JP2010288419A - 放電制御装置および蓄電池システム - Google Patents

放電制御装置および蓄電池システム Download PDF

Info

Publication number
JP2010288419A
JP2010288419A JP2009142474A JP2009142474A JP2010288419A JP 2010288419 A JP2010288419 A JP 2010288419A JP 2009142474 A JP2009142474 A JP 2009142474A JP 2009142474 A JP2009142474 A JP 2009142474A JP 2010288419 A JP2010288419 A JP 2010288419A
Authority
JP
Japan
Prior art keywords
voltage
storage battery
input terminal
diode
type fet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009142474A
Other languages
English (en)
Inventor
Riichi Kitano
利一 北野
Yohei Chokai
陽平 鳥海
Takahisa Masashiro
尊久 正代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2009142474A priority Critical patent/JP2010288419A/ja
Publication of JP2010288419A publication Critical patent/JP2010288419A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】放電停止後に蓄電池の電圧が自然回復する場合でも、過放電を防止することを可能にする。
【解決手段】放電制御装置10が、蓄電池1と負荷3との間に介挿され、これをスイッチング手段として、蓄電池1の電圧が第1の電圧以上のとき蓄電池1から負荷3への放電を可能とし、負荷3の電圧が第1の電圧より低い第2の電圧未満のとき蓄電池1から負荷3への放電を停止する。
【選択図】図1

Description

本発明は、放電制御装置および蓄電池システムに関する。
従来、ニッケル水素蓄電池や鉛蓄電池などの蓄電池から負荷へ放電を行う蓄電池システムが知られている(例えば、特許文献1、2または3参照)。かかる蓄電池システムでは、蓄電池の過放電を防止するため、蓄電池の電圧が放電終止電圧に達した場合には、放電を停止させる必要がある。
そのため、通常、蓄電池システムは、蓄電池と負荷との間に設置された過放電防止スイッチと、過放電防止スイッチを制御する制御部とを備える。そして、従来の蓄電池システムでは、制御部が蓄電池の電圧を計測し、計測した電圧が放電終止電圧以下となった場合に、過放電防止スイッチを開放するように制御していた。
特開2004−119112号公報 特開2004−120856号公報 特開2004−120857号公報
しかしながら、上述した従来の蓄電池システムでは、以下で説明するように、放電停止後に蓄電池の電圧が自然回復する場合に、過放電を防止することができないという課題があった。
具体的には、従来の蓄電池システムは、放電終止電圧のみを閾値として放電の停止を制御していた。すなわち、従来の蓄電池システムでは、前述した制御部が、蓄電池の電圧が放電終止電圧以下の場合に過放電防止スイッチを開放し、放電終止電圧を超えた場合に過放電防止スイッチを短絡していた。
しかし、蓄電池は、放電停止後に電圧が自然回復する。そのため、蓄電池の電圧は過放電防止スイッチによって放電が停止された後も上昇する。そして、蓄電池の電圧が再び放電終止電圧を超えると、蓄電池システムの制御部が過放電防止スイッチを短絡する。これにより、過放電防止スイッチの開放と短絡とが繰り返されることになり、過放電を防止することができなかった。
本発明は、上記に鑑みてなされたものであって、放電停止後に蓄電池の電圧が自然回復する場合でも、過放電を防止することが可能な放電制御装置および蓄電池システムを提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係る放電制御装置は、蓄電池と負荷との間に介挿されたスイッチング手段を有し、前記蓄電池の電圧が第1の電圧以上のとき前記スイッチング手段を短絡させ、前記負荷の電圧が前記第1の電圧より低い第2の電圧未満のとき前記スイッチング手段を開放させる。
また、本発明に係る蓄電池システムは、蓄電池と負荷との間にスイッチング手段が介挿され、前記蓄電池の電圧が第1の電圧以上のとき前記スイッチング手段が短絡され、前記負荷の電圧が前記第1の電圧より低い第2の電圧未満のとき前記スイッチング手段が開放される。
本発明によれば、放電停止後に蓄電池の電圧が自然回復する場合でも、過放電を防止することが可能になるという効果を奏する。
図1は、本実施例に係る蓄電池システムの構成を示す構成図である。 図2は、本実施例に係る放電制御装置の動作手順を示すフローチャートである。 図3は、マイナスの端子側に各回路素子を接続した場合の放電制御装置の構成を示す構成図である。
以下に、本発明に係る蓄電池システムの実施例を図面に基づいて詳細に説明する。なお、以下に示す実施例では、鉛蓄電池を有する蓄電池システムに本発明を適用した場合について説明するが、この実施例により本発明が限定されるものではない。
まず、本実施例に係る蓄電池システムの構成について説明する。図1は、本実施例に係る蓄電池システムの構成を示す構成図である。図1に示すように、本実施例に係る蓄電池システムは、蓄電池1、充電器2、負荷3および放電制御装置10を有する。
蓄電池1は、鉛蓄電池セル(公称電圧2.0V、公称容量12Ah)を6セル直列接続して構成されている。この蓄電池1から出力される電力は、放電制御装置10を介して負荷3へ供給される。なお、本実施例では、蓄電池1の満充電電圧は13.2V(2.2V×6セル)、放電終止電圧は10.2V(1.7V×6セル)であるとする。
充電器2は、直流電力を出力し、蓄電池1を充電するか、または、負荷3へ給電する。この充電器2が停止した場合、蓄電池1から出力される電力は負荷3へ供給される。なお、充電器2は、商用電源等の電源(図示せず)から得られる電力を蓄電池1や負荷3に供給する。また、本実施例では、充電器2は、蓄電池1の満充電電圧に対応して、最大で13.2Vの電圧を出力するものとする。
負荷3は、蓄電池1または充電器2から供給される電力を消費する。
放電制御装置10は、蓄電池1から負荷3への放電を制御する。
ここで、蓄電池1は、放電により電圧が低下するが、その電圧が放電終止電圧である10.2Vに達した場合には、蓄電池の劣化を防止するため、負荷3への放電を停止する必要がある。しかしながら、放電が停止した後に蓄電池1の電圧は自然回復する。そのため、出力を停止させる電圧と出力を復帰させる電圧とを同じにすることはできない。
そこで、本実施例では、放電制御装置10が、蓄電池1と負荷3との間に介挿され、これをスイッチング手段として、蓄電池1の電圧が第1の電圧以上のとき蓄電池1から負荷3への放電を可能とし、負荷3の電圧が第1の電圧より低い第2の電圧未満のとき蓄電池1から負荷3への放電を停止する。
これにより、放電停止後に蓄電池の電圧が自然回復した場合でも、その電圧が放電終止電圧より高い所定電圧以上とならない限りは放電が始まらないようになる。したがって、放電停止後に蓄電池の電圧が自然回復する場合でも、過放電を防止することが可能になる。
具体的には、放電制御装置10は、図1に示すように、蓄電池1から電力を入力するプラス入力端子11aおよびマイナス入力端子11bと、負荷3へ電力を出力するプラス出力端子12aおよびマイナス出力端子12bとを有する。また、放電制御装置10は、N型FET(Field Effect Transistor)13a、P型FET13b、第1のダイオード14a、第2のダイオード14b、第1の抵抗15aおよび第2の抵抗15bを有する。
第1のダイオード14aは、アノードがプラス出力端子12aに接続され、カソードが第2のダイオード14bのカソードに接続されている。この第1のダイオード14aは、順方向電圧降下が10.2V(第2の電圧)、すなわち、蓄電池1の放電終止電圧となるように、複数のダイオードを直列あるいは並列に接続して構成されている。つまり、第1のダイオード14aは、順方向に10.2Vの電圧が印加されることにより順方向電流が流れるようになっている。
第2のダイオード14bは、アノードがプラス入力端子11aに接続され、カソードが第1のダイオード14aのカソードに接続されている。この第2のダイオード14bは、順方向電圧降下が12.0V(第1の電圧)となるように、複数のダイオードを直列あるいは並列に接続して構成されている。つまり、第2のダイオード14bは、順方向に12.0Vの電圧が印加されることにより順方向電流が流れるようになっている。
N型FET13aは、ゲートが第2のダイオード14bのカソードに接続され、ソースがマイナス入力端子11bおよびマイナス出力端子12bに接続されている。P型FET13bは、ゲートがN型FET13aのドレインに接続され、ソースがプラス入力端子11aに接続され、ドレインがプラス出力端子12aに接続されている。
第1の抵抗15aは、一端がN型FET13aのゲートに接続され、他端がマイナス入力端子11bおよびマイナス出力端子12bに接続されている。第2の抵抗15bは、一端がプラス入力端子11aに接続され、他端がP型FET13bのゲートに接続されている。
次に、本実施例に係る放電制御装置10の動作手順について説明する。図2は、本実施例に係る放電制御装置10の動作手順を示すフローチャートである。
図2に示すように、放電制御装置10では、すべてのダイオードおよびFETがオフの状態で、充電器2によって充電が開始されると(ステップS01,Yes)、まず、12Vを超える電圧によって、第2のダイオード14bがオンになる(ステップS02)。
第2のダイオード14bがオンになると、第1の抵抗15aの両端に発生する電圧によって、N型FET13aのゲート−ソース間に電圧が印加され、N型FET13aがオンになる。続いて、第2の抵抗15bの両端に発生する電圧によって、P型FET13bがオンになる。これにより、充電器2の電圧が第1のダイオード14aに印加されて、第1のダイオード14aがオンになる(ステップS03)。
その後、充電器2による充電が停止すると(ステップS04,Yes)、蓄電池1から負荷3への放電が開始する(ステップS05)。ここで、放電の初期では、蓄電池1の電圧は満充電電圧に近い電圧値すなわち13V程度であるので、蓄電池1から負荷3への給電が継続しつつ、蓄電池1の電圧は低下してゆく。
そして、蓄電池1の電圧が12Vを下回ると(ステップs06,Yes)、まず、第2のダイオード14bがオフとなる(ステップS07)。ここで、第1のダイオード14aがオンになる電圧は10.2Vなので、第1のダイオード14aはオンの状態を維持する。また、第1の抵抗15aの両端電圧は健在であるため、N型FET13aおよびP型FET13bもそれぞれオンの状態を維持する。その結果、蓄電池1から負荷3への放電が継続される(ステップS08)。
さらに放電が継続して蓄電池1の電圧が低下し、10.2Vを下回ると(ステップS09,Yes)、第1のダイオード14aもオフになる(ステップS10)。この時点で、第1のダイオード14aおよび第2のダイオード14bがいずれもオフになるので、第1の抵抗15aに電流が流れなくなる。したがって、第1の抵抗15aの両端電圧がゼロになり、N型FET13aがオフになる。これにより、第2の抵抗15bに電流が流れなくなるので、第2の抵抗15bの両端電圧もゼロになり、P型FET13bもオフになる。その結果、蓄電池1から負荷3への放電が停止される(ステップS11)。
こうして放電が停止した後に、蓄電池1の電圧が自然回復して11Vに上昇したとしても、P型FET13bがオフになっているので、第1のダイオード14aに電圧が印加されない。すなわち、放電停止後に電圧が自然回復しても放電が再開されない。負荷3への放電を再開するためには、第2のダイオード14bをオンにする必要がある。そのためには、蓄電池1を12V以上のものに交換するか、充電器2を起動して13.2Vの電圧を第2のダイオード14bに印加する必要がある。したがって、放電停止後に蓄電池1の電圧が自然回復しても、放電の停止と復帰とが繰り返されることはない。
上述したように、本実施例では、放電制御装置10が、蓄電池1と負荷3との間に介挿され、これをスイッチング手段として、蓄電池1の電圧が第1の電圧以上のとき蓄電池1から負荷3への放電を可能とし、負荷3の電圧が第1の電圧より低い第2の電圧未満のとき蓄電池1から負荷3への放電を停止する。
すなわち、放電停止後に蓄電池の電圧が自然回復した場合でも、その電圧が放電終止電圧より高い所定電圧以上とならない限りは放電が始まらないようになる。したがって、本実施例によれば、放電停止後に蓄電池の電圧が自然回復する場合でも、過放電を防止することが可能になる。
なお、本実施例では、放電制御装置10において、プラスの端子側に各回路素子を接続した場合について説明したが、本発明はこれに限られるものではない。逆に、マイナスの端子側に各回路素子を接続してもよい。図3は、マイナスの端子側に各回路素子を接続した場合の放電制御装置の構成を示す構成図である。
図3に示すように、この場合には、放電制御装置20は、蓄電池1から電力を入力するプラス入力端子21aおよびマイナス入力端子21bと、負荷3へ電力を出力するプラス出力端子22aおよびマイナス出力端子22bとを有する。また、放電制御装置20は、P型FET23a、N型FET23b、第1のダイオード24a、第2のダイオード24b、第1の抵抗25aおよび第2の抵抗25bを有する。
第1のダイオード24aは、カソードがマイナス出力端子22bに接続され、アノードが第2のダイオード24bのアノードに接続されている。この第1のダイオード24aは、順方向電圧降下が10.2V(第2の電圧)、すなわち、蓄電池1の放電終止電圧となるように、複数のダイオードを直列あるいは並列に接続して構成されている。つまり、第1のダイオード24aは、順方向に20.2Vの電圧が印加されることにより順方向電流が流れるようになっている。
第2のダイオード24bは、カソードがマイナス入力端子21bに接続され、アノードが第1のダイオード24aのアノードに接続されている。この第2のダイオード24bは、順方向電圧降下が12.0V(第1の電圧)となるように、複数のダイオードを直列あるいは並列に接続して構成されている。つまり、第2のダイオード24bは、順方向に12.0Vの電圧が印加されることにより順方向電流が流れるようになっている。
P型FET23aは、ゲートが第2のダイオード24bのアノードに接続され、ソースがプラス入力端子21aおよびプラス出力端子22aに接続されている。N型FET23bは、ゲートがP型FET23aのドレインに接続され、ソースがマイナス入力端子21bに接続され、ドレインがマイナス出力端子22bに接続されている。
第1の抵抗25aは、一端がP型FET23aのゲートに接続され、他端がプラス入力端子21aおよびプラス出力端子22aに接続されている。第2の抵抗25bは、一端がマイナス入力端子21bに接続され、他端がN型FET23bのゲートに接続されている。
なお、放電制御装置20の動作手順は、基本的には図2に示したものと同様であるので、ここでは説明を省略する。
このように、マイナスの端子側に各回路素子を接続した場合でも、放電制御装置20が、蓄電池1と負荷3との間に介挿され、これをスイッチング手段として、蓄電池1の電圧が第1の電圧以上のとき蓄電池1から負荷3への放電を可能とし、負荷3の電圧が第1の電圧より低い第2の電圧未満のとき蓄電池1から負荷3への放電を停止する。したがって、プラスの端子側に各回路素子を接続した場合と同様に、放電停止後に蓄電池の電圧が自然回復する場合でも、過放電を防止することができる。
なお、上記実施例では、第1の抵抗15aまたは25aの両端に発生する電圧によってN型FET13aまたはP型FET23aをオンにする場合について説明したが、本発明はこれに限られるものではない。例えば、第1の抵抗15aまたは25aに替えてダイオードを用いることも可能である。すなわち、N型FET13aまたはP型FET23aをオンにするために、ダイオードを用いて、N型FET13aまたはP型FET23aのゲート−ソース間に電位差が発生するようにすればよい。例えば、実施例1については、図1に示した構成において、アノードがN型FET13aのゲートに接続されるようにダイオードを設ければよい。また、実施例2については、図3に示した構成において、カソードがP型FET23aのゲートに接続されるようにダイオードを設ければよい。なお、この場合には、第1のダイオードおよび第2のダイオードがオンになる電圧が上がってしまうので、用いられるダイオードの順方向電圧降下分だけ、第1のダイオードおよび第2のダイオードの順方向電圧を低く設定する。
また、上記実施例では、蓄電池1が鉛蓄電池である場合について説明したが、本発明はこれに限られるものではない。例えば、ニッケル水素蓄電池など、他の種類の蓄電池が用いられる場合にも本発明を同様に適用することが可能である。
1 蓄電池
2 充電器
3 負荷
10,20 放電制御装置
11a,21a プラス入力端子
11b,21b マイナス入力端子
12a,22a プラス出力端子
12b,22b マイナス出力端子
13a,23b N型FET
13b,23a P型FET
14a,24a 第1のダイオード
14b,24b 第2のダイオード
15a,25a 第1の抵抗
15b,25b 第2の抵抗

Claims (6)

  1. 蓄電池と負荷との間に介挿されたスイッチング手段を有し、前記蓄電池の電圧が第1の電圧以上のとき前記スイッチング手段を短絡させ、前記負荷の電圧が前記第1の電圧より低い第2の電圧未満のとき前記スイッチング手段を開放させる放電制御装置。
  2. 前記蓄電池から電力を入力するプラス入力端子およびマイナス入力端子と、
    前記負荷に電力を出力するプラス出力端子およびマイナス出力端子とを有し、
    前記スイッチング手段として、
    アノードが前記プラス出力端子に接続され、前記第2の電圧が印加されることにより電流を流す第1のダイオードと、
    アノードが前記プラス入力端子に接続され、カソードが前記第1のダイオードのカソードに接続され、前記第1の電圧が印加されることにより電流を流す第2のダイオードと、
    ゲートが前記第2のダイオードのカソードに接続され、ソースが前記マイナス入力端子および前記マイナス出力端子に接続されたN型FETと、
    ゲートが前記N型FETのドレインに接続され、ソースが前記プラス入力端子に接続され、ドレインが前記プラス出力端子に接続されたP型FETと、
    一端が前記N型FETのゲートに接続され、他端が前記マイナス入力端子および前記マイナス出力端子に接続された第1の抵抗と、
    一端が前記プラス入力端子に接続され、他端が前記P型FETのゲートに接続された第2の抵抗と
    を備えたことを特徴とする請求項1に記載の放電制御装置。
  3. 前記蓄電池から電力を入力するプラス入力端子およびマイナス入力端子と、
    前記負荷に電力を出力するプラス出力端子およびマイナス出力端子とを有し、
    前記スイッチング手段として、
    カソードが前記マイナス出力端子に接続され、前記第2の電圧が印加されることにより電流を流す第1のダイオードと、
    カソードが前記マイナス入力端子に接続され、アノードが前記第1のダイオードのアノードに接続され、前記第1の電圧が印加されることにより電流を流す第2のダイオードと、
    ゲートが前記第2のダイオードのアノードに接続され、ソースが前記プラス入力端子および前記プラス出力端子に接続されたP型FETと、
    ゲートが前記P型FETのドレインに接続され、ソースが前記マイナス入力端子に接続され、ドレインが前記マイナス出力端子に接続されたN型FETと、
    一端が前記P型FETのゲートに接続され、他端が前記プラス入力端子および前記プラス出力端子に接続された第1の抵抗と、
    一端が前記マイナス入力端子に接続され、他端が前記N型FETのゲートに接続された第2の抵抗と
    を備えたことを特徴とする請求項1に記載の放電制御装置。
  4. 蓄電池と負荷との間にスイッチング手段が介挿され、前記蓄電池の電圧が第1の電圧以上のとき前記スイッチング手段が短絡され、前記負荷の電圧が前記第1の電圧より低い第2の電圧未満のとき前記スイッチング手段が開放される蓄電池システム。
  5. 前記蓄電池から電力を入力するプラス入力端子およびマイナス入力端子と、
    前記負荷に電力を出力するプラス出力端子およびマイナス出力端子とを有し、
    前記スイッチング手段として、
    アノードが前記プラス出力端子に接続され、前記第2の電圧が印加されることにより電流を流す第1のダイオードと、
    アノードが前記プラス入力端子に接続され、カソードが前記第1のダイオードのカソードに接続され、前記第1の電圧が印加されることにより電流を流す第2のダイオードと、
    ゲートが前記第2のダイオードのカソードに接続され、ソースが前記マイナス入力端子および前記マイナス出力端子に接続されたN型FETと、
    ゲートが前記N型FETのドレインに接続され、ソースが前記プラス入力端子に接続され、ドレインが前記プラス出力端子に接続されたP型FETと、
    一端が前記N型FETのゲートに接続され、他端が前記マイナス入力端子および前記マイナス出力端子に接続された第1の抵抗と、
    一端が前記プラス入力端子に接続され、他端が前記P型FETのゲートに接続された第2の抵抗と
    を備えたことを特徴とする請求項4に記載の蓄電池システム。
  6. 前記蓄電池から電力を入力するプラス入力端子およびマイナス入力端子と、
    前記負荷に電力を出力するプラス出力端子およびマイナス出力端子とを有し、
    前記スイッチング手段として、
    カソードが前記マイナス出力端子に接続され、前記第2の電圧が印加されることにより電流を流す第1のダイオードと、
    カソードが前記マイナス入力端子に接続され、アノードが前記第1のダイオードのアノードに接続され、前記第1の電圧が印加されることにより電流を流す第2のダイオードと、
    ゲートが前記第2のダイオードのアノードに接続され、ソースが前記プラス入力端子および前記プラス出力端子に接続されたP型FETと、
    ゲートが前記P型FETのドレインに接続され、ソースが前記マイナス入力端子に接続され、ドレインが前記マイナス出力端子に接続されたN型FETと、
    一端が前記P型FETのゲートに接続され、他端が前記プラス入力端子および前記プラス出力端子に接続された第1の抵抗と、
    一端が前記マイナス入力端子に接続され、他端が前記N型FETのゲートに接続された第2の抵抗と
    を備えたことを特徴とする請求項4に記載の蓄電池システム。
JP2009142474A 2009-06-15 2009-06-15 放電制御装置および蓄電池システム Pending JP2010288419A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009142474A JP2010288419A (ja) 2009-06-15 2009-06-15 放電制御装置および蓄電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009142474A JP2010288419A (ja) 2009-06-15 2009-06-15 放電制御装置および蓄電池システム

Publications (1)

Publication Number Publication Date
JP2010288419A true JP2010288419A (ja) 2010-12-24

Family

ID=43543695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009142474A Pending JP2010288419A (ja) 2009-06-15 2009-06-15 放電制御装置および蓄電池システム

Country Status (1)

Country Link
JP (1) JP2010288419A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015015527A1 (ja) * 2013-07-29 2015-02-05 パナソニックIpマネジメント株式会社 給電制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767263A (ja) * 1993-08-20 1995-03-10 Sanyo Electric Co Ltd 二次電池の過放電防止回路
JP2000184610A (ja) * 1998-12-17 2000-06-30 Tookado:Kk バッテリ―過放電防止装置及び過放電防止装置を有するバッテリ―パック
JP2002165373A (ja) * 2000-11-21 2002-06-07 Nec Corp バッテリの過放電防止回路、及び、バッテリの過放電防止方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767263A (ja) * 1993-08-20 1995-03-10 Sanyo Electric Co Ltd 二次電池の過放電防止回路
JP2000184610A (ja) * 1998-12-17 2000-06-30 Tookado:Kk バッテリ―過放電防止装置及び過放電防止装置を有するバッテリ―パック
JP2002165373A (ja) * 2000-11-21 2002-06-07 Nec Corp バッテリの過放電防止回路、及び、バッテリの過放電防止方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015015527A1 (ja) * 2013-07-29 2015-02-05 パナソニックIpマネジメント株式会社 給電制御装置

Similar Documents

Publication Publication Date Title
US11205804B2 (en) BMS wake-up device, and BMS and battery pack including same
US10404095B2 (en) Uninterruptible power supply unit
US7990108B2 (en) Charge detector
JP5449840B2 (ja) 充放電制御回路、及び電源装置
KR101852638B1 (ko) 충방전 제어 회로 및 배터리 장치
TW201218576A (en) Dc power supply device
US10017138B2 (en) Power supply management system and power supply management method
US20120169124A1 (en) Output circuit for power supply system
US20140239896A1 (en) Charge/discharge control circuit and method for controlling charge/discharge
US9768627B2 (en) Overcharge protection apparatus with minimized power consumption
KR102246769B1 (ko) 배터리 팩 및 이를 포함하는 전기 청소기
FR2972581A1 (fr) Systeme d'equilibrage de charge pour batteries
US8896270B2 (en) Semiconductor integrated circuit, protection circuit, and battery pack
KR20080060177A (ko) 배터리 상태 감시 회로 및 배터리 장치
JP2006060883A (ja) 2バッテリ型車両用電源装置
US20070092763A1 (en) Fuel cell system
KR20140104378A (ko) 스위치 회로, 반도체 장치 및 배터리 장치
US20170187234A1 (en) Uninterruptible power source device
JP2009148110A (ja) 充放電器とこれを用いた電源装置
JP2016213969A (ja) 電源供給装置
WO2017191818A1 (ja) 電源装置
US20180037132A1 (en) Secondary lithium battery for vehicle use
JP5706648B2 (ja) 充放電制御回路及びバッテリ装置
EP3059831A1 (en) Secondary lithium battery for vehicle use
JP6734468B2 (ja) バッテリー逆電圧防止システム及び方法

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110520

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130514