JP2010501932A - 地図作成アプリケーションにおける数値表面モデルのモデリングおよびテクスチャリング - Google Patents

地図作成アプリケーションにおける数値表面モデルのモデリングおよびテクスチャリング Download PDF

Info

Publication number
JP2010501932A
JP2010501932A JP2009525548A JP2009525548A JP2010501932A JP 2010501932 A JP2010501932 A JP 2010501932A JP 2009525548 A JP2009525548 A JP 2009525548A JP 2009525548 A JP2009525548 A JP 2009525548A JP 2010501932 A JP2010501932 A JP 2010501932A
Authority
JP
Japan
Prior art keywords
image
image capture
aerial
images
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009525548A
Other languages
English (en)
Inventor
オフェク,エヤル
キムヒ,グール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsoft Corp
Original Assignee
Microsoft Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microsoft Corp filed Critical Microsoft Corp
Publication of JP2010501932A publication Critical patent/JP2010501932A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/04Texture mapping
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/40Analysis of texture

Abstract

【課題】地図作成アプリケーションにおける実施のための、地球の表面上にある種々の物体の数値表面モデル(DSM)テクスチャリングおよびモデリング・システムおよび方法を提供する。
【解決手段】広角レンズを有する1つ以上の画像取り込みデバイスを種々の構成で配置して、鉛直写真および斜め写真を得る。このような構成は、1つのレンズおよび1つのセンサー、1つのレンズおよび複数のセンサー、複数のレンズ、複数の複数のセンサー、および反射面を含む。画像から、位置、距離、および面積を測定することができる。また、空中パノラマと地上画像との間における連続モーフを行う用意もある。
【選択図】図1

Description

大規模な地図作成アプリケーション(mapping application)では、地球の地形や、地上表面に存在する建物やその他の物体のモデルのモデリングの重大性および分量が増大している。これらの物体に対する一般的な名称は、数値表面モデル(DSM:Digital Surface Model)である。建物やその他の構造物がなく地形のみの場合、その名称は数値標高モデル(DEM:Digital Elevation Model)となる。このような地図作成プロジェクトでは、建物、構造物、および種々のその他の物体(例えば、山、樹木等)は、種々のナビゲーション角度で(例えば、斜め視野、鳥瞰角、斜視角、上方目視角、前方目視角、下方軌跡、上方軌跡等)見ることができる。このようなナビゲーション角度は一部の場所については入手可能であるが、多数のその他の場所では情報が不足している。したがって、このような地図作成アプリケーションでは、大多数の場所についての詳細およびモデリングの側面(aspect)が不足している。
前述の欠点およびその他の欠点を克服するために、DSMをモデルリングおよびテクスチャリング(texturing)し、このような情報を地図作成アプリケーションにおいて応用する手段を備えた実施形態を提供する。
開示する実施形態の態様のいくつかの基本的な理解が得られるようにするために、簡略化した摘要を以下に示す。この摘要は、長大な全体像ではなく、主要な要素またはなくてはならない要素を特定することも、このような実施形態の範囲を正確に叙述することも意図していない。その目的は、記載する実施形態の概念の一部を、簡略化した形態で、後から提示する更に詳細な説明の序文として提示することである。
1つ以上の実施形態およびその対応する開示によれば、地図作成アプリケーションのためのDSMテクスチャリングおよびモデリングと結び付けて、種々の態様について説明する。一部の実施形態によれば、画像を取り込む技法は、モデリングおよびテクスチャリングのために鉛直写真撮影および斜め写真撮影の利点を組み合わせる。位置、距離、および面積(area)は、画像(imagery)から測定することができる。一部の実施形態によれば、空中パノラマと地上画像との間に連続的モーフ(morph)がある。
前述の目標および関係する目標の遂行のために、1つ以上の実施形態は、以下で詳しく説明し特定的に特許請求の範囲において指摘する特徴を備えている。以下の説明および添付図面は、ある種の例示的態様を詳しく明記するが、実施形態の原理を採用することができる種々の方法のうち数個を示すに過ぎない。その他の利点および新規の特徴は、以下の詳細な説明を図面と合わせて考察すれば明確となり、開示する実施形態は、このような態様およびその同等物の全てを含むことを意図している。
図1は、空中DSM画像を取り込み、このような空中画像を複数の写真測量製品に応用するシステム例を示す。 図2は、画像のテクスチャリングおよびモデリングを行うシステムの別の一例を示す。 図3は、開示する実施形態と共に利用することができる画像取り込みデバイスの一例を示す。 図4は、開示する実施形態と共に利用することができる画像取り込みデバイスの別の一例を示す。 図5は、ここに開示する種々の実施形態と共に利用することができる複数の画像取り込みデバイスの構成例を示す。 図6は、ここに開示する種々の実施形態と共に利用することができる複数の画像取り込みデバイスの別の構成例を示す。 図7は、1つ以上の実施形態と共に利用することができる斜め画像を示す。 図8は、超広角画像の斜め画像平面と半球画像面との間の典型的な差を示す。 図9は、極広角画像からの仮想斜め画像の発生を示す。 図10は、DSMモデリングおよびテクスチャリング方法を示す。 図11は、別のDSMモデリングおよびテクスチャリング方法を示す。
これより、図面を参照しながら種々の実施形態について説明する。図面では、全体を通じて同様の要素を示す際には、同様の参照番号を用いることとする。以下の記載では、説明の目的上、1つ以上の態様の完全な理解が得られるようにするために、多数の具体的な詳細を明記する。しかしながら、種々の実施形態はこれらの具体的な詳細がなくても実施できることは明白であると考えられる。他方で、周知の構造やデバイスはブロック図形状で示し、これらの実施形態を記載し易くしている。
本願において用いる場合、「コンポーネント(部、構成要素)」(component)、「モジュール」、「システム」等の用語は、コンピューター関係エンティティを指し、ハードウェア、ハードウェアおよびソフトウェアの組み合わせ、ソフトウェア、または実行中のソフトウェアの任意のものを意図している。例えば、コンポーネントとは、限定ではないが、プロセッサー上で走るプロセス、プロセッサー、オブジェクト、エクゼキュータブル、実行スレッド、プログラム、および/またはコンピューターであってもよい。例示として、サーバー上で走るアプリケーションおよびサーバー自体の双方がコンポーネントであり得る。1つ以上のコンポーネントは、プロセスおよび/または実行スレッドの内部に位置することができ、コンポーネントは1つのコンピューター上に局在化(localize)しても、および/または2つ以上のコンピューター間で分散してもよい。
「一例」(exemplary)ということばは、ここでは、例、実例(instance)、または例示(illustration)としての役割を果たすことを意味するために用いられる。「一例」としてここで記載されるいずれの態様または設計であっても、他の態様または設計よりも好ましいまたは有利であるというように、必ずしも解釈されることはない。
種々の実施形態は、多数のコンポーネント、モジュール等を含むことができるシステムに関して提示する。尚、種々のシステムは追加のコンポーネント、モジュール等を含んでもよく、および/または図と関連付けて論ずるコンポーネント、モジュール等の全てを含まなくてもよいことは言うまでもないであろうし、認められるであろう。また、これらの手法の組み合わせを用いてもよい。
図1は、DSM空中画像を取り込み、このような空中画像を複数の写真撮影製品に応用するシステム100の一例を示す。システム100は、鉛直写真撮影および斜め写真撮影の利点を合わせ持つ。
開示する実施形態の真価を完全に理解するために、数値表面モデル(DSM)発生の概略的なプロセスを説明する。DSM画像は、地上およびその他の構造物の鉛直(例えば、地上においてカメラ点から直接下に向かう)写真を数枚取り込むことを伴う。カメラ位置の計算は、画像を取り込むときと実質的に同時に行うか、または後処理においてというように、画像を取り込んだ後に行う。位置は、各画像と既知の地上点との間、および画像間(束調節(bundle adjustment)として知られている)において対応する点を識別することによって決定することができる。地面、建物、およびその他の物体のモデリングは、1枚よりも多い画像において見られる、物体上における対応する点を照合することによって行われる。例えば、建物の角は、少なくとも2枚の画像において識別される。モデリングを行う際、鉛直画像を利用することができる。何故なら、地面に対して平行な画像はほぼ一定の倍率(scale)を示すからである。また、モデリングは、斜め画像または広角センサーのようなセンサー上で行うこともできる。例えば、フレームの縁に現れる建物は、フレームの中心における別の建物と同様の倍率で表される。各画像を撮影するときのカメラの位置、およびカメラ内部のパラメーターが与えられれば、各画像点は、空間における目視射線(view ray)に変換することができる。これらの射線を交差させると、建物の角の空間における位置が得られる。対応する点の識別、および三次元の点の復元は、種々の技法を用いて、手動または自動で行うことができる。
復元した三次元の点を利用することにより、各建物のモデルを構築する。建物のモデルにテクスチャリングを施すことができる。各モデルは、平面ファセット(planar facet)またはその他の表面原線(surface primitive)(例えば、非均一合理的B−スプライン(Non-Uniform Rational B-Spline)即ちNURBS、これはモデリングにおいて用いられる表面要素に対する数学的定義である)から成る。各原線を、それが見える画像上に投射する。画像データは、原始テクスチャー(primitive texture)として用いられる。
モデリングおよびテクスチャリングは、鉛直写真撮影および斜め写真撮影の組み合わせを利用する。斜め写真撮影で建物をモデリングする選択肢もあるが、これにはいくつかの困難が伴う。第1に、斜め画像の地上倍率(ground scale)は、フレームに沿って変化する。建物が水平に近づくに連れて、その再現精度は1/zの割合で低下する。ここで、zはカメラから地上点までの距離である。また、斜め画像は、その方向に面する物体のファセット、例えば、建物の北側のファセットのみを取り込む。建物の完全なモデル(およびテクスチャー適用範囲 (texture coverage))を得るには、数枚の画像が必要となり、各画像を異なる方向から撮影する。視角が水平方向に近づくに連れて、視認性(visibility)が増々複雑になる。何故なら、建物は、当該建物とカメラとの間にある物体(建物、構造物、樹木等)によって遮られるからである。複雑な視認性の下では、例えば、北側を向いている斜め画像は、フレーム内にある全ての建物の南側ファセット全てを取り込むことができない。したがって、より多くの画像が必要となる。
このため、システム100は、鉛直写真撮影および斜め写真撮影の利点を合わせ持つように構成することができる。システム100は、画像取り込みコンポーネント102、物体識別コンポーネント104、および提示コンポーネント106を含む。システム100には、多数の画像取り込みコンポーネント102および物体識別コンポーネント104を含めることができることは認められようが、簡略化の目的に沿って、1つの識別コンポーネント104とインターフェースする1つの画像取り込みコンポーネント102を示す。
画像取り込みコンポーネント102は、レンズを含み、このレンズは広い角度から当該レンズに近づく光を取り込むように設計されている。画像取り込みコンポーネント102は、鉛直位置および斜め位置の少なくとも1つにおいて画像を取り込むように構成することができる。画像取り込みコンポーネント102と関連のある種々の態様について、ここではカメラを参照しながら説明するとよいであろう。尚、地球の表面および地球の表面に沿った物体の写真を取り込む即ち撮影する技法であれば、そのいずれでも1つ以上の開示する実施形態と共に利用できることは認められよう。画像取り込みコンポーネント102の種々の構成については、以下で規定する。
システム100は、直下に向けられる画像取り込みコンポーネント102に関連して、超広角レンズ(約120度)を利用することができる。視野の中央部は、鉛直写真と同等となることができ、一方写真の縁部は360度の方向(方位方向)斜め写真と同等となることができる。システム100が地上を走査すると、高精度の中央画像をモデリングの基準として利用することができ、一方画像の縁部では、各方向から建物側面を広く捕らえる。
物体識別コンポーネント104は、種々の画像を受け入れて、このような画像における同様の物体または場所を識別するように構成することができる。物体または場所のこのような識別は、手動機能とすることができ、これによって、物体識別コンポーネント104はユーザーおよび/またはエンティティ(例えば、インターネット、別のシステム、コンピューター...)からの入力を受け取り、個々の画像または画像の部分集合を物体または場所と関連付ける。ある実施形態によれば、物体識別コンポーネント104は、多数の画像の中から同様の画像または場所を自律的に識別し、その画像または画像の一部を物体または場所と自動的に関連付ける。物体または場所の画像との関連付けは、多数の画像を用いて地球および地球表面上に位置する種々の物体のモデルを表現する地図作成アプリケーションに応用することができる。
提示コンポーネント106は、得られた画像を表示画面に提示または表示するように構成することができる。このような提示は、ユーザーが多数のナビゲーション角度において特定の場所の表示を要求する地図作成アプリケーションにおいても可能である。このようにして、ユーザーには豊富な表示が提示され、実世界画像のモデリングおよびテクスチャリングを行う準備が整う。
図2は、画像のテクスチャリングおよびモデリング・システム200の別の例を示す。システム200は、画像処理手順を利用して種々の製品を生成することができる。例えば、システム200は、画像データから位置、距離、および面積の直接測定値を得るように構成することができる。システム200は、地上表面の正斜画像、および/または地上表面の斜め光景(oblique view)を得ることができる。三次元DSMのモデリングは、システム200および/またはモデルのテクスチャリングによって備えることができる。あるいはまたは加えて、システム200は空中360度光景と地上360度パノラマ光景との間で連続的なモーフ即ち変換(transformation)を行うことができる。
空中パノラマは、場面の360度全域の光景を示す画像である。このような光景は、地上に対して大まかに平行な円筒状ストリップ、またはカメラの視野方向を中心とする半球の一部とすることができる。地上パノラマは、取り込み点を中心とする環境、即ち、視点を中心とする半球を示すストリップである。
地上DEMおよび復元DSMを用いると、空中パノラマと地上系パノラマとの間に軌跡をかける中間パノラマを発生することができる。例えば、テクスチャー・ジェオメトリー(texture geometry)の再投影によって、または元の画像を投影したジェオメトリーの位置にモーフィングする(morphing)ことによって、画像を発生することができる。これによって、空中画像から地上レベルの画像の間、2枚の空中画像間、または2枚の地上画像間において円滑な遷移を得ることができる。
システム200は、種々の角度から多数の画像を取り込むように構成することができる画像取り込みコンポーネント202を含む。画像取り込みコンポーネント202以外に、システム200の中に含むことができるのは、視野(viewing area)において物体を識別するように構成することができる物体識別コンポーネント204、および、例えば、地図作成アプリケーションでは表示画面上で、取り込んだ画像をユーザーに表示するように構成することができる提示コンポーネント206である。
画像取り込みコンポーネント202は、種々の構成を備えることができる。例えば、画像取り込みコンポーネント202は、「1枚のレンズおよび1つのセンサー」、「1つのレンズおよび複数のセンサー」、「複数のレンズおよび複数のセンサー」、「複数のレンズ、複数のセンサーおよび反射面」、またはその他の構成を含むことができる。画像取り込みコンポーネント202は、例えば、超広角(例えば、少なくとも120度)および高分解能センサーを含む空中カメラとすることができる。
一部の実施形態によれば、同期モジュール208を画像取り込みコンポーネント202と関連付けることができる。同期モジュール208は、画像取り込み時刻またはその他のパラメーターを、少なくとも1つの他の画像取り込みコンポーネントと同期させて、同様の場面を同じように取り込み易くすることができる。尚、同期モジュール208は、画像取り込みコンポーネントに含まれるように例示されているが、一部の実施形態によれば、同期モジュール208は別個の構成要素とすること、または他のシステム200の構成要素と関連付けることもできることは言うまでもない。
コンバイナー・モジュール210は、物体識別コンポーネント204に含めることができ、あるいは一部の実施形態によれば別個のモジュールとすることができる。コンバイナー・モジュール210は、複数の画像取り込みコンポーネントから受信した複数の画像を得て、これらの画像を組み合わせるように構成することができる。つまり、コンバイナー・モジュール210は、種々のナビゲーション角度からの画像を大きくして、または更に詳細にして提示することができる。
例えば、第1画像取り込みデバイスは、第1および第2画像を取り込むことができ、第2画像取り込みデバイスは第3および第4画像を取り込むことができる。同期モジュール208は、4枚(またはそれより多い画像)の取り込みの同期を取ることができ、コンバイナー・モジュールは、部分的に画像内に位置する少なくとも1つの識別した物体に基づいて、画像を組み合わせることができる。
また、システム200は物体位置検出コンポーネント208も含むことができる。物体位置検出コンポーネント208は、画像取り込みコンポーネント202、物体識別コンポーネント204、または両構成要素202、204とインターフェースすることができる。位置検出コンポーネント212は、画像取り込みコンポーネント202の画像面上におけるいずれの場所でも、空間内の射線に変換するように構成することができる。このような構成は、画像取り込みコンポーネント202の内部パラメーターを考慮に入れることができる。画像取り込みコンポーネント202の位置および方位が与えられると、位置検出コンポーネント212は、射線を地上モデルと交差させ、画像におけるその点に対応する空間における位置を決定するように構成することができる。位置および方位は、慣性測定ユニット(IMU:Inertial Measurement Unit)を利用することによって決定することができ、あるいは地上制御点を特定することによって、画像から復元することができる。
一部の実施形態では、位置検出コンポーネント212は、各々画像取り込みデバイス202の異なる位置から発する2本以上の射線を交差させるように構成することができる。各射線は、画像取り込みデバイス202の画像面の各々における同様の世界点 (world point)の異なる画像に対応することができる。
位置検出コンポーネント212は、更に、距離を測定するように構成することができる。この距離は、2点間の直線距離、またはポリライン(polyline)に沿った長さとすることができる。ポリラインとは、一連の点によって定義することができる1つ以上の線分によって構成される連続線のことである。画像点は、位置検出コンポーネント212によって、距離計算のために、対応する地上点にマッピングすることができる。同様に、位置検出コンポーネント212は、画像における区域多角形境界(area polygonal boundary)を定めることによって、地上即ち地球の表面上の面積を測定することができる。このような面積は、画像における多角形の頂点に対応する点の地上位置を用いることによって求めることができる。
ユーザーが地図作成アプリケーションにおいて特定の場所または物体を見ることを望む場合、ユーザーは提示コンポーネント206とインターフェースする。提示コンポーネント206は、固定または移動体のいずれでもよい、コンピューターまたはその他の計算機と関連付けることができる。このようなインターフェースは、ユーザーが正確な場所(例えば、経度、緯度)を入力すること、または住所、都市、州を入力すること、あるいはその他の識別手段を含むことができる。提示コンポーネント206は、種々の形式のユーザー・インターフェースを備えることができる。例えば、提示コンポーネント206は、グラフィカル・ユーザー・インターフェース(GUI)、コマンド・ライン・インターフェース、音声インターフェース、自然言語テキスト・インターフェース等を設けることができる。例えば、所望の場所をロードする、インポートする、選択する、読み取る等のための領域または手段をユーザーに提供するGUIを描写する(render)ことができ、GUIは、そのような結果を提示する領域を含むことができる。これらの領域は、既知のテキストおよび/またはグラフィック領域を含むことができ、これらの領域には、ダイアログ・ボックス、静止制御部、ドロップ・ダウン・メニュー、リスト・ボックス、ポップアップ・メニュー、編集制御部(as edit controls)、コンボ・ボックス、ラジオ・ボタン、チェック・ボックス、プッシュ・ボタン、およびグラフィック・ボックスを備える。加えて、ナビゲーションのための垂直および/水平スクロール・バーや、領域が目視可能か否か判断するためのツールバー・ボタンのような、情報伝達を容易にするユーティリティーも用いることができる。
また、ユーザーはこれらの領域と相互作用を行って、例えば、マウス、ローラ・ボール、キーパッド、キーボード、ペン、カメラで取り込んだ身振り(gesture)、および/または音声活性化のような種々のデバイスを通じて、情報を選択し提供することができる。通例、情報伝達を開始するために、情報入力に続いて、キーボード上のプッシュ・ボタンや入力キーのようなメカニズムを用いることができる。しかしながら、開示する実施形態はそのように限定されるのではないことは、認められるはずである。例えば、単にチェック・ボックスを強調するだけでも、情報伝達を開始することができる。別の例では、コマンド・ライン・インターフェースを用いることができる。例えば、コマンド・ライン・インターフェースは、テキスト・メッセージを供給すること、オーディオ・トーンを生成すること等によって、ユーザーに情報を催促することができる。次いで、ユーザーは、インターフェース・プロンプトに設けられる選択肢、またはプロンプトの中で行われる質問に対する回答に対応する英数字入力のような、適した情報を提供することができる。尚、コマンド・ライン・インターフェースは、GUIおよび/APIと併せて用いることができることは、認められるはずである。加えて、コマンド・ライン・インターフェースは、ハードウェア(例えば、ビデオ・カード)および/またはディスプレイ(例えば、白黒、およびEGA)のグラフィック・サポートが制限されている場合、および/または通信チャネルの帯域幅が狭い場合でも、これらと併せて用いることもできる。
得られた画像は、検索可能なフォーマットで記憶媒体214に維持することができる。記憶媒体214は、提示コンポーネント206またはシステム200の別の構成要素と関連付けることができる。記憶媒体214は、メモリおよび/または情報を格納することができるその他の何らかの媒体とすることができる。限定ではなく例示として、記憶媒体214は、不揮発性および/または揮発性メモリを含むことができる。適した不揮発性メモリには、リード・オンリ・メモリ(ROM)、プログラマブルROM(PROM)、電気的プログラマブルROM(EPROM)、電気的消去可能プログラマブルROM(EEPROM)、またはフラッシュ・メモリを含むことができる。揮発性メモリには、ランダム・アクセス・メモリ(RAM)を含むことができる。これは、外部キャッシュ・メモリとして作用する。限定ではなく一例として、RAMは、スタティックRAM(SRAM)、ダイナミックRAM(DRAM)、同期DRAM(SDRAM)、データ倍速SDRAM(DDR SDRAM)、改良型SDRAM(ESDRAM)、シンクリンクDRAM(SLDRAM)、ランバス・ディレクトRAM(RDRAM:Rambus direct RAM)、ディレクト・ランバス・ダイナミックRAM(DRDRAM)、およびランバス・ダイナミックRAM(RDRAM)を含むことができる。
図3は、開示する実施形態と共に利用することができる画像取り込みデバイス300の一例を示す。画像取り込みデバイス300は、1枚のレンズ302および1つのセンサー304を含む。画像取り込みデバイス300は、極広角レンズ(super-wide lens)302を用いる高品位カメラ304とすることができる。カメラ304は、地球306またはその他の地形に向かって直下を指し示ように、航空機上に装備することができる。得られる画像の地上倍率(ground scale)は可変であり、その中心付近では高く、画像が水平に近づくに連れて低くなっていく。
図4は、開示する実施形態と共に利用することができる画像取り込みデバイス400の別の例を示す。画像取り込みデバイスは、1つのレンズ402と複数のセンサー404とを含む。4つのセンサー404が示されているが、画像取り込みデバイス400はいずれの数のセンサーでも含むことができる。複数のセンサー404を利用すると、図3に示す画像取り込みデバイス300に伴う費用を低減することができる。隣接するセンサー408、410間には、センサー404のアレイが及ばない継ぎ目406(そのうち1つだけに番号を付する)がある。画像取り込みデバイス400は、広角レンズのカメラとすることができ、地球またはその他の地形412に向かって直下を指し示す。地形412の種々の区域の画像は、隣接するセンサー408、410間の継ぎ目406のために、取り込むことができない、即ち、撮影できない場合がある。地形412のこれらの区域は、次の露出において補う(cover)ことができ、あるいは地形412の同様の区域を第1画像取り込みデバイス400とほぼ同時に取り込む第2画像取り込みデバイス(図示せず)によって補うことができる。このようにして、複数の画像取り込みデバイスの画像の相互作用によって、地形全体を取り込むことができる。
図5は、ここに開示する種々の実施形態と共に利用することができる複数の画像取り込みデバイスの構成500の一例を示す。複数の画像取り込みデバイス502、504、506、508、510は、組み合わせた視野角512、514、516、518、520が半球全体、またはある最小距離では鉛直方向を中心として約120度を覆うように、外向き構成で航空機またはその他のビヒクルの下に装備することができる。画像取り込みデバイス502、504、506、508、510を同期させれば、同様の場面または地形522を同じように取り込み易くすることができる。この構成500では、複数の画像取り込みデバイス502、504、506、508、510があるために、複数のレンズおよび複数のセンサーを備えることになる。尚、5つの画像取り込みデバイスを示すが、システム500における取り込みデバイスはそれよりも多くても少なくてもよいことを注記しておく。
図6は、ここに開示する種々の実施形態と共に利用することができる複数の画像取り込みデバイスの構成600の別の例を示す。複数の画像取り込みデバイス602、604、606、608、610によるこの構成600は、複数のレンズ、複数のセンサー、および反射面612を備えている。反射面612は、航空機を中心とする半球からの射線を、内向き構成で配置されている画像取り込みデバイス602、604、606、608、610に反射する鏡面とすることができる。尚、システム600に含むことができる取り込みデバイスはそれよりも多くても少なくてもよいことを注記しておく。
この構成600は、全視野カメラには既に知られている。しかしながら、1台のカメラを用いる場合、様々な制限を受けることになる。第1に、反射面即ちミラー612は、半球の射線を、カメラのセンサー上における円形画像にマッピングする。多くの状況では、カメラの方向から離れる程角度の分解能は、低下する、即ち低分解能となる。次に、画像の総分解能は、センサーの分解能による制限を受ける。最後に、画像の中心は、反射面即ちミラーにおけるカメラ自体の反射を示す。つまり、カメラ自体が場面即ち得られる画像から特定の区域に対する射線を遮断する。
画像取り込みデバイスが1つである場合に伴う問題を軽減するために、複数の画像取り込みデバイス602、604、606、608、610を利用して、数通りの方向から反射面即ちミラー612の画像を取り込む。最終的に発生する画像は、各画像取り込みデバイス602、604、606、608、610の画像を融合し、デバイス602、604、606、608、610の反射の画像を除去したものとなる。
正射写真は、一定の地上倍率を有し、頭上からの正射投影(orthographic projection)によって撮影する、地球の被写域 (photographic coverage)である。一般に、正射写真は、鉛直画像(例えば、直下に向けたカメラまたはデバイスによって撮影する)と、DSMとを利用して発生する。DSMは、2.5次元表面とすることができ、各地上点(地面上にある建物やその他の物体を含む)における高さを測定する。DSMは、光検出および測距(LIDAR:Light Detecting and Ranging)センサー、インターフェロメトリック合成開口レーダー(IFSAR:InterFerometric Synthetic Aperture Radar)、またはその他のセンサーのような、ある範囲のセンサーによって取り込むことができる。DSMは、ステレオ・プロセスによってというように、同じ地上区域または複数の領域を覆う鉛直画像のより大きなグループの対から発生することができる。
正射写真は、定めた地上分解能で画像を定めることによって発生することができる。その画像の各画素は、カメラ位置の方位および内部パラメーター(例えば、焦点距離)を考慮して、元の画像上に投射した地上点を表すことができる。地上点は、経度−緯度(X−Y)位置、およびDSMから得られたその高度によって定めることができる。投射点における画像の色は、正射画像に着色するために利用することができる。
正射写真の発生に用いられる鉛直画像は、約40度以下の視角を有することができる。開示する実施形態を利用する空中画像取り込みコンポーネントは、鉛直画像によって取り込んだのと同様の、その画像の中心部において、1束の目視射線を取り込むことができる。例えば、画像の中心の40度の区域は、標準的な40度空中カメラの光景と実質的に同一とすることができる。
正射写真は、ここに示し説明している実施形態を利用することによって取り込むことができる。例えば、1つのセンサーと、広角レンズのような1つのレンズとを含む構成では、レンズはピンホール・カメラとして機能することができる。このように、同じフット・プリントを見るセンサーの区域(同じ飛行高度、および120度の視角を想定する)は、センサーの区域の約16パーセントとなる。同様の分解能で正射写真を得るには、60M画素センサーのようなセンサーを利用することができる。別の実施形態では、等しい角度を画像面上で等しい距離にマッピングするレンズを利用すれば、約90M画素のセンサーを利用することができる。しかしながら、他のレンズやセンサーもここに開示する1つ以上の実施形態と共に利用することができる。
多センサー−単一レンズ構成では、3×3アレイのセンサーのような、センサー・アレイを利用して画像を発生することができる。各センサーは、正射写真撮影に利用するセンサーと同様とすることができる。3×3アレイにおける中間のセンサーは、通常の正射写真と同等の画像を発生することができる。
多レンズ−多センサー構成では、鉛直方向に向けられたカメラを利用すれば、同様の正射画像を発生することができる。複数のレンズ、複数のセンサー、および反射面を含む構成では、画像取り込みコンポーネントの反射を画像から除去しなければならない。他の画像取り込みコンポーネントによって得られた画像を利用すると、融合技法によるように、反射のない画像を再現することができる。
斜め光景(oblique view)とは、鉛直方向に対して傾けた画像取り込みコンポーネント即ちカメラによって得た画像である。斜め光景は、鉛直画像からは曖昧な、建物の側面の詳細のような、詳細を示す。斜め画像の方が、ユーザーは容易に認識することができる。何故なら、これの方が地上レベルに近い角度から場面の物体を示すからであり、この方がユーザーに親しみやすくすることができる。
鉛直画像とは対照的に、斜め画像は指向性(directional)である。即ち、南からのある点の斜め画像は、北からの同じ点の斜め画像とは異なる。その結果、場面の可能な全ての斜め画像を地図作成アプリケーションによって示しても、各点における場面の光景を取り込むには十分でなく、各点における全ての異なる方向から場面を取り込まなければならない。
これより図7を参照すると、斜め画像に対する目視方向(view direction)の一例が示されている。斜め画像は、垂直、鉛直方向からの角度によって測定した目視方向を有することができる。典型的な値は、斜め角に対して40度、視角に対して約40度とすることができる。
702に、上から見た斜め画像を示し、704に、開示する実施形態を利用した、極広角画像を示す。第1光景702は、カメラ位置706、および1本の代表的射線708を示す。カメラ706は、画像面によって規定される円錐台における全ての目視射線708の色を取り込むことができる。極広角画像704は、カメラ位置710を有し、視角を中心とするリング714を通過する全ての射線を取り込む。そのうちの1つを712で示す。リング716の内印を付けた区域は、702の斜め画像と同等の射線である。
図8を参照すると、斜め画像平面と、超広角画像の半球画像面との間の典型的な差が示されている。斜め画像の発生は、斜め画像面を定め、その平面上の角画素を画像取り込みコンポーネントの中心と接続することによって行われる。斜め画像面上の画素と中心とを接続する射線の、極広角画像面との交点は、斜め画素の色を規定する。
カメラの焦点802は、鉛直方向804に向けて直下を指し示す。画像を取り込むために極広角レンズを利用するが、鉛直804から約20度から鉛直804から約60度までの環状射線は、斜め目視方向806とすることができ、斜め画像面808を発生する。開示する実施形態を利用して得ることができる、対応の超広角画像面を810に示す。
図9は、極広角画像からの仮想斜め画像の発生を示す。カメラの焦点902は、鉛直方向904に下に指し示す。新たな斜め画像面上の画素毎に、その画素の中心およびカメラの中心を接続する射線を定める。斜め目視方向を906で示し、斜め画像面上の点を908に示す。超広角画像面上における対応する投射を910に示す。射線の画像面との交差点における極広角画像のサンプリングによって、新しい斜め画素に対して色を発生する。
先に論じたように、DSMは、地球上に位置するあらゆる物体(例えば、樹木、家屋等)を含む、地球の表面の三次元モデルである。DSMは、正射写真の発生、または特定の場面の新たな仮想光景を発生するためというような、種々の用途に利用することができる。高品質DSMは、手作業の調査によって得ることができるが、費用がかかる。代わりに、異なる視点から撮影した場面の複数の光景を分析することによって、DSMを発生することができる。DSMを発生するプロセスは、これらの画像間において対応する特徴を照合することを含む。各特徴は、カメラ位置からの目視射線を定め、これらの目視射線の交点は、その特徴の空間における位置を定める。しかしながら、自動照合は困難であり、誤差を生じやすい。
開示した技法は、各場面点(scene point)が含まれる画像の枚数(coverage)を増大させることができる。約120度(40度ではなく)を有する視角を用いることによって、同じ地上点を見る画像の数が6倍以上になる。例えば、2つの隣接する40度鉛直画像間の共通区域が66%である場合、特定の地上点を見ることができる画像は9枚であるが、一方実質的に同じ間隔で撮影した120度画像では、実質的に同じ点を見ることができる画像は56枚よりも多い。このため、復元したDSMの信頼性が向上する。
加えて、極広角画像は、場面(例えば、建物の垂直壁、樹木直下の区域)の可視到達範囲(visible coverage)が広くなり、これらは通常の鉛直画像では一般には見ることができない。つまり、全ての光景からその到達範囲を組み合わせることによって、DSMモデルを改良して発生することができる。
テクスチャーは、モデルに視覚的内容および現実感を付け加える。地形、建物、および地球上のその他の物体に模様を付けるために、空中光景が利用されることが多い。基本的なテクスチャリングは、物体の地点を取得し、これを見ることができる1枚以上の画像上にそれを投射し、色を発生することによって作成することができる。しかしながら、ジェオメトリーが複雑であると、視認性も複雑となるので、物体における異なる空洞(cavity)は、限られた目視方向でなければ見ることができなくなる。例えば、建物の壁は、上面図からは、見えるとしても、しかるべく見ることができず、あるいは樹木の下にある地面は視野から完全に遮られる場合もある。
加えて、反射物体または半反射物体のような、異なる材料は、異なる目視方向からでは、反射特性(properties)が異なる。つまり、1つの視点からこれらの物体にテクスチャリングを施すと、このような物体を異なる方向から見たときに、非現実的なテクスチャーが生ずる可能性がある。テクスチャーが指向性成分を含有するときには、異なる方向から撮影した複数の画像からのテクスチャーを縫合する(stitch)と、それに伴う別の問題が発生する可能性がある。
開示した実施形態を利用すると、被写域の改善が得られ、斜めおよび鉛直画像の限られた取り込みでは覆いきれない場合もある区域にテクスチャリングを施すことが可能となる。これらの画像によって遮られる表面(例えば、樹木の下にある地面)は、角度を極端に広く取って、新たな目視方向で取り込めば、補う(cover)ことができる場合もある。また、開示した実施形態は、各場面点を、より多くの画像において、そしてより多くの目視方向で見ることができるようにする。これによって、指向性反射特性のモデリングを改良することができる。例えば、建物の窓の反射成分は、異なる方向からの窓の画像を数枚分析することによって除去することができる。
以上に示し説明したシステム例に関して、開示した主題にしたがって実施することができる方法は、図10および図11のフロー・チャートを参照することにより、一層深くその真価が認められよう。説明を簡略化する目的上、本方法を一連のブロックとして示し説明するが、特許請求する主題は、ブロックの数や順序には限定されないことは言うまでもないであろうし、認められるはずである。何故なら、一部のブロックは、ここで図示し説明するものとは異なる順序で出てくる場合、および/または他のブロックと同時に現れる場合もあり得るからである。更に、図示するブロックの全てが、以下に説明する方法を実施するために必要ではない場合もある。尚、ブロックと関連のある機能性は、ソフトウェア、ハードウェア、その組み合わせ、またはその他の適した手段(例えば、デバイス、システム、プロセス、コンポーネント)であればいずれによってでも実施することができることは認められるはずである。加えて、以下にそして本明細書全体を通じて開示する方法は、このような方法を種々のデバイスに移植および転送し易くするために、製造物上に格納することができることも、更に認められてしかるべきである。代わりに、状態図におけるように、一連の相互に関係する状態またはイベントとして方法を表すこともできることは、当業者には理解されそして認められよう。
図10は、DSMモデリングおよびテクスチャリング方法1000を示す。方法1000は、1002において開始し、ここで空中画像を取り込むために1つ以上の画像取り込みデバイスを位置付ける。画像取り込みデバイスは、広角レンズを含む。このような位置付けは、地球の地形および地球表面上にある種々の物体の鉛直画像を得るために1つ以上の画像取り込みデバイスを航空機の下に装備することを含む。画像取り込みデバイスは、例えば、広角レンズを有するカメラとすることができる。
1004において、1つ以上の画像取り込みデバイスによって1つ以上の空中画像を取り込む。空中画像は、地球の表面上に位置する少なくとも1つの物体を含む。画像は、鉛直写真撮影、斜め写真撮影、またはその組み合わせを用いて取り込むことができる。2つ以上のデバイスから取り込んだ画像を組み合わせて、1枚の画像よりも詳細の粒度が高い1つの完全な画像を描写(render)することができる。
1006において、1つ以上の画像によって取り込んだ区域の視認要求を受ける。このような要求は、地図作成アプリケーションにおいて特定の区域を視認したいユーザーから受ける可能性がある。1008において、取り込んだ画像を表示することができる。表示する画像は、動的とすることにより、ユーザーが表示画面を中心にパンニングすると、このようなユーザーの要求に応答して画像が変化するようにすることができる。例えば、表示画面は、空中パノラマ画像を見るときと、地上の視点からの画像、またはその他のナビゲーション角度からの画像を見るときとの間で変更することができる。
図11は、別のDSMモデリングおよびテクスチャリング方法1100を示す。1102において、1つ以上の画像取り込みデバイスの構成を決定する。このような構成は、「1枚のレンズおよび1つのセンサー」、「1枚のレンズおよび複数のセンサー」、「複数のレンズおよび複数のセンサー」、ならびに「複数のレンズ、複数のセンサー、および反射面」を含むことができる。レンズは、例えば、広角レンズまたは超広角レンズとすることができる。
1104において、地球の表面上にある多数の場所および物体について、画像データを入手する。このような画像データは、鉛直画像、斜め画像、またはその他のナビゲーション角度の形態とすることができる。また、画像データは、視野において物体を識別すること、および/または多数の画像において同様の物体または場所を識別することも含むことができる。物体または場所の画像との関連付けは、地球および地球の表面上に位置する種々の物体のモデルを表すために大多数の画像を用いる地図作成アプリケーションに応用することができる。
1106において、画像の位置、距離、および面積の測定値を求める。2点間における直線距離またはポリラインに沿った長さとすることができる距離を測定することができる。距離計算のために、画像点を対応する地上点にマッピングすることができる。同様に、画像における区域多角形境界を定めることによって、地上即ち地球の表面上の面積を測定することができる。このような面積は、画像における多角形の頂点に対応する点の地上位置を用いて求めることができる。1108において、得られた画像を、ユーザーの要求に応じて表示することができる。
特に、そして前述のコンポーネント、デバイス、回路、システムなどによって実行する種々の機能に関して、このようなコンポーネントを記述するために用いた用語(「手段」に対する引用を含む)は、特に指示がない限り、記載したコンポーネントの指定した機能(例えば、機能的同等物)を実行するコンポーネントであれば、開示した構造とは構造的に同等ではなくても、ここに例示した態様例においてその機能を実行するのであれば、いずれにでも対応することを意図している。これに関して、種々の態様は、システム、ならびに種々の方法の行為および/またはイベントを実行するためのコンピューター実行可能命令を有するコンピューター読み取り可能媒体を含むことも認識されよう。
加えて、様々な実現例のうち1つのみに関して特定的な特徴を開示したが、このような特徴は、いずれの所与の用途または特定の用途にとっても望ましく有利であり得る、その他の実現例の1つ以上の別の特徴と組み合わせることができる。更に、「含む」および「含んでいる」という用語ならびにその変形が詳細な説明または特許請求の範囲のいずれかにおいて用いられている場合においてのみ、これらの用語は「備える」(comprising)という用語と同様に内包的であることを意図している。

Claims (20)

  1. 地図作成アプリケーションのためにモデリングおよびテクスチャリングを容易にするシステム(100、200)であって、
    複数の角度から画像を取り込む第1画像取り込みコンポーネント(102、202)と、
    前記取り込み画像において少なくとも1つの物体を識別する物体識別コンポーネント(104、204)と、
    地図作成アプリケーションにおいて、前記識別した取り込み画像を表示する提示コンポーネント(106、206)と、
    を備えた、システム。
  2. 請求項1記載のシステムにおいて、前記第1画像取り込みコンポーネントは、広角レンズを備えたカメラである、システム。
  3. 請求項1記載のシステムにおいて、前記第1画像取り込みコンポーネントは、単一レンズ・単一センサーのカメラである、システム。
  4. 請求項1記載のシステムにおいて、前記第1画像取り込みコンポーネントは、単一レンズ・複数センサーのカメラである、システム。
  5. 請求項1記載のシステムであって、更に、少なくとも1つの第2画像取り込みコンポーネントと、反射ミラーとを備えており、前記第1画像取り込みコンポーネントおよび少なくとも1つの第2画像取り込みコンポーネントは、内向き構成となった、システム。
  6. 請求項1記載のシステムであって、更に、少なくとも1つの第2画像取り込みコンポーネントを備えており、前記第1画像取り込みコンポーネントおよび少なくとも1つの第2画像取り込みコンポーネントは、外向き構成となった、システム。
  7. 請求項6記載のシステムであって、更に、同様の光景の共通の取り込みをしやすくするために、前記第1画像取り込みデバイスおよび少なくとも1つの第2画像取り込みデバイス間において画像取り込み時間の同期を取る同期モジュールを備えた、システム。
  8. 請求項6記載のシステムであって、更に、前記第1画像取り込みデバイスおよび少なくとも1つの第2画像取り込みデバイスによって取り込んだ画像を組み合わせるコンバイナー・モジュールを備えた、システム。
  9. 請求項1記載のシステムであって、更に、取り込んだ画像を検索可能なフォーマットで保持する記憶媒体を備えた、システム。
  10. 請求項1記載のシステムにおいて、前記第1画像取り込みコンポーネントは、鉛直位置または斜め位置の少なくとも一方において前記画像を取り込む、システム。
  11. 数値表面モデル(DSM)のテクスチャリングおよびモデリングの方法であって、
    空中画像を得るために第1画像取り込みデバイス(102、202、300、400、502、602)を位置付けるステップであって、前記画像取り込みデバイス(102、202、300、400、502、602)が広角レンズ(302、402)を備えた、ステップ(1002、1102)と、
    地球の表面上に位置する少なくとも1つの物体を含む前記空中画像を取り込むステップ(1004)と、
    取り込んだ空中画像を視認する要求を受けるステップ(1006)と、
    前記要求された空中画像を地図作成アプリケーションにおいて表示するステップ(1008、1108)と、
    を備えた、方法。
  12. 請求項11記載の方法において、前記第1画像取り込みデバイスを位置付ける前に、更に、前記第1画像取り込みデバイスおよび少なくとも1つの第2画像取り込みデバイスの構成を決定するステップを備えた、方法。
  13. 請求項12記載の方法において、前記構成は、内向き構成および外向き構成のうちの一方である、方法。
  14. 請求項12記載の方法であって、更に、前記第1画像取り込みデバイスおよび少なくとも1つの第2画像取り込みデバイスを、反射面に向かって内側に面する構成に配置するステップと、
    前記反射面から、地球の表面上に位置する少なくとも1つの物体を含む前記空中画像を取り込むステップと、
    を備えた、方法。
  15. 請求項11記載の方法において、地球の表面上に位置する少なくとも1つの物体を含む前記空中画像を取り込むことは、鉛直位置および斜め位置のうち少なくとも1つを含む、方法。
  16. 請求項11記載の方法であって、更に、前記空中画像の位置測定値、距離測定値、および面積測定値のうち少なくとも1つを決定するステップを備えた、方法。
  17. 請求項11記載の方法であって、更に、前記空中画像を検索可能なフォーマットで保持するステップを備えた、方法。
  18. DSM画像のテクスチャリングおよびモデリングを行うシステムであって、
    広角レンズ(302、402)を用いて第1および第2空中画像を取り込む手段(102、202、300、400、502、602)であって、前記空中画像が少なくとも1つの物体を含む、手段と、
    前記少なくとも1つの物体を識別する手段(104、204)と、
    前記少なくとも1つの識別した物体に基づいて、前記第1および第2空中画像を組み合わせる手段(210)と、
    前記の組み合わせた空中画像を、地図アプリケーションにおいて提示する手段(106、206)と、
    を備えた、システム。
  19. 請求項18記載のシステムであって、更に、
    広角レンズを用いて、第3および第4空中画像を取り込む手段と、
    前記第1および第2空中画像を取り込む手段と、前記第3および第4空中画像を取り込む手段とを同期させる手段と、
    を備えた、システム。
  20. 請求項19記載のシステムであって、更に、前記第3および第4空中画像を前記第1および第2空中画像と組み合わせる手段を備えた、システム。
JP2009525548A 2006-08-24 2007-08-03 地図作成アプリケーションにおける数値表面モデルのモデリングおよびテクスチャリング Withdrawn JP2010501932A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/466,952 US7831089B2 (en) 2006-08-24 2006-08-24 Modeling and texturing digital surface models in a mapping application
PCT/US2007/017355 WO2008024189A1 (en) 2006-08-24 2007-08-03 Modeling and texturing digital surface models in a mapping application

Publications (1)

Publication Number Publication Date
JP2010501932A true JP2010501932A (ja) 2010-01-21

Family

ID=39107104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009525548A Withdrawn JP2010501932A (ja) 2006-08-24 2007-08-03 地図作成アプリケーションにおける数値表面モデルのモデリングおよびテクスチャリング

Country Status (9)

Country Link
US (1) US7831089B2 (ja)
EP (1) EP2074594A1 (ja)
JP (1) JP2010501932A (ja)
KR (1) KR20090042249A (ja)
CN (1) CN101506850A (ja)
CA (1) CA2658513A1 (ja)
RU (1) RU2009106052A (ja)
TW (1) TW200825984A (ja)
WO (1) WO2008024189A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013518339A (ja) * 2010-01-26 2013-05-20 サーブ アクティエボラーグ 地面に基づく画像と上からとられた画像の組み合わせに基づく三次元モデル法

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7873238B2 (en) * 2006-08-30 2011-01-18 Pictometry International Corporation Mosaic oblique images and methods of making and using same
US20090271719A1 (en) * 2007-04-27 2009-10-29 Lpa Systems, Inc. System and method for analysis and display of geo-referenced imagery
EP2076055B1 (en) * 2007-12-27 2012-10-24 Saab AB Method for displaying a virtual image
US8284190B2 (en) * 2008-06-25 2012-10-09 Microsoft Corporation Registration of street-level imagery to 3D building models
TWI419551B (zh) * 2008-08-22 2013-12-11 固態全景影像擷取裝置
IL193906A (en) * 2008-09-04 2012-06-28 Pro Track Ltd Methods and systems for creating an aligned bank of images with an iterative self-correction technique for coordinate acquisition and object detection
US20100085350A1 (en) * 2008-10-02 2010-04-08 Microsoft Corporation Oblique display with additional detail
US9091755B2 (en) 2009-01-19 2015-07-28 Microsoft Technology Licensing, Llc Three dimensional image capture system for imaging building facades using a digital camera, near-infrared camera, and laser range finder
CN101702245B (zh) * 2009-11-03 2012-09-19 北京大学 一种可扩展通用三维地景仿真系统
FR2954520B1 (fr) * 2009-12-18 2012-09-21 Thales Sa Procede de designation d'une cible pour un armement a guidage terminal par imagerie
CN102117009A (zh) * 2011-01-14 2011-07-06 重庆市电力公司沙坪坝供电局 变电站设施全景可视化处理系统及处理方法
KR101229297B1 (ko) * 2011-04-29 2013-02-08 주식회사 영국전자 지리정보 구축시스템
US8811720B2 (en) 2011-07-12 2014-08-19 Raytheon Company 3D visualization of light detection and ranging data
US8994738B1 (en) * 2011-10-04 2015-03-31 Google Inc. Systems and method for navigating between oblique views of a map
US9019279B1 (en) * 2011-10-04 2015-04-28 Google Inc. Systems and method for navigating between a nadir view and an oblique view of a map
CN102509354B (zh) * 2011-11-10 2013-12-18 武汉大学 一种与影像同步变化的投影数字高程模型制作方法
CN103377469B (zh) * 2012-04-23 2016-05-04 宇龙计算机通信科技(深圳)有限公司 终端和图像处理方法
CN103149788A (zh) * 2013-03-22 2013-06-12 天津曙光敬业科技有限公司 空中360°全景照片拍摄装置及方法
US20140300736A1 (en) * 2013-04-09 2014-10-09 Microsoft Corporation Multi-sensor camera recalibration
US9483703B2 (en) * 2013-05-14 2016-11-01 University Of Southern California Online coupled camera pose estimation and dense reconstruction from video
HUP1300328A3 (en) * 2013-05-23 2017-03-28 Mta Szamitastechnika Es Automatizalasi Ki Method and system for integrated three dimensional modelling
CN103559617A (zh) * 2013-11-05 2014-02-05 范贤 多维角度观看物品及缩放、平移和语音导购的方法及系统
US9547935B2 (en) * 2014-02-24 2017-01-17 Vricon Systems Ab Method and a system for building a three-dimensional model from satellite images
US20150243073A1 (en) * 2014-02-27 2015-08-27 Here Global B.V. Systems and Methods for Refining an Aerial Image
CN104463969B (zh) * 2014-12-09 2017-09-26 广西界围信息科技有限公司 一种对航空倾斜拍摄的地理照片的模型的建立方法
US9978176B2 (en) * 2015-06-26 2018-05-22 Electronic Arts Inc. Simplifying small mesh components with redundant backs
US9870514B2 (en) * 2015-07-02 2018-01-16 Qualcomm Incorporated Hypotheses line mapping and verification for 3D maps
CN105391950B (zh) * 2015-12-23 2019-02-19 北京观著信息技术有限公司 微型倾斜摄影相机系统
US10373381B2 (en) 2016-03-30 2019-08-06 Microsoft Technology Licensing, Llc Virtual object manipulation within physical environment
CN108038900A (zh) * 2017-12-06 2018-05-15 浙江科澜信息技术有限公司 倾斜摄影模型单体化方法、系统及计算机可读存储介质
US10764496B2 (en) * 2018-03-16 2020-09-01 Arcsoft Corporation Limited Fast scan-type panoramic image synthesis method and device
CN109492606A (zh) * 2018-11-26 2019-03-19 上海同繁勘测工程科技有限公司 多光谱矢量图获取方法及系统、三维单体化方法及系统
CN109598793B (zh) * 2018-11-27 2022-04-12 武大吉奥信息技术有限公司 基于倾斜摄影测量快速修改植被和水体的制作方法及装置
CN111310320B (zh) * 2020-02-07 2021-02-12 北京科技大学 一种基于倾斜摄影和体素的建筑群火灾模拟建模方法
CN111583404B (zh) * 2020-05-08 2021-08-31 广西壮族自治区自然资源遥感院 海量倾斜摄影三维模型数据调度方法及系统
SE544823C2 (en) * 2021-04-15 2022-12-06 Saab Ab A method, software product, and system for determining a position and orientation in a 3D reconstruction of the Earth´s surface
CN113223149A (zh) * 2021-05-08 2021-08-06 中煤(西安)航测遥感研究院有限公司 三维模型纹理生成方法、装置、设备及存储介质
CN114387416B (zh) * 2022-03-24 2022-05-27 北京飞渡科技有限公司 针对倾斜摄影三维重建的纹理自动生成和修复方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157218A (en) 1977-04-14 1979-06-05 The Perkin-Elmer Corporation Wide angle scan camera
US4489322A (en) 1983-01-27 1984-12-18 The United States Of America As Represented By The Secretary Of The Air Force Radar calibration using direct measurement equipment and oblique photometry
US4890314A (en) * 1988-08-26 1989-12-26 Bell Communications Research, Inc. Teleconference facility with high resolution video display
DD282302A5 (de) 1989-04-03 1990-09-05 Zeiss Jena Veb Carl Weitwinkelobjektiv
EP0731956A4 (en) 1993-11-30 1997-04-23 Arch Dev Corp AUTOMATIC METHOD AND SYSTEM FOR ALIGNING AND CORRELATING TWO DIFFERENT MODALITIES
US6389179B1 (en) * 1996-05-28 2002-05-14 Canon Kabushiki Kaisha Image combining apparatus using a combining algorithm selected based on an image sensing condition corresponding to each stored image
DE19714396A1 (de) 1997-04-08 1998-10-15 Zeiss Carl Fa Photogrammetrische Kamera
JP2000517452A (ja) 1997-05-05 2000-12-26 シェル オイル カンパニー 視認の方法
US6999073B1 (en) 1998-07-20 2006-02-14 Geometrix, Inc. Method and system for generating fully-textured 3D
US6661913B1 (en) 1999-05-05 2003-12-09 Microsoft Corporation System and method for determining structure and motion using multiples sets of images from different projection models for object modeling
US6738073B2 (en) 1999-05-12 2004-05-18 Imove, Inc. Camera system with both a wide angle view and a high resolution view
JP4169462B2 (ja) * 1999-08-26 2008-10-22 株式会社リコー 画像処理方法及び装置、デジタルカメラ、画像処理システム、並びに、画像処理プログラムを記録した記録媒体
US6477326B1 (en) 2000-08-31 2002-11-05 Recon/Optical, Inc. Dual band framing reconnaissance camera
US7057663B1 (en) * 2001-05-17 2006-06-06 Be Here Corporation Audio synchronization pulse for multi-camera capture systems
US6864889B2 (en) 2001-10-31 2005-03-08 Hewlett-Packard Development Company, L.P. System for previewing a photorealistic rendering of a synthetic scene in real-time
US6672535B2 (en) 2002-04-22 2004-01-06 Aerial View Systems, Inc. Camera systems for tracking objects from an aircraft
AU2003273338A1 (en) * 2002-09-20 2004-04-08 M7 Visual Intelligence, Lp Vehicule based data collection and porcessing system
US20050128212A1 (en) * 2003-03-06 2005-06-16 Edecker Ada M. System and method for minimizing the amount of data necessary to create a virtual three-dimensional environment
US7526718B2 (en) * 2003-04-30 2009-04-28 Hewlett-Packard Development Company, L.P. Apparatus and method for recording “path-enhanced” multimedia
US7630724B2 (en) * 2004-09-21 2009-12-08 Advanced Ground Information Systems, Inc. Method of providing a cellular phone/PDA communication system
US7274868B2 (en) 2004-10-18 2007-09-25 Mark Segal Method and apparatus for creating aerial panoramic photography
US7130745B2 (en) * 2005-02-10 2006-10-31 Toyota Technical Center Usa, Inc. Vehicle collision warning system
US7944548B2 (en) * 2006-03-07 2011-05-17 Leica Geosystems Ag Increasing measurement rate in time of flight measurement apparatuses

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013518339A (ja) * 2010-01-26 2013-05-20 サーブ アクティエボラーグ 地面に基づく画像と上からとられた画像の組み合わせに基づく三次元モデル法

Also Published As

Publication number Publication date
US7831089B2 (en) 2010-11-09
CA2658513A1 (en) 2008-02-28
KR20090042249A (ko) 2009-04-29
US20080050011A1 (en) 2008-02-28
CN101506850A (zh) 2009-08-12
TW200825984A (en) 2008-06-16
WO2008024189A1 (en) 2008-02-28
EP2074594A1 (en) 2009-07-01
RU2009106052A (ru) 2010-08-27

Similar Documents

Publication Publication Date Title
US7831089B2 (en) Modeling and texturing digital surface models in a mapping application
CN107564089B (zh) 三维图像处理方法、装置、存储介质和计算机设备
EP3359918B1 (en) Systems and methods for orienting a user in a map display
Zhang et al. A UAV-based panoramic oblique photogrammetry (POP) approach using spherical projection
CN109801374B (zh) 一种通过多角度图像集重构三维模型的方法、介质及系统
Huang et al. Panoramic imaging: sensor-line cameras and laser range-finders
US8339394B1 (en) Automatic method for photo texturing geolocated 3-D models from geolocated imagery
EP3170151B1 (en) Blending between street view and earth view
US10984586B2 (en) Spatial mapping fusion from diverse sensing sources
Menna et al. \HIGH RESOLUTION 3D MODELING OF THE BEHAIM GLOBE
Koeva 3D modelling and interactive web-based visualization of cultural heritage objects
JP7241812B2 (ja) 情報可視化システム、情報可視化方法、及びプログラム
JP7420815B2 (ja) 3d幾何抽出のために画像の複数から相補的画像を選択するシステムおよび方法
KR20120005735A (ko) 증강 현실에서 위치 정보를 표시하는 방법 및 장치
CN114693820A (zh) 对象提取方法、装置、电子设备及存储介质
US11172125B2 (en) Method and a system to provide aerial visualization of large landscape area
Chatzifoti On the popularization of digital close-range photogrammetry: a handbook for new users.
Carpiceci Survey problems and representation of architectural painted surfaces
MX2009001951A (en) Modeling and texturing digital surface models in a mapping application
Blanco Pons Analysis and development of augmented reality applications for the dissemination of cultural heritage
Guan Spherical image processing for immersive visualisation and view generation
Carnevali et al. Spherical drawing for understanding urban spaces
Mispelhorn et al. Real-time texturing and visualization of a 2.5 D terrain model from live LiDAR and RGB data streaming in a remote sensing workflow
Corke Image Formation
Scheibe Design and test of algorithms for the evaluation of modern sensors in close-range photogrammetry

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101005