JP2010287518A - Fuel cell power generator - Google Patents

Fuel cell power generator Download PDF

Info

Publication number
JP2010287518A
JP2010287518A JP2009141831A JP2009141831A JP2010287518A JP 2010287518 A JP2010287518 A JP 2010287518A JP 2009141831 A JP2009141831 A JP 2009141831A JP 2009141831 A JP2009141831 A JP 2009141831A JP 2010287518 A JP2010287518 A JP 2010287518A
Authority
JP
Japan
Prior art keywords
water
temperature
fuel cell
path
circulation path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009141831A
Other languages
Japanese (ja)
Inventor
Shinji Miyauchi
伸二 宮内
Kouichi Kusumura
浩一 楠村
Gendo Kato
玄道 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009141831A priority Critical patent/JP2010287518A/en
Publication of JP2010287518A publication Critical patent/JP2010287518A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell power generator for reliably preventing freezing, by avoiding damage of a water circuit and a part by freezing, when becoming a further lower temperature environment than the limit temperature (the lower limit temperature) capable of freezing-preventive operation. <P>SOLUTION: The fuel cell power generator can avoid the damage of a water passage and the part by the freezing, by forcibly draining water in at least one passage of a cooling water circulating passage 113, a water collecting passage 109 and a mutual circulating passage 117, before the freezing starts by elapsed time of becoming the limit temperature or smaller and a lowering speed of the detecting temperature, when becoming the further lower temperature environment than the limit temperature (the lower limit temperature) capable of the freezing-preventive operation, by having a control means for performing draining operation of the water in at least any one passage of the cooling water-circulating passage 113, the water collecting passage 109 and the mutual circulating passage 117 as the freezing preventive operation, when a temperature-detecting means 10 detects the temperature of a second threshold value or smaller being a first threshold value or smaller for a predetermined time. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は燃料電池発電装置に関するものであり、特に、水経路の凍結防止に関するものである。   The present invention relates to a fuel cell power generator, and more particularly to prevention of freezing of a water path.

従来、この種の燃料電池発電装置における水経路の凍結防止に関して、いろいろな提案がなされている(例えば、特許文献1参照)。   Conventionally, various proposals have been made regarding prevention of freezing of the water path in this type of fuel cell power generator (see, for example, Patent Document 1).

図5は、特許文献1に記載された従来の燃料電池発電装置の構成図を示すものである。図5に示すように、燃料電池104と、燃料電池104の冷却を行う冷却水循環経路113と、反応生成水および排気ガス中の水分を回収する水回収経路109と、水回収経路109と冷却水循環経路113との間を循環させる相互循環経路117と、相互循環経路117に設けられた加熱手段114と、凍結防止運転をするための温度検出手段120とを備え、温度検出手段120が閾値以下の温度になった際、凍結防止運転として、冷却水循環経路113内の水および相互循環経路117内の水をそれぞれ循環させ、かつ加熱手段114を作動するようになっている。   FIG. 5 shows a configuration diagram of a conventional fuel cell power generator described in Patent Document 1. In FIG. As shown in FIG. 5, the fuel cell 104, the cooling water circulation path 113 for cooling the fuel cell 104, the water recovery path 109 for recovering the water in the reaction product water and the exhaust gas, the water recovery path 109, and the cooling water circulation A mutual circulation path 117 that circulates between the path 113, a heating means 114 provided in the mutual circulation path 117, and a temperature detection means 120 for performing anti-freezing operation, and the temperature detection means 120 is below a threshold value When the temperature is reached, as the freeze prevention operation, the water in the cooling water circulation path 113 and the water in the mutual circulation path 117 are circulated and the heating means 114 is operated.

101は、原料供給手段102から供給される原料をバーナ103の熱による改質反応で水素リッチガスに変換させる改質器である。104は、改質器101で発生し水素供給経路105を介して供給される水素リッチガスと酸化剤ガスとしての空気とを反応させて発電する燃料電池であり、水素極104aと空気極104bとを有している。106は、燃料電池104の水素極104aとバーナ103とを接続する排水素経路である。燃料電池104の空気極104bには、空気供給手段107と、凝縮器108および水回収経路109が接続されている。水回収経路109には、排空気経路110が接続されるとともに、改質水供給装置111を備えた改質水供給経路112を介して改質器101に接続されている。113は、燃料電池104で発生する熱を冷却する冷却水循環経路で、加熱手段114を備え、燃料電池104と熱交換装置115との間を冷却水ポンプ116によって冷却水が循環する構成となっている。117は、水回収経路109と冷却水循環経路113との間を連通し、ポンプ118によって双方の経路の水を循環させる相互循環経路で、水浄化器119を備えている。120は温度検出手段、121は制御装置である。   101 is a reformer that converts the raw material supplied from the raw material supply means 102 into a hydrogen-rich gas by a reforming reaction by the heat of the burner 103. Reference numeral 104 denotes a fuel cell that generates electricity by reacting the hydrogen-rich gas generated in the reformer 101 and supplied through the hydrogen supply path 105 with air as an oxidant gas. The fuel cell 104 generates a hydrogen electrode 104a and an air electrode 104b. Have. Reference numeral 106 denotes an exhaust hydrogen path that connects the hydrogen electrode 104 a of the fuel cell 104 and the burner 103. An air supply means 107, a condenser 108 and a water recovery path 109 are connected to the air electrode 104 b of the fuel cell 104. An exhaust air path 110 is connected to the water recovery path 109 and is connected to the reformer 101 via a reforming water supply path 112 including a reforming water supply device 111. Reference numeral 113 denotes a cooling water circulation path for cooling the heat generated in the fuel cell 104. The cooling water circulation path 113 includes heating means 114, and the cooling water is circulated by the cooling water pump 116 between the fuel cell 104 and the heat exchange device 115. Yes. 117 is a mutual circulation path that communicates between the water recovery path 109 and the cooling water circulation path 113, and circulates water in both paths by the pump 118, and includes a water purifier 119. Reference numeral 120 denotes a temperature detection means, and 121 denotes a control device.

つぎに、この従来の燃料電池発電装置の凍結防止運転の動作について説明する。   Next, the operation of the anti-freezing operation of this conventional fuel cell power generator will be described.

燃料電池104の発電要求がない時に、温度検出手段120が閾値以下(閾値は、凍結防止運転により凍結回避可能な温度)、例えば0℃以下の温度を検出した場合、凍結防止運転として燃料電池104の発電をせずに、冷却水循環経路113の冷却水ポンプ116および相互循環経路117のポンプ118をそれぞれ循環動作させるとともに、加熱手段114を作動し発生した熱を冷却水循環経路113、相互循環経路117、水回収経路109に伝え、各経路内の水の凍結を防止するように制御装置121で制御するものである。   When there is no power generation request of the fuel cell 104, when the temperature detection unit 120 detects a temperature below a threshold (the threshold is a temperature at which freezing can be avoided by the freeze prevention operation), for example, 0 ° C. or less, the fuel cell 104 is set as the freeze prevention operation. Without generating electricity, the cooling water pump 116 of the cooling water circulation path 113 and the pump 118 of the mutual circulation path 117 are circulated, and the heat generated by the heating means 114 is operated to the cooling water circulation path 113 and the mutual circulation path 117. Then, it is transmitted to the water recovery path 109 and controlled by the control device 121 so as to prevent the water in each path from being frozen.

特許第4013609号公報Japanese Patent No. 4013609

しかしながら、従来の構成では、凍結を防止するために、冷却水循環経路内の水および相互循環経路内の水をそれぞれ循環させ、かつ加熱手段を作動させるが、一般的に経路内の水循環と加熱手段による加熱作用を併用した凍結防止動作にも動作限界温度(下限温度)が存在し、この下限温度を超える低温状態が継続した場合には、水循環を維持できなくなり、最冷却部より凍結が始まり最終的には各水経路が凍結し最悪の場合機器が破損してしまう。その結果、凍結による機器破損の影響で、次回の発電開始時(起動時)に発電不能となったり、破損箇所からの水漏れによる漏電が発生し不安全状態になるという課題があった。   However, in the conventional configuration, in order to prevent freezing, the water in the cooling water circulation path and the water in the mutual circulation path are respectively circulated and the heating means is operated. Generally, the water circulation and the heating means in the path are operated. There is also an operating limit temperature (lower limit temperature) in the anti-freezing operation combined with the heating action by, and if a low temperature state exceeding this lower limit temperature continues, water circulation cannot be maintained, freezing starts from the coldest part and finally In reality, each water path freezes and in the worst case, the equipment is damaged. As a result, there was a problem that due to the damage of the equipment due to freezing, power generation becomes impossible at the start of the next power generation (at the time of start-up), or electric leakage due to water leakage from the damaged part occurs, resulting in an unsafe state.

本発明は、上記従来の課題を解決するもので、凍結防止運転可能限界温度(下限温度)よりさらに低温環境になった場合にも、凍結による水回路や部品の破損を回避し、凍結防止を確実に行う燃料電池発電装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and prevents damage to water circuits and parts due to freezing even when the temperature becomes lower than the limit temperature (lower limit temperature) at which anti-freezing operation is possible. It is an object of the present invention to provide a fuel cell power generator that performs reliably.

上記課題を解決するための、本発明に係る燃料電池発電装置は、燃料電池と、前記燃料電池の冷却を行う冷却水循環経路と、反応生成水および排気ガス中の水分を回収する水回収経路と、前記水回収経路と前記冷却水循環経路との間を循環させる相互循環経路と、前記冷却水循環経路、前記水回収経路、前記相互循環経路のいずれかに設けられた加熱手段と、システム内部の所定の位置または外気温を検出する位置に設けられた温度検出手段とを備え、前記燃料電池の発電停止状態において前記温度検出手段が第1の閾値以下の温度を検出した際、凍結防止運転として、前記冷却水循環経路内の水および前記相互循環経路内の水をそれぞれ循環させ、かつ前記加熱手段を作動し、前記温度検出手段が第1の閾値以下である第2の閾値以下の温度を所定時間検出した際、凍結防止運転として、前記冷却水循環経路と前記水回収経路と前記相互循環経路の少なくともいずれか一つの前記経路内の水を水抜き操作する制御手段を有することを特徴としたものである。   In order to solve the above problems, a fuel cell power generator according to the present invention includes a fuel cell, a cooling water circulation path for cooling the fuel cell, a water recovery path for recovering water in the reaction product water and the exhaust gas, and A mutual circulation path that circulates between the water recovery path and the cooling water circulation path, heating means provided in any one of the cooling water circulation path, the water recovery path, and the mutual circulation path, and a predetermined inside of the system Or a temperature detecting means provided at a position for detecting the outside air temperature, and when the temperature detecting means detects a temperature equal to or lower than a first threshold in the power generation stop state of the fuel cell, The water in the cooling water circulation path and the water in the mutual circulation path are circulated, the heating means is operated, and the temperature detection means has a temperature not higher than a second threshold value that is not higher than a first threshold value. When detecting for a predetermined time, as a freeze prevention operation, it has a control means for draining the water in at least one of the cooling water circulation path, the water recovery path, and the mutual circulation path, It is a thing.

かかる構成によれば、凍結防止運転可能限界温度(下限温度)よりさらに低温環境になった場合に、限界温度以下になった時間経過と検知温度の低下速度によって、凍結が開始する前に、冷却水循環経路と水回収経路と相互循環経路の少なくともいずれか一つの経路内の水を強制的に水抜きすることにより、燃料電池発電装置を凍結による水経路や部品の破損を回避することができる。   According to such a configuration, when the temperature becomes lower than the limit temperature (lower limit temperature) at which anti-freezing operation is possible, the cooling is performed before freezing starts due to the elapsed time when the temperature has become lower than the limit temperature and the decrease rate of the detected temperature. By forcibly draining water in at least one of the water circulation path, the water recovery path, and the mutual circulation path, damage to the water path and parts due to freezing of the fuel cell power generation device can be avoided.

また、水抜きが開始されることを警告案内する警告手段を有することを特徴としたものである。   Further, the present invention is characterized by having warning means for giving a warning notification that drainage is started.

かかる構成によれば、水抜きが開始されることを警告案内することにより、事前に利用者に自動で水抜きが開始することを注意喚起でき、水抜きが開始する直前に誤って発電操作を行うようなこともなく、安全でかつ利便性の良い燃料電池発電装置を提供できる。   According to such a configuration, it is possible to alert the user in advance that drainage starts automatically by giving a warning that drainage is started, and inadvertently perform power generation operation immediately before drainage starts. It is possible to provide a fuel cell power generator that is safe and convenient.

また、警告手段は、燃料電池の運転を制御するリモコンまたは情報機器端末に具備することを特徴としたものである。   Further, the warning means is provided in a remote controller or an information equipment terminal that controls the operation of the fuel cell.

かかる構成によれば、利用者が操作と認識が容易なリモコンまたは携帯可能な情報機器端末によって水抜きによる凍結防止運転を報知案内することにより、確実に情報伝達が行われ、使い勝手の良い燃料電池発電装置を提供できる。   According to such a configuration, a fuel cell that is user-friendly and easy-to-use can be reliably communicated by informing and guiding the freeze-free operation by draining with a remote control or portable information device terminal that is easy to operate and recognize. A power generation device can be provided.

また、警告手段は、水抜き中は水抜きを実施中であること報知することを特徴としたものである。   Further, the warning means is characterized by notifying that the water is being drained during draining.

かかる構成によれば、水抜き実施中であることを警告案内することにより、利用者に自
動で水抜きしていることを注意喚起でき、水抜き中に誤って発電操作を行うようなこともなく、安全でかつ利便性の良い燃料電池発電装置を提供できる。
According to such a configuration, it is possible to alert the user that water is being drained automatically by giving a warning that the water is being drained, and the power generation operation may be erroneously performed while draining water. Therefore, a safe and convenient fuel cell power generator can be provided.

また、温度検出手段は各経路内の水温が最も低くなる位置に取付けられたことを特徴としたものである。   The temperature detecting means is attached to a position where the water temperature in each path is the lowest.

かかる構成によれば、凍結防止するための温度が最も低くなる位置で温度検出するため、凍結防止運転が確実に行われ、信頼性の高い燃料電池発電装置を提供できる。   According to such a configuration, the temperature is detected at the position where the temperature for preventing freezing is lowest, so that the freeze preventing operation is performed reliably and a highly reliable fuel cell power generator can be provided.

本発明の燃料電池発電装置は、凍結防止運転可能限界温度(下限温度)より低温環境になった場合にも、凍結開始する前に、冷却水循環経路と水回収経路と相互循環経路の少なくともいずれか一つの経路内の水を強制的に水抜きすることにより、凍結による水経路や部品の破損を回避することができ信頼性の高い燃料電池発電装置を提供することができる。   The fuel cell power generation device of the present invention also includes at least one of the cooling water circulation path, the water recovery path, and the mutual circulation path before starting freezing even when the temperature becomes lower than the limit temperature (lower limit temperature) at which freeze prevention operation is possible. By forcibly draining water in one path, damage to the water path and parts due to freezing can be avoided, and a highly reliable fuel cell power generator can be provided.

本発明の実施の形態1における燃料電池発電装置のシステム構成図1 is a system configuration diagram of a fuel cell power generator according to Embodiment 1 of the present invention. 本発明の実施の形態1における検出温度(Ta)と経過時間(Tx)の関係を示す特性図The characteristic view which shows the relationship between detected temperature (Ta) and elapsed time (Tx) in Embodiment 1 of this invention 本発明の実施の形態1における検出温度(Ta)と経過時間(Tx)の関係を示す特性図The characteristic view which shows the relationship between detected temperature (Ta) and elapsed time (Tx) in Embodiment 1 of this invention 本発明の実施の形態2における燃料電池発電装置のシステム構成図System configuration diagram of a fuel cell power generator according to Embodiment 2 of the present invention 従来の燃料電池システムのシステム構成図System configuration diagram of conventional fuel cell system

第1の発明は、燃料電池と、前記燃料電池の冷却を行う冷却水循環経路と、反応生成水および排気ガス中の水分を回収する水回収経路と、前記水回収経路と前記冷却水循環経路との間を循環させる相互循環経路と、前記冷却水循環経路、前記水回収経路、前記相互循環経路のいずれかに設けられた加熱手段と、システム内部の所定の位置または外気温を検出する位置に設けられた温度検出手段とを備え、前記燃料電池の発電停止状態において前記温度検出手段が第1の閾値以下の温度を検出した際、凍結防止運転として、前記冷却水循環経路内の水および前記相互循環経路内の水をそれぞれ循環させ、かつ前記加熱手段を作動し、前記温度検出手段が第1の閾値以下である第2の閾値以下の温度を所定時間検出した際、凍結防止運転として、前記冷却水循環経路と前記水回収経路と前記相互循環経路の少なくともいずれか一つの前記経路内の水を水抜き操作する制御手段を有することを特徴とし、凍結防止運転可能限界温度(下限温度)より低温環境になった場合にも、限界温度より低温になった時間経過と検知温度の低下速度により凍結開始する前に、冷却水循環経路と水回収経路と相互循環経路の少なくともいずれか一つの経路内の水を強制的に水抜きし、凍結による水経路や部品の破損を回避する燃料電池発電装置を提供することができる。   The first invention includes a fuel cell, a cooling water circulation path for cooling the fuel cell, a water recovery path for recovering water in the reaction product water and the exhaust gas, the water recovery path, and the cooling water circulation path. An internal circulation path that circulates between them, heating means provided in any one of the cooling water circulation path, the water recovery path, and the mutual circulation path, and a predetermined position inside the system or a position that detects an outside air temperature. Temperature detection means, and when the temperature detection means detects a temperature equal to or lower than a first threshold in the power generation stop state of the fuel cell, water in the cooling water circulation path and the mutual circulation path are used as a freeze prevention operation. When the temperature detection means detects a temperature below a second threshold value that is less than or equal to a first threshold value for a predetermined time, It has a control means for draining water in at least one of the cooling water circulation path, the water recovery path, and the mutual circulation path, and is based on the limit temperature (lower limit temperature) at which anti-freezing operation is possible. Even in a low-temperature environment, before freezing starts due to the passage of time when the temperature is lower than the limit temperature and the detection temperature decrease rate, the cooling water circulation path, the water recovery path, and the mutual circulation path must be connected. It is possible to provide a fuel cell power generator that forcibly drains water and avoids damage to water paths and parts due to freezing.

第2の発明は、特に、第1の発明において、水抜きが開始されることを警告案内する警告手段を有することを特徴とし、水抜きが開始されることを警告案内することにより、水抜きが開始されることを警告案内することにより、事前に利用者に自動で水抜きが開始することを注意喚起でき、水抜きが開始する直前に誤って発電操作を行うようなこともなく、安全でかつ利便性の良い燃料電池発電装置を提供できる。   In particular, the second invention is characterized in that, in the first invention, there is provided warning means for giving a warning notice that drainage is started. By alerting the user that the water will start, the user can be alerted in advance that water draining will start automatically. And a convenient fuel cell power generator.

第3の発明は、特に、第2の発明において、警告手段は、燃料電池の運転を制御するリモコンまたは情報機器端末に具備することを特徴とし、利用者が操作と認識が容易なリモ
コンまたは携帯情報機器端末によって水抜きによる凍結防止運転を報知案内することにより、確実に情報伝達が行われ、使い勝手の良い燃料電池発電装置を提供できる。
A third invention is characterized in that, in particular, in the second invention, the warning means is provided in a remote control or information equipment terminal that controls the operation of the fuel cell, and the remote control or portable device that is easy to operate and recognize by a user. By informing and guiding the antifreezing operation by draining with the information equipment terminal, it is possible to reliably transmit information and provide a fuel cell power generator that is easy to use.

第4の発明は、特に、第2または3の発明において、警告手段は、水抜き中は水抜きを実施中であること報知することを特徴とし、水抜き実施中であることを警告案内することにより、利用者に自動で水抜きしていることを注意喚起でき、水抜き中に誤って発電操作を行うようなこともなく、安全でかつ利便性の良い燃料電池発電装置を提供できる。   According to a fourth aspect of the invention, in particular, in the second or third aspect of the invention, the warning means informs that the water is being drained during drainage, and warns and guides that the drainage is in progress. Thus, it is possible to alert the user that water has been drained automatically, and it is possible to provide a safe and convenient fuel cell power generator without performing a power generation operation accidentally during draining.

第5の発明は、特に、第1〜4のいずれか1つの発明において、温度検出手段は各経路内の水温が最も低くなる位置に取付けられたことを特徴とし、凍結防止するための温度が最も低くなる位置で温度検出するため、凍結防止運転が確実に行われ、信頼性の高い燃料電池発電装置を提供できる。   The fifth invention is characterized in that, in particular, in any one of the first to fourth inventions, the temperature detecting means is mounted at a position where the water temperature in each path is the lowest, and the temperature for preventing freezing is Since the temperature is detected at the lowest position, the freeze prevention operation is reliably performed, and a highly reliable fuel cell power generator can be provided.

以下に、本発明の実施の形態について、図面を参照して説明する。なお、この実施の形態によって本発明が限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1に係る燃料電池発電装置のシステム構成図である。図1において、図5で示した従来の燃料電池発電装置と同じ機能を有するものについては、同一符号を付与しており、それらの機能の詳細は、図5のものに準ずるものとして説明を省略する。
(Embodiment 1)
FIG. 1 is a system configuration diagram of a fuel cell power generator according to Embodiment 1 of the present invention. 1, those having the same functions as those of the conventional fuel cell power generator shown in FIG. 5 are given the same reference numerals, and the details of those functions are the same as those in FIG. To do.

図1に示すように、10は、本発明の実施の形態1に係る燃料電池発電装置の温度検出手段であり、水回収経路9内の下方の水温を検知できる位置に取付けられている。温度検出手段10は、経路内の水の凍結を防止のために温度を検知する場所として有効であれば、燃料電池発電装置内外を問わず、いずれの箇所であっても構わないが、凍結の始まりを確実に検知するために、各経路内の残留水温が最も低くなる位置に設けるのが好ましい。11は、水回収経路109の経路の水を排出するための水抜き弁、12は、相互循環経路117の経路の水を排出するための水抜き弁であり、冷却水循環経路113の水も相互循環経路117に連通しているため同時に水抜きできるように接続されている。13は、温度検出手段10からの検出温度を入力し、水抜き弁11,水抜き弁12を開弁することにより冷却水循環経路113と水回収経路109と相互循環経路117の経路内の水を水抜き操作する制御手段である。   As shown in FIG. 1, reference numeral 10 denotes a temperature detection unit of the fuel cell power generator according to Embodiment 1 of the present invention, and is attached to a position where the water temperature below the water recovery path 9 can be detected. As long as the temperature detection means 10 is effective as a place for detecting the temperature in order to prevent the water in the path from freezing, the temperature detection means 10 may be any place, whether inside or outside the fuel cell power generator. In order to detect the start reliably, it is preferable to provide at the position where the residual water temperature in each path becomes the lowest. 11 is a drain valve for discharging the water of the water recovery path 109, 12 is a drain valve for discharging the water of the mutual circulation path 117, and the water of the cooling water circulation path 113 is also mutual. Since it communicates with the circulation path 117, it is connected so that water can be drained at the same time. 13 inputs the detected temperature from the temperature detecting means 10 and opens the water drain valve 11 and the water drain valve 12 to remove the water in the cooling water circulation path 113, the water recovery path 109 and the mutual circulation path 117. It is a control means for draining operation.

つぎに、本実施の形態1における凍結防止運転の動作について説明する。燃料電池104の発電要求がない時に、温度検出手段10が第1の閾値以下(第1の閾値は、冷却水循環経路113内の水および相互循環経路117内の水をそれぞれ循環させ、かつ加熱手段114を作動させ凍結防止運転を開始する温度)、例えば0℃以下の温度を検出した場合、凍結防止運転として燃料電池104の発電をせずに、冷却水循環経路113の冷却水ポンプ116および相互循環経路117のポンプ118をそれぞれ動作させ水循環をするとともに、加熱手段114を作動し発生した熱を冷却水循環経路113、相互循環経路117、水回収経路109に伝え、各経路内の水の凍結を防止するように制御手段13によって循環・加熱制御する。   Next, the operation of the freeze prevention operation in the first embodiment will be described. When there is no power generation request of the fuel cell 104, the temperature detecting means 10 is not more than a first threshold value (the first threshold value circulates water in the cooling water circulation path 113 and water in the mutual circulation path 117, and heating means) 114 is operated and the anti-freezing operation is started), for example, a temperature of 0 ° C. or less is detected, the cooling water pump 116 and the mutual circulation of the cooling water circulation path 113 are not generated as the anti-freezing operation without generating the power of the fuel cell 104. Each of the pumps 118 in the path 117 is operated to circulate water, and the heating means 114 is operated to transmit the generated heat to the cooling water circulation path 113, the mutual circulation path 117, and the water recovery path 109 to prevent water in each path from freezing. Thus, the control means 13 controls the circulation and heating.

なお、改質水供給経路112内の水は改質水供給装置111の作動がない時には落差によって水回収経路109へ落とすことにより凍結を防止するようになっている。   The water in the reforming water supply path 112 is prevented from freezing by dropping into the water recovery path 109 by a drop when the reforming water supply apparatus 111 is not operated.

次に、上記凍結防止運転実行時に、温度検出手段10が第1の閾値以下の第2の閾値(冷却水循環経路113内の水および相互循環経路117内の水循環と加熱手段114を作動する凍結防止運転で凍結回避可能な下限温度T2(以下、T2とする)で、例えば−1
0℃とする)以下の温度を検出した場合、制御手段13は、第2の閾値T2を下回ってからの温度検出手段10からの検出温度(Ta)と経過時間(TX)を監視する。
Next, when the freeze prevention operation is performed, the temperature detection means 10 operates at a second threshold value equal to or lower than the first threshold value (water freeze in the cooling water circulation path 113 and water circulation in the mutual circulation path 117 and the freeze prevention that operates the heating means 114. At a lower limit temperature T2 (hereinafter referred to as T2) that can avoid freezing during operation, for example, −1
When detecting a temperature equal to or lower than 0 ° C., the control means 13 monitors the detected temperature (Ta) and the elapsed time (TX) from the temperature detecting means 10 after the temperature falls below the second threshold value T2.

図2に温度検出手段10の検出温度(Ta)と経過時間(Tx)の関係の一例を示す。   FIG. 2 shows an example of the relationship between the detected temperature (Ta) of the temperature detecting means 10 and the elapsed time (Tx).

図2において、第2の閾値を下回ったとき(Tx1)からの温度検出手段10からの検出温度(Ta)と第2の閾値(T2)の温度差(Td)の経過時間(TX)の積分値(A=Σ(Ta−T2))が所定レベル(AL:図2のTx1〜Tx2間の斜線部)に到達したときに、すなわちTx2になった時点で、制御手段13は、水抜き弁11,水抜き弁12を開弁し、冷却水循環経路113と水回収経路109と相互循環経路117の経路から水抜き開始する。このTx2は、温度検出手段10からの検出温度(Ta)がこのままの低下速度で推移した場合、Tx3にて凍結してしまう予測時点より、水抜き弁11,水抜き弁12を開弁することにより冷却水循環経路113と水回収経路109と相互循環経路117の経路内の水を水抜き完了するまでの時間的余裕が残っている時点である。つまり、積分値(A=Σ(Ta−T2))がAL+BL(図2のTx1〜Tx2〜Tx3間の斜線部の合算値)に到達したときに凍結することを予測するものである。そして、水循環と加熱手段114を作動する凍結防止運転で凍結回避可能な下限温度(T2)を下回ってから、温度低下によって水経路または水経路のある部品のうち最も冷却される部位から凍結が開始する(Tx3)よりも前に、Tx2時点にて水抜きすることによりTx3時点では水抜きを完了させることができる。   In FIG. 2, the integration of the elapsed time (TX) of the temperature difference (Td) between the detected temperature (Ta) from the temperature detecting means 10 and the second threshold (T2) from when the value falls below the second threshold (Tx1). When the value (A = Σ (Ta−T2)) reaches a predetermined level (AL: hatched portion between Tx1 and Tx2 in FIG. 2), that is, when Tx2 is reached, the control means 13 11. Open the water drain valve 12 and start draining from the cooling water circulation path 113, the water recovery path 109, and the mutual circulation path 117. This Tx2 is to open the drainage valve 11 and the drainage valve 12 from the predicted time point when the detected temperature (Ta) from the temperature detecting means 10 changes at the rate of decrease as it is, and freezes at Tx3. This is a point in time when there is enough time to complete draining of water in the cooling water circulation path 113, the water recovery path 109, and the mutual circulation path 117. That is, it is predicted that the integrated value (A = Σ (Ta−T2)) freezes when it reaches AL + BL (the sum of the hatched portions between Tx1 to Tx2 to Tx3 in FIG. 2). Then, after the temperature falls below the lower limit temperature (T2) at which freezing can be avoided in the antifreezing operation that operates the water circulation and the heating means 114, freezing starts from the most cooled part of the water path or the parts having the water path due to the temperature drop. Prior to (Tx3), draining can be completed at time Tx3 by draining water at time Tx2.

図3に温度検出手段10の検出温度(Ta)と経過時間(Tx)の関係の他の例を示す。   FIG. 3 shows another example of the relationship between the detected temperature (Ta) of the temperature detecting means 10 and the elapsed time (Tx).

図3において、第2の閾値(T2)を下回ってからの温度検出手段10からの検出温度(Ta)が、その後の温度変化によって、温度低下が緩やかになったときには、第2の閾値を下回ってからの温度検出手段10からの検出温度(Ta)と第2の閾値(T2)の温度差(Td)の経過時間(TX)の積分値(A=Σ(Ta−T2))は、所定レベル(AL)に緩やかに接近する。さらにその後の温度変化が温度上昇に転じた場合には、積分値(A=Σ(Ta−T2))は、図3のTx1〜Tx2〜Tx3間の斜線部の合算値(AL+B)となり、AL+BLよりも少なくなるために、制御手段13による水抜き弁11,水抜き弁12を開弁することによる冷却水循環経路113と水回収経路109と相互循環経路117の経路の水抜きを行わずに凍結防止することができる。   In FIG. 3, the detected temperature (Ta) from the temperature detecting means 10 after falling below the second threshold value (T2) falls below the second threshold value when the temperature drop becomes gentle due to the subsequent temperature change. The integrated value (A = Σ (Ta−T2)) of the elapsed time (TX) of the temperature difference (Td) between the detected temperature (Ta) from the temperature detecting means 10 and the second threshold value (T2) after Approach the level (AL) slowly. Further, when the subsequent temperature change starts to increase in temperature, the integrated value (A = Σ (Ta−T2)) becomes the total value (AL + B) of the hatched portion between Tx1 to Tx2 to Tx3 in FIG. In order to reduce the amount of water, the cooling means circulation path 113, the water recovery path 109, and the mutual circulation path 117 are not drained by opening the drain valve 11 and the drain valve 12 by the control means 13. Can be prevented.

このように、本実施の形態1の凍結防止運転では、温度検出手段10が検出した温度が、水循環と加熱手段114を作動する凍結防止運転で凍結回避可能な下限温度(T2))を下回ってからの温度変化に応じて、温度低下が緩やかになったり、その後、温度上昇に転じた場合などには、水抜き弁11,水抜き弁12を開弁することによる冷却水循環経路113と水回収経路109と相互循環経路117の経路の水抜きを行わずに凍結防止することができ、温度低下が継続し、その後、温度上昇もなく 次第に水循環と加熱手段114を作動する凍結防止運転では凍結回避ができなくなることが予測される状況になった場合には、水抜きに要する時間を確保できる時点で、水抜き弁11,水抜き弁12を開弁することによる冷却水循環経路113と水回収経路109と相互循環経路117の経路の水抜きを強制的に行うことにより凍結による水回路や水経路部品の損傷を回避することができる。   Thus, in the freeze prevention operation of the first embodiment, the temperature detected by the temperature detection means 10 is lower than the lower limit temperature (T2) at which freezing can be avoided in the freeze prevention operation that operates the water circulation and the heating means 114. When the temperature drops gradually or changes to a temperature rise in response to the temperature change from the cooling water circulation path 113 and water recovery by opening the drain valve 11 and drain valve 12, etc. Freezing can be prevented without draining the route 109 and the mutual circulation route 117, the temperature continues to drop, and then there is no increase in temperature. When it becomes a situation where it is predicted that the water drainage cannot be performed, the cooling water circulation path 1 by opening the water drain valve 11 and the water drain valve 12 at a time when the time required for water draining can be secured. By performing 3 and drain paths of the water collecting path 109 and mutual circulating passage 117 to force it it is possible to avoid damage to the water circuit and water pathway components by freezing.

なお、本実施の形態においては、Tx2になった時点で、制御手段13は、水抜き弁11,水抜き弁12を開弁し、冷却水循環経路113と水回収経路109と相互循環経路117の経路からすべて水抜きを行う構成としているが、冷却水循環経路113と水回収経路109と相互循環経路117のいずれか1つの経路内の水抜きをすることにより凍結に
よる水回路や水経路部品の破損が回避できる場合は、1つの経路のみ水抜きすることで良いことは言うまでもない。
In the present embodiment, when Tx2 is reached, the control means 13 opens the water drain valve 11 and the water drain valve 12, and the cooling water circulation path 113, the water recovery path 109, and the mutual circulation path 117 are opened. Although all the water is drained from the path, water circuit and water path parts are damaged due to freezing by draining water in any one of the cooling water circulation path 113, the water recovery path 109, and the mutual circulation path 117. Needless to say, if it is possible to avoid this, it is sufficient to drain the water only in one route.

(実施の形態2)
図4は、本発明の実施の形態2における燃料電池発電装置のシステム構成図である。実施の形態1と同様のものについては、同一符号を付与し、その説明を省略する。
(Embodiment 2)
FIG. 4 is a system configuration diagram of the fuel cell power generator according to Embodiment 2 of the present invention. The same reference numerals are given to the same components as those in the first embodiment, and the description thereof is omitted.

本実施の形態において、14は、燃料電池の運転を制御するリモコンであり、警告手段としての表示部15と報知部16を備えており、また運転操作するための操作部17も備えている。   In the present embodiment, reference numeral 14 denotes a remote controller that controls the operation of the fuel cell, which includes a display unit 15 and a notification unit 16 as warning means, and also includes an operation unit 17 for driving operation.

本実施の形態2は、利用者が燃料電池の運転を制御する手段としてリモコンを用いた場合のシステムを示したものである。すなわち、燃料電池104の発電運転/停止をリモコン14の操作部17により操作し、表示部15により燃料電池104の発電状況等を認識し、報知部16により運転状況に応じた報知音(発電開始時や発電停止時のアラーム等)で認識するように構成されている。   The second embodiment shows a system when a user uses a remote control as means for controlling the operation of the fuel cell. That is, the power generation operation / stop of the fuel cell 104 is operated by the operation unit 17 of the remote controller 14, the power generation state of the fuel cell 104 is recognized by the display unit 15, and the notification sound (power generation start is started) according to the driving state by the notification unit 16. And alarms when the power generation is stopped).

つぎに、本実施の形態2における凍結防止運転の動作について説明する。   Next, the operation of the freeze prevention operation in the second embodiment will be described.

燃料電池104の発電要求がない時に、温度検出手段10が第1の閾値以下(第1の閾値は、冷却水循環経路113内の水および相互循環経路117内の水をそれぞれ循環させ、かつ加熱手段114を作動させ凍結防止運転を開始する温度)、例えば0℃以下の温度を検出した場合、凍結防止運転として燃料電池104の発電をせずに、冷却水循環経路113の冷却水ポンプ116および相互循環経路117のポンプ118をそれぞれ動作させ水循環をするとともに、加熱手段114を作動し発生した熱を冷却水循環経路113、相互循環経路117、水回収経路109に伝え、各経路内の水の凍結を防止するように制御手段13によって循環・加熱制御する。   When there is no power generation request of the fuel cell 104, the temperature detecting means 10 is not more than a first threshold value (the first threshold value circulates water in the cooling water circulation path 113 and water in the mutual circulation path 117, and heating means) 114 is operated and the anti-freezing operation is started), for example, a temperature of 0 ° C. or less is detected, the cooling water pump 116 and the mutual circulation of the cooling water circulation path 113 are not generated as the anti-freezing operation without generating the power of the fuel cell 104. Each of the pumps 118 in the path 117 is operated to circulate water, and the heating means 114 is operated to transmit the generated heat to the cooling water circulation path 113, the mutual circulation path 117, and the water recovery path 109 to prevent water in each path from freezing. Thus, the control means 13 controls the circulation and heating.

このとき、リモコン14の表示部15に凍結防止運転中である旨の運転状態表示を行い、利用者に注意喚起する。   At this time, an operation state display indicating that the freeze prevention operation is being performed is displayed on the display unit 15 of the remote controller 14 to alert the user.

次に、上記凍結防止運転実行時に、温度検出手段10が第1の閾値以下の第2の閾値(冷却水循環経路113内の水および相互循環経路117内の水循環と加熱手段114を作動する凍結防止運転で凍結回避可能な下限温度T2)以下の温度を検出した場合、制御手段13は、第2の閾値T2を下回ってからの温度検出手段10からの検出温度(Ta)と経過時間(TX)を監視する。図2において、第2の閾値を下回ったとき(Tx1)からの温度検出手段10からの検出温度(Ta)と第2の閾値(T2)の温度差(Td)の経過時間(TX)の積分値(A=Σ(Ta−T2))が所定レベル(AL:図2のTx1〜Tx2間の斜線部)に到達するより前に、Tx2になった時点で、制御手段13により、水抜き弁11,水抜き弁12を開弁し、冷却水循環経路113と水回収経路109と相互循環経路117の経路から水抜き開始することを、リモコン14の表示部15に「凍結防止運転中」表示から「もうすぐ水抜きを開始します」表示に変更することにより利用者に注意喚起する。さらに、水抜きを開始してからは「水抜き中です」表示に変更することにより利用者に注意喚起する。そして、水循環と加熱手段114を作動する凍結防止運転で凍結回避可能な下限温度(T2)を下回ってから、温度低下によって水経路または水経路のある部品のうち最も冷却される部位から凍結が開始する(Tx3)よりも前に、Tx2時点前にて水抜きすることを予め警告案内し、さらに水抜き中は水抜きを実施中であることを警告することにより、利用者に自動で水抜きしていることを注意喚起でき、水抜き中に誤って発電操作を行うようなこともなく、安全でかつ利便性の良い燃料電池発電装置を提供できる。   Next, when the freeze prevention operation is performed, the temperature detection means 10 operates at a second threshold value equal to or lower than the first threshold value (water freeze in the cooling water circulation path 113 and water circulation in the mutual circulation path 117 and the freeze prevention that operates the heating means 114. When detecting a temperature lower than the lower limit temperature T2) at which freezing can be avoided by driving, the control means 13 detects the detected temperature (Ta) and the elapsed time (TX) from the temperature detection means 10 after the temperature falls below the second threshold T2. To monitor. In FIG. 2, the integration of the elapsed time (TX) of the temperature difference (Td) between the detected temperature (Ta) from the temperature detecting means 10 and the second threshold (T2) from when the value falls below the second threshold (Tx1). When the value (A = Σ (Ta−T2)) reaches Tx2 before reaching the predetermined level (AL: hatched portion between Tx1 and Tx2 in FIG. 2), the drain valve 11. Opening the water drain valve 12 and starting draining from the cooling water circulation path 113, the water recovery path 109, and the mutual circulation path 117 from the display of “Freezing prevention operation” on the display unit 15 of the remote controller 14. The user is alerted by changing the display to “Start draining soon”. Furthermore, after draining starts, the user is alerted by changing the display to “Draining”. Then, after the temperature falls below the lower limit temperature (T2) at which freezing can be avoided in the antifreezing operation that operates the water circulation and the heating means 114, freezing starts from the most cooled part of the water path or the parts having the water path due to the temperature drop. Prior to (Tx3), a warning is given in advance that water is drained before the time of Tx2, and the user is automatically drained by warning that water is being drained during draining. Therefore, it is possible to provide a fuel cell power generator that is safe and convenient without causing a power generation operation by mistake during drainage.

なお、本実施の形態においては、燃料電池の運転を制御する手段としてリモコンを用いたが、携帯可能な情報機器端末等でも可能なことは言うまでもなく、利用者に確実に凍結防止運転、水抜き動作を警告することができ、一層、燃料電池発電装置としての信頼性を向上できるものである。   In the present embodiment, the remote control is used as a means for controlling the operation of the fuel cell. However, it goes without saying that the portable information device terminal can be used, and it is possible for the user to reliably prevent freezing and drain the water. The operation can be warned, and the reliability of the fuel cell power generator can be further improved.

本発明に係る燃料電池発電装置は、凍結防止運転可能限界温度(下限温度)より低温環境になった場合にも、凍結開始する前に、冷却水循環経路と水回収経路と相互循環経路の少なくともいずれか一つの経路内の水を強制的に水抜きすることにより、凍結による水経路や部品の破損を回避することができる信頼性の高い燃料電池発電装置に有効である。   The fuel cell power generation device according to the present invention also includes at least one of the cooling water circulation path, the water recovery path, and the mutual circulation path before starting freezing even when the temperature becomes lower than the limit temperature (lower limit temperature) at which freeze prevention operation is possible. It is effective for a highly reliable fuel cell power generator that can avoid damage to water paths and parts due to freezing by forcibly draining water in one path.

10 温度検出手段
11 水抜き弁
12 水抜き弁
13 制御手段
104 燃料電池
109 水回収経路
113 冷却水循環経路
114 加熱手段
117 相互循環経路
DESCRIPTION OF SYMBOLS 10 Temperature detection means 11 Drain valve 12 Drain valve 13 Control means 104 Fuel cell 109 Water recovery path 113 Cooling water circulation path 114 Heating means 117 Mutual circulation path

Claims (5)

燃料電池と、前記燃料電池の冷却を行う冷却水循環経路と、反応生成水および排気ガス中の水分を回収する水回収経路と、前記水回収経路と前記冷却水循環経路との間を循環させる相互循環経路と、前記冷却水循環経路、前記水回収経路、前記相互循環経路のいずれかに設けられた加熱手段と、システム内部の所定の位置または外気温を検出する位置に設けられた温度検出手段とを備え、前記燃料電池の発電停止状態において前記温度検出手段が第1の閾値以下の温度を検出した際、凍結防止運転として、前記冷却水循環経路内の水および前記相互循環経路内の水をそれぞれ循環させ、かつ前記加熱手段を作動し、前記温度検出手段が第1の閾値以下である第2の閾値以下の温度を所定時間検出した際、凍結防止運転として、前記冷却水循環経路と前記水回収経路と前記相互循環経路の少なくともいずれか一つの前記経路内の水を水抜き操作する制御手段を有する燃料電池発電装置。 A fuel cell, a cooling water circulation path for cooling the fuel cell, a water recovery path for recovering water in the reaction product water and the exhaust gas, and a mutual circulation for circulating between the water recovery path and the cooling water circulation path A heating path provided in any one of the path, the cooling water circulation path, the water recovery path, and the mutual circulation path, and a temperature detection means provided at a predetermined position inside the system or a position for detecting an outside air temperature. And when the temperature detecting means detects a temperature below the first threshold in the power generation stop state of the fuel cell, the water in the cooling water circulation path and the water in the mutual circulation path are circulated as a freeze prevention operation, respectively. And when the heating means is operated and the temperature detection means detects a temperature below a second threshold value that is less than or equal to a first threshold value for a predetermined time, the cooling water circulation is performed as a freeze prevention operation. Road and fuel cell power generation system having a control means for operating drainage of water of at least any one of said path of said water recovery path and the cross-circulation path. 水抜きが開始されることを警告案内する警告手段をさらに有する請求項1に記載の燃料電池発電装置。 2. The fuel cell power generator according to claim 1, further comprising warning means for giving a warning notice that drainage is started. 前記警告手段は、燃料電池の運転を制御するリモコンまたは情報機器端末に具備している請求項2に記載の燃料電池発電装置。 3. The fuel cell power generator according to claim 2, wherein the warning means is provided in a remote controller or an information equipment terminal that controls the operation of the fuel cell. 前記警告手段は、前記水抜き中は水抜きを実施中であること報知する請求項2または3に記載の燃料電池発電装置。 The fuel cell power generator according to claim 2 or 3, wherein the warning means notifies that water is being drained during draining. 前記温度検出手段は各経路内の水温が最も低くなる位置に取付けられた請求項1〜4のいずれか1項に記載の燃料電池発電装置。 The fuel cell power generator according to any one of claims 1 to 4, wherein the temperature detecting means is attached at a position where the water temperature in each path is the lowest.
JP2009141831A 2009-06-15 2009-06-15 Fuel cell power generator Pending JP2010287518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009141831A JP2010287518A (en) 2009-06-15 2009-06-15 Fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009141831A JP2010287518A (en) 2009-06-15 2009-06-15 Fuel cell power generator

Publications (1)

Publication Number Publication Date
JP2010287518A true JP2010287518A (en) 2010-12-24

Family

ID=43543063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009141831A Pending JP2010287518A (en) 2009-06-15 2009-06-15 Fuel cell power generator

Country Status (1)

Country Link
JP (1) JP2010287518A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199164A (en) * 2011-03-23 2012-10-18 Osaka Gas Co Ltd Fuel battery system
JP2014049218A (en) * 2012-08-30 2014-03-17 Panasonic Corp Power generation system
WO2016013304A1 (en) * 2014-07-24 2016-01-28 日産自動車株式会社 Fuel cell system and fuel cell system control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199164A (en) * 2011-03-23 2012-10-18 Osaka Gas Co Ltd Fuel battery system
JP2014049218A (en) * 2012-08-30 2014-03-17 Panasonic Corp Power generation system
WO2016013304A1 (en) * 2014-07-24 2016-01-28 日産自動車株式会社 Fuel cell system and fuel cell system control method
CN106663828A (en) * 2014-07-24 2017-05-10 日产自动车株式会社 Fuel cell system and fuel cell system control method
US11682778B2 (en) 2014-07-24 2023-06-20 Nissan Motor Co., Ltd. Fuel cell system and control method for fuel cell system

Similar Documents

Publication Publication Date Title
JP5139282B2 (en) Fuel cell system
JP2006179198A (en) Fuel cell system
JP2006024430A (en) Fuel cell system
JP2007018992A (en) Fuel cell system and operation control method of fuel cell system
JP2010262834A (en) Power generation system, and auxiliary unit
JP2010287518A (en) Fuel cell power generator
JP5410832B2 (en) Power generation system and auxiliary unit
JP2003109637A (en) Fuel cell cooling device and control method of the same
JP2013242055A (en) Water heater
JP4929734B2 (en) Fuel cell system
JP2014191949A (en) Cogeneration apparatus
CN113206317A (en) Cooling system and method for preventing heat spread of battery pack
JP5200440B2 (en) Fuel cell power generation system
JP2003168454A (en) Cooling equipment of fuel cell
JP2009301721A (en) Fuel battery power generator system
TWM639638U (en) Circuit to detect battery thermal control loss
JP5283894B2 (en) Fuel cell system
JP6706160B2 (en) Fuel cell system
JP5410831B2 (en) Power generation system and auxiliary unit
JP5349354B2 (en) Hot water storage water heater
JP5518165B2 (en) Fuel cell system
JP4414295B2 (en) Heat exchange system and control method thereof
JP2007240091A (en) Storage type water heater
JP2018154530A (en) Hydrogen generator and fuel cell system with the same
JP2005315513A (en) Waste heat recovery apparatus