殺的信号出力を提供する。
ステップ336では、光学的な加算的信号出力及び相殺的信号出力における信号の変調を電気信号に変換する。ステップ338では、加算的信号パス及び相殺的信号パスの信号に電気的利得不均衡を適用し、電気的な加算的信号出力及び相殺的信号出力を提供する。
ステップ342では、加算的信号出力及び相殺的信号出力の信号について、パワーに関連する測定値を検出する。利得不均衡が電気信号に適用されている場合は、電気的出力信号を測定する。利得不均衡が、電気信号ではなく、光信号に適用されている場合、光学的出力信号及び電気的出力信号の何れを測定してもよい。一実施の形態においては、利得は、光信号に適用され、パワーに関連する検出値は、光学的変調を電気信号に変換するための平均光電流の測定値である。ステップ344では、パワーに関連する測定値間の正規化された差分をステップ332に適用し、FSR位相を調整する。ステップ352では、信号の差分を取ることによって電気的な加算的パス信号及び相殺的パス信号を結合する。この差分は、ベースバンド信号として発行される。そして、ステップ354では、ベースバンド信号から、送信機12からの入力データを推定し、出力データを提供する。
図9は、システム10を介してデータを送信することを試みながら、BERに基づいてFSR及び利得不均衡を調整し、送信リンクチャネルを介して送信された差分位相偏移変調(DPSK)された光信号を受信する動的手法の具体例のフローチャートである。これらのステップの1つ以上は、コンピュータが読取可能な形式で、コンピュータにステップを実行させる命令として、タンジブルメディア360に保存してもよい。以下のステップの詳細では、システム10及び光受信機20、120を参照する。なお、受信機20、120を調整している間に、データを何度か再送信することが必要になることもある。
まず、ステップ324では、入力信号24を受信する。ステップ330では、DLIが、信号24を差動復号し、光干渉を用いて、信号を加算的信号パス及び相殺的信号パスに分離する。ステップ332では、FSR位相を調整し、信号24の搬送波に対してFSR伝達関数を調節する。対称的な信号スペクトルの場合、FSR位相は、FSR伝達関数の中心を信号24の搬送波に合わせるように調節される。ステップ334では、加算的信号パス及び相殺的信号パス内の信号に光学的利得不均衡を適用し、光学的な加算的信号出力及び相殺的信号出力を提供する。
ステップ336では、光学的な加算的信号出力及び相殺的信号出力における信号の変調を電気信号に変換する。ステップ338では、加算的信号パス及び相殺的信号パスの信号に電気的利得不均衡を適用し、電気的な加算的信号出力及び相殺的信号出力を提供する。
ステップ342では、加算的信号出力及び相殺的信号出力の信号について、パワーに関連する測定値を検出する。利得不均衡が電気信号に適用されている場合は、電気的出力信号を測定する。利得不均衡が、電気信号ではなく、光信号に適用されている場合、光学的出力信号及び電気的出力信号の何れを測定してもよい。一実施の形態においては、利得は、光信号に適用され、パワーに関連する検出値は、光学的変調を電気信号に変換するための平均光電流の測定値である。ステップ344では、パワーに関連する測定値間の正規化された差分を適用し、ステップ332のFSR位相を調整する。ステップ352では、信号の差分を取ることによって電気的な加算的パス信号及び相殺的パス信号を結合する。この差分は、ベースバンド信号として発行される。
ステップ352では、加算的電気信号出力及び相殺的電気信号出力の差分を判定し、ベースバンド信号を提供する。ステップ354では、ベースバンド信号から、送信機12からの入力データを推定し、出力データを提供する。
ステップ372では、光信号又は電気信号から信号品質を判定し、又は出力データのビット誤り率(BER)を測定する。ステップ374では、信号品質又はBERのフィードバックを適用し、ステップ330で用いられるFSRを調整する。ステップ376では、信号品質のフィードバックを適用し、ステップ334の光学的及び/又は利得不均衡を調整する。そして、オプションとして、ステップ378では、信号品質のフィードバックを適用し、ステップ332のFSR位相を調整する。ステップ330、332及び/又は334は、信号品質における更なる改善が検出されなくなるまで繰り返してもよい。ステップ330における新たな選択又は調整のためにFSRが変更される都度、ステップ332においてFSR位相を再調節する必要がある。
図10は、システム10の有効光帯域幅に基づいて、DLI150(図4、図5及び図6A〜図6C)の最適なFSRを算出する帯域幅(FSR)制御アルゴリズム33、133のための例示的なグラフを示している。FSR及び帯域幅は、システム10のシンボルレートR(シンボル時間Tの逆数)に正規化される。この図から、最適なFSRは、シンボルレートRより少なくとも10%大きいことがわかる。また、この図から、システム10の有効光帯域幅がシンボルレートRより小さい場合、最適なFSRは、シンボルレートRより少なくとも20%大きいことがわかる。なお、1、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9及び2のFSR/Rレベルは、それぞれ、変調された光入力信号24のシンボル時間Tの約90.9%、83.3%、76.9%、71.4%、66.7%、62.5%、58.8%、55.6%、52.6%及び50%の差動復調通過時間によって提供される。
図11は、光学的不均衡化器152及び/又は電気的不均衡化器156によって適用される追加的な利得不均衡を算出する利得不均衡制御アルゴリズム64、164のための例示的なグラフを示している。利得不均衡項βは、DLI150のためのFSR、システム10の有効光帯域幅及びシステム10のシンボルレートRから算出される。
図12A〜Eは、それぞれ、段階的及び滑らかな傾斜遅延要素148D、148Eの具体例を示している。第1の方向402の信号400は、要素148D、148Eの有効光路長を横断する。要素148Dは、有効光路長の段階的傾斜を有し、遅延Zの離散的な増加を提供する。要素148Eは、有効光路長の滑らかな傾斜を有し、連続的な可変量として遅延Zを提供する。
要素148D、148Eは、位置決めデバイス175D、175Eによって第2の方向404に位置決めされ、遅延Zを選択し、DLI150Dの信号パス232Dと234Dの間又はDLI150Eの信号パス232Eと234Eの間に所望の通過時間差分Yを提供する。第2の方向404は、第1の方向402に略々垂直である。用語「傾斜」は、要素148D、148Eの第2の方向404における位置の変化に対する要素148D、148Eの信号遅延の変化を指す。様々な実施の形態では、遅延Zは、1ピコ秒、2ピコ秒、5ピコ秒、10ピコ秒又は20ピコ秒の範囲に亘って変更することができる。要素148Dの遅延ステップは、50GHzのチャネル帯域幅の場合、典型的には、約1/4〜5ピコ秒であるが、20フェムト秒(fs)又はこれ以下でもよい。変調シンボル時間に関しては、遅延ステップは、典型的には、変調された光入力信号の変調シンボル時間の1〜20%であるが、0.025%又はこれ以下であってもよい。変調された光入力信号24のチャネル帯域幅又は変調帯域幅に関しては、遅延ステップは、典型的には、帯域幅の逆数の1〜20%であるが、0.025%又はこれ以下であってもよい。
位置決めデバイス175Dは、要素148D、148Eを第2の方向404に少しずつ動かし又は位置決めする手段を有する。位置決めデバイス175Dは、良好な位置制御のために、ネジ423を有していてもよい。帯域幅FSR制御アルゴリズム133Dからの情報に基づき、技術者による手動操作又はステッピングモータ424によって、ネジ423の回転433を制御し、要素148Dを第2の方向404に進退させる。ブラケット426は、信号400に対して、DLIハウジング内にネジ423及びモータ424を保持する。位置決めデバイス175Eも同様の手法で構成してもよい。一旦、要素148D、148Eが適切に位置決めされると、例えば、タイダウンストラップ(tie down straps)等の何らかの固定手段によって要素148D、148Eを固定する。固定手段及び/又はブラケット426は、要素148D、148EをDLIハウジングの機械振動から分離するために、衝撃吸収材料を必要とすることもある。
図12Aは、第1の方向402に垂直なライザ242Dと、第1の方向402に略々平行なトレッド244Dとを有する段階的ステップ406を有する遅延要素148D(図6D)を示している。信号400は、ライザ242Dにおける入射点又は出射点を介して、要素148Dを横断する。遅延Zのステップのサイズは、第1の方向402に延びるトレッド244Dの長さに比例する。受信機20、120の機械振動のために生じるおそれがある遅延Zのジッタを最小化するために、ライザ242Dの反対側となる要素148Dの側面408は、ライザ242Dに平行にされている。ライザ242Dの高さを増加させれば、機械的衝撃又は大きな振幅変動に対する遅延Zの耐性が高まる。
図12Bは、段階的遅延要素148Dの変形例を要素148D1として示している。要素148D1は、第2の方向404に互いに積層された異なる光学的群屈折率を有する複数のセグメント242D1を有し、セグメント242D1の光遅延Zは、信号400によって横断される要素148D1の物理的長さと、セグメント242D1の群屈折率との積に比例する。受信機20、120の機械振動のために生じるおそれがある遅延Zのジッタを最小化するために、信号400が要素148D1を出入りする要素148D1の両側面は、平行にされている。セグメント242D1の高さを第2の方向404に増加させれば、機械的衝撃又は大きな振幅変動に対する遅延Zの耐性が高まる。
図12Cは、三角形の断面を有する遅延要素148Eを示している。要素148Eの位置の第2の方向404における連続する滑らかな変化は、遅延Zの連続する滑らかな変化を提供する。
図12Dは、遅延要素148Eの変形例を、台形の断面を有する要素148E1として示している。要素148Eの位置の第2の方向404における連続する滑らかな変化は、遅延Zの連続する滑らかな変化を提供する。
図12Eは、遅延要素148Eの変形例を、互いに逆の三角形の断面を有する2つの要素409、410を含む要素148E2として示している。要素409は、位置が固定されており、要素410は、第2の方向404に位置決め可能である。信号400は、第1の方向402において両方の要素409、410を通過し、結合された遅延Zを生じる。
要素409、410は、それぞれ、材料の屈折率、及び材料の側面と信号400との間の傾斜角度に起因する波長に依存するビーム偏角411、412を誘導する。材料及び傾斜角度は、ビーム偏角411の波長依存性がビーム偏角412の波長依存性を補償して、概ね波長から独立した信号パスを提供するように選択してもよい。
ここでは、固定された要素409の第1及び第2の側面を側面413、414として示し、位置決め可能な要素410の第1及び第2の側面を側面415、416として示している。要素409、410に同じ材料を用いる場合、側面413、415を平行にし、及び側面414、416を平行にしてもよい。但し、要素410を要素409に対して僅かに回転させてもよい。固定された要素409を第2の方向404において静止させたまま、可動の要素410の位置を第2の方向404において連続的に滑らかに変化させることによって、遅延Zの連続する滑らかな変化が提供される。
図13は、傾斜角度448を用いて信号遅延を微調節し、上述した、伝達関数G(f)及びH(f)の位相を調整する伝達FSR位相要素446を示している。要素446は、受信機20、120において要素46、146として用いてもよく、DLI150A〜Fにおいて、要素146A〜Fに代えて用いてもよい。
ここでは、2つの信号パス232A〜F又は234A〜F(図6A〜F)の1つの一部を信号パス434として示している。信号パス434内の信号450は、要素446を通過し、信号遅延を提供して伝達関数G(f)及びH(f)のFSR位相を調整する。要素446は、要素446外の信号パス434における信号の光屈折率より高い光屈折率を有する。
可調整傾斜角448は、機械的メカニズム474によって、信号450の方向に関して調整される。メカニズム474は、伝達FSRコントローラ37、137、137A〜Fについて上述した手法で、伝達(FSR)位相コントローラ437によって制御される。信号450に対して要素446の傾斜角448を調整すると、信号450が横断する物理的長さが変化することによって、信号450の遅延が微調整される。要素446は、光屈折率の温度依存性が最小の材料から形成してもよい。
包括的考察
伝達(FSR)位相要素46、146、146A〜F及び446が提供する信号遅延は、伝達関数位相調整を提供するために、光入力信号24の搬送波周波数における少なくとも1サイクル周期の範囲に亘って、調整できる必要がある。その調節分解能及び安定性は、搬送波サイクル周期の1%以上の精度を有する必要がある。FSR位相調整を温度によって調節する場合、熱膨張係数及び熱的な群屈折率係数(thermal group index coefficient)によって、温度変化とFSR位相変化との間のスケーリング係数が決まる。例えば、(ドイツ、マインツのショット社(Schott AG)製の)LaSFN9から形成された調節プレートでは、群屈折率は、約1.8であり、熱係数の合計は、約9×10−6/K(ケルビン)である。厚さ3mmのプレートを介する伝搬遅延は、約18ピコ秒であり、熱的な調節範囲は、0.162fs/Kである。200テラヘルツ(THz)の搬送波周波数では、光周期は、5フェムト秒(fs)であり、1周期のFSR位相の変化は、0.31Kの安定性が保たれた31Kの温度変化を必要とする。これは実際の結果である。
一方、望まれる差分通過時間Y(FSR帯域幅要素48、148、148A〜Fが提供する信号遅延Zを選択することによって制御される)は、搬送波周波数の多サイクルに亘る。搬送波周波数のサイクルに関して、所望の時間Yは、変調システム時間を搬送波サイクル時間で除算し、変調された光入力信号24において符号間干渉(ISI)を正確に補償する所望のFSR/Rで除算することによって算出できる。例えば、変調シンボル時間が23.3ピコ秒、搬送波サイクル時間が5fs、所望のFSR/Rが1.01の場合、時間Yは、4613.86サイクルになる。変調シンボル及び搬送波サイクル時間が同じで、所望のFSR/Rが2の場合、時間Yは、2330サイクルになる。伝達(FSR)位相要素及びFSR帯域幅要素を結合することは、以下の理由のために実用的ではない。
熱的に調節される伝達(FSR)位相要素で差分時間Yを提供する場合に上述の具体例を適用したとすると、1.01〜2のFSR/R範囲を提供するために、位相要素は、約2300搬送波サイクル周期、又は11.5ピコ秒(ps)の遅延範囲を有する必要がある。このためには、非実用的な71000Kの温度領域が必要となる。FSR帯域幅要素48、148、148A〜Fの遅延Zは、差分通過時間Yの全てを提供する必要はない。例えば、時間Yは、遅延Zと、それぞれの信号パス232A〜Fと234A〜Fとの間の固定された差分通過時間との合計によって構成できる。しかしながら、遅延Zの範囲を1ピコ秒に限定してもなお、必要な温度調節範囲は、非実用的な7100Kである。
なお、本明細書において説明する遅延Zは、伝達関数(FSR)帯域幅要素48、148、148A〜Fを2回経由する通過時間(往復時間)であり、本明細書において説明する伝達(FSR)位相信号遅延は、伝達(FSR)位相要素46、146、146A〜F及び446を2回経由する通過時間(往復時間)である。但し、受信機20、120、DLI150及び150A〜Fは、帯域幅要素及び位相要素の一方又は両方を信号が1回だけ通過するように構成することもでき、この場合、遅延Z及び/又は伝達(FSR)位相信号遅延は、単一の通過の時間によって提供される。
図6Gは、遅延線干渉計(DLI)150の具体例として、ギヤス−トールニス(Gires-Tournois:GT)デコーダ150Gを示している。GTデコーダ150Gは、遅延線干渉計として動作し、ギヤス−トールニスエタロン(Gires-Tournois etalon)250Gとして実現されたフィルタは、信号パスの1つにおける反射器として機能する。エタロン250Gは、反射信号について周期的位相応答を有する周波数の周期的位相フィルタである。エタロン250Gからの反射信号における周波数フィルタリングによって、エタロン250Gが組み込まれている遅延線干渉計の生来的な自由スペクトル領域の加算的伝達関数及び相殺的伝達関数G(f)及びH(f)が変更及び再構築される。
エタロン250Gは、部分反射性の前面PRと、高反射性の後面HRとを有する。部分反射面PRの反射係数及びエタロン250Gの厚さ、光屈折率及び内部入射角度は、入力信号24を差動復調するための差分通過時間Yに影響することなく、GTデコーダ150Gの加算的伝達関数及び相殺的伝達関数の帯域幅を変更して、光入力信号24における符号間干渉を補償し、出力データのビット誤り率を最小化するように選択される。
GTデコーダ150Gは、入力ポート165Gと、部分反射性の第1のミラー202Gを有するビームスプリッタキューブ252Gと、第2のミラー204Gと、補償スペーサ253Gと、第1の中間的スペーサ254Gと、エタロン位相調節要素256Gを含むGTエタロン250Gと、空隙259Gを有するFSR位相調節スペーサ258Gと、第2の中間的スペーサ262Gと、加算的出力ポート166Gと、相殺的出力ポート168Gとを備える。FSR位相調節要素446Gは、スペーサ258Gの空隙259G内に取り付けられている。DLI150A〜Fの要素に類似するGTデコーダ150Gの要素には、同様の基本参照符号を用いており、例えば、第1のミラー202Gは、機能的に、第1のミラー202A〜Fに類似している。
説明を目的として、DLI150G内の2つの信号パスを垂直信号パス232G及び水平信号パス234Gと呼ぶ。中間的スペーサ254G、262Gは、一致する信号遅延を有するように構成されている。補償スペーサ253Gは、FSR位相調節要素446Gの有効光路長を除いて、ミラー202Gから第2のミラー204Gへの光路長と、第2のミラー202Gから部分反射面PRへの光路長とが等しくなるように、FSR位相調節スペーサ258Gの厚さを補償する。GTエタロン250Gは、入力信号24を差動復調するための差分通過時間Yを提供する。
水平信号パス234Gにおけるキューブ252Gと補償スペーサ253Gとの間及び差分スペーサ148Gと中間的スペーサ254Gとの間の光インタフェースは、無反射面ARである。水平信号パス234Gにおける中間的スペーサ254Gとエタロン250Gとの間の光インタフェースは、部分反射面PRである。エタロン250Gの後面は、エタロン150G内で信号を反射する高反射面HRである。垂直信号パス232Gにおけるキューブ252Gとスペーサ258Gとの間及びスペーサ258Gと中間的スペーサ262Gとの間の光インタフェースは、無反射面ARである。中間的スペーサ262Gの後面は、垂直信号パス232Gを反射するための第2のミラー204Gとして機能する高反射面HRである。
入力された光信号24は、入力ポート165Gにおいてスプリッタキューブ252Gに入り、部分反射性の第1のミラー202Gの表面を照射する。第1のミラー202Gは、光信号24に対して、信号24の一部が垂直信号パス232Gに反射され、信号24の一部がミラー202Gを介して水平信号パス234Gに通過するような角度に設定されている。水平信号パス234Gは、キューブ252G、スペーサ253G及び中間的スペーサ254Gを経由してエタロン250Gに至る。エタロン250Gは、選択された反射係数、厚さ、屈折率及び内部の入射角に基づいて、水平信号パス234G内の信号を反射し、中間的スペーサ254G及びスペーサ253Gに戻す。水平信号パス234G内の反射信号は、キューブ252Gに再び入り、ここで、一部は、第1のミラー202Gの裏面から反射して、加算的出力ポート166Gに供給され、一部は、ミラー202Gの裏面を通過して、相殺的出力ポート168Gに供給される。
垂直信号パス232Gは、キューブ252Gからスペーサ258G及び中間的スペーサ262Gを介して、第2のミラー204Gに至る。第2のミラー204Gは、垂直信号パス232G内の信号を反射し、中間的スペーサ262G及びスペーサ258Gを介して、キューブ252Gに戻す。垂直信号パス232G内の反射信号の一部は、第1のミラー202Gの表面を通過し、加算的出力ポート166Gに供給され、垂直信号パス232G内の反射信号の一部は、第1のミラー202Gの表面から反射して、相殺的出力ポート168Gに供給される。
スペーサ258Gの空隙282G内のFSR位相調節要素446Gは、傾斜角448Gを用いて、信号遅延を微調節して、GTデコーダ150Gの生来的な伝達関数G(f)及びH(f)のFSR位相を調整する。要素446Gは、垂直信号パス232G内の要素446Gの直近の外側の信号の光屈折率より高い光屈折率を有する。垂直信号パス232Gの信号の方向に対して傾斜角448Gを調整すると、垂直信号パス232G内の信号が要素446G内を横断する物理的長さが変化することによって、信号232Gの遅延が微調整される。傾斜角448Gは、伝達(FSR)位相コントローラ437Gによって制御されるメカニズム474Gによって制御される。コントローラ437Gは、上述したコントローラ37、137、137A〜F、437と同様に動作してもよい。または、傾斜角448Gは、メカニズム474Gが、パワー対周波数の周期的伝達関数の所望の位相を得るためにベクトルネットワークアナライザ検査装置を用いて調整してもよい。変形例では、要素446Gは、温度に応じて変化する光屈折率を有し、メカニズム474Gは、温度を制御することによって要素246Gの有効光路長を制御する加熱器である。
エタロン位相調節要素256Gは、傾斜角268Gを用いて、GTエタロン250Gの反射関数対周波数の周期的位相応答を微調節して、位相応答が入力信号24の搬送波周波数に関して略々対称的になるようにする。要素256Gは、水平信号パス234G内の要素256Gの直近の外側の信号の光屈折率より高い光屈折率を有する。エタロン250G内の信号の方向に対して傾斜角268Gを調整すると、信号が要素256G内を横断する物理的長さが変化することによって、微細な信号遅延調整が提供される。傾斜角268Gは、エタロン周波数コントローラ274Gによって制御されるメカニズム272Gによって制御される。変形例では、要素256Gは、温度に応じて変化する光屈折率を有し、メカニズム272Gは、温度を制御することによって要素256Gの有効光路長を制御する加熱器である。
GTデコーダ150Gは、GTエタロン250Gのフィルタ位相応答と、GTデコーダ150Gの干渉計動作のための自由スペクトル領域のためのFSR位相との個別の整列(アラインメント)を有する。GTエタロン250Gを整列するために、空隙259Gにビームブロッカ283Gを挿入し、垂直信号パス232G内の信号を切断又は吸収する。ビームブロッカとして、1枚の紙を用いてもよい。GTエタロン250Gの反射フィルタ周期的位相応答は、垂直信号パス232Gをブロックしている間に、入力信号24の搬送波に整列される。GTエタロン250Gが整列された後、ビームブロッカ283Gを取り外し、GTデコーダ150G及び標準動作のためにFSR位相を整列させる。
図6Hは、遅延線干渉計(DLI)150の具体例として、ギヤス−トールニス(GT)デコーダ150Hを示している。GTデコーダ150Hは、遅延線干渉計として動作し、ギヤス−トールニスエタロン250Hとして実現されたフィルタは、信号パスの1つにおける反射器として機能する。エタロン250Hは、反射信号について周期的位相応答を有する周波数の周期的位相フィルタである。エタロン250Hからの反射信号における周波数フィルタリングによって、エタロン250Hが組み込まれている遅延線干渉計の生来的な自由スペクトル領域の加算的伝達関数及び相殺的伝達関数G(f)及びH(f)が変更及び再構築される。
エタロン250Gは、PRとして示す部分反射性の前面と、HRとして示す高反射性の後面HRとを有する。部分反射面PRの反射係数及びエタロン250Hの厚さ、光屈折率及び内部入射角度は、入力信号24を差動復調する差分通過時間Yに影響することなく、GTデコーダ150Hの加算的伝達関数及び相殺的伝達関数の帯域幅を変更して、光入力信号24における符号間干渉を補償し、出力データのビット誤り率を最小化するように選択される。
DLI150Hは、入力ポート165Hと、部分反射性の第1のミラー202Hを有するビームスプリッタキューブ252Hと、第2のミラー204Hと、空隙259Hを含む差分スペーサ148Hと、エタロン位相調節要素256Hを含むGTエタロン250Hと、加算的出力ポート166Gと、相殺的出力ポート168Gとを備える。FSR位相調節要素446Hは、スペーサ148Hの空隙259Hに取り付けられている。DLI150A〜Fの要素に類似するGTデコーダ150Hの要素には、同様の基本参照符号を用いており、例えば、第1のミラー202Hは、機能的に、第1のミラー202A〜Fに類似している。
説明を目的として、DLI150G内の2つの信号パスを垂直信号パス232H及び水平信号パス234Hと呼ぶ。差分スペーサ148Hは、入力信号24を差動復調するための差分通過時間Yを提供し、エタロン150Hにおける信号遅延を補償するための更なる遅延を有する。
垂直信号パス232Hにおけるキューブ252Hと差分スペーサ148Hとの間の光インタフェースは、無反射面ARである。差分スペーサ148Hの後面は、垂直信号パス232Hを反射するための第2のミラー204Hとして機能する高反射面HRである。水平信号パス234Hにおけるキューブ252Hとエタロン250Hとの間の光インタフェースは、部分反射面PRである。エタロン250Hの後面は、エタロン150H内で信号を反射する高反射面HRである。
入力光信号24は、入力ポート165Hにおいてスプリッタキューブ252Hに入り、部分反射性の第1のミラー202Hの表面を照射する。第1のミラー202Hは、光信号24に対して、信号24の一部が垂直信号パス232Hに反射され、信号24の一部がミラー202Hを介して水平信号パス234Hに通過するような角度に設定されている。水平信号パス234Hは、キューブ252Hからエタロン250Hに至る。エタロン250Hは、選択された反射係数、厚さ、屈折率及び内部の入射角に基づいて、水平信号パス234Hを反射し、キューブ252Hに戻し、この一部は、第1のミラー202Hの裏面から反射して、加算的出力ポート166Hに供給され、一部は、ミラー202Hの裏面を通過して相殺的出力ポート168Hに供給される。
垂直信号パス232Hは、キューブ252Hから差分スペーサ148Hを介して、第2のミラー204Hに至る。第2のミラー204Hは、垂直信号パス232Hを反射し、差分スペーサ148Hを介してキューブ252Hに戻し、この一部は、第1のミラー202Hの表面を通過して加算的出力ポート166Hに供給され、一部は、第1のミラー202Hの表面から反射して相殺的出力ポート168Hに供給される。
入力信号24を差動復調するための差分通過時間Yは、差分スペーサ148Hとエタロン250Hとの間の有効光路長の差分によって制御される水平信号パス232Gと水平信号パス234Hとの間の通過時間の差分である。
差分スペーサ148H内のFSR位相調節要素446Hは、傾斜角448Hを用いて、信号遅延を微調節して、GTデコーダ150Hの生来的な伝達関数G(f)及びH(f)のFSR位相を調整する。要素446Hは、垂直信号パス232H内の要素446Hの直近の外側の信号の光屈折率より高い光屈折率を有する。垂直信号パス232Hの信号の方向に対して傾斜角448Hを調整すると、垂直信号パス232Hが要素446G内を横断する物理的長さが変化することによって、信号232Hの遅延が微調整される。傾斜角448Hは、伝達(FSR)位相コントローラ437Hによって制御されるメカニズム474Hによって制御される。コントローラ437Hは、上述したコントローラ37、137、137A〜F、437と同様に動作してもよい。または、傾斜角448Hは、メカニズム474Hが、パワー対周波数の周期的伝達関数の所望の位相を得るためにベクトルネットワークアナライザ検査装置を用いて調整してもよい。変形例では、要素446Hは、温度に応じて変化する光屈折率を有し、メカニズム474Hは、温度を制御することによって要素446Hの有効光路長を制御する加熱器である。
エタロン位相調節要素256Hは、傾斜角268Hを用いてGTエタロン250Hの反射関数対周波数の位相を微調節して、反射関数の周期的位相応答が入力信号24の搬送波周波数に関して対称的になるようにする。要素256Hは、要素256Hの直近の外側のエタロン250H内の信号の光屈折率より高い光屈折率を有する。エタロン250H内の信号の方向に対して傾斜角268Hを調整すると、エタロン250H内の信号が要素446H内を横断する物理的長さが変化することによって、遅延が微調整される。傾斜角268Hは、エタロン周波数コントローラ274Hによって制御されるメカニズム272Hによって制御される。変形例では、要素256Hは、温度に応じて変化する光屈折率を有し、メカニズム272Hは、温度を制御することによって要素256Hの有効光路長を制御する加熱器である。
GTデコーダ150Hは、GTエタロン250Hのフィルタ位相応答と、GTデコーダ150Hの干渉計動作のための自由スペクトル領域のためのFSR位相との個別の整列を有する。GTエタロン250Hを整列するために、空隙259Hにビームブロッカ283Hを挿入し、垂直信号パス232H内の信号を切断又は吸収する。ビームブロッカとして、1枚の紙を用いてもよい。GTエタロン250Hの反射フィルタ周期的位相応答は、垂直信号パス232Hをブロックしている間に、入力信号24の搬送波に整列される。GTエタロン250Hが整列された後、ビームブロッカ283Hを取り外し、GTデコーダ150H及び標準動作のためにFSR位相を整列させる。
図14は、GTエタロン250G又は250Hからの信号反射の反射信号のフィールドを入射信号のフィールドで除算した値をrsumとして、以下に示すrsum式に基づく周期的位相応答対周波数のグラフを示している。このrsumの式において、rは、エタロン250G又は250Hの部分反射性のPR面のフィールド反射係数であり、nは、エタロン250G又は250Hの材料の光屈折率であり、k=2π/λ=2πv/cは、λを入力信号24の光波長とし、又はvを入力信号24の光周波数とした場合の角波数であり、Lは、エタロン250G又は250Hの厚さであり、θは、エタロン250G又は250Hの内部の入射角度である。
Figure 2010521896
反射位相の周期は、屈折率n、厚さL及び角度θの相互作用によって提供される。|rsum対周波数は、回析及び残留損失の影響を除けば一定である。GTデコーダ150G又は150Hの帯域幅は、GTエタロン250G又は250Hの位相応答反射に依存し、これは、部分反射性のPR面のコーティングの反射係数rに依存する。このグラフは、0.4、0.7及び0.99のフィールド反射係数rについて、位相応答反射rsumをしている。
係数rのための適切なコーティングは、特定のエンドユーザのための光チャネル又は変調帯域幅に基づいて、生来的なFSR帯域幅を変更し、GTデコーダ150G又は150Hの伝達関数の再構成された帯域幅を提供し、符号間干渉を補償し、又はビット誤り率を最小化するように選択される。同時に、GTデコーダ250G又は250Hの干渉計動作の自由スペクトル領域は、標準のITUチャネル規格に適合させるために、例えば、50GHz等、一定に保つことができる。
設計及び開発では、システム10の送信機12、チャネル16及び受信機20又は120のパラメータ及び特徴に基づいて、シミュレーションプログラムを使用して、アイダイヤグラムビット誤り率及び他の結果に関するコンピュータシミュレーションを得る。反射係数rのためのパラメータは、コンピュータシミュレーションによって最も広いアイ開口、符号間干渉からの最小の劣化効果又は最低のビット誤り率を得ることによってシステム10の性能を最適化するように調整される。このようなコンピュータシミュレーションプログラムは、米国、ニュージャージー州、ホルムデル(Holmdel)のVPIsystems社の一部門であるVPIphotonicsからのPhotonic Design Automation(PDA)プログラム又はカナダ、オンタリオ州、オタワのOptiwave Systems社のPhotonic Design Softwareプログラムとして入手可能である。
GTエタロン250G又は250Hの部分反射性のPR面の反射係数rは、米国、ワシントン州、ウォバーン(Woburn)のAegis Semiconductor社(Aegis Semiconductor, Inc.)のLawrence H. Domashが2004年の「Optical Society of America」に開示している手法によって調節してもよい。部分反射性のPR面は、熱光学的特徴を有する水素化アモルファスシリコン(a-Si-H)による薄膜PECVDプロセスによって、柔軟な均質のコーティングとして形成されている。熱光学的特徴によって、加熱器で温度を制御することによって反射係数rを制御することができる。
用語「エタロン」は、「測定ゲージ」又は「規格」を意味するフランス語の単語「etalon」に由来する。ファブリ−ペローエタロン(Fabry-Perot etalon)は、通常、2つの反射面を有する透明板から構成される。波長の関数としてのその透過スペクトルは、エタロンの共振に対応する周期的な伝達応答を示す。ファブリ−ペローエタロンにおいては、前面及び後面は、部分反射性である。ギヤス−トールニスエタロンは、前面の1つが高反射性を有するファブリ−ペローエタロンの特別な形式である。
図15は、GTデコーダ150G、150Hのための調節調整方法(tuning adjustment method)のフローチャートである。この方法のためのこれらのステップの1つ又は任意の組合せは、コンピュータが読取可能な形式で、コンピュータにステップを実行させる命令として、タンジブルメディア500に保存してもよい。
上述したように、遅延線干渉計内の反射鏡の1つをギヤス−トールニス(GT)エタロンに置き換えて、GTデコーダを構成してもよい。このようなGTデコーダは、2つの伝達関数位相、すなわち、差動変調された信号の復調のための差分遅延に対応する遅延線干渉計の自由スペクトル領域の伝達関数の位相と、GTエタロンの反射の伝達関数の位相とを有すると考えることができる。実際には、位相が調整できなければ、入力信号の搬送波周波数又は入力信号の幾つかのチャネルの搬送波周波数に対して適切な伝達関数位相を有するGTデコーダを構成することは、困難な場合がある。GTデコーダ150G、150Hにおいては、FSR位相は、要素446G、446Hにおける光信号遅延を調整することによって調整され、GTエタロン位相は、要素256G、256Hにおける光信号遅延を調整することによって調整される。
2つの位相を調整する方法では、光振幅(又はパワー)及び位相対周波数を測定する検査装置を用いる。このような検査装置は、バージニア州、ブラックスバーグ(Blacksburg)のLuna Technologies社から、光学ベクトルネットワークアナライザ(optical vector network analyzer)として市販されている。
ステップ502:光がアナライザから出射され、GTデコーダの入力ポートに入り、デコーダ出力ポートの1つ(何れか1つ)からアナライザにおいて受光されるように、GTデコーダをネットワークアナライザに接続する。
ステップ504:GTデコーダの非GTアームにビームブロッカを挿入し(GTデコーダ150G、150Hのための垂直信号パス232G、232Hをブロックする。)、GTデコーダのそのアームからデコーダ出力ポートへの反射を止める。
ステップ506:光信号位相対周波数を測定しながら、(要素256G又は256Hの有効光路長を調整することによって)エタロンの伝達関数周波数応答を調整して、位相応答の最も広い線形部分の中心を所望の光搬送波長に合わせる。この調整のための調節をロックする。
ステップ508:非GTアームからビームブロッカを取り除く。
ステップ510:アナライザを用いて、光パワー(又は振幅)対周波数を測定し、非GTアームのFSR位相調節を調整し、デコーダのパワー(又は振幅)の遅延線干渉計伝達関数の中心を所望の光搬送波長に合わせる。この調整のための調節をロックする。この時点で、GTエタロンの通常の動作の準備が完了する。
図16A及び図16Bは、標準の遅延線干渉計及びGTデコーダ150G又は150Hとして構成された干渉計の例示的な光学伝達関数を示すグラフである。縦軸は、パワー伝送を示しており、横軸は、194テラヘルツを中心周波数として、入力信号24の周波数を示している。
図16Aは、入力信号24の差動復調のための20ピコ秒の通過時間差分Yを有する遅延線干渉計の自由スペクトル領域の加算的伝達関数及び相殺的伝達関数G(f)及びH(f)を示している。伝達関数G(f)及びH(f)の(周波数領域における)周期的応答は、遅延線干渉計の自由スペクトル領域の生来的な特徴であり、差分スペーサ148G、148Hは、差分通過時間Yの半分の信号遅延を提供する(デコーダ150G、150H内の信号は、スペーサ148G又は148Hを2回通過する)。なお、スペーサ148Hは、エタロン250Hにおける信号遅延を補償するために、更なる信号遅延を提供する。通過時間差分Yは、遅延線干渉計の伝達関数G(f)及びH(f)の生来的な自由スペクトル領域(FSR)周期及び帯域幅を定義する。
図16Bは、同じ20ピコ秒の通過時間差分Yを有するGTデコーダ150G、150Hの加算的伝達関数及び相殺的伝達関数を示している。生来的な加算的伝達関数及び相殺的伝達関数G(f)及びH(f)は、伝達関数の帯域幅を再構成し、多くの場合、増加させるように、GTエタロン250G又は250Hの周期的な位相フィルタリング動作によって変更される。これは、各チャネルのためにFSR位相を再調整することなく、同じGTデコーダ150G又は150Hを、複数のチャネルを有するシステム10のFSR位相に適合させることができるため、有益である場合がある。例えば、50GHzチャネル間隔を有するシステムにおいては、20ピコ秒の差分通過時間Yを用いて、全てのチャネルのための一定のFSR位相整列を提供しながら、アルゴリズム又は動的フィードバックに基づいて、符号間干渉を補償し、ビット誤り率を最小化するために、GTデコーダ150G又は150Hにおける伝達関数帯域幅を個別に選択することができる。
図17は、参照符号620で示す光受信機の具体例の詳細なブロック図である。受信機620は、システム10について上述した受信機20の具体例である。受信機20の要素に類似し、又はその実施の形態である受信機620の要素は、受信機20の参照符号に600を加えることによって示している。
受信機620は、復調器630、データ推定器632及びビット誤り率(BER)検出器638を備える。復調器630は、ポート142において光入力信号24を受信し、光信号を差動復調して、電気ベースバンド信号に変換し、ベースバンド信号をデータ推定器632に発行する。
復調器630は、信号プロセッサ634、検出器装置635及び結合器636を備える。信号プロセッサ634は、遅延線干渉計(DLI)150I及び光帯域阻止フィルタ676を有する光信号プロセッサセクション634Aと、それぞれ667及び669の符号が付された加算的信号パス及び相殺的信号パス内の信号を処理するオプションの電気信号プロセッサセクション634Bと備える。光信号プロセッサ634Aは、ポート142において、変調された光入力信号24を受信し、信号24上の変調を差動復号し、加算的光学的出力ポート及び相殺的光学的出力ポート143A、144Aから、差動復号された変調を有する信号を発行する。
検出器装置635は、ポート143A、144Aからの信号に施されている変調をそれぞれ電気信号に変換する加算的信号パス検出器及び相殺的信号パス検出器682、684を含む。電気信号プロセッサ634Bは、フィルタリング又は利得不均衡を適用し、それぞれ検出器682、684から出力ポート143B、144Bに電気的な加算的信号及び相殺的信号を渡す。結合器636は、ポート143Bにおける加算的パス信号の瞬間的信号レベルと、ポート144Bにおける相殺的パス信号の瞬間的信号レベルとの間の差分を取り、復調された電気信号をベースバンド信号として提供する。
データ推定器632は、ベースバンド信号に対して動作し、フレーム及びデータクロック信号を復元し、エラーを検出及び修正し、送信機12における入力データの最適推定を生成し、最適推定を出力データとして発行する。受信機620の変形例では、データ推定器632は、ポート143B、144Bにおける信号に対して直接動作し、出力データを推定する。BER検出器638は、システム10がデータを伝送している間、システム10の通常動作を中断することなく、データ推定器632からの誤り検出及び訂正データ及び/又は出力データと既知の入力データとの比較を用いて、ビット誤り率を判定する。
復調器630は、ビット誤り率データを用いて、通常のシステム動作の間に、復調器630内で動的調整を行うためのフィードバックを行ってもよく、又は、設計、検査又は設営の間にビット誤り率データを測定して、通常のシステム動作のために固定される復調器630の構成を判定するために用いてもよい。
復調器630は、ポート142からDLI150Iの入力ポート165に入力信号24を渡す。光増幅器628は、受信機620のフロントエンドで信号24を増幅する。システム10が波長分離多重(wavelength division multiplexed:WDM)チャネルを有する場合、受信機620の前に光入力フィルタ629を配置し、単一の光チャネルのために信号24を選択する。入力光フィルタ629は、システム10の変調帯域幅(BWch)を決定するリンク16内のフィルタ26の1つであるとみなされる。
DLI150Iは、ポート165において光入力信号24を受信し、信号を2つの信号パスに分離し、2つのパスの間の信号通過時間差分Yを用いて信号を差動復号し、差動復号された光干渉信号を加算的出力ポート及び相殺的出力ポート166、168に供給する。なお、DLI150I内の差分信号パスは、加算的干渉信号パス及び相殺的干渉信号パス667、669と同じではない。
時間差分Yは、スペーサ素子148Iによって制御される。時間差分Yの逆数は、DLI150Iの自由スペクトル領域(FSRdli)を定義する。入力ポート165とその加算的出力ポート166との間のDLI150Iの透過伝達関数(transmission transfer function)は、上述した式1のG(f)である。入力ポート165とその相殺的出力ポート168との間のDLI150Iの透過伝達関数は、上述した式2のH(f)である。
DLI150Iは、光入力信号24の搬送波周波数に対して伝達関数G(f)及びH(f)の位相を移動させ、FSRdliを整列させて、入力信号24の搬送波周波数に又はその近傍にその中心を合わせる上述した伝達(FSR)位相要素446(又は図5の146)を備える。これに代えて、DLI150Iは、非常に厳密な機械的公差によって製造し、FSR位相要素446(又は146)を必要とすることなく、自由スペクトル領域FSRdliを整列させて、搬送波周波数に中心を合わせてもよい。送信機12による非対称の変調がある場合、又はリンク16内の連結されたフィルタ26が搬送波周波数に関して非対称的である場合、FSRdliの中心をそのスペクトルに合わせてもよい。
FSR位相要素446(又は146)は、通信システム10のチャネルの搬送波周波数に対して、伝達関数G(f)及びH(f)の周期的周波数応答のFSR位相を微調節するために使用される。DLI150内の信号の方向に対するFSR位相要素446の角度448(図13)は、機械的メカニズム474(図13)によって物理的に制御される。メカニズム474は、FSRdli位相コントローラ637からの電気信号に基づいて制御され、信号が横断する物理的長さを変更することによって、信号434(図13)の遅延に微調整を提供する。これに代えて、コントローラ637の制御の下で、加熱器174によって要素146(図5)の温度を調整することによってFSRdli位相を調整してもよい。
FSR位相の動的調整は、上述した手法によって、信号に関する加算的検出器及び相殺的検出器682、684からの測定値AC及びADに基づいて、正規化されたパワー差分を用いて提供できる。要素446又は146のための動的な調整制御は、システム10の動作を中断することなく、BER検出器638が測定したビット誤り率又は他の信号品質測定に基づく信号品質フィードバックによっても提供できる。受信機620の信号品質測定値は、BER、ISI、アイ開口率及び/又は信号対雑音比(SNR)に関して定義することができる。典型的には、受信機620内の同じ構成について、光学的及び電気的な加算的信号パス及び相殺的信号パスの最小のBER、ISIの最良の補償、最大のアイ開口及び最高の信号対雑音比(SNR)が最適化又は略々最適化される。
光フィルタ676は、2つの光路、すなわち加算的干渉信号パス667及び相殺的干渉信号パス669の少なくとも1つに実装される。ある光受信機では、光フィルタ679は、2つの信号パス667、669の両方に実装してもよい。ここに例示する具体例では、光フィルタ676は、加算的干渉信号パス667内の光学的不均衡化器652の一部である。フィルタ676は、入力信号24の搬送波周波数に中心が合わせられた阻止帯域を有し、DLI加算的出力ポート166からの信号をフィルタリングし、フィルタリングされた信号を加算的出力ポート143Aに渡す。フィルタ676の阻止帯域は、全ての伝送を阻止することを意図せず、部分的に光学的透過性を有する。フィルタ676は、典型的には、入力信号24の変調帯域幅BWchに応じて、その透過最小(transmission minima)において、0.5デシベル(dB)から約10dBの範囲の減衰を有する。フィルタ676は、ファブリ−ペロー(FP)エタロンフィルタ等の様々な光フィルタ構成によって実装できる。
また、この具体例の光学的不均衡化器は、相殺的干渉信号パス669内に補償減衰器678を含む。この補償減衰器678は、制御信号によって、相殺的干渉信号パス669内の光信号の振幅を変更するように調整可能である。
帯域幅構成アルゴリズム631は、システム10内のISI劣化を補償し、出力データの品質を向上させるために、システム10のリンク16、データレートR及びチャネル間隔CHについて、システム10のチャネル帯域幅BWchに基づいて、フィルタ676の阻止帯域幅を構成するために使用される。フィルタ676は、誘電体スタックの層又は色吸収線(color absorption line)によって構成され、特定の搬送波周波数において伝送阻止帯域を提供する。幾つかの実装例では、フィルタ676は、ファブリ−ペロー(FP)エタロンとして好適に構成することができる。エタロン676は、厚さに関連する自由スペクトル領域(FSRetalon)を有する。エタロンフィルタ676の阻止帯域は、周期的であり、自由スペクトル領域FSRetalonの周期を有する。FSRetalon位相構成アルゴリズム674は、エタロンフィルタ676の周波数スペクトル領域の位相を入力信号24の搬送波周波数に整列させるために使用される。エタロンフィルタ676の阻止帯域幅は、エタロンフィルタ676の両面の反射率を適切に選択することによって目標値に固定することができる。2つの面の反射率は、図21〜図24の説明で概説するように、図21及び図22に示す関係に基づいて見出すことができる。特定の具体例として、エタロンフィルタ676は、チャネル間隔が50GHzのシステムにおいて、43Gbit/sで変調されたDPSK信号を搬送する光帯域幅35GHzのチャネルのISIを最適化するように構成することができる。図21は、最適受信機帯域幅がBWopt=(43GHz)1.4/2=30.1GHzとなるように、1.4となる2BWopt/Rを示している。図22では、BWopt/CH=30.1GHz/50GHz=0.602の比は、エタロンフィルタ676の各面の0.16のパワー反射率に対応している。
フィルタ補償減衰器678は、DLI相殺的出力ポート168からの光信号を減衰させ、減衰された信号を相殺的出力ポート144Aに渡す。減衰は、フィルタ676の阻止帯域の減衰を補償するように算出される。更に、減衰器678において、より大きい又はより小さい減衰を用いて、不均衡構成アルゴリズム664に基づいて算出された利得不均衡を提供して、システム10内のISI劣化を最小化してもよい。
減衰器686、688は、可変利得要素186、188(図5)に類似し、電気信号プロセッサセクション634B内の電気的不均衡化器656にオプションとして設けられ、検出器682、684から渡された電気信号に利得不均衡を適用して、加算的出力ポート及び相殺的出力ポート143B、144Bに供給する。減衰器686、688を用いて、加算的信号パス及び相殺的信号パス667、669において、不均衡構成アルゴリズム664によって決定された電気的な利得不均衡を提供し、システム10におけるISI劣化を最小化することができる。
入力ポート142から加算的出力ポート143Bへの加算的干渉信号パス667についての信号プロセッサ634の総合的な伝達関数は、DLI150Iの加算的伝達関数G(f)と、光フィルタ676、検出器682及び電気減衰器686の透過伝達関数とを含む。同様に、入力ポート142から相殺的出力ポート144Bへの相殺的干渉信号パス669についての信号プロセッサ634の総合的な伝達関数は、DLI150Iの相殺的伝達関数H(f)と、光減衰器678、検出器684及び電気減衰器688の透過伝達関数とを含む。
帯域幅構成アルゴリズム631及び不均衡構成アルゴリズム664は、それぞれ上述した帯域幅(FSR)制御アルゴリズム133(図5)及び不均衡制御アルゴリズム164の動作と同様に動作し、既知の又は測定された変調帯域幅BWch、入力信号24に施されている変調のデータレートR、及びシステム10のチャネル間隔に基づいて、加算的干渉信号パス667の帯域幅及び加算的パス667と相殺的パス669との間の利得不均衡を決定又は選択し、システム10の性能を向上させ、特に、フィルタ26によって引き起こされる符号間干渉(ISI)に起因する信号品質の低下を抑制する。FSRetalon位相構成アルゴリズム674は、エタロン676を構成して、その自由スペクトル領域FSRetalonのための位相を入力信号24の搬送波周波数に整列させるために使用される。
受信機620は、メモリに保存された命令に基づいて受信機620を動作させるマイクロプロセッサシステムを備える。アルゴリズム631、674及び664は、マイクロプロセッサシステムで実行してもよく、外部のコンピュータで実行してもよい。
図6Iは、参照符号150Iが付された遅延線干渉計150の具体例を示している。DLI150Iは、入力ポート165から加算的出力ポート及び相殺的出力ポート166、168への加算的伝達関数及び相殺的伝達関数G(f)及びH(f)について、生来的な自由スペクトル領域FSRdliを有する。
DLI150Iは、部分反射面である表面及び裏面を有する第1のミラー202Iを有するビームスプリッタキューブ252Iと、高反射面HRを有する第2のミラー204Iと、入力信号24上の差動変調を復号するための差分通過時間Yを提供し、FSRdliを定義する厚さを有する差分スペーサ要素148Iと、高反射面HRを有する第3のミラー208Iとを備える。通過時間Yは、スペーサ素子148Iを介する往復通過時間である。
スペーサ素子148Iの厚さは、システム10のチャネル間隔CHに等しい自由スペクトル領域FSRdliをDLI150Iに提供するように構成される。これは、システム10がWDMシステムである場合、関心がある特定のチャネルを受信するようにWDMシステムに入力フィルタ629を追加するだけで、如何なるチャネルに対しても同じ受信機620を製造し、保管し、設営できるため、有益である。
スペーサ素子148Iは、無反射コーティングARを有する前面ガラスと、空隙283Iと、高反射性のミラーコーティングHRを有する後面ガラスとを備える。スペーサ素子148Iの高反射性HR後面ガラスは、第3のミラー208Iを提供する。DLI150A〜Hの要素に類似し、及び/又は同様に動作するDLI150Iの要素には、同じ基本参照符号を用いており、例えば、第1のミラー202Iは、第1のミラー202A〜Hに機能的に類似し、これらと同様に動作する。
DLI150Iは、垂直信号パス232I及び水平信号パス234Iと呼ばれる2つの信号パスを有する。入力光信号24は、入力ポート165においてビームスプリッタキューブ252Iに入り、部分反射性の第1のミラー202Iの表面を照射する。第1のミラー202Iは、信号に対して、信号の一部が垂直信号パス232Iに反射し、信号の一部がミラー202I水平信号パス234Iに通過するような角度に設定されている。
垂直信号パス232I内の信号は、キューブ252Iを上昇し、第2のミラー204Iから反射して、キューブ252Iを下降して、第1のミラー202Iに戻る。垂直信号パス232Iにおける第2のミラー204Iからの反射信号の一部は、第1のミラー202Iの表面を通過し、加算的出力ポート166に供給され、一部は、第1のミラー202Iの表面から反射して相殺的出力ポート168に供給される。
水平信号パス234I内の信号は、キューブ252I及びスペーサ素子148Iを介して進み、第3のミラー208Iに至る。第3のミラー208Iは、信号を反射し、スペーサ素子148I及びキューブ252Iを介して第1のミラー202Iに戻す。水平信号パス234Iにおける第3のミラー208Iからの反射信号の一部は、第1のミラー202Iの裏側から反射されて加算的出力ポート166に供給され、一部は、ミラー202Iの裏面を透過して相殺的出力ポート168に供給される。
上述した伝達FSR位相要素446は、スペーサ素子148Iの空隙283I内に配置されている。要素446は、水平信号パス234I内の光信号遅延を微調節して、DLI150Iの加算的伝達関数及び相殺的伝達関数G(f)及びH(f)を入力信号24の搬送波に整列させるための可調整傾斜角448を有する。水平信号パス234I内の信号の方向に対して傾斜角448を調整すると、要素446内を信号が横断する物理的長さが変化することによって、信号の有効光遅延が変更される。傾斜角448は、機械的メカニズム474によって物理的に調整される。メカニズム474は、FSRdli位相コントローラ637の制御に基づいて動作する。
コントローラ637は、コントローラ37、137、137A〜F又は437について上述したように、システム10がオンラインの間にFSRdli位相を動的に制御するように動作してもよい。または、傾斜角448は、所望のFSRdli位相を得るためにベクトルネットワークアナライザ検査装置を使用して、メカニズム474によって、オフラインで調整してもよい。要素446及びメカニズム474は、要素146A〜F及び加熱器174A〜Fについて上述したように、温度に応じて変化する光屈折率を有する要素及び加熱器に置換してもよい。これに代えて、キューブ252I及びスペーサ素子148Iを、精密な公差によって製造し、動的調整を必要とすることなく、FSRdli位相を整列してもよい。
ポート166、168の何れが加算的干渉信号を提供し、何れが相殺的干渉信号を提供するかに関する指定は、特定の設計及び指定に基づいて決定でき、2つの信号パス232I、234Iの間の有効光路長差分を、搬送波周波数の1/2波長によって変更する(FSRdli位相を180°調整する)ことによって、逆にできる。加算的干渉信号は、入力信号24のスペクトルを通過させるために中心が合わせられた伝送通過帯域を有するポート166又は168からの信号である。
図18A、図18B及び図18Cは、エタロン帯域阻止フィルタ676の第1、第2及び第3の具体例676A、676B及び676Cを示している。エタロンフィルタ676A、676B及び676Cは、それぞれ厚さ677A及び、677B、677Cを有し、前面及び後面の部分反射性のガラス面PR及びPRを備えるファブリ−ペロー(FP)エタロンとして構成される。DLI加算的出力ポート166からの信号は、第1の前面PRを照射し、空隙677A、677B又は677Cを通過し、第2の面PRから出力ポート143Aに発行される。
厚さ677A、677B、677Cは、エタロン676A、676B及び676Cについて、システム10のチャネル間隔に等しい自由スペクトル領域FSRetalonを生成するように、構成アルゴリズム674によって決定及び構成されている。これは、システム10がWDMシステムである場合、関心がある特定のチャネルを受信するようにWDMシステムに入力フィルタ629を追加するだけで、如何なるチャネルに対しても同じ受信機620を製造し、保管し、設営できるため、有益である。
前面及び後面PR及びPRの反射率R及びRは、入力信号24の変調帯域幅BWchに基づいて、最適な帯域幅BWoptを提供して、システム10におけるISI劣化を補償するように、帯域幅構成アルゴリズム631によって決定及び構成されている。
図18Aに示すように、エタロン676Aの空隙677Aは、ガラス面PR及びPRの厚さを含む正確な厚さが、エタロン676AのFSRetalonの周期的な透過伝達関数の位相をシステム10のチャネルの搬送波周波数に整列させ、伝達関数の阻止帯域の中心を搬送波周波数に合わせるために正確な光路長を有するように精密に製造されている。
図18Bに示すように、エタロン676Bは、空隙677B内の空気より大きい光屈折率を有する伝達関数位相調整要素675を備える。エタロン676Bの有効電気長は、エタロン周波数コントローラ274Bによって、要素675を信号に対して、ある角度668Bに傾けることによって、エタロンの自由スペクトル領域FSRetalonの位相を整列させ、システムチャネルの搬送波周波数に対してエタロン阻止帯域を位置決めするように、精密に構成される。傾斜角668Bは、光ネットワークアナライザの測定に基づいて調整した後に、適切な角度に固定してもよく、動的に制御してもよい。動的制御は、上述のように、コントローラ274Bが制御する機械的傾斜メカニズム272Bによって、信号品質に基づいて行ってもよく、正規化された差分パワー測定値に基づいて行ってもよい。
図18Cに示すエタロン676Cの有効電気長は、エタロン周波数コントローラ274Cによって、エタロン676Cの全体を信号に対して、ある角度668Cに傾けることによって、エタロンの自由スペクトル領域FSRetalonの位相を整列させ、システムチャネルの搬送波周波数に対してエタロン阻止帯域を位置決めするように、精密に構成される。傾斜角668Cは、光ネットワークアナライザの測定に基づいて調整した後に、適切な角度に固定してもよく、動的に制御してもよい。動的制御は、上述のように、コントローラ274Cが制御する機械的傾斜メカニズム272Cによって、信号品質に基づいて行ってもよく、正規化された差分パワー測定値に基づいて行ってもよい。
図19Aは、システム10の符号間干渉ISIを最小化するように光受信機620を構成する方法の具体例のフローチャートである。この方法のステップは、コンピュータ機器にステップを実行させる命令として、コンピュータが読取可能な形式で、タンジブルメディア700に格納してもよい。
ステップ702において方法は、システム10のチャネル間隔CH、シンボルレートR、搬送波周波数CF及び変調帯域幅BWchを知ることから開始される。
ステップ704では、自由スペクトル領域FSRdliがチャネル間隔CHに殆ど等しくなる(好ましくは、1〜2%以内になる)ように遅延線干渉計(DLI)を構成する。ステップ708では、DLIから発行された加算的干渉信号をフィルタリングするようにファブリ−ペロー(FP)エタロンを配置する。
ステップ712では、自由スペクトル領域FSRetalonがチャネル間隔CHに殆ど等しくなるようにエタロンを構成する有効光路長を提供する厚さでエタロンを構成する。ステップ714では、自由スペクトル領域FSRetalonの周期的伝達関数の位相が搬送波周波数CFに整列され、伝達関数が搬送波周波数CFにおいて最小の伝送を有するように、厚さを精密に減少又は増加させる。
ステップ716では、変調帯域幅BWch及びシンボルレートRに基づいて、システム10内のISI劣化を最小化するための(DLI及びエタロンの両方を含む)最適な加算的干渉信号パス帯域幅BWoptを算出する。ステップ718では、ISIを最小化するために、最適な帯域幅BWopt及びチャネル間隔CHに基づいて、エタロンの前面及び後面のパワー反射係数R及びR(又は振幅反射係数r及びr)を構成する。
ステップ730では、DLIを構成又は調整し、FSRdli位相を整列させ、加算的干渉信号伝送通過帯域の中心を搬送波周波数CFに合わせる。
図19Bは、FSRdli位相を調整するステップ730のフローチャートである。ステップ732において、DLI内の2つの差分信号パス間の信号遅延の微調整を提供するために、FSRdli位相調整要素をDLI内に配置する。ステップ734では、通信システムを介してデータを送信する。そして、ステップ736において、加算的干渉信号及び相殺的干渉信号の正規化された信号パワー測定値又は信号品質測定をFSRdli位相要素にフィードバックし、FSRdli位相を整列させ、加算的干渉信号の伝送通過帯域の中心が搬送波周波数CFに合うようにする。
図19Cは、差動変調された光信号を受信し、通信システムにおける符号間干渉ISIの影響を緩和する方法の具体例のフローチャートである。この方法のステップは、コンピュータ機器にステップを実行させる命令として、コンピュータが読取可能な形式で、タンジブルメディア750に格納してもよい。
ステップ752では、変調された光信号を受信し、システム10のチャネル間隔CHに等しい自由スペクトル領域FSRdliを有する遅延線干渉計(DLI)において差動復号する。ステップ754では、FSRdli位相を調節し、DLIを介して加算的干渉伝達関数及び相殺的干渉伝達関数の位相を整列させ、加算的干渉信号が、システム10のチャネルの搬送波周波数CFに中心が合わせられた伝送通過帯域を有するようにする。ステップ756では、DLIが加算的干渉信号及び相殺的干渉信号を発行する。
ステップ762では、システム10のチャネル間隔CHに等しい自由スペクトル領域FSRetalonを有するFPエタロンによって加算的干渉信号をフィルタリングし、FSRetalon位相を整列させ、伝送阻止帯域の中心をシステムチャネルの搬送波周波数CFに合わせ、符号間干渉(ISI)を最小化するように最適化された帯域幅を有するように構成する。
ステップ766では、DLIからの相殺的干渉信号を減衰させ、最適化された帯域幅においてエタロン阻止帯域の損失を補償し、オプションとして、加算的干渉信号及び相殺的干渉信号の利得に不均衡を適用して、ISIを更に最小化する。ステップ772では、エタロンフィルタリングされた加算的干渉信号と、減衰された相殺的干渉信号から導出された信号間の差分に基づいて、入力信号が搬送するデータの最適推定を生成する。
図20は、50ギガヘルツ(GHz)の例示的なチャネル間隔CH、並びに193.95、194及び194.05テラヘルツ(THz)の例示的な搬送波周波数CFについて、受信機620における加算的信号パス及び相殺的干渉信号パスのパワー透過伝達関数対周波数のグラフを示している。加算的干渉信号の伝達関数のための最適な帯域幅BWoptは、半分のパワー伝送について示している。相殺的干渉信号パスの伝達関数は、上述したDLI150Iの式2の伝達関数H(f)であり、差分通過時間Yは、チャネル間隔CHの逆数である。この場合、加算的干渉信号のための最適な帯域幅BWoptは、相殺的干渉信号のための伝達関数の帯域幅より広いことがわかる。
図21は、受信機620の加算的干渉信号の最適な帯域幅BWoptを決定するための帯域幅構成アルゴリズムの具体例を示すグラフである。構成アルゴリズムは、システム10のチャネルにおける変調帯域幅BWchに基づいて、システム10内のISI劣化を最小化するための最適な帯域幅BWoptを決定する。Rは、入力信号24のシンボルレートである。
図22は、受信機620のエタロンフィルタ676の前面PR及び後面PRの反射係数R及びRを判定する帯域幅構成アルゴリズム631のグラフを示している。構成アルゴリズム631は、加算的干渉信号及びシステム10のチャネル間隔CHについて、受信機620の最適な帯域幅BWoptに基づいて、システム10内のISI劣化を最小化するための反射係数R及びRを判定及び構成する。エタロン676の損失を最小化するために等しい係数R及びRを用いてもよい。
図23は、50ギガヘルツ(GHz)のチャネル間隔CH、並びに193.95、194及び194.05テラヘルツ(THz)の搬送波周波数CFを有するシステム10の具体例におけるエタロン676のパワー透過伝達関数対周波数のグラフを示している。ここでは、この具体例におけるエタロン676の前面PR及び後面PRのフィールド反射係数の大きさr(r=r及びr=r)を示している。0.1、0.25、0.4及び0.55の反射係数r及びrは、エタロン676の阻止帯域伝送帯域幅を、それぞれエタロン帯域幅BWetalon1、BWetalon2、BWetalon3及びBWetalon4に構成する。これから、反射係数を大きくすると、より大きいエタロン676の阻止帯域幅がより広く構成されることがわかる。
図24は、50ギガヘルツ(GHz)のチャネル間隔CH、並びに193.95、194及び194.05テラヘルツ(THz)の搬送波周波数CFを有するシステム10の具体例の受信機620内の加算的干渉信号パスのパワー透過伝達関数対周波数のグラフを示している。この具体例では、エタロン676の前面PR及び後面PRのフィールド反射係数の大きさr及びrを示している。エタロン676の前面PR及び後面PRのための0.1、0.25、0.4及び0.55の反射係数r(r=r及びr=r)は、加算的干渉信号の透過伝達関数が、それぞれ最適な帯域幅BWopt1、BWopt2、BWopt3及びBWopt4を有するように、エタロン676の帯域幅を構成する。これから、反射係数を大きくすると、受信機620の加算的干渉信号パスがより広い最適な帯域幅BWoptに構成されることがわかる。
本明細書は、多くの詳細事項を含んでいるが、これらの詳細事項は、任意の発明の範囲又は特許請求の範囲を限定するものとは解釈されず、特定の実施の形態の特定の特徴の記述として解釈される。本明細書において、別個の実施の形態の文脈で開示した幾つかの特徴を組み合わせて、単一の実施の形態として実現してもよい。逆に、単一の実施の形態の文脈で開示した様々な特徴は、複数の実施の形態に別個に具現化してもよく、適切な如何なる部分的組合せとして具現化してもよい。更に、以上では、幾つかの特徴を、ある組合せで機能するものと説明しているが、初期的には、そのように特許請求している場合であっても、特許請求された組合せからの1つ以上の特徴は、幾つかの場合、組合せから除外でき、特許請求された組合せは、部分的組合せ又は部分的な組合せの変形に変更してもよい。同様に、図面では、動作を特定の順序で示しているが、このような動作は、所望の結果を達成するために、図示した特定の順序又は順次的な順序で行う必要はなく、また、図示した全ての動作を行う必要もない。
このように、特定の実施の形態について説明した。他の実施の形態も、以下の特許請求の範囲に含まれる。

Claims (95)

  1. 変調された光入力信号を受信し、それぞれ加算的出力及び相殺的出力において信号を発行する、加算的伝達関数及び相殺的伝達関数を有する信号プロセッサと、
    前記信号プロセッサ内に配置され、前記伝達関数の少なくとも1つに、前記入力信号の周波数に対して制御可能な伝達関数位相を提供する少なくとも1つの伝達位相要素と、
    前記伝達位相要素に接続され、前記伝達関数位相を制御し、前記加算的出力及び相殺的出力の信号パワー間の差分を最大にする伝達位相コントローラと、
    を備える光受信機。
  2. 前記差分は、前記信号パワー間の差分を前記信号パワーの合計で除算した正規化された差分である請求項1記載の受信機。
  3. 前記加算的出力及び相殺的出力における信号は、光信号である請求項1記載の受信機。
  4. 前記加算的出力及び相殺的出力における信号は、電気信号である請求項1記載の受信機。
  5. 前記加算的出力及び相殺的出力からの信号から導出された信号品質データを前記伝達位相コントローラに提供する信号品質フィードバックパスを更に備え
    前記伝達位相コントローラは、前記信号品質データを用いて、前記伝達関数位相を更に制御し、信号品質を最適化するように構成されている、
    請求項1記載の受信機。
  6. 前記加算的出力の光信号を第1の電気信号に変換することによって生じる第1の光電流を有する第1の光検出器と、前記相殺的出力の光信号を第2の電気信号に変換することによって生じる第2の光電流を有する第2の光検出器とを有する検出器装置を更に備え、
    前記伝達位相コントローラは、前記第1及び第2の光電流を用いて、前記伝達関数位相を制御するように構成されている、
    請求項1記載の受信機。
  7. 前記伝達位相コントローラは、前記第1及び第2の光電流の間の正規化された差分からのフィードバックに基づいて、前記伝達関数位相を制御するように構成されている、
    請求項6記載の受信機。
  8. 前記正規化された差分は、前記第1及び第2の光電流の間の差分を前記第1及び第2の光電流の合計で除算した結果である、
    請求項7記載の受信機。
  9. 前記信号プロセッサは、前記変調された光入力信号を差動復調するための通過時間差分を有する2つの信号パスを有する遅延線干渉計(DLI)を含み、前記伝達関数は、前記通過時間差分によって定義される自由スペクトル領域(FSR)によって少なくとも部分的に決定され、
    前記伝達位相要素は、前記信号パスの1つに配置され、前記信号パスを横断する信号の信号位相を調整して、前記伝達関数位相を調整する、
    請求項1記載の受信機。
  10. 前記DLIは、部分反射性の第1のミラーと、第2のミラーと、第3のミラーとを備え、
    前記第1のミラーは、前記入力信号を第1及び第2の信号に分離するように配置され、
    前記第2のミラーは、前記第1の信号を反射して前記第1のミラーに戻すように配置され、
    前記第3のミラーは、前記第2の信号を反射して前記第1のミラーに戻すように配置され、
    少なくとも1つの前記伝達位相要素は、それぞれ、前記第1及び第2の信号の少なくとも1つを遅延させ、前記伝達関数位相を調整するように配置され、
    前記第1のミラーは、前記加算的出力に、前記第1の信号の一部を渡し、前記第2の信号の一部を反射し、前記相殺的出力に、前記第1の信号の一部を反射し、前記第2の信号の一部を渡す、
    請求項9記載の受信機。
  11. 前記DLI内に配置され、選択されたFSR遅延を有し、前記変調された光入力信号のシンボル時間に等しくない前記通過時間差分を提供するFSR要素を更に備える、
    請求項9記載の受信機。
  12. 前記FSR遅延は、前記変調された光入力信号のシンボル時間の約90%未満の前記通過時間差分を提供するように選択される、
    請求項11記載の受信機。
  13. 前記変調された光入力信号の有効光帯域幅が前記変調された光入力信号のシンボルレート未満である場合、前記FSR遅延は、前記変調された光入力信号のシンボル時間の約83.3%未満の前記通過時間差分を提供するように選択される、
    請求項12記載の受信機。
  14. 前記FSR遅延は、前記変調された光入力信号における符号間干渉(ISI)を最小化するように選択される、
    請求項11記載の受信機。
  15. 前記FSR遅延は、前記変調された光入力信号の光帯域幅に応じて選択される、
    請求項11記載の受信機。
  16. 前記FSR遅延は、前記変調された光入力信号の復調された表現の信号品質測定に基づいて選択される、
    請求項11記載の受信機。
  17. 前記FSR遅延は、前記差分通過時間によって差動復調される出力データについて、最小のビット誤り率(BER)を提供するように選択される、
    請求項11記載の受信機。
  18. 前記信号プロセッサは、加算的信号パス及び相殺的信号パスを通過して前記加算的出力及び相殺的出力に至る光信号に利得不均衡を提供する光学的不均衡化器を含み、前記伝達関数は、前記利得不均衡によって少なくとも部分的に決定される、
    請求項1記載の受信機。
  19. 前記信号プロセッサは、自由スペクトル領域(FSR)を有する遅延線干渉計(DLI)を更に含み、前記伝達関数は、前記FSRによって少なくとも部分的に決定され、
    前記利得不均衡は、前記変調された光入力信号の有効光帯域幅、前記変調された光入力信号のシンボルレート、及び前記伝達関数によって前記変調された光入力信号から導出される出力データのビット誤り率を最小化する前記FSRに基づいて選択される、
    請求項18記載の受信機。
  20. 光学的な前記加算的出力及び相殺的出力の光信号を電気信号に変換し、前記電気信号が電気的な加算的信号パス及び相殺的信号パスを通過して電気的な前記加算的出力及び相殺的出力に至るようにする検出器装置と、
    前記電気的な加算的出力及び相殺的出力からの前記信号間の差分に対して動作し、出力データを提供するデータ推定器と、
    を備える請求項1記載の受信機。
  21. 光信号を受信する方法であって、
    変調された光入力信号に、少なくとも一方が制御可能な伝達関数位相を有する加算的伝達関数及び相殺的伝達関数を適用して、それぞれ加算的出力及び相殺的出力において信号を提供するステップと、
    前記光信号の周波数に対して前記伝達関数位相を制御し、前記加算的出力及び相殺的出力の信号パワーの間の差分を最大にするステップと、
    を有する方法。
  22. 前記差分は、前記信号パワーの差分を前記信号パワーの合計で除算した正規化された差分である、
    請求項21記載の方法。
  23. 前記加算的出力及び相殺的出力における信号は、光信号である、
    請求項21記載の方法。
  24. 前記加算的出力及び相殺的出力における信号は、電気信号である、
    請求項21記載の方法。
  25. 前記加算的出力及び相殺的出力からの信号から信号品質データを導出するステップと、
    前記信号品質データを用いて、前記伝達関数位相を更に制御し、信号品質を最適化するステップと、
    を更に有する請求項21記載の方法。
  26. 前記加算的出力の光信号を第1の電気信号に変換することによって生じる第1の光電流と、前記相殺的出力の光信号を第2の電気信号に変換することによって生じる第2の光電流とを用いるステップを更に有し、
    前記伝達関数位相を制御するステップは、前記第1及び第2の光電流に基づいて前記伝達関数位相を調整するステップを含む、
    請求項21記載の方法。
  27. 前記伝達関数位相を制御するステップは、前記第1及び第2の光電流の間の正規化された差分に基づいて前記伝達関数位相を調整するステップを含む、
    請求項26記載の方法。
  28. 前記正規化された差分は、前記第1及び第2の光電流の間の差分を前記第1及び第2の光電流の合計で除算した結果である、
    請求項27記載の方法。
  29. 前記加算的伝達関数及び相殺的伝達関数を適用するステップは、
    遅延線干渉計(DLI)内の2つの信号パスの間の通過時間差分を用いて前記入力信号を差動復調するステップを有し、前記伝達関数は、前記通過時間差分によって定義される自由スペクトル領域(FSR)によって少なくとも部分的に決定され、
    前記信号パスの1つを横断する信号の信号位相を調整して、前記伝達関数位相を調整するステップを更に有する、
    請求項21記載の方法。
  30. 前記入力信号を差動復調するステップは、
    前記入力信号を第1及び第2の信号パスの信号に分離するステップと、
    前記第1の信号パスに第1の信号を反射するステップと、
    前記第2の信号パスに第2の信号を反射するステップと、
    前記第1及び第2の信号の少なくとも1つを遅延させることによって、前記伝達関数位相を調整するステップと、
    前記加算的出力に、前記反射した第1の信号の一部を渡し、前記反射した第2の信号の一部を反射するステップと、
    前記相殺的出力に、前記反射した第1の信号の一部を反射し、前記反射した第2の信号の一部を渡すステップと、
    を有する請求項29記載の方法。
  31. 前記入力信号を差動復調するステップは、
    前記変調された光入力信号のシンボル時間に等しくない前記通過時間差分を提供するFSR遅延を選択するステップを含む、
    請求項29記載の方法。
  32. 前記FSR遅延は、前記変調された光入力信号のシンボル時間の約90%未満の前記通過時間差分を提供するように選択される、
    請求項31記載の方法。
  33. 前記変調された光入力信号の有効光帯域幅が前記変調された光入力信号のシンボルレート未満である場合、前記FSR遅延は、前記変調された光入力信号のシンボル時間の約83.3%未満の前記通過時間差分を提供するように選択される、
    請求項32記載の方法。
  34. 前記FSR遅延は、前記変調された光入力信号における符号間干渉(ISI)を最小化するように選択される、
    請求項31記載の方法。
  35. 前記FSR遅延は、前記変調された光入力信号の光帯域幅に応じて算出される、
    請求項31記載の方法。
  36. 前記FSR遅延は、前記変調された光入力信号の復調された表現の信号品質測定に基づいて選択される、
    請求項31記載の方法。
  37. 前記FSR遅延は、前記差分通過時間によって差動復調される出力データについて、最小のビット誤り率(BER)を提供するように選択される、
    請求項31記載の方法。
  38. 前記伝達関数は、前記加算的出力及び相殺的出力における前記信号に適用される光学的利得不均衡を含む、
    請求項21記載の方法。
  39. 前記伝達関数は、遅延線干渉計(DLI)の自由スペクトル領域(FSR)を更に含み、前記DLIは、前記変調された光入力信号を、前記加算的出力及び相殺的出力のための信号パスに分離し、
    前記変調された光入力信号の有効光帯域幅、前記変調された光入力信号のシンボルレート、及び前記伝達関数によって前記変調された光入力信号から推定される出力データのためにビット誤り率を最小化する前記FSRに基づいて、前記利得不均衡を選択するステップを更に有する、
    請求項38記載の方法。
  40. 光学的な前記加算的出力及び相殺的出力の光信号を電気信号に変換し、前記電気信号が電気的な加算的信号パス及び相殺的信号パスを通過して電気的な前記加算的出力及び相殺的出力に至るようにするステップと、
    前記電気的な加算的出力及び相殺的出力の前記信号間の差分に基づいて、出力データを決定するステップと、
    を更に有する請求項21記載の方法。
  41. 変調された光入力信号を受信し、加算的出力及び相殺的出力のそれぞれにおいて、信号を発行する、加算的伝達関数及び相殺的伝達関数を有する信号プロセッサと、
    前記信号プロセッサ内に配置され、前記加算的伝達関数及び相殺的伝達関数の少なくとも1つの伝達関数帯域幅を制御し、前記入力信号において符号間干渉を補償するように前記伝達関数帯域幅を選択する伝達帯域幅要素と、
    を備える光受信機。
  42. 前記信号プロセッサは、前記加算的伝達関数及び相殺的伝達関数のために、前記入力信号を差動復調及び分離する、2つの信号パスの間の通過時間差分を有する遅延線干渉計(DLI)を含み、前記伝達関数帯域幅は、前記通過時間差分によって少なくとも部分的に決定され、
    前記伝達帯域幅要素は、前記信号パスの一方の信号について、前記信号パスの他方の信号に対して、選択された自由スペクトル領域(FSR)遅延を提供する1つ以上のセグメントを含み、前記通過時間差分は、前記FSR遅延を選択することによって制御される、
    請求項41記載の受信機。
  43. 前記入力信号の有効光帯域幅に基づいて、前記FSR遅延を算出する帯域幅制御アルゴリズムを更に備える、
    請求項42記載の受信機。
  44. 前記帯域幅制御アルゴリズムは、前記有効光帯域幅の情報を用いて、前記有効光帯域幅を有する変調された光入力信号のビット誤り率を最小化するための前記FSR遅延を算出するように構成されている、
    請求項43記載の受信機。
  45. 前記DLIは、部分反射性の第1のミラーと、第2のミラーと、第3のミラーとを備え、
    前記第1のミラーは、前記入力信号を第1及び第2の信号に分離するように配置され、
    前記第2のミラーは、前記第1の信号を反射して前記第1のミラーに戻すように配置され、
    前記第3のミラーは、前記第2の信号を反射して前記第1のミラーに戻すように配置され、
    前記伝達帯域幅要素は、前記第1及び第2の信号の間の差分信号遅延として、前記選択されたFSR遅延を適用するように配置され、
    前記第1のミラーは、前記加算的出力に、前記第1の信号の一部を渡し、前記第2の信号の一部を反射し、前記相殺的出力に、前記第1の信号の一部を反射し、前記第2の信号の一部を渡す、
    請求項42記載の受信機。
  46. 前記FSR遅延は、前記入力信号を差動復調するための前記通過時間差分が、前記入力信号の変調シンボル時間に等しくならないように選択される、
    請求項42記載の受信機。
  47. 前記FSR遅延は、前記入力信号を差動復調するための前記通過時間差分が、前記入力信号の変調シンボル時間の90%未満になるように選択される、
    請求項46記載の受信機。
  48. 前記入力信号の有効光帯域幅が前記入力信号の変調シンボルレート未満である場合、前記FSR遅延は、前記入力信号を差動復調する前記通過時間差分が、前記入力信号の変調シンボル時間の約83.3%未満になるように選択される、
    請求項47記載の受信機。
  49. 前記FSR遅延は、前記変調された光入力信号の復調された表現の信号品質に基づいて、前記信号品質を最高にするように選択される、
    請求項42記載の受信機。
  50. 前記FSR遅延は、前記差分通過時間によって差動復調される出力データのビット誤り率を最小にするように選択される、
    請求項42記載の受信機。
  51. 前記DLI内に配置され、前記加算的伝達関数及び相殺的伝達関数の少なくとも1つに、前記入力信号の周波数に対して制御可能な伝達関数位相を提供する1つ以上のセグメントを有する伝達位相要素と、
    前記伝達位相要素に接続され、前記伝達関数位相を制御し、前記加算的出力及び相殺的出力の信号パワーの間の差分を最大にする伝達位相コントローラと、
    を更に備える請求項42記載の受信機。
  52. 前記伝達位相要素は、前記信号パスの一方の信号について、前記信号パスの他方の信号に対して、位相遅延を適用するように配置されている、
    請求項51記載の受信機。
  53. 前記差分は、正規化された差分であり、前記正規化された差分は、前記信号パワーの間の差分を前記信号パワーの合計で除算した結果を含む、
    請求項51記載の受信機。
  54. 前記加算的出力の光信号を第1の電気信号に変換することによって生じる第1の光電流を有する第1の光検出器と、前記相殺的出力の光信号を第2の電気信号に変換することによって生じる第2の光電流を有する第2の光検出器とを有する検出器装置を更に備え、
    前記伝達位相コントローラは、前記第1及び第2の光電流を用いて、前記伝達関数位相を制御するように構成されている、
    請求項51記載の受信機。
  55. 前記伝達位相コントローラは、前記第1及び第2の光電流の間の正規化された差分からのフィードバックに基づいて、前記伝達関数位相を制御するように構成されている、
    請求項54記載の受信機。
  56. 前記正規化された差分は、前記第1及び第2の光電流の間の差分を前記第1及び第2の光電流の合計で除算した結果を含む、
    請求項55記載の受信機。
  57. 前記加算的出力及び相殺的出力からの信号から導出された信号品質のためのデータを用いて、前記伝達関数位相を制御し、前記信号品質を最適化する信号品質フィードバックパスを更に備える、
    請求項51記載の受信機。
  58. 前記信号プロセッサ内に配置され、加算的信号パス及び相殺的信号パスを通過して前記加算的出力及び相殺的出力に至る光信号に利得不均衡を適用し、前記加算的伝達関数及び相殺的伝達関数の少なくとも1つを変更する光学的不均衡化器を更に備える、
    請求項51記載の受信機。
  59. 前記利得不均衡は、前記入力信号の有効光帯域幅及び前記入力信号の変調シンボルレートに基づいて、前記符号間干渉を補償するように、前記加算的伝達関数及び相殺的伝達関数の少なくとも1つを変更するために選択される、
    請求項58記載の受信機。
  60. 前記加算的出力及び相殺的出力の光信号を電気信号に変換する検出器装置と、
    前記加算的出力及び相殺的出力からの前記信号間の差分に対して動作し、出力データを提供するデータ推定器と、
    を備える請求項41記載の受信機。
  61. 変調された光入力信号を受信する方法であって、
    少なくとも一方が変調された光入力信号を受信するための選択された伝達関数帯域幅を有する加算的伝達関数及び相殺的伝達関数を適用して、それぞれ加算的出力及び相殺的出力において信号を発行するステップと、
    前記伝達関数帯域幅を選択して、前記入力信号における符号間干渉を補償するステップと、
    を有する方法。
  62. 前記加算的伝達関数及び相殺的伝達関数を適用するステップは、
    遅延線干渉計(DLI)の2つの信号パスの間の通過時間差分を用いて、前記加算的出力及び相殺的出力のために、前記入力信号を差動復調及び分離するステップを有し、前記伝達関数帯域幅は、前記通過時間差分によって少なくとも部分的に決定され、
    前記伝達関数帯域幅を選択するステップは、
    前記信号パスの一方の信号を、前記信号パスの他方の信号に対して遅延させる自由スペクトル領域(FSR)遅延を選択して、前記通過時間差分を制御するステップを含む、
    請求項61記載の方法。
  63. 前記入力信号の有効光帯域幅に基づいて、前記FSR遅延を算出するステップを更に有する、
    請求項62記載の方法。
  64. 前記FSR遅延を算出するステップは、前記有効光帯域幅の情報を用いて、前記有効光帯域幅を有する変調された光入力信号のビット誤り率を最小化するための前記FSR遅延を算出するステップを含む、
    請求項63記載の方法。
  65. 前記入力信号を差動復調及び分離するステップは、
    前記入力信号を第1及び第2の信号パスに分離するステップと、
    前記第1の信号パスに信号を反射するステップと、
    前記第2の信号パスに信号を反射するステップと、
    前記第1及び第2の信号パスの間に、差分信号遅延として前記選択されたFSR遅延を適用するステップと、
    前記加算的出力に、前記第1の信号パス内の前記反射した信号の一部を渡し、前記第2の信号パス内の前記反射した信号の一部を反射するステップと、
    前記相殺的出力に、前記第1の信号パス内の前記反射した信号の一部を反射し、前記第2の信号パス内の前記反射した信号の一部を渡すステップと、
    を有する請求項62記載の方法。
  66. 前記FSR遅延を選択するステップは、前記入力信号を差動復調するための前記通過時間差分が、前記入力信号の変調シンボル時間に等しくならないように制御するステップを含む、
    請求項62記載の方法。
  67. 前記FSR遅延を選択するステップは、前記入力信号を差動復調するための前記通過時間差分が、前記入力信号の変調シンボル時間の90%未満となるように制御するステップを含む、
    請求項66記載の方法。
  68. 前記入力信号の有効光帯域幅が前記入力信号の変調シンボルレート未満である場合、前記FSR遅延を選択するステップは、前記入力信号を差動復調する前記通過時間差分が、前記入力信号の変調シンボル時間の約83.3%未満になるように制御するステップを含む、
    請求項67記載の方法。
  69. 前記FSR遅延を選択するステップは、前記変調された光入力信号の復調された表現の信号品質に基づいて、前記信号品質を最高にするように、前記FSR遅延を選択するステップを含む、
    請求項62記載の方法。
  70. 前記FSR遅延を選択するステップは、前記差分通過時間によって差動復調される出力データのビット誤り率を最小にするように前記FSR遅延を選択するステップを含む、
    請求項62記載の方法。
  71. 前記加算的伝達関数及び相殺的伝達関数の少なくとも1つについて、前記加算的出力及び相殺的出力の信号パワーの間の差分を最大にするように、前記入力信号の周波数に対して、伝達関数位相を制御するステップを更に有する、
    請求項62記載の方法。
  72. 前記伝達関数位相を制御するステップは、前記信号パスの一方の信号について、前記信号パスの他方の信号に対して、位相遅延を適用するステップを含む、
    請求項71記載の方法。
  73. 前記差分は、正規化された差分であり、前記正規化された差分は、前記信号パワーの間の差分を前記信号パワーの合計で除算した結果を含む請求項71記載の方法。
  74. 前記加算的出力の光信号を第1の電気信号に変換し、第1の光電流を判定するステップと、
    前記相殺的出力の光信号を第2の電気信号に変換し、第2の光電流を判定するステップとを更に有し、 前記伝達関数位相を制御するステップは、前記第1及び第2の光電流を用いて前記伝達関数位相を制御するステップを含む、
    請求項71記載の方法。
  75. 前記伝達関数位相を制御するステップは、前記第1及び第2の光電流の間の正規化された差分からのフィードバックに基づいて前記伝達関数位相を制御するステップを含む、
    請求項74記載の方法。
  76. 前記正規化された差分は、前記第1及び第2の光電流の間の差分を前記第1及び第2の光電流の合計で除算した結果を含む、
    請求項75記載の方法。
  77. 前記加算的出力及び相殺的出力からの信号から導出された信号品質のためのデータを用いて、フィードバックを提供し、前記伝達関数位相を制御し、前記信号品質を最適化するステップを更に有する、
    請求項71記載の方法。
  78. 加算的信号パス及び相殺的信号パスを通過して前記加算的出力及び相殺的出力に至る光信号に利得不均衡を適用し、前記加算的伝達関数及び相殺的伝達関数の少なくとも1つを変更するステップを更に有する、
    請求項61記載の方法。
  79. 前記利得不均衡は、前記入力信号の有効光帯域幅及び前記入力信号の変調シンボルレートに基づいて、前記符号間干渉を補償するように、前記加算的伝達関数及び相殺的伝達関数の少なくとも1つを変更するために選択される、
    請求項68記載の方法。
  80. 前記加算的出力及び相殺的出力の光信号を電気信号に変換するステップと、
    前記加算的出力及び相殺的出力からの前記信号間の差分に対して動作し、出力データを提供するステップと、
    を更に有する請求項61記載の方法。
  81. 光入力信号を差動復調する遅延線干渉計において、
    前記入力信号を、加算的出力及び相殺的出力の少なくとも1つに差動復調された信号を提供する通過時間差分を有する2つの信号パスに分離する光学スプリッタと、
    前記信号パスの1つにおける第1の方向に沿って、第2の方向における遅延要素の位置に基づいて選択された光遅延によって、信号を遅延させる位置決め可能遅延要素と、
    前記第2の方向において、前記通過時間差分を制御するために前記遅延要素を位置決めする位置決めデバイスと、
    を備える遅延線干渉計。
  82. 遅延線干渉計内で光入力信号を差動復調する方法であって、 前記入力信号を、加算的出力及び相殺的出力の少なくとも1つに差動復調された信号を提供する通過時間差分を有する2つの信号パスに分離するステップと、
    前記信号パスの1つにおける第1の方向に沿って、位置決め可能遅延要素を横断する信号を、第2の方向における前記遅延要素の位置に依存する選択された光遅延によって遅延させるステップと、
    前記第2の方向において、前記通過時間差分を制御するために前記遅延要素を位置決めするステップと、
    を有する方法。
  83. 変調された光入力信号を受信する光受信機であって、
    前記入力信号を、加算的出力及び相殺的出力の少なくとも1つに差動復調された信号を提供し、FSR帯域幅を定義するための自由スペクトル領域(FSR)を定義する通過時間差分を有する2つの信号パスに分離するデコーダと、
    前記信号パスのうちの第1の信号パスにおける周期的位相応答対周波数を有し、前記FSR帯域幅を変更して、前記復調された信号のための再構成された帯域幅を提供する周期的位相フィルタと、
    を備える光受信機。
  84. 変調された光入力信号を受信する方法であって、
    前記入力信号を、通過時間差分を有する2つの信号パスに分離するステップと、
    FSR帯域幅を定義するための自由スペクトル領域(FSR)を定義する前記通過時間差分に基づいて、前記入力信号を差動復調するステップと、
    前記復調された信号を加算的出力及び相殺的出力の少なくとも1つに発行するステップと、
    前記信号パスのうちの第1の信号パスにおける信号をフィルタリングして、周期的位相応答対周波数を提供し、前記FSR帯域幅を変更して、前記復調された信号のための再構成された帯域幅を提供するステップと、
    を有する方法。
  85. 光入力信号を差動復調する遅延線干渉計であって、
    前記入力信号を、加算的出力及び相殺的出力の少なくとも1つに差動復調された信号を提供する通過時間差分を有する2つの信号パスに分離する光学スプリッタと、
    前記信号パスの1つの信号を反射する可動ミラーと、
    前記ミラーを選択可能な位置に位置決めして前記通過時間差分を制御する位置決めデバイスと、
    を備える遅延線干渉計。
  86. 遅延線干渉計内で光入力信号を差動復調する方法であって、
    前記入力信号を、加算的出力及び相殺的出力の少なくとも1つに差動復調された信号を提供する通過時間差分を有する2つの信号パスに分離するステップと、
    可動ミラーによって前記信号パスの1つの信号を反射するステップと、
    前記ミラーを選択可能な位置に位置決めして前記通過時間差分を制御するステップと、
    を有する方法。
  87. チャネル間隔によって分離された搬送波周波数を有する通信システムを介して、変調された光入力信号によって搬送されるデータを推定するように構成された光受信機であって、
    前記チャネル間隔に略々等しいDLI自由スペクトル範囲を有し、前記搬送波周波数において周期的伝送通過帯域を提供し、差動復号された加算的干渉信号を発行する遅延線干渉計(DLI)と、
    前記DLI内の光路に位置し、前記チャネル間隔に略々等しいエタロン自由スペクトル領域を有し、前記搬送波周波数において周期的伝送阻止帯域を提供し、前記加算的干渉信号をフィルタリングするエタロンと、
    前記フィルタリングされた加算的干渉信号を用いて前記データを推定するように構成されたデータ推定器と、
    を備える受信機。
  88. 前記エタロンは、前記入力信号の変調帯域に応じて選択された伝送阻止帯域幅を有するように構成されている、
    請求項87記載の受信機。
  89. 通信システムを介して、変調された光入力信号によって搬送されるデータを推定するように構成された光受信機であって、 前記入力信号を受信し、前記入力信号の搬送波周波数において伝送通過帯域を有する差動復号された加算的干渉信号を発行するように構成された遅延線干渉計(DLI)と、
    前記DLI内に位置し、前記搬送波周波数において伝送阻止帯域を有し、前記加算的干渉信号をフィルタリングする光フィルタと、
    前記フィルタリングされた加算的干渉信号を用いて前記データを推定するように構成されたデータ推定器と、
    を備える受信機。
  90. 前記フィルタは、前記入力信号の変調帯域幅に基づいて構成された伝送阻止帯域幅を有する、
    請求項89記載の受信機。
  91. 前記フィルタは、前記入力信号の符号間干渉を最小化するように構成された伝送阻止帯域幅を有する、
    請求項89記載の受信機。
  92. チャネル間隔によって分離された搬送波周波数を有する通信システムを介して、変調された光入力信号によって搬送されるデータを推定する方法において、
    前記チャネル間隔に略々等しい自由スペクトル領域によって前記入力信号を差動復号し、光干渉を用いて、前記搬送波周波数において周期的伝送通過帯域を提供して、差動復号された加算的干渉信号を発行するステップと、
    前記チャネル間隔に略々等しい自由スペクトル領域によって前記加算的干渉信号をフィルタリングして、前記搬送波周波数において周期的な阻止帯域を提供するステップと、 前記フィルタリングされた加算的干渉信号を用いて前記データを推定するステップと、
    を有する方法。
  93. 前記加算的干渉信号をフィルタリングするステップは、前記入力信号の変調帯域幅に応じて構成された阻止帯域伝送帯域幅によって、前記信号をフィルタリングするステップを含む、
    請求項90記載の方法。
  94. 通信システムを介して、変調された光入力信号によって搬送されるデータを推定する方法であって、
    前記入力信号を差動復号し、前記入力信号上の光干渉を用いて、前記入力信号の搬送波周波数において伝送通過帯域を有する差動復号された加算的干渉信号を発行するステップと、
    前記加算的干渉信号を、前記搬送波周波数において、伝送阻止帯域によって光学的にフィルタリングするステップと、
    前記フィルタリングされた加算的干渉信号を用いて前記データを推定するステップと、
    を有する方法。
  95. 光通信における光伝送信号を受信する光受信機であって、
    受信した光伝送信号を第1の光信号及び第2の光信号に分離する光学スプリッタと、
    前記第1の光信号を受け取る第1の光路と、
    前記第2の光信号を受け取る第2の光路と、
    前記第1及び第2の光路を結合し、前記第1及び第2の光路との間で光干渉を引き起こし、光学的な加算的干渉信号及び光学的な相殺的干渉信号を生成する光カプラと、
    前記光学的な加算的干渉信号を受け取る加算的出力ポートと、
    前記光学的な相殺的干渉信号を受け取る相殺的出力ポートと、
    前記第1及び第2の光路の間の相対位相遅延を制御し、前記光学的な加算的干渉信号が、前記光伝送信号の搬送波周波数において、伝送通過帯域を有するようにするメカニズムと、
    前記第1及び第2の光路の1つに位置し、光をフィルタリングし、前記搬送波周波数において伝送阻止帯域を有するように構成された光フィルタと、
    を備える光遅延干渉計と、 前記光学的な加算的信号を第1の電気検出器出力に変換する第1の光学検出器と、
    前記光学的な相殺的信号を第2の電気検出器出力に変換する第2の光学検出器と、
    前記第1及び第2の光学検出器と通信し、前記第1及び第2の電気検出器出力を受信し、前記第1及び第2の電気検出器出力の間の差分を、前記光伝送信号によって搬送されたデータを搬送する電気信号として生成する電気信号結合器と、
    を備える光受信機。
JP2009553833A 2007-03-14 2008-03-14 光通信のための光受信機 Pending JP2010521896A (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US11/724,017 US7983573B2 (en) 2007-03-14 2007-03-14 Optical receiver having FSR phase compensation
US11/726,557 US20080232821A1 (en) 2007-03-22 2007-03-22 Optical receiver having transfer function bandwidth selection
US11/799,435 US20080225381A1 (en) 2007-03-14 2007-05-01 Delay line interferometer having a stepped delay element
US11/799,218 US20080225380A1 (en) 2007-03-14 2007-05-01 Delay line interferometer having a movable mirror
US11/807,840 US7970289B2 (en) 2007-03-14 2007-05-30 GT decoder having bandwidth control for ISI compensation
US11/935,345 US7991300B2 (en) 2007-11-05 2007-11-05 Optical receiver having bandwidth control for intersymbol interference compensation
PCT/US2008/057157 WO2008113055A1 (en) 2007-03-14 2008-03-14 Optical receivers for optical communications

Publications (1)

Publication Number Publication Date
JP2010521896A true JP2010521896A (ja) 2010-06-24

Family

ID=39760113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009553833A Pending JP2010521896A (ja) 2007-03-14 2008-03-14 光通信のための光受信機

Country Status (4)

Country Link
EP (1) EP2145407A1 (ja)
JP (1) JP2010521896A (ja)
CA (1) CA2680835A1 (ja)
WO (1) WO2008113055A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012500563A (ja) * 2008-08-19 2012-01-05 アルカテル−ルーセント ユーエスエー インコーポレーテッド 高スペクトル効率の光dpsk信号を受信するシステムおよび方法
JP2021061507A (ja) * 2019-10-04 2021-04-15 Kddi株式会社 光送信装置及び光通信システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10333627B2 (en) * 2017-06-26 2019-06-25 Inphi Corporation Rx delay line inteferometer tracking in closed-loop module control for communication

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7606293B2 (en) * 2002-10-25 2009-10-20 Gct Semiconductor, Inc. Bidirectional turbo ISI canceller-based DSSS receiver for high-speed wireless LAN
US7450863B2 (en) * 2003-06-18 2008-11-11 Lucent Technologies Inc. Optical receiver for wavelength-division-multiplexed signals
ATE421202T1 (de) * 2003-12-19 2009-01-15 Ibm Verbesserungen für datenrückgewinnungsschaltungen mit überabtastung zur intersymbolinterferenzkompensation
US7564933B2 (en) * 2004-11-30 2009-07-21 The Regents Of The University Of California Method and system for near optimal iterative detection of the 2-dimensional ISI channel
US7414728B2 (en) * 2004-12-23 2008-08-19 Massachusetts Institute Of Technology Reconfigurable polarization independent interferometers and methods of stabilization

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012500563A (ja) * 2008-08-19 2012-01-05 アルカテル−ルーセント ユーエスエー インコーポレーテッド 高スペクトル効率の光dpsk信号を受信するシステムおよび方法
JP2021061507A (ja) * 2019-10-04 2021-04-15 Kddi株式会社 光送信装置及び光通信システム
JP7306652B2 (ja) 2019-10-04 2023-07-11 Kddi株式会社 光送信装置及び光通信システム

Also Published As

Publication number Publication date
WO2008113055A1 (en) 2008-09-18
WO2008113055A9 (en) 2008-12-11
CA2680835A1 (en) 2008-09-18
EP2145407A1 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
US7991300B2 (en) Optical receiver having bandwidth control for intersymbol interference compensation
US7970289B2 (en) GT decoder having bandwidth control for ISI compensation
US20080225381A1 (en) Delay line interferometer having a stepped delay element
US20080225380A1 (en) Delay line interferometer having a movable mirror
JP4860751B2 (ja) 部分dpsk(pdpsk)伝送システム
Cai et al. 51.5 Tb/s capacity over 17,107 km in C+ L bandwidth using single-mode fibers and nonlinearity compensation
EP2071747B1 (en) Optical electric field receiver and optical transmission system
US8306418B2 (en) Data pattern dependent distortion compensation in a coherent optical signal receiver
US10958338B2 (en) Short-term optical recovery systems and methods for coherent optical receivers
US20100014873A1 (en) Adaptive non-linearity compensation in coherent receiver
US8023833B2 (en) Optical receivers with controllable transfer function bandwidth and gain imbalance
Le et al. Beyond 400 Gb/s direct detection over 80 km for data center interconnect applications
JP2010521896A (ja) 光通信のための光受信機
EP3935762A1 (en) Asymmetric direct detection of optical signals
Gonzalez-Guerrero et al. Pilot-tone assisted 16-QAM photonic wireless bridge operating at 250 GHz
Kikuchi Coherent optical communication technology
WO2011130641A1 (en) Electrically-adaptive dspk and (d)mpsk receivers
Eriksson et al. Electronically subcarrier multiplexed PM-32QAM with optimized FEC overheads
Al-Qadi et al. QD-MLL-based single-sideband superchannel generation scheme with Kramers–Kronig direct detection receivers
Poggiolini et al. A simple and accurate model for non-linear propagation effects in uncompensated coherent transmission links
Lorences-Riesgo et al. Maximizing fiber capacity in flex-grid coherent systems through symbol rate optimization
Chen et al. Phase Retrieval Receivers Based on Alternative Projections for Coherent Optical Communications
Ghasemi Real-time digital signal processing for new wavelength-to-the-user optical access networks
Guo et al. Spectrum Resolved SNR Monitoring of In-Service Channel
Ng et al. Transmitter-RMS-Optimized Digital Pre-Emphasis for Bandwidth-limited Channels

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100527