JP2010517872A - Method for operating a vehicle drive train - Google Patents

Method for operating a vehicle drive train Download PDF

Info

Publication number
JP2010517872A
JP2010517872A JP2009549809A JP2009549809A JP2010517872A JP 2010517872 A JP2010517872 A JP 2010517872A JP 2009549809 A JP2009549809 A JP 2009549809A JP 2009549809 A JP2009549809 A JP 2009549809A JP 2010517872 A JP2010517872 A JP 2010517872A
Authority
JP
Japan
Prior art keywords
group
transmission
electric machine
engine clutch
synchronizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009549809A
Other languages
Japanese (ja)
Inventor
マリオ、シュタインボルン
ウルリッヒ、ライト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF Friedrichshafen AG
Original Assignee
ZF Friedrichshafen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZF Friedrichshafen AG filed Critical ZF Friedrichshafen AG
Publication of JP2010517872A publication Critical patent/JP2010517872A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0403Synchronisation before shifting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle
    • F16H2059/443Detecting travel direction, e.g. the forward or reverse movement of the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0403Synchronisation before shifting
    • F16H2061/0422Synchronisation before shifting by an electric machine, e.g. by accelerating or braking the input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/12Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with means for synchronisation not incorporated in the clutches
    • F16H3/126Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with means for synchronisation not incorporated in the clutches using an electric drive

Abstract

本発明は、1つの内燃エンジンと1つのエンジンクラッチと1つの電気機械と同期および/または非同期変速要素で段を変速するための単群または多群構造様式の1つの手動変速機と1つの終減速装置と変速過程を制御するための付設された1つの制御機構とを少なくとも含む配置を備えた車両ドライブトレインを作動させるための方法、ドライブトレイン、そしてこのようなドライブトレインを備えた車両に関する。この配置で機能の可能性を拡充するために、手動変速機内で変速過程のとき電気機械が同期手段として、同期補助体として、または少なくとも変速補助体として利用され、変速機軸の回転方向変化が考慮される。  The present invention is directed to one manual transmission and one end of a single group or multi-group structure for shifting gears with one internal combustion engine, one engine clutch, one electric machine and synchronous and / or asynchronous transmission elements. The present invention relates to a method for operating a vehicle drive train having an arrangement including at least a reduction gear and an attached control mechanism for controlling a shift process, a drive train, and a vehicle equipped with such a drive train. In order to expand the possibilities of function with this arrangement, the electric machine is used as a synchronization means, as a synchronization auxiliary body, or at least as a transmission auxiliary body during the shifting process in a manual transmission, taking into account changes in the rotational direction of the transmission shaft Is done.

Description

本発明は、請求項1の前文に記載された車両ドライブトレインを作動させるための方法、請求項10の前文に記載されたドライブトレイン、そしてこのようなドライブトレインを備えた車両に関する。   The present invention relates to a method for operating a vehicle drive train as described in the preamble of claim 1, a drive train as described in the preamble of claim 10, and a vehicle equipped with such a drive train.

車両ドライブトレイン内、特に自動車内で電気機械を使用することは既に知られている。電気機械は、例えばハイブリッドシステム内で駆動組立体、全輪駆動装置用補助駆動装置、後退段を実現するための段駆動装置、内燃エンジン用始動モータ、発進補助体、電磁式リターダ、潤滑油および冷却油を供給するためのポンプ駆動装置、または回生機構内の発電機等の多様な機能を果たすことができる。さらに、摩擦要素を備えた通常の同期装置を少なくとも部分的に省き、こうして製造費と取付空間を節約し、変速時間を短縮し、かつ変速快適性を改善するために、手動変速機内で同期化するのにも電気機械を利用することが知られている。   It is already known to use electrical machines in vehicle drivetrains, in particular in automobiles. The electric machine includes, for example, a drive assembly, an auxiliary drive device for an all-wheel drive device, a stage drive device for realizing a reverse stage, a starter motor for an internal combustion engine, a starting auxiliary body, an electromagnetic retarder, a lubricating oil, and the like in a hybrid system Various functions such as a pump driving device for supplying cooling oil or a generator in the regenerative mechanism can be performed. In addition, synchronize within the manual transmission to at least partially eliminate the usual synchronizer with friction elements, thus saving manufacturing costs and mounting space, shortening shift times and improving shift comfort It is known to use an electric machine to do this.

自動車のこのようなドライブトレインとそれを作動させるための方法が独国特許出願公開DE102005007966A1(特許文献1)により公知である。そこでは、動力流れ方向で内燃エンジン‐エンジンクラッチ‐電気モータ‐手動変速機入力軸/手動変速機‐終減速装置から成るドライブトレイン配置内に電気モータが設けられており、この電気モータはなかんずく手動変速機内で変速の同期化に利用可能であり、例えばエンジンクラッチを開放して変速機がニュートラル位置のとき電気モータは、選択された各目標段が変速される前に、変速機軸とその都度変速されるべき段歯車との間に同期回転数をもたらす。この刊行物ではさらに、非同期多群変速機の場合に電気モータで同期回転数を何度か繰り返し実現することによって同期化を実行できると述べられている。しかしこの点についてそれ以上の説明がこの刊行物には見られない。   Such a drive train of an automobile and a method for operating it are known from DE 10 2005007966 A1. There, an electric motor is provided in the drivetrain arrangement consisting of an internal combustion engine-engine clutch-electric motor-manual transmission input shaft / manual transmission-final decelerator in the direction of power flow. It can be used to synchronize the transmission within the transmission. For example, when the engine clutch is released and the transmission is in the neutral position, the electric motor can change the transmission shaft and the speed before each selected target stage is shifted. Synchronous rotation speed is provided between the gears to be driven. This publication further states that in the case of an asynchronous multi-group transmission, the synchronization can be performed by repeatedly realizing the synchronous rotational speed with an electric motor. But no further explanation on this point can be found in this publication.

さらに、ダブルクラッチ変速機内で電気機械を使用することが公知である。本出願人の先行公開されていない独国特許出願DE102006036758.8明細書に述べられたカウンタ軸構造様式の自動ダブルクラッチ変速機は、それぞれ1群の段歯車組と1つの発進要素とを付設された2つの変速機入力軸と、非同期段クラッチとして形成された変速要素とを備えている。ダブルクラッチユニットとして実施される両方の発進要素は爪構造様式の非同期エンジンクラッチとして形成されている。両方の発進要素は変速機側でそれぞれ付設された入力軸と結合されており、駆動側では交互に内燃エンジンのクランク軸と結合可能である。ピニオンを介して各段群の最高段の駆動歯車にそのロータがかみ合う1つの電気機械か、または交互に段歯車と作用結合可能な共通する1つの電気機械のいずれかが、両方の入力軸に付設されている。   Furthermore, it is known to use electric machines in double clutch transmissions. The counter shaft structure type automatic double clutch transmission described in the applicant's unpublished German patent application DE102006036758.8 is provided with a group of step gear sets and a starting element, respectively. Two transmission input shafts and a speed change element formed as an asynchronous clutch. Both starting elements, implemented as a double clutch unit, are formed as an asynchronous engine clutch in the form of a pawl. Both starting elements are connected to input shafts respectively provided on the transmission side, and can be alternately connected to the crankshaft of the internal combustion engine on the drive side. Either an electric machine whose rotor meshes with the highest stage drive gear of each stage group via a pinion or a common electric machine that can be operatively coupled to the stage gears alternately on both input shafts. It is attached.

電気機械は発進兼同期化手段として有効である。発進過程のとき発進段の段クラッチの係合後に車両は電気機械によってまず、駆動軸の同期回転数に到達時に当該エンジンクラッチを係合させることができるまで加速される。段切換時にまず目標段のエンジンクラッチを開放して目標段の入力軸は付設された電気機械によって、同期回転数に到達時に目標段の段クラッチを係合させることができるまで加速され、次に電気機械は増加する負荷を一時的に引き受け、旧段のエンジンクラッチが解除され、旧段が解放され、原動機が制御装置によって新たな同期回転数へと制御され、こうして次に目標段のエンジンクラッチは係合させることができる。さらに、前記少なくとも1つの電気機械を頼りに後退段は電気機械のロータ回転方向の反転によって前進発進段用歯車組と作用結合して実現することができる。   The electric machine is effective as a starting and synchronizing means. During the starting process, the vehicle is first accelerated by the electric machine after the start stage clutch is engaged until the engine clutch can be engaged when the synchronous rotational speed of the drive shaft is reached. At the stage switching, the target stage engine clutch is first released, and the target stage input shaft is accelerated by the attached electric machine until the target stage stage clutch can be engaged when the synchronous rotational speed is reached, then The electric machine temporarily takes on the increasing load, the old engine clutch is released, the old gear is released, and the prime mover is controlled by the controller to a new synchronous speed, and then the target engine clutch. Can be engaged. Further, depending on the at least one electric machine, the reverse gear can be realized by operatively coupling with the forward start gear set by reversing the rotor rotation direction of the electric machine.

独国特許出願公開DE10133695A1(特許文献2)により公知の他のダブルクラッチ変速機では少なくとも1つの変速機入力軸が電気機械と結合可能である。変速過程中、同期化のために変速機入力軸は電気機械によって加速することができ、または特にダウンシフト時に最低段へと減速することができる。その際、電気機械は既存の同期機構と協動することができる。   In other double-clutch transmissions known from DE 10133695 A1 DE 1,133,695 A1, at least one transmission input shaft can be coupled to an electric machine. During the shifting process, the transmission input shaft can be accelerated by an electric machine for synchronization, or can be decelerated to the lowest stage, especially during a downshift. In doing so, the electric machine can cooperate with the existing synchronization mechanism.

上記刊行物は、特に従来の手動変速機およびダブルクラッチ変速機内で同期化のために車両‐ドライブトレイン内で電気機械を使用する多様な可能性を開示しており、それらの根底にある課題を完全に果たすことができる。欠点として、当業者はそれらのなかに、問題のあるおよび/または比較的複雑な変速過程において電気機械を応用する仕方についての指示を見出さないかまたは少なくとも不十分にしか見出さない。   The above publications disclose the various possibilities of using electric machines in a vehicle-drivetrain for synchronization, particularly in conventional manual transmissions and double clutch transmissions, and address the problems underlying them. Can be fully fulfilled. As a disadvantage, those skilled in the art find, or at least inadequately, find in them instructions on how to apply an electric machine in problematic and / or relatively complex shifting processes.

独国特許出願公開DE102005007966A1German Patent Application Publication DE102005007966A1 独国特許出願公開DE10133695A1German Patent Application Publication DE10133695A1

以上のことを背景に本発明の課題は、車両内のドライブトレインを作動させるための方法を明示し、そのためのドライブトレインを改良し、特に変速過程中の同期化のために、ドライブトレインに付設された電気機械の機能可能性が改善されかつ拡充されるようにすることである。   In view of the above, it is an object of the present invention to specify a method for operating a drive train in a vehicle, to improve the drive train for that purpose, and to attach to the drive train, in particular for synchronization during the shifting process. It is to improve and expand the functional possibilities of the machined electrical machine.

この課題の解決は独立請求項の特徴から明らかとなり、本発明の有利な諸構成、諸態様は付属する従属請求項から読み取ることができる。   The solution to this problem will be apparent from the features of the independent claims, and advantageous configurations and aspects of the invention can be read from the appended dependent claims.

本発明の根底にあるのは、一方で手動変速機内で変速機軸の不規則な回転方向変化が生じて変速過程を不可能としまたは少なくとも困難としもしくは遅らせることがあり、他方でドライブトレイン内で電気機械を相応する駆動によって両方の回転方向に作動させることができ、この電気機械によってやはりこの変速機軸および/またはこの変速機軸と作用結合可能な別の変速機軸の回転方向を調節することができ、これにより所望する変速が特定動作状況においてはじめて可能となり、または少なくとも同期変速を改善することができるとの認識である。   The basis of the present invention is that, on the one hand, an irregular rotation direction of the transmission shaft in the manual transmission can occur, making the shifting process impossible or at least difficult or slowing down, while on the other hand the electrical in the drive train. The machine can be actuated in both directions of rotation by corresponding drives, the electrical machine can also adjust the direction of rotation of this transmission shaft and / or another transmission shaft that can be operatively coupled to this transmission shaft; It is recognized that this makes it possible to achieve the desired shift for the first time in a specific operating situation, or at least improve the synchronous shift.

従って本発明は、1つの内燃エンジンと1つのエンジンクラッチと1つの電気機械と同期および/または非同期変速要素で段を変速するための単群または多群構造様式の1つの手動変速機と1つの終減速装置と変速過程を制御するための付設された1つの制御機構とを少なくとも含む配置を備えた車両ドライブトレインを作動させるための方法から出発する。   Accordingly, the present invention provides one manual transmission and one single-group or multi-group structure for shifting gears with one internal combustion engine, one engine clutch, one electric machine and synchronous and / or asynchronous transmission elements. We start with a method for operating a vehicle drive train with an arrangement comprising at least a final reduction gear and an attached control mechanism for controlling the shifting process.

この課題を解決するために本発明では、手動変速機内で変速過程のとき電気機械が同期手段として、同期補助体として、または少なくとも変速補助体として利用され、変速機軸の回転方向変化が考慮される。   In order to solve this problem, according to the present invention, an electric machine is used as a synchronization means, a synchronization auxiliary body, or at least as a transmission auxiliary body during a shifting process in a manual transmission, and changes in the rotational direction of the transmission shaft are taken into account. .

本発明はさらに、1つの内燃エンジンと1つのエンジンクラッチと1つの電気機械と同期および/または非同期変速要素で段を変速するための単群または多群構造様式の1つの手動変速機と1つの終減速装置と変速過程を制御するための付設された1つの制御機構とを少なくとも含む車両ドライブトレインから出発する。このため本発明ではこのドライブトレインにおいて、単数または複数の変速機軸の回転方向変化時に電気機械が変速過程中同期手段として、同期補助体として、または少なくとも変速補助体として相応に駆動可能であり、かつ設けられた非確動式結合手段を介して、回転方向変化に基づいて付加されるべき各変速機軸と作用結合可能である。   The present invention further provides one manual transmission and one single-group or multi-group structure for shifting gears with one internal combustion engine, one engine clutch, one electric machine and synchronous and / or asynchronous transmission elements. The vehicle starts with a vehicle drive train that includes at least a final reduction gear and a control mechanism attached to control the shifting process. For this reason, according to the present invention, in this drive train, the electric machine can be correspondingly driven as a synchronizing means during the shifting process, as a synchronizing auxiliary body, or at least as a shifting auxiliary body when the rotation direction of the transmission shaft or shafts changes. It can be operatively connected to each transmission shaft to be added on the basis of a change in the rotational direction through the provided non-positive coupling means.

このドライブトレインはこれに関連した車両内で本発明に係る方法を実施するのに特別良好に適している。   This drive train is particularly well suited for carrying out the method according to the invention in the associated vehicle.

本方法によって有利なことに、車両ドライブトレイン中の手動変速機内での変速に関して電気機械で機能拡充が提供される。基本的に本方法は、シングルクラッチまたはダブルクラッチと、モータ機能および場合によっては発電機機能を有する、制御機構を介して好適に駆動可能な単数または複数の電気機械とを備えた単群または多群構造様式のあらゆる種類の手動変速機に適している。   The method advantageously provides an enhancement in the electrical machine for shifting in a manual transmission in a vehicle drive train. Basically, the method consists of a single group or multiple clutches comprising a single clutch or a double clutch and one or more electric machines which have a motor function and possibly a generator function and can be suitably driven via a control mechanism. Suitable for all kinds of manual transmission with group structure style.

本方法の特別有利な応用では、望ましくない車両惰行によって変速機出力軸の回転方向変化が選択した段方向もしくは走行方向とは逆に引き起こされると、まず、変速機出力軸と相関されるべき旧回転方向で作動する別の少なくとも1つの変速機軸の回転方向が電気機械によって変速機出力軸の回転方向に同化されるようにすることができる。   In a particularly advantageous application of the method, if an undesired vehicle coasting causes a change in the rotational direction of the transmission output shaft, contrary to the selected step or travel direction, first the old one to be correlated with the transmission output shaft. The direction of rotation of at least one further transmission shaft operating in the direction of rotation can be assimilated by the electric machine to the direction of rotation of the transmission output shaft.

このような状況はオフロードアプリケーション時、車両が急な坂道を走り、後退する一方、手動変速機が変速の途中でニュートラル位置にあり、駆動輪に結合された変速機出力軸がその回転方向を変えるとき比較的頻繁に起きる。特に大型商用車において発進過程について匹敵する状況が、本出願人の先行公開されていない独国特許出願DE102006030157.9号明細書にも述べられている。   In this situation, during off-road applications, the vehicle runs on a steep slope and moves backward, while the manual transmission is in the neutral position during the shift and the transmission output shaft coupled to the drive wheels changes its direction of rotation. It happens relatively frequently when changing. A situation comparable to the starting process, particularly in heavy commercial vehicles, is also described in the German patent application DE102006030157.9, which has not been previously published by the applicant.

同期機構を備えた手動変速機では変速機出力軸の回転方向変化が段の嵌合を困難とすることがあり、少なくとも当該同期部材の負荷を高めることになる。同期機構のない変速機ではむしろ、変速すべき段歯車をまったく同期化することができず、選択された目標段の嵌合が不可能となることが有り得る。その結果、車両はまず停止させ、引き続き発進過程もしくは再発進過程を開始させねばならないであろう。   In a manual transmission having a synchronization mechanism, a change in the rotational direction of the transmission output shaft may make it difficult to fit the steps, and at least increase the load on the synchronization member. Rather, in a transmission without a synchronization mechanism, the stage gear to be shifted cannot be synchronized at all, and it is possible that the selected target stage cannot be fitted. As a result, the vehicle will first have to stop and continue to start or restart.

それに対して、それ自体不規則なこのような動作状況が検知されると本発明に係る方法でもって電気機械は旧方向で作動する相関されるべき軸の回転方向をごく短時間やはり反転させることができ、これにより、同期部材を備えた変速機において部材を保護する同期化が可能となる。それに直接続いて車両は次にエンジンクラッチの締結によってコントロールすることができ、内燃エンジンの回転数を一時的に低下させて車両の走行方向は、少なくともその際に発生するクラッチ負荷が許容範囲内に留まる限り、選択された方向に反転させることができよう。同期部材なしの変速機ではこのような状況のとき電気機械は車両を制動して停止させる必要なしにこうして段の変速をそもそもはじめて可能とし得よう。   On the other hand, if such an operating situation that is irregular per se is detected, the method according to the invention allows the electric machine to also reverse the direction of rotation of the axes to be correlated operating in the old direction for a very short time. Thus, synchronization that protects the member in the transmission including the synchronizing member is possible. Directly following this, the vehicle can then be controlled by engaging the engine clutch, and the rotational speed of the internal combustion engine is temporarily reduced so that at least the clutch load generated at that time is within the allowable range. As long as you stay, you can flip in the selected direction. In a transmission without a synchronization member, in such a situation, the electric machine could first enable gear shifting in this way without having to brake and stop the vehicle.

さらに電気機械は、多群変速機内、例えば前置された1つのスプリッタ群と1つの中央主群と後置された1つのレンジ群とを備えた3群変速機内での同期化に特別有利に利用することができ、回転方向変化時に旧方向で作動する軸の回転方向反転のため駆動することができる。このような3つの変速機群の‐電気機械なしの‐基本構造は、例えば本出願人の先行公開されていない独国特許出願DE102006024370.6号明細書により公知である。   Furthermore, the electric machine is particularly advantageous for synchronization in a multi-group transmission, for example in a three-group transmission with a single splitter group, a central main group and a rear range group. It can be used and driven for reversing the rotational direction of the shaft that operates in the old direction when the rotational direction changes. The basic structure of such a group of three transmissions-without an electric machine-is known, for example, from the applicant's previously unpublished German patent application DE 102006024370.6.

群内で電気機械による変速機同期化は比較的迅速に起き、全体としてごく短い変速時間が達成され、すべての群で従来の同期機構を省くことさえでき、このことは特に費用および取付空間を節約するように作用する。1つまたは2つの群のみを同期要素なしに形成し、または完全同期変速機において電気機械を付加的同期補助体として接続し、例えば不規則な回転方向変化時に電気機械の相応する通電とロータ回転とでもって、変速機出力軸と相関されるべき軸の回転方向を反転させることも、基本的に可能である。   Transmission synchronization by electric machines within the group occurs relatively quickly, and overall very short shift times are achieved, and even all groups can even omit the conventional synchronization mechanism, which saves money and installation space in particular. Acts to save money. Only one or two groups can be formed without a synchronization element, or an electric machine can be connected as an additional synchronization auxiliary in a fully synchronous transmission, for example, corresponding energization of the electric machine and rotor rotation during irregular rotation directions Thus, it is basically possible to reverse the direction of rotation of the shaft to be correlated with the transmission output shaft.

最も単純な事例ではこのため連続的変速プロセスを設けておくことができ、そこではまずエンジンクラッチを開放しかつ旧段を解放して負荷減少が行われ、引き続き個々の群がそれぞれ遮断され、電気機械によって同期化され、再び接続され、最後に、エンジンクラッチを締結させかつ負荷増加させて目標段の嵌合が行われる。3群変速機では詳細には以下のステップ、
‐エンジンクラッチを開放しかつ旧段を解放して負荷が減少される、
‐スプリッタ群が遮断される、
‐スプリッタ群が同期化される、
‐スプリッタ群が接続される、
‐主群が遮断される、
‐主群が同期化される、
‐主群が接続される、
‐レンジ群が遮断される、
‐レンジ群が同期化される、
‐レンジ群が接続される、
‐エンジンクラッチを締結しかつ負荷を増加して目標段が嵌合される
が実行される。
In the simplest case, a continuous shifting process can therefore be provided, in which the engine clutch is first released and the old gear is released to reduce the load, and then each individual group is shut off, Synchronized by the machine, reconnected, and finally the target clutch is engaged by engaging the engine clutch and increasing the load. The details of the three-group transmission are as follows:
-The engine clutch is released and the old gear is released to reduce the load.
-Splitters are shut off,
-The splitters are synchronized,
-Splitters are connected,
-The main group is cut off,
-The main group is synchronized,
-Main groups are connected,
-Range group is cut off,
-Ranges are synchronized,
-Range groups are connected,
-The target stage is engaged by engaging the engine clutch and increasing the load.

各変速機部分の接続、遮断とは、各変速機部分が駆動技術的に共通のドライブトレインに連結されもしくはドライブトレインから解除されることを意味する。   Connection and disconnection of each transmission part means that each transmission part is connected to or released from a common drive train in terms of drive technology.

このような多群変速機で変速するとき段切換時に群内で変速方向は区分することができ、すなわち単数または複数の群内でダウンシフトを行うことができるのに対して、アップシフトは別の単数または複数の群内で行うことができるので、特別短い変速時間で効率的変速プロセスを達成するために、所定の判定基準を設け、エンジンクラッチと変速されるべき電気式/油圧式/空圧式変速要素と電気機械とを、変速機制御装置を介して相応に駆動すると特別有利である。   When shifting with such a multi-group transmission, the shift direction can be divided within the group at the time of stage switching, i.e. downshift can be performed within one or more groups, whereas upshifts are separate. In order to achieve an efficient shift process with a particularly short shift time, a predetermined criterion is provided, and the electric / hydraulic / empty engine to be shifted with the engine clutch. It is particularly advantageous if the pressure-type transmission element and the electric machine are driven correspondingly via a transmission control device.

これに関連した最適変速プロセスのための有意義な判定基準として設けておくことができるのは、
‐電気機械によって実施すべき変速機軸回転方向反転の回数、
‐電気機械によって同期化すべき各回転数範囲の値、
‐各回転数急変の値、
‐各回転数急変の方向、
‐回転数レベル自体、
である。
It can be provided as a meaningful criterion for the optimal gear shifting process related to this.
-The number of reversal of the transmission shaft rotation direction to be carried out by the electric machine,
The value of each speed range to be synchronized by the electric machine,
-The value of each rotation speed sudden change,
-The direction of each revolution
-The speed level itself,
It is.

従って有利には、回転方向反転が極力少なく起き、および/または電気機械の同期範囲が極力小さく、および/または極力大きくなる回転数急変がまず同期化され、すなわちアップシフトの段が優先的に同期化され変速され、および/または極力低い回転数レベルにおいて同期化が実行されるように、変速プロセスは実行される。   It is therefore advantageous to synchronize first the rotational speed changes where the rotational direction reversal occurs as little as possible and / or the synchronization range of the electric machine is as small as possible and / or as large as possible, ie the upshift stage is preferentially synchronized. The shifting process is performed such that synchronization is performed at a rotational speed level as low as possible and / or as low as possible.

さらに、所定の同期化においてエンジンクラッチが選択的に完全にまたは部分的に締結され、または完全にまたは部分的に締結されたままとなるようにすることができ、これにより変速快適性は高めることができる。このことは特にアップシフト時に有利であり、スリップしもしくは締結されたエンジンクラッチを介した非確動式/摩擦接合式結合によって内燃エンジンは一緒に同期化される。   In addition, the engine clutch can be selectively fully or partially engaged or remain fully or partially engaged in a given synchronization, thereby increasing shifting comfort. Can do. This is particularly advantageous during upshifts, where the internal combustion engine is synchronized together by a non-positive / friction joint connection via a slipped or engaged engine clutch.

変速時間をさらに改善するために多群変速機の群の連続的接続段階および遮断段階は1つの変速プロセスにおいて選択的に相互に分離され、または時間的に一部重ねて行うことができる。   In order to further improve the shift time, the continuous connection phase and the disconnection phase of the group of multi-group transmissions can be selectively separated from each other in one shift process or can be carried out partially in time.

このような手動変速機の変速プロセスのとき、変速されるべき歯車の歯先対歯先位置が現れることがある。それゆえに手動変速機内で動力流れが損なわれるのを防止し、かつ変速安全性を高めるために、歯先対歯先位置が現れると望ましくは変速が継続される。すなわち多群変速機の当該群において電気機械は、相応する歯車が通常にかみ合いかつ各歯先対歯先位置が除去されるまで、引き続きもしくは可変式に駆動されかつ作動される。   During the gear shifting process of such a manual transmission, the tip-to-tip position of the gear to be shifted may appear. Therefore, in order to prevent the power flow from being damaged in the manual transmission and to enhance the shift safety, the gear shift is preferably continued when the tooth tip-to-tooth position appears. That is, the electrical machine in that group of multi-group transmissions is continuously or variably driven and operated until the corresponding gears are normally meshed and the respective tip-to-tip positions are removed.

要約して述べるなら、本発明によって、走行中に単群または多群変速機内で変速するとき前方または後方に意図することなく転動する場合、または発進過程時に発進段を嵌合して少なくとも1つの変速機軸がその回転方向を変更する場合、好ましくは旧方向で作動中の軸の回転方向が電気機械によって反転することによって、変速機を特別保護する走行運転および高い変速安全性を達成することができる。変速プロセスは迅速な同期化によって比較的ごく僅かな変速時間を必要とするだけであり、変速中またはその直後に車両はエンジンクラッチもしくは発進クラッチによってコントロールすることができる。   In summary, according to the present invention, when shifting in a single-group or multi-group transmission during traveling, when rolling unintentionally forward or backward, or by engaging a starting stage during the starting process, at least 1 When two transmission shafts change their rotational direction, preferably the rotational direction of the shaft operating in the old direction is reversed by the electric machine to achieve traveling operation with special protection for the transmission and high shift safety Can do. The shifting process requires only a relatively short shifting time due to the rapid synchronization and the vehicle can be controlled by the engine clutch or the starting clutch during or immediately after the shifting.

本方法は、以下、カウンタ軸構造様式の前置された1つの2段スプリッタ群(GV)および1つの3段中央主群(HG)と遊星構造様式の後置された1つの2段レンジ群(GP)とを備えた、例えば本出願人の公知の”ZF‐AS Tronic”クラスの12段変速機等の、同期機構なしの(または少なくとも非同期主群を有する)多群変速機を例に説明される。このような変速機とその機能様式、そして電気モータおよび発電機として作動可能な電気機械をドライブトレイン内に配置することは、当業者には周知である。それゆえにここでは変速機の詳しい説明は省かれ、本発明に係る方法にとって例示的な変速過程と変速機軸の回転方向変化とにのみ詳しく言及する。   This method is hereinafter referred to as one two-stage splitter group (GV) in front of the counter shaft structure type and one two-stage range group after one three-stage central main group (HG) and the planetary structure type. For example, a multi-group transmission without a synchronous mechanism (or at least having an asynchronous main group) such as a known 12-speed transmission of the applicant's known “ZF-AS Tronic” class. Explained. It is well known to those skilled in the art to arrange such a transmission and its mode of operation, and an electric machine operable as an electric motor and generator in a drive train. Therefore, a detailed description of the transmission is omitted here, and only the exemplary shifting process and the change in the rotational direction of the transmission shaft for the method according to the present invention will be referred to in detail.

このため、旧段としての第6前進段から目標段としての第7前進段への変速過程が想定される。主群(HG)とスプリッタ群(GV)にはダウンシフト、レンジ群(GP)にはアップシフトが生じる。   For this reason, a shift process from the sixth forward speed as the old speed to the seventh forward speed as the target speed is assumed. A downshift occurs in the main group (HG) and the splitter group (GV), and an upshift occurs in the range group (GP).

従って、第6段から第7段への段切換は上記判定基準を考慮して以下の3つのスキーマに従って行うことができ、アップシフトすべきレンジ群から開始され、隣接する接続段階と遮断段階は有利には一部重ねて行うことができる。
I.変速プロセス:
1.エンジンクラッチを開放して負荷減少。
2.レンジ群GP:
i.遮断。
ii.同期化。アップシフトのゆえに電気機械の回転数低下。
iii.接続。
3.主群HG:
i.遮断。
ii.同期化。ダウンシフトのゆえに電気機械の回転数上昇。
iii.接続。
4.スプリッタ群GV:
i.遮断。
ii.同期化。ダウンシフトのゆえに電気機械の回転数上昇。
iii.接続。
5.エンジンクラッチの締結と負荷増加。動力流れのゆえに内燃エンジンの回転数が一時的に低下。

II.変速プロセス:
1.エンジンクラッチを開放して負荷減少。
2.レンジ群GP:
i.遮断。
ii.同期化。アップシフトのゆえに電気機械の回転数低下。
iii.接続。
3.主群HG:
i.遮断。
ii.同期化。ダウンシフトのゆえに電気機械の回転数上昇。
4.エンジンクラッチを部分的に締結。内燃エンジンの回転数が低下し同期化される。
5.主群:
i.接続。
6.スプリッタ群GV:
i.遮断。
ii.同期化。ダウンシフトのゆえに電気機械の回転数上昇。
iii.接続。
7.エンジンクラッチの残りを締結して負荷増加。

III.変速プロセス:
1.エンジンクラッチを開放して負荷減少。
2.レンジ群GP:
i.遮断。
Therefore, the stage switching from the sixth stage to the seventh stage can be performed according to the following three schemas in consideration of the above judgment criteria, starting from the range group to be upshifted, and the adjacent connection stage and cutoff stage are It can advantageously be carried out partly.
I. Shifting process:
1. The load is reduced by opening the engine clutch.
2. Range group GP:
i. Shut off.
ii. Synchronizing. Reduced electrical machine speed due to upshift.
iii. Connection.
3. Main group HG:
i. Shut off.
ii. Synchronizing. Increased electric machine speed due to downshift.
iii. Connection.
4). Splitter group GV:
i. Shut off.
ii. Synchronizing. Increased electric machine speed due to downshift.
iii. Connection.
5). Engage the engine clutch and increase the load. Due to the power flow, the rotational speed of the internal combustion engine temporarily decreases.

II. Shifting process:
1. The load is reduced by opening the engine clutch.
2. Range group GP:
i. Shut off.
ii. Synchronizing. Reduced electrical machine speed due to upshift.
iii. Connection.
3. Main group HG:
i. Shut off.
ii. Synchronizing. Increased electric machine speed due to downshift.
4). Partially engage the engine clutch. The engine speed is reduced and synchronized.
5). Main group:
i. Connection.
6). Splitter group GV:
i. Shut off.
ii. Synchronizing. Increased electric machine speed due to downshift.
iii. Connection.
7). Increase the load by engaging the rest of the engine clutch.

III. Shifting process:
1. The load is reduced by opening the engine clutch.
2. Range group GP:
i. Shut off.

Claims (12)

1つの内燃エンジンと1つのエンジンクラッチと1つの電気機械と同期および/または非同期変速要素で段を変速するための単群または多群構造様式の1つの手動変速機と1つの終減速装置と変速過程を制御するための付設された1つの制御機構とを少なくとも含む配置を備えた車両ドライブトレインを作動させるための方法において、
手動変速機内で変速過程のとき電気機械が同期手段として、同期補助体として、または少なくとも変速補助体として利用され、変速機軸の回転方向変化が考慮されることを特徴とする方法。
One manual transmission, one final reduction gear and one shift in a single-group or multi-group structure for shifting gears with one internal combustion engine, one engine clutch and one electric machine with synchronous and / or asynchronous transmission elements In a method for operating a vehicle drivetrain with an arrangement comprising at least one attached control mechanism for controlling a process,
A method in which an electric machine is used as a synchronization means, as a synchronization auxiliary body, or at least as a transmission auxiliary body during a shifting process in a manual transmission, and taking into account a change in the rotational direction of the transmission shaft.
同じ回転方向に当初作動している相関されるべき変速機軸の回転方向が電気機械によって同化されることを特徴とする、請求項1に記載の方法。   2. A method according to claim 1, characterized in that the direction of rotation of the transmission shaft to be correlated initially operating in the same direction of rotation is assimilated by the electric machine. 望ましくない車両惰行によって変速機出力軸の回転方向変化が選択した段方向とは逆に引き起こされると、まず、変速機出力軸と相関されるべき旧回転方向で作動する別の少なくとも1つの変速機軸の回転方向が電気機械によって変速機出力軸の回転方向に同化されることを特徴とする、請求項1または2に記載の方法。   When an undesired vehicle coasting causes a change in the rotational direction of the transmission output shaft to occur in the opposite of the selected step direction, first at least another transmission shaft operating in the old rotational direction to be correlated with the transmission output shaft The method according to claim 1 or 2, characterized in that the rotational direction is assimilated to the rotational direction of the transmission output shaft by an electric machine. 少なくとも一部に非同期変速要素を有する多群変速機の場合、電気機械が、変速機軸の回転方向変化を考慮して、変速プロセスの制御時に個々の群を同期化するための同期手段として利用されることを特徴とする、請求項1〜3のうちのいずれか一項に記載の方法。   In the case of multi-group transmissions having at least some asynchronous transmission elements, the electric machine is used as a synchronization means for synchronizing the individual groups when controlling the transmission process, taking into account changes in the rotational direction of the transmission shaft. The method according to claim 1, characterized in that: 非同期変速要素を有する多群変速機の場合、段切換が連続的変速プロセスで実行され、まずエンジンクラッチを開放しかつ旧段を解放して負荷減少が行われ、引き続き個々の群がそれぞれ遮断され、電気機械によって同期化され、再び接続され、最後に、エンジンクラッチを締結させかつ負荷増加して目標段の嵌合が行われることを特徴とする、請求項4に記載の方法。   In the case of a multi-group transmission with asynchronous transmission elements, the stage change is carried out in a continuous transmission process, first the engine clutch is released and the old stage is released to reduce the load, and then each individual group is shut off individually. 5. The method according to claim 4, characterized in that it is synchronized by the electric machine and reconnected, and finally the target clutch is engaged by engaging the engine clutch and increasing the load. 前置された1つのスプリッタ群と1つの中央主群と後置された1つのレンジ群とを有する3群変速機の場合、
a)エンジンクラッチを開放しかつ旧段を解放して負荷を減少させるステップ、
b)スプリッタ群を遮断するステップ、
c)スプリッタ群を同期化するステップ、
d)スプリッタ群を接続するステップ、
e)主群を遮断するステップ、
f)主群を同期化するステップ、
g)主群を接続するステップ、
h)レンジ群を遮断するステップ、
i)レンジ群を同期化するステップ、
j)レンジ群を接続するステップ、
k)エンジンクラッチを締結しかつ負荷を増加させて目標段を嵌合させるステップ、
以上のステップで段切換が実行されることを特徴とする、請求項5に記載の方法。
In the case of a three-group transmission having one splitter group at the front, one central main group and one range group at the rear,
a) releasing the engine clutch and releasing the old gear to reduce the load;
b) shutting off the splitter group;
c) synchronizing the splitters;
d) connecting the splitter groups;
e) blocking the main group;
f) synchronizing the main group;
g) connecting the main groups;
h) blocking the range group;
i) synchronizing the range group;
j) connecting the range groups;
k) engaging the engine clutch and increasing the load to engage the target stage;
6. A method according to claim 5, characterized in that the stage switching is performed in the above steps.
段切換時に群の内部で選択的にアップシフト、ダウンシフトを行うことができる多群変速機の場合、群について最小時間での変速・同期化プロセスを判定するために、
a)電気機械によって実施すべき変速機軸回転方向反転回数、
b)電気機械によって同期化すべき各回転数範囲の値、
c)各回転数急変の値、
d)各回転数急変の方向、
e)回転数レベル自体、
以上の判定基準が個々にまたは組合せて考慮されることを特徴とする、請求項4に記載の方法。
In the case of a multi-group transmission capable of selectively upshifting and downshifting within the group at the stage switching, in order to determine the shift / synchronization process in the minimum time for the group,
a) Number of reversal of the transmission shaft rotation direction to be performed by the electric machine,
b) the value of each speed range to be synchronized by the electric machine,
c) The value of each rotational speed sudden change,
d) Direction of each rotational speed sudden change,
e) the speed level itself,
5. A method according to claim 4, characterized in that the above criteria are taken into account individually or in combination.
所定の同期化においてエンジンクラッチが選択的に完全にまたは部分的に締結され、または完全にまたは部分的に締結されたままとなることを特徴とする、請求項1〜7のうちのいずれか一項に記載の方法。   8. The engine clutch according to claim 1, wherein the engine clutch is selectively fully or partially engaged or remains fully or partially engaged in a given synchronization. The method according to item. 多群変速機の群の連続的接続段階および遮断段階が1つの変速プロセスにおいて選択的に相互に分離され、または時間的に一部重ねて行われることを特徴とする、請求項4〜8のうちのいずれか一項に記載の方法。   9. The continuous connection phase and the disconnection phase of a group of multi-group transmissions are selectively separated from each other in one shift process, or are performed partially overlapping in time. The method according to any one of the above. 歯先対歯先位置の発生時に変速が継続され、多群変速機の当該群において電気機械は、相応する歯車が通常にかみ合いかつ各歯先対歯先位置が除去されるまで、引き続きもしくは可変式に駆動されかつ作動されることを特徴とする、請求項4〜9のうちのいずれか一項に記載の方法。   The gear change continues when the tooth tip-to-tooth position occurs, and in that group of multi-group transmissions, the electric machine continues or is variable until the corresponding gear is normally engaged and each tooth tip-to-tooth position is removed. 10. A method according to any one of claims 4 to 9, characterized in that it is driven and actuated in an equation. 1つの内燃エンジンと1つのエンジンクラッチと1つの電気機械と同期および/または非同期変速要素で段を変速するための単群または多群構造様式の1つの手動変速機と1つの終減速装置と変速過程を制御するための付設された1つの制御機構とを少なくとも含む特に請求項1〜10のうちのいずれか一項に記載された方法を実施するための車両ドライブトレインにおいて、単数または複数の変速機軸の回転方向変化時に電気機械が変速過程中同期手段として、同期補助体として、または少なくとも変速補助体として相応に駆動可能であり、かつ設けられた非確動式結合手段を介して、回転方向変化に基づいて付加されるべき各変速機軸と作用結合可能であることを特徴とするドライブトレイン。   One manual transmission, one final reduction gear and one shift in a single-group or multi-group structure mode for shifting gears with synchronous and / or asynchronous transmission elements with one internal combustion engine, one engine clutch and one electric machine One or more shifts in a vehicle drive train for implementing the method according to any one of claims 1 to 10, in particular comprising at least one attached control mechanism for controlling the process When the direction of rotation of the axle changes, the electric machine can be driven correspondingly as a synchronizing means during the shifting process, as a synchronizing auxiliary, or at least as a shifting auxiliary, and via the provided non-positive coupling means A drive train characterized in that it can be operatively coupled to each transmission shaft to be added based on changes. 請求項1〜10のうちのいずれか一項に記載された方法を実施するための請求項11に記載されたドライブトレインを備えた車両。
i.同期化。アップシフトのゆえに電気機械の回転数低下。
iii.接続。
3.主群HG:
i.遮断。
ii.同期化。ダウンシフトのゆえに電気機械の回転数上昇。
iii.接続。
4.スプリッタ群GV:
i.遮断。
ii.同期化。ダウンシフトのゆえに電気機械の回転数上昇。
5.エンジンクラッチを部分的に締結。内燃エンジンの回転数が低下し同期化される。
6.スプリッタ群:
i.接続。
7.エンジンクラッチの残りを締結して負荷増加。
A vehicle comprising a drive train according to claim 11 for carrying out the method according to any one of claims 1-10.
i. Synchronizing. Reduced electrical machine speed due to upshift.
iii. Connection.
3. Main group HG:
i. Shut off.
ii. Synchronizing. Increased electric machine speed due to downshift.
iii. Connection.
4). Splitter group GV:
i. Shut off.
ii. Synchronizing. Increased electric machine speed due to downshift.
5). Partially engage the engine clutch. The engine speed is reduced and synchronized.
6). Splitters:
i. Connection.
7). Increase the load by engaging the rest of the engine clutch.
JP2009549809A 2007-02-14 2008-01-25 Method for operating a vehicle drive train Pending JP2010517872A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007007257A DE102007007257A1 (en) 2007-02-14 2007-02-14 Method for operating a drive train of a vehicle
PCT/EP2008/050839 WO2008098824A1 (en) 2007-02-14 2008-01-25 Method for operating a drivetrain of a vehicle

Publications (1)

Publication Number Publication Date
JP2010517872A true JP2010517872A (en) 2010-05-27

Family

ID=39237364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009549809A Pending JP2010517872A (en) 2007-02-14 2008-01-25 Method for operating a vehicle drive train

Country Status (6)

Country Link
US (1) US8251867B2 (en)
EP (1) EP2118527B1 (en)
JP (1) JP2010517872A (en)
CN (1) CN101617148B (en)
DE (1) DE102007007257A1 (en)
WO (1) WO2008098824A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101504068B (en) * 2008-12-15 2012-12-05 同济大学 Electric-controlled operating device of manual transmission
US8433487B2 (en) * 2010-04-26 2013-04-30 GM Global Technology Operations LLC Shift sequencing systems for a dual clutch transmission
DE102010028670A1 (en) 2010-05-06 2011-11-10 Zf Friedrichshafen Ag Method for carrying out a switching process in automated transmissions
DE102010030575A1 (en) * 2010-06-28 2011-12-29 Zf Friedrichshafen Ag Powertrain with an automated group transmission
DE102010030576A1 (en) * 2010-06-28 2011-12-29 Zf Friedrichshafen Ag Powertrain with an automated group transmission
DE102010039138A1 (en) 2010-08-10 2012-02-16 Zf Friedrichshafen Ag Method for selecting synchronizing elements in automated transmissions
DE102010043590A1 (en) * 2010-11-09 2012-05-10 Zf Friedrichshafen Ag Method for controlling a drive train
DE102012005678A1 (en) * 2012-03-21 2013-09-26 Daimler Ag Automotive powertrain device having an active synchronizer unit
US8827867B1 (en) * 2014-02-12 2014-09-09 Proterra, Inc. Transmission control system for an electric vehicle
DE102015221157A1 (en) * 2015-10-29 2017-05-04 Zf Friedrichshafen Ag transmission control
US10746263B2 (en) * 2016-12-12 2020-08-18 Toyota Motor Engineering & Manufacturing North America, Inc. Automatic transmission with electric synchronization
DE102018205521A1 (en) 2018-04-12 2019-10-17 Zf Friedrichshafen Ag Method and control device for operating a drive train
DE102018206871A1 (en) * 2018-05-04 2019-11-07 Zf Friedrichshafen Ag Method and control device for operating a drive train
DE102018207859B3 (en) 2018-05-18 2019-11-07 Zf Friedrichshafen Ag Method and control device for operating a drive train
DE102021206547A1 (en) 2021-06-24 2022-12-29 Zf Friedrichshafen Ag Method and control device for operating a drive train

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000108694A (en) * 1998-09-05 2000-04-18 Mannesmann Sachs Ag Driving device for power car
JP2003335152A (en) * 2002-05-21 2003-11-25 Exedy Corp Shift control method for hybrid vehicle and its device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4750387A (en) * 1986-12-31 1988-06-14 Cascade/Southern Saw Corporation System and method for grinding the saw teeth of a circular saw blade
DE4202083C2 (en) * 1992-01-25 1994-01-20 Daimler Benz Ag Hybrid drive for a motor vehicle
DE19530233A1 (en) * 1995-08-17 1997-02-20 Audi Ag Hybrid drive transmission for vehicle
DE19850549A1 (en) * 1998-11-03 2000-05-04 Bosch Gmbh Robert Gearbox for a motor vehicle, in particular dual clutch manual gearbox, and method for operating the gearbox
DE19901414B4 (en) * 1999-01-17 2006-05-24 Boisch, Richard, Prof. Dr. Automatically shiftable gearbox with lathe and braking device for synchronization and main coupling and method for controlling the same
WO2001066971A1 (en) * 2000-03-10 2001-09-13 Hitachi, Ltd. Automatic transmission, dynamo-electric machine, and car
DE10025797A1 (en) * 2000-05-24 2001-05-23 Uwe Paul Revolution rate synchronization device for use in automatically operated discrete gearbox has electric machine operated as motor or generator to accelerate or decelerate gearbox shaft
DE10165097B3 (en) * 2000-07-18 2015-07-23 Schaeffler Technologies AG & Co. KG Double clutch
DE10124989A1 (en) * 2001-05-22 2002-12-12 Bayerische Motoren Werke Ag Method for engine transmission operation for motor vehicles with direction of travel and transmission take into consideration to control engine to prevent critical vehicle consistons
ATE348970T1 (en) * 2002-03-07 2007-01-15 Luk Lamellen & Kupplungsbau DUAL CLUTCH TRANSMISSION AND METHOD FOR CONTROLLING AT LEAST TWO CLUTCHES IN A DUAL CLUTCH TRANSMISSION OF A VEHICLE
JP3938535B2 (en) * 2002-09-30 2007-06-27 日産ディーゼル工業株式会社 Control device for automatic transmission
DE102005007966A1 (en) * 2005-02-22 2006-10-05 Zf Friedrichshafen Ag Drive train of a motor vehicle and method for operating the drive train
DE102005051382A1 (en) * 2005-10-27 2007-05-10 Zf Friedrichshafen Ag Hybrid drive and method for its operation
DE102006003675B4 (en) 2006-01-26 2016-09-29 Volkswagen Ag Method and device for determining a preferred end orientation of a motor vehicle in a parking space
DE102006024370A1 (en) 2006-05-24 2007-12-13 Zf Friedrichshafen Ag Multi-group transmission and method for changing gears in a multi-group transmission
DE102006030157A1 (en) 2006-06-29 2008-01-03 Zf Friedrichshafen Ag Method and device for detecting a passive starting process in a motor vehicle
DE102006036758B4 (en) 2006-08-05 2015-03-12 Zf Friedrichshafen Ag Automated dual-clutch transmission of a motor vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000108694A (en) * 1998-09-05 2000-04-18 Mannesmann Sachs Ag Driving device for power car
JP2003335152A (en) * 2002-05-21 2003-11-25 Exedy Corp Shift control method for hybrid vehicle and its device

Also Published As

Publication number Publication date
WO2008098824A1 (en) 2008-08-21
US8251867B2 (en) 2012-08-28
DE102007007257A1 (en) 2008-08-21
US20100120582A1 (en) 2010-05-13
EP2118527B1 (en) 2012-12-05
EP2118527A1 (en) 2009-11-18
CN101617148A (en) 2009-12-30
CN101617148B (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP2010517872A (en) Method for operating a vehicle drive train
EP3837129B1 (en) Powertrain, vehicle and method of performing a gearshift in the powertrain
JP4142862B2 (en) Control device for transmission in hybrid vehicle
CN101173711B (en) Gear selection strategy for a dual clutch transmission
US9586470B2 (en) Powertrain for hybrid vehicle
EP3284977B1 (en) Device for controlling starting of electric vehicle
US7125362B2 (en) Hybrid powertrain system including smooth shifting automated transmission
EP2578901B1 (en) Twin clutch type transmission
WO2011027616A1 (en) Twin clutch type hybrid transmission
JP2009510341A (en) Automatic transmission for motor vehicle and its shift change method
JPH06221347A (en) Counter-shaft automatic transmission
JP2008513273A (en) Starting method of internal combustion engine in hybrid power transmission system
KR20180063256A (en) Method and apparatus for operating a driving apparatus and driving apparatus
WO2003047898A1 (en) Transmission system and method for driving a vehicle
JP2003106389A (en) Electromechanical speed change gear
JP3674561B2 (en) Shift control device for automatic clutch transmission
JP3823960B2 (en) Vehicle transmission
CN101795913A (en) Method for carrying out a tractive-force interrupted shifting in a parallel hybrid vehicle
JP2015151007A (en) Power transmission device
JP2016533460A (en) A method for preselecting a gear stage of a multi-clutch transmission of a vehicle when the inertial running state is terminated
JP2017193320A (en) Driving device for vehicle
JP2010260373A (en) Power transmission controller for vehicle
JP2017197107A (en) Automobile driving device
JP2017206216A (en) Automobile drive device
US9789757B2 (en) Powertrain for a hybrid vehicle and a method for control of the powertrain

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121204