JP2010507891A - カラー制御光源及び光源内のカラー生成を制御する方法 - Google Patents

カラー制御光源及び光源内のカラー生成を制御する方法 Download PDF

Info

Publication number
JP2010507891A
JP2010507891A JP2009534021A JP2009534021A JP2010507891A JP 2010507891 A JP2010507891 A JP 2010507891A JP 2009534021 A JP2009534021 A JP 2009534021A JP 2009534021 A JP2009534021 A JP 2009534021A JP 2010507891 A JP2010507891 A JP 2010507891A
Authority
JP
Japan
Prior art keywords
light
light source
output
elements
spectral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009534021A
Other languages
English (en)
Other versions
JP5264746B2 (ja
Inventor
エデュアルド イェー メイエル
ジョン ビー ミルズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV, Koninklijke Philips Electronics NV filed Critical Koninklijke Philips NV
Publication of JP2010507891A publication Critical patent/JP2010507891A/ja
Application granted granted Critical
Publication of JP5264746B2 publication Critical patent/JP5264746B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/22Controlling the colour of the light using optical feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

本発明は、複数の色付き光要素及び光要素の合計スペクトルの全て又は殆どをカバーする異なるスペクトル特性を有する複数の(濾波された)光検出器を備えたカラー制御光源に関する。(濾波された)光検出器は、光源の光出力を検出し対応する検出信号を生成する。光源は更に検出信号及び光源の光出力の所定目標カラーポイントに基づき光要素への駆動信号を生成するカラー制御ユニット及び光要素の各々への駆動信号を個々にシグネチャ変調する変調器を有する。検出信号を復調し、各検出信号から光要素の光出力の実際の値を抽出する対応する復調器が設けらる。カラー制御ユニットは、実際の値に基づき各光要素のスペクトル出力を決定する手段と、全ての光要素のスペクトル出力から実際のカラーポイントを決定する手段と、目標カラーポイントと実際のカラーポイントとを比較し、差が存在すれば、その差を最小にするように駆動信号を調整する手段をする。
【選択図】図1

Description

本発明はソリッドステート照明に関し、より特定的には、特許請求の範囲の請求項1の前文に記載されているカラー制御光源に、及び特許請求の範囲の請求項12の前文に記載されている光源内のカラー生成を制御する方法に関する。
ソリッドステート照明における多重カラー(例えば、異なる色温度)のための光源を実現するために、異なるカラーの光を放出する複数のLEDが1つのデバイス内に使用される。これらLEDは色空間内に副領域を規定し、この副領域は全ての可能な線形組合せを介して実現することができる色域を表す。従って、色空間のカラースペクトル内において所望の強度の色付き光を、個々のLEDの信号入力により制御することができる。色付き光という用語には白光も含まれることに注目されたい。
従来の光源とは異なり、色付きLEDは、LEDの接合温度、電流、エージング効果、及びビニングの変化に起因して“カラーシフト”する。温度及びエージングに起因して、光出力は予め定められたカラーポイントから減退し始めるので、光源の光出力のカラーポイントがゆがみ始める。従って、光源のカラーポイントは、制御ループを介して安定化させなければならない。
光源からの光出力を監視するために、標準観測者と同一の感度を有するか、またはこれらの曲線を近似するRGBセンサまたはトゥルーカラーセンサのような光検出器を使用することが一般的である。代替として、1つまたはそれ以上の温度センサと組合された光束センサが使用される。個々のLED(またはLED群)すなわちカラーの貢献度を決定できるようにするために、フィルタリング技術が使用されてきた。即ち、例えば、原色(赤、緑、及び青光のような)をそれぞれ検出するこれらの異なる「濾波された」光検出器が、1つの濾波されていない光検出器と組合されて使用されてきた。光検出器の出力信号に基づいて、光源の光出力の測定されたカラーポイントが決定され、(もし必要ならば)LEDへの駆動電流を調整するために目標カラーポイントと比較される。
しかしながら、光検出器が光出力を検出する時に、例えば、周囲太陽光及び/または他の色付きLEDのような他の光源からの干渉、または電気雑音をもたらす他の干渉源が存在し得る。それ故、測定されたカラーポイントは欠陥値であることが多く、単独では光源自体内のLEDからの光出力を表していない。従って、制御ループの制御デバイスへのフィードバック信号は不正確になる。
本発明の目的は、カラー制御における上述した干渉問題を軽減するようにした、光源におけるカラー生成を制御する光源及び方法を提供することである。
この目的は、特許請求の範囲の請求項1及び12に記載されている本発明によるカラー制御光源によって達成される。特許請求の範囲に記載の従属項は、本発明の好ましい実施形態を限定している。
即ち、本発明の一面によれば、カラー制御光源が提供される。上記カラー制御光源は、
‐複数の色付き光要素
‐複数の光検出器(これら光検出器のスペクトル特性は異なっており、光検出器は一緒になって上記光要素の合計スペクトルを少なくとも実質的にカバーし、上記光検出器は上記光源の光出力を検出し、対応する検出信号を生成する)
‐上記検出信号及び上記光源の光出力の所定の目標カラーポイントに基づいて、上記光要素への駆動信号を生成するカラー制御ユニット
を備えている。
上記光源は、更に、
‐上記光要素の各々への駆動信号を個々にシグネチャ変調する変調器
‐上記検出信号を個々にシグネチャ復調し、各検出信号から上記光要素の各々の光出力の各実際の値を抽出する復調器
を備えている。
カラー制御ユニットは、
‐上記実際の値に基づいて各光要素のスペクトル出力を決定する手段
‐全ての光要素の上記スペクトル出力から実際のカラーポイントを決定する手段
‐上記目標カラーポイントと上記実際のカラーポイントとを比較し、もし差が存在すれば、その差を最小にするように上記駆動信号を調整する手段
を備えている。
即ち、本発明によれば、スペクトル出力を決定する手段によって遂行される各光要素の実際のスペクトル出力の正確な決定が、各個々の光要素から検出出力光への貢献度の正確な識別と組合され、これは、スペクトル出力決定手段へ良好な測定を供給する。他の長所は、全ての光要素を同時にオンにすることができ、周囲光に対する感度が極めて低くなることである。更に、LEDのビン情報または製造者情報を必要としないことに注目されたい。
特許請求の範囲の請求項2に記載されているカラー制御光源の一実施形態によれば、変調器はスペクトラム拡散変調器である。スペクトラム拡散変調(または、コーディング)は複数の信号を共通に送り、受信器においてそれらを低い誤り率で検出することができる効率的な手法であるので無線伝送では広く使用されており、また本光源に最も有用であることが分かっている。
特許請求の範囲の請求項3に記載されているカラー制御光源の一実施形態によれば、変調器はCDMA変調器である。CDMA(即ち符号分割多重アクセス方式)は、駆動信号を符号変調するために使用するのに有利であり、十分に識別される個々のコードが得られる。特許請求の範囲の請求項4に記載されている有利な実施形態では、オン・オフキーイング、即ち二相変調を使用する。
特許請求の範囲の請求項8に記載されているカラー制御光源の一実施形態によれば、スペクトル出力を決定する手段は、光要素のスペクトル出力の非対称関数モデリングのためのアルゴリズムによってスペクトル出力を決定するようになっている。例えば、あるLEDのスペクトルは典型的に非対称であり、ある関数によって良好に記述される。特許請求の範囲の請求項9に記載されているように、このような関数の有利な選択は、非対称二重シグモイド関数である。
特許請求の範囲の請求項10に記載されているカラー制御光源の一実施形態によれば、スペクトル出力を決定する手段は、検出されたLEDスペクトルの最良フィッティングを決定するためにスペクトル出力の所定の値、及び測定された値を使用する最小化アルゴリズムを使用する。
特許請求の範囲の請求項11に記載されているカラー制御光源の一実施形態によれば、個々にシグネチャコード化変調するためにゴールド符号を使用する。ゴールド符号自体は当分野においては公知であって多くの数を生成することが可能であり、低い相互相関を有している。これらのコードは、2つの異なる光源のコーディングを分離するために使用すると有利である(そのようにしない場合には干渉が発生し、一方の光源の制御デバイスは、干渉中の光源のスペクトル出力を不正確に認識してしまう)。
本発明の別の面によれば、特許請求の範囲の請求項12に記載されているように、光源においてカラー生成を制御する方法が提供される。
上述した面及び実施形態による光源を用いて得られるものと同一の、または対応する目的及び長所が、この方法及び残余の請求項に記載されているその実施形態から得られる。
本発明のこれらの、及び他の面は、以下の実施形態に基づく詳細な説明から明白になるであろう。以下の詳細な説明及び特定の例は、本発明の好ましい実施形態を表してはいるが、これらは単なる例示に過ぎず、本発明の範囲を限定する意図はないことを理解されたい。
以下に、添付図面を参照して本発明を詳細に説明する。
本発明による光源の一実施形態の回路図である。 本発明による光源の一実施形態内に検出器として使用されているシリコンフォトダイオードのpn接合の構造を示す図である。 本発明による光源の一実施形態内に使用されているシリコンフォトダイオードの異なる接合の深さに対するスペクトル応答性を示す図である。 本発明による光源においてカラー生成を制御する方法の一実施形態の諸ステップを示すフローチャートである。 光源の実施形態に使用されているスペクトルモデリング関数を示す図である。 光源の別の実施形態に従って、パルス幅変調(PWM)及びパルス振幅変調(PAM)を用いるCDMAオン・オフキーイング変調の使用を示す図である。 光源のさらなる実施形態に従って、デューティサイクル変調及び振幅変調を用いるCDMA二相(DC−BP)変調の使用を示す図である。 疑似ランダムバイナリシーケンス(PRBS)コードと組合せたアナログ駆動信号の使用を示す図である。
本発明によるカラー制御光源101の一実施形態を図1に示す。このカラー制御光源101は、カラー制御ユニット103、CDMA変調器105、及びN個の色付き光要素107a−107c(ドライバ109a−109cを含み、この実施形態ではN=3である)からなる光生成路を有している。典型的に光要素はLEDであり、より特定的にはRGB LED、即ち、赤LED107a、緑LED107b、及び青LED107cである。しかしながら、光源101の使用目的に依存して、他の原色光要素の多くの組合せも適用可能である。カラー制御ユニット103はCDMA変調器105に接続されていて、それに駆動信号を供給する。CDMA変調器105の3つの出力は、駆動信号をスペクトラム拡散コーディング(特定的にはCDMAコーディング)によって、個々にシグネチャ変調するために、ドライバ109a−109cを介して光要素107a−107cに接続されている。典型的には、LED107a−107cに供給される駆動信号は最高レベルの電流であり、これらはPWM等によりパルス化されている。代替として、ドライバ109a−109cから、光要素のためのアナログ駆動信号(直流、または任意のアナログ波形)を供給することができる。
更に、光源101は、M個(この実施形態ではM=3)の「濾波された」光検出器(ここでは、フォトダイオード)111a−111cと、濾波されていない光検出器111dと、CDMA復調器113と、カラー制御ユニット103からなる光検出路を有している。光検出器111a−111dはCDMA復調器113に接続され、光源101の検出された光出力を表す検出信号をCDMA復調器113に供給する。CDMA復調器113はカラー制御ユニット103に接続され、分離した各光要素107a−107cの光出力の実際の値を制御ユニット103に供給する。更に、CDMA変調器105はCDMA復調器113に接続されていて、CDMAコードのコピーをCDMA復調器113に供給する。「濾波された」光検出器111a−111cにはフィルタを設けることができる。これらのフィルタはLED107a−107cの可視スペクトルまたは合計スペクトルの少なくとも実質的な部分をカバーし、またその範囲全体に分布している。例えば、フィルタはバンドパスフィルタであって、第1のフィルタがスペクトル的に赤波長に中心を有し、第2のフィルタがスペクトル的に緑波長に中心を有し、そして第3のフィルタがスペクトル的に青波長に中心を有している。
濾波された光検出器111a−111cの代替として、幾つかのシリコンフォトダイオード111a−111c(図2参照)を互いに近接させて使用することができる。各シリコンフォトダイオード111a−111cは、異なる接合の深さ210にpn接合が設けられている(位置多重化)。シリコン内の光子吸収が光子エネルギに依存することは公知である。換言すれば、シリコンの内側の光子束はベールの法則に従い、波長は吸収係数に依存する。即ち、青光は強く吸収され、赤光はシリコン内に深く浸透することができる。代替として、トップ上に3つのpn接合を有する単一のフォトダイオードを使用することも可能である。この構成は、選択性エピタキシャル成長を使用してシリコン内のドナー及びアクセプタのドーピングプロファイル(接合深さ210を限定する)を大量に制御することによって達成することができる。多重接合アプローチの代替として、単一のpn接合を有する単一のシリコンフォトダイオードを時間依存可変バイアス電圧と組合せて使用し、接合の空間電荷領域の幅を制御することも可能である(時間多重化)。pn接合深さ210及び空乏領域幅220がスペクトル応答を限定するので、これらのシリコンフォトダイオードは特種なRGBセンサを形成する。これらのシリコンフォトダイオードは、フィルタ(高価であり、且つスペクトル的に劣化をもたらすことが多い)の使用を回避する利点が得られる。
接合深さ210及び空乏領域幅220の関数としてのシリコンpn接合のスペクトル応答性は、以下のように計算することができる(図2参照)。光電流は2つの成分、即ち空乏領域内のホール及び電子のドリフトに起因するドリフト電流と、空乏領域外のキャリヤの拡散に起因する拡散電流とからなる。
Figure 2010507891
ドリフト電流は、次式によって与えられる。
Figure 2010507891
但し、qは電気素量であり、xjは(冶金学的)接合深さ210であり、Wは空乏領域幅220であり、xn221及びxp222(W=xp+xn)は接合のn側及びp側における空乏の広がりの深さである。これらは以下のように与えられる。
Figure 2010507891
Figure 2010507891
但し、Vrは接合に印加される逆バイアスであり、V0は接合のビルトイン電位である。
Figure 2010507891
Bはボルツマン定数であり、Tは絶対温度であり、そしてniは固有キャリヤ密度である。拡散電流は次のように与えられる。
Figure 2010507891
(式6)
但し、Dp及びDnはそれぞれホール及び電子の拡散定数、Lp及びLnは過剰キャリヤの拡散長、xepiはエピタキシャル層230の厚み、np0=ni 2/Na及びpn0=ni 2/Ndは平衡少数キャリヤ密度、そして定数は、以下のようである。
Figure 2010507891
Figure 2010507891
これらの式から、pn接合のスペクトル応答を接合深さ210の関数として計算することができる。図3は、光の波長の関数として、Jopt/qΦ0を、異なる接合深さ毎に(310=0.5μm、320=1μm、330=2μm、340=3μm、350=10μm)プロットした図である。使用したパラメータは、xepi=15μm、Nd=1026-3、Na=4.37*1021-3、Ln=447μm、Lp=0.289μmであり、Dp及びDnの計算は以下の式に従って行った。
Figure 2010507891
Figure 2010507891
図4のフローチャートを参照する。光源、特定的にはそのカラー制御システムは以下のように動作する。制御ユニット103は、ユーザから所望の光出力に関する入力を受信するか、またはそれについての予めプログラムされた情報を有している。所望の光出力は、光源101のための目標カラーポイントとして与えられるか、またはそれに変換される。制御ユニット103は、目標カラーポイントに基づいて、LED107a−107cのための名目駆動信号を計算する(ステップ401)。次いで、駆動信号は、CDMA変調器105によって個々にCDMAコード化され(ステップ402)、LED107a−107cに供給される。それによってLED107a−107cの光出力は光検出路で個々に識別可能になる。上述したようにLED107a−107cは不完全であるため、期待した光出力が得られないので、フィードバックを含む制御システムが使用される。従って、光検出器111a−111dがLED107a−107cの実際の光出力を検出する(ステップ403)。(濾波された)光検出器111a−dの各々は光源101の光出力の一部を検出し、対応する検出信号を生成する(ステップ403)。(M+1)個の検出信号がCDMA復調器113に供給され、CDMA復調器は検出信号を復調する(ステップ404)。詳述すれば、復調器113は各検出信号と、変調器105が使用したCDMAコードの各々に正確に時間同期されたコピーとを相関させる。即ち、各「濾波された」検出信号のために、復調器はN個の復調された信号(N個のLED107a−107cの(検出された)実際の値に関係している)を出力する。復調器113は更に、濾波されていない光検出器信号111dを復調することによって、背景信号及びN個の濾波されていない検出器応答を生成し、出力する(ステップ403及び404)。従って、合計でN*(M+1)+1個の信号、即ちこの実施形態では13個の信号が復調器113から制御ユニット103へ供給される。
制御ユニット103は、復調された信号内の固有の実際の値に基づいて各LED107a−107cのスペクトル出力を決定する(ソフトウェアコードのような)手段を含んでいる。即ち、復調された信号の実際の値が抽出される(ステップ405)。各LED107a−107cのスペクトル出力の決定には、スペクトル出力の非対称関数のモデリングのためのアルゴリズムが使用される。この実施形態によれば、LEDスペクトル(特定的には、スペクトル密度)をモデル化するために、図5及び以下の式11に示すような非対称二重シグモイド関数を使用する(ステップ406)。
Figure 2010507891
この関数において、A0はプリファクタ、A1は背景オフセット、λpeakはLEDスペクトルのピーク波長、w1及びw2はスペクトルの幅及び非対称性を記述するパラメータである。好ましくは、光検出器のスペクトル特性は、それらが、各LED107a−107cのスペクトルの少なくとも検出可能な部分を全てカバーするように、即ち、異なる光検出器からの実際の値(例えば、光電流信号)が0より大きくなるように選択する。始めに、どの光検出器が最も高い応答を与えるかを決定するために、各LED107a−107cの実際の値を互いに比較する。そのスペクトル特性のピーク値が、λpeakの想定開始値として使用される。光検出器のスペクトル特性が完全に知られていることに注目されたい。LEDがオフ状態にある間の背景オフセットA1を測定するために、及びLEDがオン状態にある間の合計LED光出力(プリファクタを与える)を測定するために、濾波されない光検出器111dが使用される。更に、幅及び非対称性パラメータw1及びw2は、フィッティングアルゴリズムにおいて5nmより大きい値に制限されている(これはLEDの動作の観点から実際的な境界条件である)。ロバストであるために、w1及びw2の少なくとも2つの組合せ、即ちw1<w2である1つの組合せと、w1>w2である1つの組合せが使用される。全ての実際の値を使用し、以下の式12の最小化アルゴリズムSSE(和自乗誤差)を用いてLEDスペクトルに対する最良フィットが計算され、予測したLEDスペクトルのために求めた計算された検出信号値と、そのLEDのための実際の値との差が決定される。
Figure 2010507891
上述したモデリング関数に対する代替が存在するように、式12の最小化アルゴリズムに対してもニュートン・ラフソンのような代替方法が存在する。
詳述すれば、異なるLEDスペクトルをモデル化するために、LED毎にピーク値λpeak及び2つの幅値w1及びw2を規則的に変化させて反復が遂行される。更に、異なるモデル化されたLEDスペクトル毎に、光検出器111a−111cの既知の応答特性と統合される。このようにして得られる計算された検出信号は、最小化アルゴリズム(式12)において、実際の値、即ちカラー制御ユニット103においてCDMA復調器113から受信した測定された値と比較される。最小のSSE、またはプリセットされた限界値より低いSSEをもたらすピーク及び幅値は、LEDスペクトル(これらの入力値を用いてモデリング関数(式11)から得られる)の表現であると見做される。次いで、モデル化されたLEDスペクトルを、標準観測者のカラーマッチング関数を用いて畳み込むことによって、LED107a−107cのカラーポイントが計算される(ステップ407)。
従って、制御ユニットは、目標カラーポイントと実際のカラーポイントとを比較する手段(例えば、ソフトウェアコード)を備えている。これは、個々のLEDのカラーポイントについて、並びに合計カラーポイント(これは、LEDスペクトルを一緒に加算し、その和を標準観測者のカラーマッチング関数を用いて畳み込むことによって得られる)について行われる(ステップ408参照)。もし差が存在すれば、方法はステップ402へ戻されて差を減少させる、理想的には削除する(実際には困難であるが)ように駆動信号が調整される。もし差が存在しなければ、方法はステップ403へ戻って再度光出力を検出する。実際には、この実施形態では、本方法は差の上限を使用する。即ち、もし差が所定の上限よりも小さければ、調整は遂行されない。
CDMA変調の例は、ウォルシュ・ハダマードコードが使用される同期システムを使用するCDMA変調である。ウォルシュ・ハダマードは、暗号化及びセルラー通信に使用するために統計的に固有な数のセットを生成するアルゴリズムであり、“疑似ランダム雑音コード”としても知られている。このアルゴリズムによって生成されるコードは、直交数学コードである。これは、もし2つのウォルシュコードが相関していれば、これら2つのコードが同一である場合に限って結果を理解できることを意味している。その結果、ウォルシュ・ハダマードエンコードされた信号は、到来信号を変調するのに使用したものと同一のシグネチャコードをCDMA復調器が使用しない限り、該復調器にはランダム雑音としか認識されない。いわゆるDC(直流)コード(平均DC信号成分に関係付けられたウォルシュ・ハダマードセットのコードの一部である)の使用を回避するために、本システムは一定の周囲光に対してロバストに作られている。
カラー制御光源101の一実施形態では、CDMA変調器105の特定コーディングスキームは、オン・オフキーイングに基づいている。オン・オフキーイング(OOK)変調は、デジタルデータを搬送波の存否によって表す一つの型の変調である。その最も簡単な形状では、特定の持続時間にわたって搬送波が存在することがバイナリの1を表し、同じ持続時間にわたって存在しないことがバイナリの0を表すが、原理的には如何なるデジタルエンコーディングスキームを使用しても差し支えない。
各光要素107a−107cに割当てられているシグネチャ変調コードは、各パルスの第1の部分をオン・オフキーイング変調することによって信号内に組入れられる(図6参照)。要求された照明を保証するためにLEDに印加される駆動信号の2つの例が示されている。即ち、(1)パルスの第2の部分にパルス幅変調(PWM)を印加し、(2)パルスにパルス振幅変調(PAM)を印加している。図6において、“チップ0”及び“チップ1”は異なる幅を有している。原理的には、これはLEDの光出力に変化をもたらす。それにも拘わらず、これは、同数のチップ0及び1が供給されることを意味する平衡コードを使用することによって修復することができる。従って、あるコードワードにわたって平均されたパルスの幅は、正確に、“チップ0”幅と“チップ1”幅との平均値である。
本発明の更に別の実施形態では、図7に示すように、変調方法は任意のデューティサイクルを許容する二相(BP)変調の一般化である。デューティサイクルが50%に等しい場合には、デューティサイクル二相(DC−BP)はBP変調に退化する。この場合、各光要素が割当てられている個々のシグネチャを実現するコードは、“チップ0”及び“チップ1”を相応に伝送することによって信号内に組入れられる。要求された照明を保証するために、2つのオプションが存在している。即ち、(1)パルスのデューティサイクルを変更すること、及び(2)パルスの振幅を変更することである。
複数の光源が動作している環境の場合、光源間の同期性を想定することはできず、むしろ望ましくないとされている。これらの場合、光源にまたがる光要素のために使用されるCDMAコード間の相互相関の程度が低く且つ有解であることが重要である。これは、光源間の干渉に免疫を与える。このようにしない場合には、1つの光源が、近隣からのスペクトル出力をそれ自体のスペクトル出力であるかのように不正確に検出するようになる。このような免疫は、ゴールド符号を使用することによって達成することができる。これらは、最大長疑似ランダムバイナリシーケンス(PRBS)のモジュロ2加法的性質によって形成される。2つの最大長PRBSは同期クロックによって駆動され、モジュロ2加算器内においてビット単位で一緒に加算されてゴールド符号が形成される。2つのm長(2m−1状態)最大長PRBSコードを加算することによって、m長ゴールド符号が作成される。完全に新しいゴールド符号は、互いに加算された2つのPRBSコードの間でビット毎にシフトをもたらす。即ち、全ての可能な組合せで互いに加算された2つの10長(1023ビット長)PRBSコードは、1023の固有なゴールド符号を作成するために使用することができる。これは、フィードバック路に接続されたシフトレジスタのような、極めて安価且つ簡単な論理回路を用いて、極めて迅速且つ容易に多数の固有なゴールド符号を生成できることを意味している。1対のPRBSシーケンスから生成されたゴールド符号のサブセットを適切に選択することによって、選択されたゴールド符号間の相互相関は低く、数学的に事前に計算することができる上限を有する。これは、復調器回路がそれ自体の光要素のスペクトル出力に正確に“ロックオン”した時点を識別し、外部干渉源(即ち、他の光源)からの干渉(即ち、相互相関)を確実に無視して復調器回路のジョブを簡単にする。その結果、説明したゴールド符号ベースのシステムは、ウォルシュ・ハダマードコーディングのような同期アプローチよりもロバストかつ容易に実行できる非同期CDMA設計である。
本発明の更に別の実施形態では、光要素107a−107cの名目出力強度は、各ドライバ109a−109cからDCまたは任意アナログ波形の形状で供給される駆動信号のレベルによって設定される。図8に示すように、駆動信号レベルは、ユーザが指定したカラーポイントを発生させるために、光要素107a−107c(1つの要素だけしか示されていない)の要求された光出力レベル(高出力レベル801または低/減光出力レベル802)に従って選択される。各駆動信号は、CDMA変調器105から各ドライバ109a−109cに供給される固有のPRBSゴールド符号803によってそれ自体が振幅変調される。上述した検出及び復調方法に続いて、参照カラーポイントからのカラーのずれを補正するために、調整が必要な特定の光要素107a−107cのアナログ駆動信号を変化させることによって、フィードバック制御が達成される。また、カラー制御光源101の合計光出力を減光させるのは、アナログ駆動信号を変化させることによって達成することができる。
以上に、特許請求の範囲に記載されている本発明による光源及び方法の実施形態を説明した。これらは、単に非限定的な例として見るべきである。当業者には理解されるように、本発明の範囲内において多くの変更及び代替実施形態が可能である。
例えば、カラー検出技術は、LED光に限定されるものではない。原理的には、他の光源の全体的なスペクトル出力を記述する良好な関数が利用可能であれば、これらの他の光源も動作する。これらの他の関数は、非対称二重シグモイド関数以外であることができる。
当業者には明白なように、本明細書において、及び特許請求の範囲において使用している“からなる”という語が他の要素またはステップを排除するものではなく、また“ある”または“1つの”という語が複数を排除するものではないことを理解されたい。
101 カラー制御光源
103 カラー制御ユニット
105 CDMA変調器
107a−107c 光要素
109a−109c ドライバ
111a−111d 光検出器
113 CDMA復調器
220 空乏領域幅
230 エピタキシャル層
801 高出力レベル
802 低/減光出力レベル
803 PRBSゴールド符号

Claims (17)

  1. カラー制御光源であって、
    複数の色付き光要素と、
    スペクトル特性が異なり、一緒になって上記光要素の合計スペクトルを少なくとも実質的にカバーし、上記光源の光出力を検出して対応する検出信号を生成する複数の光検出器と、
    上記検出信号及び上記光源の光出力の所定の目標カラーポイントに基づいて、上記光要素への駆動信号を生成するカラー制御ユニットと、を備えているカラー制御光源において、上記光源が更に、
    上記光要素の各々への駆動信号を個々にシグネチャ変調する変調器と、
    上記検出信号を個々にシグネチャ復調し、上記各検出信号から上記光要素の各々の光出力の各実際の値を抽出する復調器と、を備え、
    上記カラー制御ユニットは、
    上記実際の値に基づいて上記各光要素のスペクトル出力を決定する手段と、
    全ての光要素の上記スペクトル出力から実際のカラーポイントを決定する手段と、
    上記目標カラーポイントと上記実際のカラーポイントとを比較し、もし差が存在すれば、上記差を最小にするように上記駆動信号を調整する手段と、を備えていることを特徴とする光源。
  2. 上記変調器はスペクトラム拡散変調器であり、上記駆動信号を個々にスペクトラム拡散コード化変調することを特徴とする請求項1に記載の光源。
  3. 上記変調器はCDMA変調器であり、上記駆動信号を個々にCDMAコード化変調することを特徴とする請求項1または2に記載の光源。
  4. 上記CDMAコード化変調は、オン・オフキーイング及び二相変調の一方であることを特徴とする請求項3に記載の光源。
  5. 上記光検出器は、RGBセンサ、XYZセンサ、及び光束センサからなる検出器のグループから選択されることを特徴とする請求項1乃至4の何れか1項に記載の光源。
  6. 上記RGBセンサは、その接合深さ、またはその空乏領域幅の何れかに依存するスペクトル応答性を有するシリコンフォトダイオードを備えることを特徴とする請求項5に記載の光源。
  7. 上記空乏領域幅は、バイアス電圧を用いて制御可能であることを特徴とする請求項6に記載の光源。
  8. 上記各光要素のスペクトル出力を決定する手段は、光要素のスペクトル出力の非対称関数モデリングのアルゴリズムによって上記スペクトル出力を決定することを特徴とする請求項1乃至7の何れか1項に記載の光源。
  9. 上記非対称関数モデリングのアルゴリズムは、非対称二重シグモイド関数を使用することを特徴とする請求項8に記載の光源。
  10. 上記スペクトル出力を決定する手段は、上記目標カラーポイントに基づいて上記光要素毎の名目スペクトル出力を決定し、上記名目スペクトル出力及び上記アルゴリズムを使用する最小化アルゴリズム使用することを特徴とする請求項1乃至9の何れか1項に記載の光源。
  11. 上記個々のシグネチャ変調は、ゴールド符号によって遂行されることを特徴とする請求項1乃至10の何れか1項に記載の光源。
  12. 複数の色付き光要素を備えている光源におけるカラー生成を制御する方法において、
    スペクトル特性が異なり、一緒になって上記光要素の合計スペクトルを少なくとも実質的にカバーし対応する検出信号を生成する複数の光検出器によって上記光源の光出力を検出するステップと、
    上記検出信号及び上記光源の光出力の所定の目標カラーポイントに基づいて、上記光要素への駆動信号を生成するステップと、を含み、
    上記方法が更に、
    上記光要素の各々への駆動信号を個々にシグネチャ変調するステップを含み、
    上記検出ステップは、上記検出信号を個々に復調し、各個々のシグネチャを識別することによって上記光要素の各々の光出力の各実際の値を抽出するステップ、を含み、
    上記方法が更に、
    上記実際の値に基づいて上記各光要素のスペクトル出力を決定するステップと、
    全ての光要素の上記スペクトル出力から実際のカラーポイントを決定するステップと、
    上記目標カラーポイントと上記実際のカラーポイントとを比較し、もし差が存在すれば、上記差を最小にするように上記駆動信号を調整するステップと、を含むことを特徴とする方法。
  13. 上記光要素の各々への駆動信号を個々にシグネチャ変調するステップは、上記駆動信号を個々にコード化スペクトラム拡散変調することからなることを特徴とする請求項12に記載の方法。
  14. 上記光要素の各々への駆動信号を個々にシグネチャ変調するステップは、上記駆動信号を個々にコード化CDMA変調することからなることを特徴とする請求項12または13に記載の方法。
  15. 上記個々のシグネチャ変調は、オン・オフキーイング及び二相変調の一方に基づくことを特徴とする請求項12乃至14の何れか1項に記載の方法。
  16. 上記光源の光出力は、RGBセンサ、XYZセンサ、及び光束センサの1つによって検出されることを特徴とする請求項12乃至15の何れか1項に記載の方法。
  17. 上記光要素のスペクトル出力を決定するステップは、光要素のスペクトル出力の非対称関数モデリングのためのアルゴリズムによって遂行されることを特徴とする請求項12乃至16の何れか1項に記載の方法。
JP2009534021A 2006-10-27 2007-10-23 カラー制御光源及び光源内のカラー生成を制御する方法 Expired - Fee Related JP5264746B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP06123052.0 2006-10-27
EP06123052 2006-10-27
EP07102609 2007-02-19
EP07102609.0 2007-02-19
PCT/IB2007/054305 WO2008050293A1 (en) 2006-10-27 2007-10-23 A color controlled light source and a method for controlling color generation in a light source

Publications (2)

Publication Number Publication Date
JP2010507891A true JP2010507891A (ja) 2010-03-11
JP5264746B2 JP5264746B2 (ja) 2013-08-14

Family

ID=39171422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009534021A Expired - Fee Related JP5264746B2 (ja) 2006-10-27 2007-10-23 カラー制御光源及び光源内のカラー生成を制御する方法

Country Status (7)

Country Link
US (1) US9179516B2 (ja)
EP (1) EP2087774B1 (ja)
JP (1) JP5264746B2 (ja)
CN (1) CN101529981B (ja)
AT (1) ATE485701T1 (ja)
DE (1) DE602007010020D1 (ja)
WO (1) WO2008050293A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101990786A (zh) * 2008-01-17 2011-03-23 皇家飞利浦电子股份有限公司 用于光强度控制的方法和装置
EP2243334A2 (en) * 2008-02-07 2010-10-27 Nxp B.V. Multi-core light engine architecture
WO2009136309A2 (en) * 2008-05-06 2009-11-12 Koninklijke Philips Electronics N.V. Illumination system and method for processing light
US10359151B2 (en) 2010-03-03 2019-07-23 Ideal Industries Lighting Llc Solid state lamp with thermal spreading elements and light directing optics
US9500325B2 (en) 2010-03-03 2016-11-22 Cree, Inc. LED lamp incorporating remote phosphor with heat dissipation features
US8632196B2 (en) 2010-03-03 2014-01-21 Cree, Inc. LED lamp incorporating remote phosphor and diffuser with heat dissipation features
US9625105B2 (en) 2010-03-03 2017-04-18 Cree, Inc. LED lamp with active cooling element
US10451251B2 (en) 2010-08-02 2019-10-22 Ideal Industries Lighting, LLC Solid state lamp with light directing optics and diffuser
US11251164B2 (en) 2011-02-16 2022-02-15 Creeled, Inc. Multi-layer conversion material for down conversion in solid state lighting
CN102548130B (zh) * 2011-12-02 2014-01-29 张广涵 一种采用软件编号技术的led灯饰系统
US9386643B2 (en) 2012-01-17 2016-07-05 Koninklijke Philips N.V. Visible light communications using a remote control
US9488359B2 (en) 2012-03-26 2016-11-08 Cree, Inc. Passive phase change radiators for LED lamps and fixtures
CN105580496A (zh) * 2013-09-13 2016-05-11 飞利浦照明控股有限公司 使用光源加驱动器的传递函数对光进行控制和编码
US9496955B2 (en) 2013-09-19 2016-11-15 eocys, LLC Devices and methods to produce and receive an encoded light signature
US9568458B2 (en) 2014-08-21 2017-02-14 Sharp Kabushiki Kaisha Optical sensor for fluid analysis
US9572223B1 (en) * 2015-05-14 2017-02-14 Hughey & Phillips, Llc Precision color-controlled light source
CN110059621A (zh) * 2019-04-17 2019-07-26 青岛海信电器股份有限公司 手柄光球颜色的控制方法、装置及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312619A (ja) * 1996-02-15 1997-12-02 Alcatel Alsthom Co General Electricite 周波数符号化光学cdma伝送システムおよびその光受信機
US20020054408A1 (en) * 2000-11-07 2002-05-09 Ho-Joon Lee Signal processing system of multiplexed fiber bragg grating sensor using CDMA
JP2005259699A (ja) * 2004-03-11 2005-09-22 Agilent Technol Inc Ledを利用して白色光を生じるシステム及びその動作方法
JP2006079099A (ja) * 2004-09-10 2006-03-23 Agilent Technol Inc 複数の発光体の駆動電流を調整するための方法及び装置
JP2006108095A (ja) * 2004-09-30 2006-04-20 Patent Treuhand Ges Elektr Gluehlamp Mbh 照明装置および調整方法
WO2006111930A2 (en) * 2005-04-22 2006-10-26 Koninklijke Philips Electronics N.V. Illumination control

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4947362A (en) * 1988-04-29 1990-08-07 Harris Semiconductor Patents, Inc. Digital filter employing parallel processing
US5965875A (en) 1998-04-24 1999-10-12 Foveon, Inc. Color separation in an active pixel cell imaging array using a triple-well structure
TW595722U (en) * 2000-01-07 2004-06-21 Deng-Hua Li Color simulation system
US6542270B2 (en) * 2000-12-08 2003-04-01 Motorola, Inc. Interference-robust coded-modulation scheme for optical communications and method for modulating illumination for optical communications
US6630801B2 (en) * 2001-10-22 2003-10-07 Lümileds USA Method and apparatus for sensing the color point of an RGB LED white luminary using photodiodes
US6825619B2 (en) * 2002-08-08 2004-11-30 Datex-Ohmeda, Inc. Feedback-controlled LED switching
FR2848375B1 (fr) 2002-12-05 2005-01-14 Schneider Electric Ind Sas Dispositif d'eclairage a diodes electroluminescentes comportant un dispositif de communication et installation comportant un tel dispositif
AU2003294822A1 (en) 2002-12-09 2004-06-30 Quantum Semiconductor Llc Cmos image sensor
KR100560309B1 (ko) 2003-12-31 2006-03-14 동부아남반도체 주식회사 씨모스 이미지 센서 및 그 광 칼라 감도 감지 방법
US7339332B2 (en) * 2004-05-24 2008-03-04 Honeywell International, Inc. Chroma compensated backlit display
US7220959B2 (en) 2004-08-16 2007-05-22 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Differential color sensor without filters
JP2006203669A (ja) 2005-01-21 2006-08-03 Nakagawa Kenkyusho:Kk 光通信方式
WO2006079199A1 (en) 2005-01-25 2006-08-03 Tir Systems Ltd. Method and apparatus for illumination and communication

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312619A (ja) * 1996-02-15 1997-12-02 Alcatel Alsthom Co General Electricite 周波数符号化光学cdma伝送システムおよびその光受信機
US20020054408A1 (en) * 2000-11-07 2002-05-09 Ho-Joon Lee Signal processing system of multiplexed fiber bragg grating sensor using CDMA
JP2005259699A (ja) * 2004-03-11 2005-09-22 Agilent Technol Inc Ledを利用して白色光を生じるシステム及びその動作方法
JP2006079099A (ja) * 2004-09-10 2006-03-23 Agilent Technol Inc 複数の発光体の駆動電流を調整するための方法及び装置
JP2006108095A (ja) * 2004-09-30 2006-04-20 Patent Treuhand Ges Elektr Gluehlamp Mbh 照明装置および調整方法
WO2006111930A2 (en) * 2005-04-22 2006-10-26 Koninklijke Philips Electronics N.V. Illumination control

Also Published As

Publication number Publication date
DE602007010020D1 (de) 2010-12-02
US9179516B2 (en) 2015-11-03
JP5264746B2 (ja) 2013-08-14
US20100327755A1 (en) 2010-12-30
CN101529981B (zh) 2012-06-27
ATE485701T1 (de) 2010-11-15
EP2087774B1 (en) 2010-10-20
CN101529981A (zh) 2009-09-09
EP2087774A1 (en) 2009-08-12
WO2008050293A1 (en) 2008-05-02

Similar Documents

Publication Publication Date Title
JP5264746B2 (ja) カラー制御光源及び光源内のカラー生成を制御する方法
EP2087773B1 (en) A color controlled light source and a method for controlling color generation in a light source
EP2328385A1 (en) Method and apparatus for light intensity control
JP5785393B2 (ja) 混合光システム内の変調された光を弁別する方法及び装置
EP2406902B1 (en) Illumination device and method for embedding data symbols in a luminance output
US8492995B2 (en) Wavelength sensing lighting system and associated methods
JP4616714B2 (ja) 光通信システム、及びそれに使用される照明装置、端末装置
CN101479966B (zh) 用于对发光设备的光发射进行调制的方法和设备
US20080180040A1 (en) Method and apparatus for networked illumination devices
US20080290250A1 (en) Color Lighting Device
KR20110053448A (ko) 조절 가능한 컬러 광 소스
Li et al. Unidirectional visible light communication and illumination with LEDs
EP2449858A2 (en) Method and system for asynchronous lamp identification
WO2009040705A2 (en) Method and apparatus for light intensity control with drive current modulation
KR101508873B1 (ko) 광통신을 위한 송신 장치 및 수신 장치

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100616

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120625

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120924

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130430

R150 Certificate of patent or registration of utility model

Ref document number: 5264746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees