JP2006024430A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2006024430A
JP2006024430A JP2004200834A JP2004200834A JP2006024430A JP 2006024430 A JP2006024430 A JP 2006024430A JP 2004200834 A JP2004200834 A JP 2004200834A JP 2004200834 A JP2004200834 A JP 2004200834A JP 2006024430 A JP2006024430 A JP 2006024430A
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature
fuel cell
hot water
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004200834A
Other languages
Japanese (ja)
Other versions
JP5173111B2 (en
Inventor
Hidenori Nakabayashi
秀則 中林
Taneo Higuchi
種男 樋口
Mitsuhiro Nakamura
光博 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004200834A priority Critical patent/JP5173111B2/en
Publication of JP2006024430A publication Critical patent/JP2006024430A/en
Application granted granted Critical
Publication of JP5173111B2 publication Critical patent/JP5173111B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell system which can utilize effectively exhaust gas from a solid electrolyte fuel cell. <P>SOLUTION: The fuel cell system comprises: the solid electrolyte fuel cell 1 ; a heat exchanger 5 which carries out heat exchange between the exhaust gas from the solid electrolyte fuel cell 1 and water ; a hot water storing tank 6 which stores the water ; a circulation piping 7 which connects a bottom of the hot water storing tank 6 with the heat exchanger 5, and an upper portion of the hot water storing tank 6 with the heat exchanger 5, respectively, and circulates the water between the hot water storing tank 6 and the heat exchanger 5 ; a circulation pump 8 which is disposed in the circulation piping 7 and circulates the water compulsorily ; temperature detectors 11 and 12 which detect temperatures of the water at an inlet and outlet of the heat exchanger 5 respectively, and a control unit 13 which controls output of the circulation pump 8 in order that the temperature of the water at the outlet of the heat exchanger 5 becomes higher than the temperature of the water at the inlet of the heat exchanger 5 by a predetermined temperature or more. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体電解質形燃料電池と、この固体電解質形燃料電池からの排ガスと水とを熱交換する熱交換器と、水を貯える貯湯タンクと、この貯湯タンクと熱交換器との間で水を循環させる循環配管と、この循環配管に設けられた循環ポンプとを具備する燃料電池システムに関する。   The present invention relates to a solid oxide fuel cell, a heat exchanger that exchanges heat between exhaust gas from the solid oxide fuel cell and water, a hot water storage tank that stores water, and a hot water storage tank and a heat exchanger. The present invention relates to a fuel cell system including a circulation pipe for circulating water and a circulation pump provided in the circulation pipe.

従来、高分子電解質形燃料電池システムを、図3を基に説明する。この燃料電池システムでは、燃料電池31より生じた熱を回収する冷却水の温度を検出するサーミスタ等の電池温度検出器33が、冷却配管35の燃料電池31からの出口側に設置されている。符号36は、電池温度検出器33が検出する冷却水の温度が運転温度の上限値未満の時は、燃料電池31の発電量に応じて排熱回収配管37内の水の流量が所定流量になるように循環ポンプ39の出力を制御し、この温度が運転温度の上限値以上となると燃料電池31の発電量に関係なく循環ポンプ39の出力を強制的に冷却水温度が燃料電池31または冷却配管35に配したポンプ41や電池温度検出器33等の部材の劣化が激しくなる温度に到達しない値に制御する制御装置である。   A conventional polymer electrolyte fuel cell system will be described with reference to FIG. In this fuel cell system, a battery temperature detector 33 such as a thermistor for detecting the temperature of cooling water for recovering heat generated from the fuel cell 31 is installed on the outlet side of the cooling pipe 35 from the fuel cell 31. Reference numeral 36 indicates that when the temperature of the cooling water detected by the battery temperature detector 33 is less than the upper limit value of the operating temperature, the flow rate of water in the exhaust heat recovery pipe 37 is set to a predetermined flow rate according to the power generation amount of the fuel cell 31. The output of the circulation pump 39 is controlled so that the output of the circulation pump 39 is forcibly controlled regardless of the amount of power generated by the fuel cell 31 when the temperature exceeds the upper limit value of the operating temperature. This is a control device that controls to a value that does not reach a temperature at which deterioration of members such as the pump 41 and the battery temperature detector 33 arranged in the pipe 35 becomes severe.

このような燃料電池システムの運転時には、燃料処理装置43は天然ガスなどの原料を水蒸気改質し、水素を主成分とするガスを生成して燃料電池31に供給する。また、空気供給装置45により、酸化剤ガスは酸化側加湿器47で加湿され、燃料電池31に供給される。一方、燃料電池31の発電により生じた熱は、冷却配管35内を流れる冷却水に回収される。冷却水はポンプ41により循環し、冷却水に回収された熱は、熱交換器49を介して排熱回収配管37内を循環する水に移動する。   During the operation of such a fuel cell system, the fuel processing device 43 steam-reforms a raw material such as natural gas, generates a gas containing hydrogen as a main component, and supplies the gas to the fuel cell 31. Further, the oxidant gas is humidified by the oxidation side humidifier 47 by the air supply device 45 and supplied to the fuel cell 31. On the other hand, the heat generated by the power generation of the fuel cell 31 is recovered by the cooling water flowing in the cooling pipe 35. The cooling water is circulated by the pump 41, and the heat recovered in the cooling water moves to the water circulating in the exhaust heat recovery pipe 37 via the heat exchanger 49.

制御装置36は、電池温度検出器33が検出する冷却水の温度が運転温度の上限値未満であるときは、燃料電池31の発電量に応じて熱回収配管37内の水の流量が所定流量となるように循環ポンプ39の出力を制御する。また、制御装置36は、冷却水の温度が運転温度の上限値以上となると、循環ポンプ39の出力を強制的に冷却水温度が燃料電池31または冷却配管35に配したポンプ41や電池温度検出器33等の部材の劣化が激しくなる温度に到達しない値に制御する。例えば、高分子電解質形燃料電池を用いて、70〜85℃で通常運転している場合であれば、運転温度が上限値の90℃以上になった時、循環ポンプ39の出力を強制的に増加させ、冷却水温度が燃料電池31または冷却配管35に配したポンプ41や電池温度検出器33等の部材の劣化が激しくなる100℃付近にまで到達しない値に制御し、かつ迅速に通常運転温度に復帰させる。   When the temperature of the cooling water detected by the battery temperature detector 33 is less than the upper limit value of the operating temperature, the control device 36 sets the flow rate of water in the heat recovery pipe 37 according to the power generation amount of the fuel cell 31 to a predetermined flow rate. The output of the circulation pump 39 is controlled so that In addition, when the temperature of the cooling water becomes equal to or higher than the upper limit value of the operating temperature, the control device 36 forcibly outputs the output of the circulation pump 39 and detects the temperature of the pump 41 and the battery that are arranged in the fuel cell 31 or the cooling pipe 35. The value is controlled so as not to reach a temperature at which the deterioration of the member such as the vessel 33 becomes severe. For example, if the polymer electrolyte fuel cell is normally operated at 70 to 85 ° C., the output of the circulation pump 39 is forced when the operating temperature reaches 90 ° C., which is the upper limit value. Increase the cooling water temperature to a value that does not reach around 100 ° C. where the deterioration of the components such as the pump 41 and the battery temperature detector 33 arranged in the fuel cell 31 or the cooling pipe 35 becomes severe, and quickly normal operation Return to temperature.

このような構成にすることにより、排熱回収管37での気泡の発生やごみの詰まり等による圧力損失の増大を防ぐことができ、それにともなう燃料電池31の温度上昇を阻止できる。また、燃料電池31の温度上昇による緊急停止等の運転停止動作をしなくてもすむため、長時間に渡り安定した発電を維持できる(特許文献1参照)。   With such a configuration, it is possible to prevent an increase in pressure loss due to generation of bubbles in the exhaust heat recovery pipe 37, clogging of dust, and the like, and it is possible to prevent an increase in the temperature of the fuel cell 31 associated therewith. Further, since it is not necessary to perform an operation stop operation such as an emergency stop due to the temperature rise of the fuel cell 31, stable power generation can be maintained for a long time (see Patent Document 1).

従来、高分子電解質形燃料電池システムでは、排熱回収管内の水を循環させる循環ポンプとして、一般に少量の水を高圧で確実に循環できるギアポンプが用いられている。
特開2003−282108号
Conventionally, in a polymer electrolyte fuel cell system, a gear pump that can reliably circulate a small amount of water at a high pressure is generally used as a circulation pump for circulating water in an exhaust heat recovery pipe.
JP 2003-282108 A

しかしながら、高分子電解質形燃料電池システムでは、排熱回収システムが開発されているものの、固体電解質形燃料電池システムでは、排熱回収システムについては提案されたものはなく、また、電解質が固体電解質タイプという異なるものであるため、高分子電解質形燃料電池システムの排熱回収システムを固体電解質形燃料電池システムにそのまま適用することはできなかった。   However, although exhaust heat recovery systems have been developed for polymer electrolyte fuel cell systems, no solid heat recovery systems have been proposed for solid electrolyte fuel cell systems, and the electrolyte is a solid electrolyte type. Therefore, the exhaust heat recovery system of the polymer electrolyte fuel cell system cannot be directly applied to the solid electrolyte fuel cell system.

即ち、高分子電解質形燃料電池システムでは、高分子電解質を用いるため燃料電池を冷却する必要があり、そのために冷却水を用いており、この冷却水による冷却が行われなくなると、燃料電池自体が破損するため、冷却水の温度を制御する必要がある。   That is, in the polymer electrolyte fuel cell system, since the polymer electrolyte is used, it is necessary to cool the fuel cell. For this reason, cooling water is used. If cooling with this cooling water is not performed, the fuel cell itself Since it breaks, it is necessary to control the temperature of the cooling water.

一方、固体電解質形燃料電池システムでは、燃料ガスと酸素含有ガスを用いて固体電解質で発電するもので、余剰の燃料ガスや酸素含有ガスを燃焼させて燃焼ガスを排出するが、この排ガスの熱エネルギーを有効に利用しようとするものである。   On the other hand, in a solid oxide fuel cell system, fuel gas and oxygen-containing gas are used to generate power with a solid electrolyte. Excess fuel gas or oxygen-containing gas is burned to discharge combustion gas. It is intended to make effective use of energy.

従って、高分子電解質形燃料電池システムでは、燃料電池を冷却する冷却水の温度を基に排熱回収システムを制御する必要があるが、固体電解質形燃料電池システムでは、燃料電池を冷却する必要がないため、制御法も異なるのである。   Therefore, in the polymer electrolyte fuel cell system, it is necessary to control the exhaust heat recovery system based on the temperature of the cooling water that cools the fuel cell, but in the solid oxide fuel cell system, it is necessary to cool the fuel cell. The control method is also different.

また、一般に、高分子電解質形燃料電池システムでは、少量の水を高圧で確実に循環できるギアポンプが用いられているが、このギアポンプは高価であるという問題があった。   In general, in a polymer electrolyte fuel cell system, a gear pump capable of reliably circulating a small amount of water at a high pressure is used, but this gear pump has a problem that it is expensive.

本発明は、固体電解質形燃料電池からの排ガスを有効に利用できる燃料電池システムを提供することを目的とする。   It is an object of the present invention to provide a fuel cell system that can effectively use exhaust gas from a solid oxide fuel cell.

本発明の燃料電池システムでは、固体電解質形燃料電池と、該固体電解質形燃料電池からの排ガスと水とを熱交換する熱交換器と、水を貯える貯湯タンクと、該貯湯タンクの底部と前記熱交換器との間、及び前記貯湯タンクの上部と前記熱交換器との間をそれぞれ連結し、前記貯湯タンクと前記熱交換器との間で水を循環させる循環配管と、該循環配管に設けられ、水を強制的に循環させる循環ポンプと、前記熱交換器の入口水温及び出口水温を検出する温度検出器と、前記熱交換器の出口水温が入口水温よりも所定温度以上となるように前記循環ポンプの出力を制御する制御装置とを具備することを特徴とする。   In the fuel cell system of the present invention, a solid oxide fuel cell, a heat exchanger for exchanging heat between the exhaust gas from the solid electrolyte fuel cell and water, a hot water storage tank for storing water, a bottom portion of the hot water storage tank, A circulation pipe that connects between the heat exchanger and between the upper part of the hot water storage tank and the heat exchanger, and circulates water between the hot water storage tank and the heat exchanger; and A circulation pump that forcibly circulates the water, a temperature detector that detects the inlet water temperature and the outlet water temperature of the heat exchanger, and the outlet water temperature of the heat exchanger is equal to or higher than the inlet water temperature. And a control device for controlling the output of the circulation pump.

このような燃料電池システムでは、熱交換器の出口水温が入口水温よりも所定温度以上となるように循環ポンプの出力を制御することにより、水と排ガスの熱交換を有効に行うことができ、高温の湯水を安定して供給できる。例えば、固体電解質形燃料電池による発電が少ない場合、排ガスも少なくなるが、この場合には、循環ポンプをゆっくり回転させて一定時間あたりの循環量を少なくし、熱交換器での熱交換を充分に行うことにより、貯湯タンク内に供給される水の温度を高くできる。   In such a fuel cell system, by controlling the output of the circulation pump so that the outlet water temperature of the heat exchanger is equal to or higher than the inlet water temperature, heat exchange between water and exhaust gas can be performed effectively, High temperature hot water can be supplied stably. For example, when there is little power generated by a solid oxide fuel cell, the amount of exhaust gas also decreases, but in this case, the circulation pump is rotated slowly to reduce the amount of circulation per fixed time and heat exchange in the heat exchanger is sufficient. By carrying out to, the temperature of the water supplied in a hot water storage tank can be made high.

また、本発明の燃料電池システムは、固体電解質形燃料電池と、該固体電解質形燃料電池からの排ガスと水とを熱交換する熱交換器と、水を貯える貯湯タンクと、該貯湯タンクの底部と前記熱交換器との間、及び前記貯湯タンクの上部と前記熱交換器との間をそれぞれ連結し、前記貯湯タンクと前記熱交換器との間で水を循環させる循環配管と、該循環配管に設けられ、水を強制的に循環させる循環ポンプと、該循環ポンプの回転数を検出する回転数検出器と、前記熱交換器の出口水温を検出する温度検出器と、前記回転数検出器の循環ポンプ回転数から前記循環配管内の水の循環流量を算出し、該循環流量と前記固体電解質形燃料電池の排ガスの熱量から前記熱交換器の出口水温を算出し、実際に検出される熱交換器の出口温度が、算出された熱交換器の出口温度となるように前記循環ポンプの出力を制御する制御装置とを具備することを特徴とする。   The fuel cell system of the present invention includes a solid oxide fuel cell, a heat exchanger for exchanging heat between the exhaust gas from the solid electrolyte fuel cell and water, a hot water storage tank for storing water, and a bottom portion of the hot water storage tank. A circulation pipe for connecting water between the hot water storage tank and the heat exchanger, and for circulating water between the hot water storage tank and the heat exchanger, and the circulation A circulation pump that is provided in the piping and forcibly circulates water, a rotation speed detector that detects the rotation speed of the circulation pump, a temperature detector that detects the outlet water temperature of the heat exchanger, and the rotation speed detection The circulation flow rate of water in the circulation pipe is calculated from the rotation speed of the circulation pump of the condenser, and the outlet water temperature of the heat exchanger is calculated from the circulation flow rate and the heat amount of the exhaust gas of the solid oxide fuel cell, and is actually detected. The heat exchanger outlet temperature is calculated. Characterized by comprising a heat exchanger and a controller for controlling the output of the circulation pump so that the outlet temperature.

このような燃料電池システムでは、循環ポンプ回転数から循環配管内の水の循環流量を求め、この循環流量と固体電解質形燃料電池の排ガスの熱量から求めた熱交換器の理論上の出口水温と、実際に検出される熱交換器の出口温度とを比較し、実際の出口温度が理論上の出口温度となるように循環ポンプの回転数を制御することにより、水と排ガスの熱交換を有効に行うことができ、高温の湯水を安定して供給できる。   In such a fuel cell system, the circulation flow rate of the water in the circulation pipe is obtained from the rotation speed of the circulation pump, and the theoretical outlet water temperature of the heat exchanger obtained from this circulation flow rate and the calorific value of the exhaust gas of the solid oxide fuel cell is calculated. Compare the actual detected outlet temperature of the heat exchanger and control the rotation speed of the circulation pump so that the actual outlet temperature becomes the theoretical outlet temperature. It is possible to stably supply hot hot water.

即ち、循環ポンプの回転数と循環流量は比例関係にあり、通常の運転では設置の状況に応じた循環配管の圧力損失により決まる。設置の状況に応じた循環配管の圧力損失は配管径と配管長さで決定されるため、あらかじめ配管径および配管長さの範囲を決めておけば、循環ポンプの回転数に対する循環流量は計算される。このことから循環ポンプの回転数から計算される循環流量と燃料電池の出力から計算される排熱の熱量から、熱交換器での昇温は計算される。熱交換器の入り口および出口水温を検出する温度検出器で検出した昇温と熱量から計算した昇温を比較し、所定以上の差が所定時間継続したとき、前記循環ポンプを強制的に一定以上の出力で運転制御する制御装置を有している。   That is, the rotation speed of the circulation pump and the circulation flow rate are in a proportional relationship, and in normal operation, they are determined by the pressure loss of the circulation pipe corresponding to the installation situation. Since the pressure loss of the circulation pipe according to the installation situation is determined by the pipe diameter and the pipe length, if the range of the pipe diameter and the pipe length is determined in advance, the circulation flow rate with respect to the rotation speed of the circulation pump is calculated. The Therefore, the temperature rise in the heat exchanger is calculated from the circulation flow rate calculated from the rotation speed of the circulation pump and the amount of exhaust heat calculated from the output of the fuel cell. Compare the temperature rise detected by the temperature detector that detects the water temperature at the inlet and outlet of the heat exchanger with the temperature rise calculated from the amount of heat, and when the difference of more than a predetermined value continues for a predetermined time, the circulation pump is forced to be above a certain level It has the control device which controls operation with the output of.

従って、実際の流量が循環ポンプの回転数から計算された循環流量より少ないと熱交換器の出口温度は高くなり、計算から求めた昇温より温度検出器で検出した昇温の方が大きくなる。このように所定以上の差が所定時間継続したとき、循環がなんらかの原因で阻害されていると判断し、循環ポンプを一定時間一定以上の出力で運転することにより、未然に循環停止を防ぐことができる。   Therefore, if the actual flow rate is less than the circulation flow rate calculated from the rotation speed of the circulation pump, the outlet temperature of the heat exchanger becomes high, and the temperature rise detected by the temperature detector is larger than the temperature rise obtained from the calculation. . In this way, when a difference of a predetermined value or more continues for a predetermined time, it is determined that the circulation is hindered for some reason, and the circulation pump can be prevented from being stopped in advance by operating the circulation pump at an output higher than a certain time. it can.

また、本発明の燃料電池システムは、制御装置は、貯湯タンク内の水が所定温度(沸騰温度に近い温度)以上となった場合に、排ガスの熱交換器への供給を停止することを特徴とする。排ガスの熱交換器への供給が停止されることにより、貯湯タンクへの高温水の供給が停止される。しかも、固体電解質形燃料電池は、高分子タイプと異なり内部を冷却する必要がないため、循環ポンプを停止しても固体電解質形燃料電池自体への影響はない。   In the fuel cell system of the present invention, the control device stops supplying the exhaust gas to the heat exchanger when the water in the hot water storage tank becomes equal to or higher than a predetermined temperature (a temperature close to the boiling temperature). And When the supply of the exhaust gas to the heat exchanger is stopped, the supply of high-temperature water to the hot water storage tank is stopped. In addition, unlike the polymer type, the solid oxide fuel cell does not need to be cooled internally, so that the solid oxide fuel cell itself is not affected even if the circulation pump is stopped.

制御装置は、貯湯タンク内の水が所定温度(沸騰温度に近い温度)以上となった場合に、循環ポンプを停止することが望ましい。循環ポンプを停止することにより、貯湯タンク内の水が沸騰温度に近づくことを防止できる。   The control device desirably stops the circulation pump when the water in the hot water storage tank becomes equal to or higher than a predetermined temperature (a temperature close to the boiling temperature). By stopping the circulation pump, the water in the hot water storage tank can be prevented from approaching the boiling temperature.

さらに、本発明の燃料電池システムは、制御装置は、循環ポンプの停止後、再運転開始時に、強制的に一定以上の出力で所定時間運転することを特徴とする。   Furthermore, the fuel cell system of the present invention is characterized in that the control device is forcibly operated for a predetermined time with an output of a certain level or more at the start of re-operation after the circulation pump is stopped.

上記したように、貯湯タンク内の水の沸騰を防止するため、熱交換器への排ガスの供給が停止され、循環ポンプが停止されるが、これにより、熱交換器の温度が低下してくるため、貯湯タンクから高い温度の水が熱交換器へ、この熱交換器から循環ポンプを介して貯湯タンク内へと逆流し、再度循環ポンプの運転を開始しても、循環ポンプを回転できず、循環配管内の水を正常な流れに戻すことが困難であった。本発明では、循環ポンプの停止後、再運転開始時には、強制的に一定以上の出力で循環ポンプを所定時間運転することにより、循環配管内の水の流れを正常状態に戻すことができる。   As described above, in order to prevent boiling of the water in the hot water storage tank, the supply of exhaust gas to the heat exchanger is stopped and the circulation pump is stopped, which lowers the temperature of the heat exchanger. Therefore, even if high-temperature water from the hot water tank flows back to the heat exchanger, and from this heat exchanger to the hot water tank through the circulation pump, the circulation pump cannot be rotated even if the circulation pump is started again. It was difficult to return the water in the circulation pipe to a normal flow. In the present invention, when the recirculation operation is started after the circulation pump is stopped, the flow of water in the circulation pipe can be returned to a normal state by forcibly operating the circulation pump for a predetermined time with an output of a certain level or more.

即ち、貯湯タンク内の水が沸騰温度に近い温度(例えば90℃)を超えた場合、沸騰を防止するために、循環ポンプを停止し、排ガスを熱交換器を通さずに他所へ放出するが、この操作により、熱交換器の温度が徐々に低下するとともに貯湯タンクに連結された循環配管内の水温も徐々に低下し、高温から低温へと流れるという水の性質から、通常の水の循環方向とは逆向きに自然対流が発生する。また、沸騰防止時に循環ポンプを停止させた場合も同様に、熱交換器の温度が下がるにつれ逆向きの自然対流が発生する。   That is, when the water in the hot water storage tank exceeds a temperature close to the boiling temperature (for example, 90 ° C.), the circulation pump is stopped and the exhaust gas is discharged to another place without passing through the heat exchanger in order to prevent boiling. As a result of this operation, the temperature of the heat exchanger gradually decreases and the water temperature in the circulation pipe connected to the hot water storage tank also gradually decreases. Natural convection occurs in the opposite direction. Similarly, when the circulation pump is stopped at the time of boiling prevention, natural convection in the opposite direction is generated as the temperature of the heat exchanger decreases.

そして、給湯などで貯湯タンク内のお湯が使用され、貯湯タンク底部に冷たい水道水が入ってくると、通常の排熱回収運転に戻るが、この時所定の流量で循環ポンプを運転すると熱交換器の出口温度が低いために、熱交換器での熱交換を充分におこなうべく、制御装置は循環流量を絞る方向に制御し、熱交換器の出口温度を上げようとする。つまり、循環ポンプは、循環配管内を水が最小流量で流れるように運転することになる。   When hot water in the hot water storage tank is used for hot water supply and cold tap water enters the bottom of the hot water storage tank, it returns to normal exhaust heat recovery operation. Since the outlet temperature of the heat exchanger is low, the control device attempts to increase the outlet temperature of the heat exchanger by controlling the flow rate of the circulation to sufficiently perform heat exchange in the heat exchanger. That is, the circulation pump is operated so that water flows through the circulation pipe at a minimum flow rate.

従って、通常運転時のような制御では、循環ポンプの押し出し力が水の自然対流(逆流)に打ち勝つことができず、循環配管内の水の流れを正常な流れとすることができず、熱交換器内部で沸騰状態となり気泡が急激に発生することになる。このような状態になった後、出口水温が所定以上を検出し、循環ポンプを制御しても循環を回復することが困難であった。特に、循環ポンプとしてうず巻きポンプを用いる場合には、このような傾向が強い。   Therefore, in the control as in normal operation, the pushing force of the circulation pump cannot overcome the natural convection (reverse flow) of water, the water flow in the circulation pipe cannot be made normal, and the heat It becomes a boiling state inside the exchanger and bubbles are rapidly generated. After such a state is reached, it is difficult to recover the circulation even if the outlet water temperature is detected to be above a predetermined level and the circulation pump is controlled. This tendency is particularly strong when a spiral pump is used as the circulation pump.

本発明では、沸騰防止のため循環ポンプを一旦停止し、再度運転を開始する際には、循環ポンプを一定時間強力に回転させることにより、循環ポンプとしてうず巻きポンプを用いた場合であっても、上記した逆向きの自然対流に打ち勝ち、正常な流れを回復でき、この後、熱交換器出口温度による循環ポンプの出力制御に移行することで、水の沸騰防止制御後の循環不良を防ぐことができ、高温の湯水を安定して供給することができる。   In the present invention, when the circulation pump is temporarily stopped to prevent boiling and the operation is started again, even if the spiral pump is used as the circulation pump by strongly rotating the circulation pump for a certain period of time, By overcoming the above-mentioned natural convection in the reverse direction, normal flow can be restored, and then, by shifting to the output control of the circulation pump based on the heat exchanger outlet temperature, it is possible to prevent poor circulation after water boiling prevention control. It is possible to supply hot hot water with stability.

また、本発明の燃料電池システムは、熱交換器の出口側と貯湯タンクとの間に設けられた循環配管に、前記貯湯タンクの中層部に連結されたバイパス配管を設け、該バイパス配管に切り替え弁を設けてなり、制御装置は、循環ポンプの停止後、再運転開始時に、強制的に一定以上の出力で所定時間運転するとともに、前記バイパス配管に切り替え、前記貯湯タンクの中層部に循環水を戻すことを特徴とする。   In the fuel cell system of the present invention, a bypass pipe connected to the middle layer of the hot water storage tank is provided in a circulation pipe provided between the outlet side of the heat exchanger and the hot water storage tank, and the bypass pipe is switched to the bypass pipe. The control device is provided with a valve, and after the circulation pump is stopped, at the start of re-operation, the control device is forcibly operated for a predetermined time with an output of a certain level or more, and is switched to the bypass pipe, and the circulating water is placed in the middle layer of the hot water storage tank. It is characterized by returning.

このような燃料電池システムでは、上記したように、運転開始時に循環ポンプを一定以上の出力で所定時間運転することにより、逆向きの自然対流に打ち勝ち循環が始まるが、熱交換器や循環配管内の水はある程度低温となっているため、このまま貯湯タンク内に供給すると、高温の水層の上に低温の水層ができるため、貯湯タンク内の温度成層を乱すことになる。本発明では、循環ポンプの再運転開始時に、強制的に一定以上の出力で所定時間運転するとともに、バイパス配管に切り替え、貯湯タンクの中層部に循環水を戻すようにしたため、貯湯タンク内の温度成層を乱すことなく、貯湯タンク上部に溜まった高温水を有効に使用することができる。   In such a fuel cell system, as described above, when the circulation pump is operated for a predetermined time with a predetermined output or more at the start of operation, the natural convection in the reverse direction is overcome and the circulation starts. Since the water in the hot water storage tank is supplied to the hot water storage tank as it is, a low temperature water layer is formed on the high temperature water layer, which disturbs the temperature stratification in the hot water storage tank. In the present invention, at the start of re-operation of the circulation pump, the operation is forcibly operated for a predetermined time with an output of a certain level or more, and the bypass water is switched to return the circulating water to the middle layer of the hot water tank. Without disturbing the stratification, it is possible to effectively use the hot water accumulated in the upper part of the hot water storage tank.

また、本発明の燃料電池システムは、循環ポンプはうず巻きポンプであることを特徴とする。このような燃料電池システムでは安価とできる。   In the fuel cell system of the present invention, the circulation pump is a spiral pump. Such a fuel cell system can be inexpensive.

さらに、本発明の燃料電池システムは、燃料電池が、家庭用に用いられる固体電解質型燃料電池であることが望ましい。このような燃料電池は小型化が要求されるため、本発明の燃料電池システムを有効に用いることができる。   Furthermore, in the fuel cell system of the present invention, it is desirable that the fuel cell is a solid oxide fuel cell used for home use. Since such a fuel cell is required to be downsized, the fuel cell system of the present invention can be used effectively.

本発明の燃料電池システムでは、固体電解質形燃料電池からの排熱を有効に利用できる。また、循環ポンプの停止後、再運転開始時に、強制的に一定以上の出力で循環ポンプを所定時間運転することにより、循環ポンプとしてうず巻きポンプを用いた場合であっても循環配管内の水の流れを正常状態に戻すことができる。   In the fuel cell system of the present invention, exhaust heat from the solid oxide fuel cell can be used effectively. In addition, when the circulation pump is stopped and restarted, the circulation pump is forcibly operated for a predetermined time with a certain level of output, so that water in the circulation pipe can be used even when a spiral pump is used as the circulation pump. The flow can be returned to a normal state.

本発明の燃料電池システムを図1に基づき詳細に説明する。図1に示すように、本発明の固体酸化物形の燃料電池システムは、固体電解質形燃料電池1、都市ガス、天然ガスなどを燃料電池1に供給する燃料供給装置2、および酸化剤の空気を燃料電池1に供給するための空気供給装置3、燃料電池1に供給する燃料ガスを加湿する燃料加湿器4を有している。   The fuel cell system of the present invention will be described in detail with reference to FIG. As shown in FIG. 1, a solid oxide fuel cell system according to the present invention includes a solid oxide fuel cell 1, a fuel supply device 2 for supplying city gas, natural gas, and the like to the fuel cell 1, and oxidant air. An air supply device 3 for supplying the fuel cell 1 with fuel, and a fuel humidifier 4 for humidifying the fuel gas supplied to the fuel cell 1.

燃料電池1には、発電により生じる排熱を回収する熱交換器5が接続され、さらに熱交換器5には、貯湯タンク6内の水を循環するための循環配管7が接続され、循環配管7には循環配管7内の水を熱交換器5に供給する循環ポンプ8が設けられている。即ち、循環配管7は、熱交換器5と貯湯タンク6の上部との間を連結する循環配管7aと、熱交換器5と貯湯タンク6の底部との間を連結する循環配管7bとから構成されており、循環配管7bに設けられたうず巻きポンプからなる循環ポンプ8により、貯湯タンク底部の水を熱交換器5を通して貯湯タンク6の上部に戻す。   The fuel cell 1 is connected to a heat exchanger 5 that recovers exhaust heat generated by power generation. The heat exchanger 5 is further connected to a circulation pipe 7 for circulating water in the hot water storage tank 6. 7 is provided with a circulation pump 8 for supplying water in the circulation pipe 7 to the heat exchanger 5. That is, the circulation pipe 7 includes a circulation pipe 7 a that connects between the heat exchanger 5 and the upper part of the hot water storage tank 6, and a circulation pipe 7 b that connects between the heat exchanger 5 and the bottom of the hot water storage tank 6. The water at the bottom of the hot water storage tank is returned to the upper part of the hot water storage tank 6 through the heat exchanger 5 by a circulation pump 8 comprising a spiral pump provided in the circulation pipe 7b.

燃料電池1から熱交換器5に排ガスを供給する配管9には、切り替えダンパ10が設けられており、このダンパ10により、排ガスが熱交換器5または他所へ供給可能に構成されている。   A switching damper 10 is provided in the pipe 9 for supplying the exhaust gas from the fuel cell 1 to the heat exchanger 5, and the damper 10 is configured so that the exhaust gas can be supplied to the heat exchanger 5 or other places.

そして、本発明の燃料電池システムでは、循環配管7bには熱交換器5の入り口水温を検出する入口温度検出器11が設けられ、循環配管7aには熱交換器5の出口水温を検出する出口温度検出器12が設けられており、これらの温度検出器11、12等の情報により循環ポンプ8の出力を制御する制御装置13が設けられている。符号14は、貯湯タンク6の水温を検出するタンク温度検出器である。   In the fuel cell system of the present invention, the circulation pipe 7b is provided with an inlet temperature detector 11 that detects the inlet water temperature of the heat exchanger 5, and the circulation pipe 7a has an outlet that detects the outlet water temperature of the heat exchanger 5. A temperature detector 12 is provided, and a control device 13 is provided for controlling the output of the circulation pump 8 based on information on the temperature detectors 11 and 12. Reference numeral 14 denotes a tank temperature detector that detects the water temperature of the hot water storage tank 6.

以上のような燃料電池システムの運転は、燃料供給装置2で燃料となる都市ガス、天然ガスなどを燃料電池1に供給する。また、空気供給装置3により酸化剤ガスが燃料電池1に供給される。最初に燃料電池1内部で燃料ガスを燃焼させ、その燃焼熱で燃料電池1自体を発電可能な温度まで加熱する。所定の温度になると発電が始まり、発電により発生する熱により燃料電池1の温度を維持する。さらに、発電により発生する熱が余り、外部に排熱として放出されるようになる。この排熱を熱交換器5へ導き、熱交換器5を介して循環配管7内を循環する水に熱を移動せしめる。制御装置13は、タンク温度検出器14が検出するタンク水温が貯湯運転可能温度の上限値未満であるときは、燃料電池1の発電量に応じて循環配管内の水の所定時間当たりの流量が所定流量となるよう循環ポンプ8の出力を制御する。   In the operation of the fuel cell system as described above, the fuel supply device 2 supplies city gas, natural gas, or the like as fuel to the fuel cell 1. Further, an oxidant gas is supplied to the fuel cell 1 by the air supply device 3. First, fuel gas is combusted inside the fuel cell 1, and the fuel cell 1 itself is heated to a temperature at which power can be generated by the combustion heat. When the temperature reaches a predetermined temperature, power generation starts, and the temperature of the fuel cell 1 is maintained by heat generated by the power generation. Furthermore, the heat generated by the power generation is excessive and is released to the outside as exhaust heat. This exhaust heat is guided to the heat exchanger 5, and the heat is transferred to the water circulating in the circulation pipe 7 through the heat exchanger 5. When the tank water temperature detected by the tank temperature detector 14 is lower than the upper limit value of the hot water storage operation temperature, the control device 13 determines the flow rate of water in the circulation pipe per predetermined time according to the power generation amount of the fuel cell 1. The output of the circulation pump 8 is controlled so as to obtain a predetermined flow rate.

しかしながら、給湯負荷が少なく排熱回収量が多いと貯湯タンク6内は90℃を超える状態になる。このような状態で運転を継続すると、熱交換器5内で循環水が沸騰しやすいため、切り替えダンパ10で排ガスを他所へ放出し循環ポンプ8をとめて沸騰を防ぐ。   However, when the hot water supply load is small and the amount of exhaust heat recovery is large, the hot water storage tank 6 is in a state of exceeding 90 ° C. If the operation is continued in such a state, the circulating water tends to boil in the heat exchanger 5, so the exhaust gas is discharged to another place by the switching damper 10 and the circulation pump 8 is stopped to prevent boiling.

その後給湯等で貯湯タンク6の湯水を使用し、タンク水温が貯湯運転可能温度の上限値未満となり、循環ポンプ8の運転が開始される。しかしながら、沸騰を防ぐために燃料電池1の排熱を他所に放出し、循環ポンプ8を停止している間、熱交換器5の温度は低下し、貯湯タンク6内の水温よりも低くなり温度差が生じている。   Thereafter, hot water in the hot water storage tank 6 is used for hot water supply or the like, the tank water temperature becomes lower than the upper limit of the hot water storage operation possible temperature, and the operation of the circulation pump 8 is started. However, while the exhaust heat of the fuel cell 1 is released elsewhere to prevent boiling and the circulation pump 8 is stopped, the temperature of the heat exchanger 5 decreases and becomes lower than the water temperature in the hot water storage tank 6, causing a temperature difference. Has occurred.

このような状態では通常の貯湯運転時の循環方向とは逆向きに自然対流の力が発生している。そこに循環ポンプ8の運転指令が入り、切り替えダンパ10が排ガスを熱交換器5のほうへ切り替えても、熱交換器5の出口温度は低いので循環ポンプ8は流量が少なくなる方向に制御されることになる。このときの循環ポンプ8の揚程は定格運転時の約1/10程度と非常に小さくなっているために自然対流の力に負けて正常な循環を確保できないことになる。   In such a state, a natural convection force is generated in the direction opposite to the circulation direction during normal hot water storage operation. Even if the operation command for the circulation pump 8 is entered there and the switching damper 10 switches the exhaust gas to the heat exchanger 5, the outlet temperature of the heat exchanger 5 is low so that the circulation pump 8 is controlled in a direction in which the flow rate decreases. Will be. Since the head of the circulation pump 8 at this time is as small as about 1/10 of the rated operation, it is impossible to secure normal circulation under the force of natural convection.

このように正常な循環ができない状態が続くと熱交換器5の内部で循環水が沸騰してしまう。そこで循環ポンプ8の運転指令が出たときに強制的に一定以上の出力で所定時間運転することにより循環を正常に維持し、その後熱交換器5の入口温度検出器11と出口温度検出器12により所定の温度制御に移行することができ、循環不良による熱交換器の異常高温や異常圧力上昇を防ぐことができ、安定した運転を継続できる。   If the state in which normal circulation cannot be performed in this way continues, the circulating water boils inside the heat exchanger 5. Therefore, when the operation command for the circulation pump 8 is issued, the circulation is maintained normally by forcibly operating for a predetermined time with an output higher than a certain value, and then the inlet temperature detector 11 and the outlet temperature detector 12 of the heat exchanger 5. Thus, it is possible to shift to a predetermined temperature control, to prevent an abnormally high temperature and abnormal pressure increase of the heat exchanger due to poor circulation, and to continue stable operation.

そして、図1において、タンク温度検出器11が検出するタンク水温が貯湯運転可能温度の上限値未満であるとき、出口温度検出器12の温度が所定の温度になるよう循環ポンプ8の出力を制御する。熱交換器5の制御しようとする出口水温をWout、入口水温をWinとし、Wout−Winの値をΔTとすると、入口水温Winが低い程ΔTが大きくなるため、循環流量は小さくなる。   In FIG. 1, when the tank water temperature detected by the tank temperature detector 11 is less than the upper limit value of the hot water storage operation temperature, the output of the circulation pump 8 is controlled so that the temperature of the outlet temperature detector 12 becomes a predetermined temperature. To do. Assuming that the outlet water temperature to be controlled by the heat exchanger 5 is Wout, the inlet water temperature is Win, and the value of Wout−Win is ΔT, the lower the inlet water temperature Win is, the larger ΔT becomes, so the circulating flow rate becomes smaller.

一方熱交換器5の内部を循環する循環水は排ガスで加熱され温度が上昇するに伴い水の中に溶け込んでいた空気が気泡となって発生する。これら発生した気泡は所定の流速が維持されないと押し出すことができず、熱交換器5の内部に滞留する。   On the other hand, the circulating water circulating inside the heat exchanger 5 is heated by the exhaust gas, and as the temperature rises, the air dissolved in the water is generated as bubbles. These generated bubbles cannot be pushed out unless a predetermined flow rate is maintained, and stay in the heat exchanger 5.

このような状態が長時間続くと、ついには熱交換器5の管路を塞ぐ結果となり循環が止まってしまう。循環が止まると、熱交換器5の内部で循環水が沸騰し危険な状態になる。そこで、経験的に導き出された循環不良にならない流速を下回らないよう前記ΔTを所定値以下に制御装置13で制御する。このような構成にすることにより循環を正常に維持することができ、循環不良による熱交換器の異常高温や異常圧力上昇を防ぐことができ、安定した運転を継続できる。   If such a state continues for a long time, eventually the pipe line of the heat exchanger 5 is blocked and the circulation stops. When the circulation stops, the circulating water boils inside the heat exchanger 5 and is in a dangerous state. Therefore, the control unit 13 controls the ΔT to be equal to or less than a predetermined value so as not to fall below a flow rate that does not cause poor circulation that has been empirically derived. With such a configuration, the circulation can be maintained normally, the abnormally high temperature and abnormal pressure increase of the heat exchanger due to poor circulation can be prevented, and stable operation can be continued.

図2は本発明の他の燃料電池システムの構成図である。この燃料電池システムでは、熱交換器5と貯湯タンク6の上部とを連結する循環配管7aからバイパス配管16が分岐し、貯湯タンク6の中層部に連結されている。循環配管7aからのバイパス配管16の分岐部分には切り替え弁15が設けられている。   FIG. 2 is a configuration diagram of another fuel cell system of the present invention. In this fuel cell system, a bypass pipe 16 is branched from a circulation pipe 7 a that connects the heat exchanger 5 and the upper part of the hot water storage tank 6, and is connected to the middle layer of the hot water storage tank 6. A switching valve 15 is provided at a branch portion of the bypass pipe 16 from the circulation pipe 7a.

制御装置13は、タンク温度検出器14が検出するタンク水温が貯湯運転可能温度の上限値未満であるときは、出口温度検出器12の温度と入口温度検出器11の温度との差が所定の温度になるよう循環ポンプ8の出力を制御する。しかしながら、タンク湯温が高温で、危険を防止するために貯湯運転を停止した後の再起動時には、上記したように循環が正常に開始できない。そのため循環ポンプ8を強制的に一定以上の出力で所定時間運転すると同時に、切り替え弁15をバイパス配管16に切り替え、貯湯タンク6の中層部に循環水を戻す。このような構成にすることにより、貯湯タンク6の上部に温度の低い水が戻ってくることを防ぎ、貯湯タンク6内の温度成層を乱すことなく、貯湯タンク6上部に溜まった高温水を有効に給湯に使用することができるとともに、安定した運転を継続できる。   When the tank water temperature detected by the tank temperature detector 14 is less than the upper limit value of the hot water storage operation temperature, the control device 13 determines that the difference between the temperature of the outlet temperature detector 12 and the temperature of the inlet temperature detector 11 is a predetermined value. The output of the circulation pump 8 is controlled so as to reach a temperature. However, when the tank hot water temperature is high and restarting after stopping the hot water storage operation to prevent danger, the circulation cannot be normally started as described above. For this reason, the circulation pump 8 is forcibly operated for a predetermined time with an output of a certain level or more, and at the same time, the switching valve 15 is switched to the bypass pipe 16 to return the circulating water to the middle layer of the hot water storage tank 6. By adopting such a configuration, it is possible to prevent low temperature water from returning to the upper part of the hot water storage tank 6, and to effectively use the hot water accumulated in the upper part of the hot water storage tank 6 without disturbing the temperature stratification in the hot water storage tank 6. It can be used for hot water supply and stable operation can be continued.

本発明の燃料電池システムを示す構成図である。It is a block diagram which shows the fuel cell system of this invention. 本発明の他の燃料電池システムを示す構成図である。It is a block diagram which shows the other fuel cell system of this invention. 従来の燃料電池システムを示す構成図である。It is a block diagram which shows the conventional fuel cell system.

符号の説明Explanation of symbols

1:燃料電池
5:熱交換器
6:貯湯タンク
7:循環配管
8:循環ポンプ
10:切り替えダンパ
11:入口温度検出器
12:出口温度検出器
13:制御装置
14:タンク温度検出器
15:切り替え弁
16:バイパス配管
1: Fuel cell 5: Heat exchanger 6: Hot water storage tank 7: Circulation pipe 8: Circulation pump 10: Switching damper 11: Inlet temperature detector 12: Outlet temperature detector 13: Controller 14: Tank temperature detector 15: Switching Valve 16: Bypass piping

Claims (7)

固体電解質形燃料電池と、該固体電解質形燃料電池からの排ガスと水とを熱交換する熱交換器と、水を貯える貯湯タンクと、該貯湯タンクの底部と前記熱交換器との間、及び前記貯湯タンクの上部と前記熱交換器との間をそれぞれ連結し、前記貯湯タンクと前記熱交換器との間で水を循環させる循環配管と、該循環配管に設けられ、水を強制的に循環させる循環ポンプと、前記熱交換器の入口水温及び出口水温を検出する温度検出器と、前記熱交換器の出口水温が入口水温よりも所定温度以上となるように前記循環ポンプの出力を制御する制御装置とを具備することを特徴とする燃料電池システム。 A solid oxide fuel cell; a heat exchanger that exchanges heat between the exhaust gas from the solid oxide fuel cell and water; a hot water storage tank that stores water; a bottom of the hot water storage tank; and the heat exchanger; and An upper part of the hot water storage tank and the heat exchanger are connected to each other, a circulation pipe for circulating water between the hot water storage tank and the heat exchanger, and a circulation pipe provided in the circulation pipe for forcing water. Circulating a circulation pump, a temperature detector for detecting the inlet water temperature and the outlet water temperature of the heat exchanger, and controlling the output of the circulation pump so that the outlet water temperature of the heat exchanger is equal to or higher than the inlet water temperature. A fuel cell system. 固体電解質形燃料電池と、該固体電解質形燃料電池からの排ガスと水とを熱交換する熱交換器と、水を貯える貯湯タンクと、該貯湯タンクの底部と前記熱交換器との間、及び前記貯湯タンクの上部と前記熱交換器との間をそれぞれ連結し、前記貯湯タンクと前記熱交換器との間で水を循環させる循環配管と、該循環配管に設けられ、水を強制的に循環させる循環ポンプと、該循環ポンプの回転数を検出する回転数検出器と、前記熱交換器の出口水温を検出する温度検出器と、前記回転数検出器の循環ポンプ回転数から前記循環配管内の水の循環流量を算出し、該循環流量と前記固体電解質形燃料電池の排ガスの熱量から前記熱交換器の出口水温を算出し、実際に検出される熱交換器の出口温度が、算出された熱交換器の出口温度となるように前記循環ポンプの出力を制御する制御装置とを具備することを特徴とする燃料電池システム。 A solid oxide fuel cell; a heat exchanger that exchanges heat between the exhaust gas from the solid oxide fuel cell and water; a hot water storage tank that stores water; a bottom of the hot water storage tank; and the heat exchanger; and An upper part of the hot water storage tank and the heat exchanger are connected to each other, a circulation pipe for circulating water between the hot water storage tank and the heat exchanger, and a circulation pipe provided in the circulation pipe for forcing water. A circulation pump for circulation; a rotation speed detector for detecting the rotation speed of the circulation pump; a temperature detector for detecting the outlet water temperature of the heat exchanger; and the circulation pipe from the circulation pump rotation speed of the rotation speed detector Calculate the circulating flow rate of the water inside, calculate the outlet water temperature of the heat exchanger from the circulating flow rate and the amount of heat of the exhaust gas of the solid oxide fuel cell, and calculate the outlet temperature of the heat exchanger that is actually detected So that the outlet temperature of the heat exchanger Fuel cell system characterized by comprising a controller for controlling the output of the serial circulation pump. 制御装置は、貯湯タンク内の水が所定温度(沸騰温度に近い温度)以上となった場合に、排ガスの熱交換器への供給を停止することを特徴とする請求項1又は2記載の燃料電池システム。 3. The fuel according to claim 1, wherein the control device stops supplying the exhaust gas to the heat exchanger when the water in the hot water storage tank becomes equal to or higher than a predetermined temperature (a temperature close to the boiling temperature). Battery system. 制御装置は、貯湯タンク内の水が所定温度(沸騰温度に近い温度)以上となった場合に、循環ポンプを停止することを特徴とする請求項1乃至3のうちいずれかに記載の燃料電池システム。 4. The fuel cell according to claim 1, wherein the control device stops the circulation pump when the water in the hot water storage tank becomes equal to or higher than a predetermined temperature (a temperature close to a boiling temperature). system. 制御装置は、循環ポンプの停止後、再運転開始時に、強制的に一定以上の出力で所定時間運転することを特徴とする請求項1乃至4のうちいずれかに記載の燃料電池システム。 The fuel cell system according to any one of claims 1 to 4, wherein the control device is forcibly operated at a predetermined output or more for a predetermined time at the start of re-operation after the circulation pump is stopped. 熱交換器の出口側と貯湯タンクとの間に設けられた循環配管に、前記貯湯タンクの中層部に連結されたバイパス配管を設け、該バイパス配管に切り替え弁を設けてなり、制御装置は、循環ポンプの停止後、再運転開始時に、強制的に一定以上の出力で所定時間運転するとともに、前記バイパス配管に切り替え、前記貯湯タンクの中層部に循環水を戻すことを特徴とする請求項1乃至5のうちいずれかに記載の燃料電池システム。 A circulation pipe provided between the outlet side of the heat exchanger and the hot water storage tank is provided with a bypass pipe connected to the middle layer of the hot water storage tank, and a switching valve is provided in the bypass pipe. 2. After the circulation pump is stopped, at the start of re-operation, the operation is forcibly performed for a predetermined time with an output of a certain level or more, and is switched to the bypass pipe to return the circulating water to the middle layer of the hot water storage tank. The fuel cell system according to any one of 1 to 5. 循環ポンプはうず巻きポンプであることを特徴とする請求項1乃至6のうちいずかに記載の燃料電池システム。 7. The fuel cell system according to claim 1, wherein the circulation pump is a spiral pump.
JP2004200834A 2004-07-07 2004-07-07 Fuel cell system Expired - Fee Related JP5173111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004200834A JP5173111B2 (en) 2004-07-07 2004-07-07 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004200834A JP5173111B2 (en) 2004-07-07 2004-07-07 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2006024430A true JP2006024430A (en) 2006-01-26
JP5173111B2 JP5173111B2 (en) 2013-03-27

Family

ID=35797551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004200834A Expired - Fee Related JP5173111B2 (en) 2004-07-07 2004-07-07 Fuel cell system

Country Status (1)

Country Link
JP (1) JP5173111B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082579A (en) * 2006-09-26 2008-04-10 Kyocera Corp Plate fin type heat exchanger and fuel cell system
JP2008210630A (en) * 2007-02-26 2008-09-11 Kyocera Corp Fuel cell device
JP2009301986A (en) * 2008-06-17 2009-12-24 Toto Ltd Fuel cell system
JP2009301977A (en) * 2008-06-17 2009-12-24 Toto Ltd Fuel cell system
JP2009301978A (en) * 2008-06-17 2009-12-24 Toto Ltd Fuel cell system
JP2009301976A (en) * 2008-06-17 2009-12-24 Toto Ltd Fuel cell system
JP2009301984A (en) * 2008-06-17 2009-12-24 Toto Ltd Fuel cell system
JP2009301985A (en) * 2008-06-17 2009-12-24 Toto Ltd Fuel cell system
JP2010257806A (en) * 2009-04-27 2010-11-11 Aisin Seiki Co Ltd Solid oxide fuel cell system
US8011598B2 (en) * 2007-04-18 2011-09-06 Delphi Technologies, Inc. SOFC power system with A/C system and heat pump for stationary and transportation applications
WO2011132486A1 (en) 2010-04-21 2011-10-27 Honda Motor Co., Ltd. Fuel cell system and method of controlling the fuel cell system
WO2013035606A1 (en) 2011-09-07 2013-03-14 Honda Motor Co., Ltd. Fuel cell system
WO2013035607A1 (en) 2011-09-07 2013-03-14 Honda Motor Co., Ltd. Fuel cell system
JP2013114851A (en) * 2011-11-28 2013-06-10 Aisin Seiki Co Ltd Fuel cell system
KR101458675B1 (en) * 2012-10-11 2014-11-05 포스코에너지 주식회사 Hybrid heating and cooling system using fuel cell and heat pump
JP2015185265A (en) * 2014-03-20 2015-10-22 アイシン精機株式会社 fuel cell system
JP2016103363A (en) * 2014-11-27 2016-06-02 パナソニックIpマネジメント株式会社 Fuel battery system
JP2016191386A (en) * 2016-08-03 2016-11-10 株式会社日立産機システム Gas compressor
EP3176861A1 (en) * 2015-12-03 2017-06-07 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system with recovery of water
CN114914472A (en) * 2022-04-26 2022-08-16 徐州华清京昆能源有限公司 Overheating prevention device for solid oxide fuel cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126741A (en) * 1999-10-25 2001-05-11 Sekisui Chem Co Ltd Energy supply apparatus
JP2001165524A (en) * 1999-12-08 2001-06-22 Daikin Ind Ltd Absorption refrigerating device
JP2002154807A (en) * 2000-11-16 2002-05-28 Nissan Motor Co Ltd Reforming system
JP2003282108A (en) * 2002-03-20 2003-10-03 Matsushita Electric Ind Co Ltd Fuel cell system
JP2003314833A (en) * 2002-04-19 2003-11-06 Chiryu Heater:Kk Forced circulation type solar heat collecting system
JP2004092468A (en) * 2002-08-30 2004-03-25 Chofu Seisakusho Co Ltd Cogeneration system
JP2004150646A (en) * 2002-10-28 2004-05-27 Sekisui Chem Co Ltd Cogeneration system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126741A (en) * 1999-10-25 2001-05-11 Sekisui Chem Co Ltd Energy supply apparatus
JP2001165524A (en) * 1999-12-08 2001-06-22 Daikin Ind Ltd Absorption refrigerating device
JP2002154807A (en) * 2000-11-16 2002-05-28 Nissan Motor Co Ltd Reforming system
JP2003282108A (en) * 2002-03-20 2003-10-03 Matsushita Electric Ind Co Ltd Fuel cell system
JP2003314833A (en) * 2002-04-19 2003-11-06 Chiryu Heater:Kk Forced circulation type solar heat collecting system
JP2004092468A (en) * 2002-08-30 2004-03-25 Chofu Seisakusho Co Ltd Cogeneration system
JP2004150646A (en) * 2002-10-28 2004-05-27 Sekisui Chem Co Ltd Cogeneration system

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082579A (en) * 2006-09-26 2008-04-10 Kyocera Corp Plate fin type heat exchanger and fuel cell system
JP2008210630A (en) * 2007-02-26 2008-09-11 Kyocera Corp Fuel cell device
US8011598B2 (en) * 2007-04-18 2011-09-06 Delphi Technologies, Inc. SOFC power system with A/C system and heat pump for stationary and transportation applications
JP2009301977A (en) * 2008-06-17 2009-12-24 Toto Ltd Fuel cell system
JP2009301978A (en) * 2008-06-17 2009-12-24 Toto Ltd Fuel cell system
JP2009301976A (en) * 2008-06-17 2009-12-24 Toto Ltd Fuel cell system
JP2009301984A (en) * 2008-06-17 2009-12-24 Toto Ltd Fuel cell system
JP2009301985A (en) * 2008-06-17 2009-12-24 Toto Ltd Fuel cell system
JP2009301986A (en) * 2008-06-17 2009-12-24 Toto Ltd Fuel cell system
JP2010257806A (en) * 2009-04-27 2010-11-11 Aisin Seiki Co Ltd Solid oxide fuel cell system
US8685577B2 (en) 2010-04-21 2014-04-01 Honda Motor Co., Ltd. Fuel cell system and method of controlling the fuel cell system
WO2011132486A1 (en) 2010-04-21 2011-10-27 Honda Motor Co., Ltd. Fuel cell system and method of controlling the fuel cell system
JP2011228182A (en) * 2010-04-21 2011-11-10 Honda Motor Co Ltd Fuel cell system and control method thereof
WO2013035606A1 (en) 2011-09-07 2013-03-14 Honda Motor Co., Ltd. Fuel cell system
US9941528B2 (en) 2011-09-07 2018-04-10 Honda Motor Co., Ltd. Fuel cell system
WO2013035607A1 (en) 2011-09-07 2013-03-14 Honda Motor Co., Ltd. Fuel cell system
US9553320B2 (en) 2011-09-07 2017-01-24 Honda Motor Co., Ltd. Fuel cell system
JP2013114851A (en) * 2011-11-28 2013-06-10 Aisin Seiki Co Ltd Fuel cell system
KR101458675B1 (en) * 2012-10-11 2014-11-05 포스코에너지 주식회사 Hybrid heating and cooling system using fuel cell and heat pump
JP2015185265A (en) * 2014-03-20 2015-10-22 アイシン精機株式会社 fuel cell system
JP2016103363A (en) * 2014-11-27 2016-06-02 パナソニックIpマネジメント株式会社 Fuel battery system
EP3176861A1 (en) * 2015-12-03 2017-06-07 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system with recovery of water
JP2017107852A (en) * 2015-12-03 2017-06-15 パナソニックIpマネジメント株式会社 Fuel battery system
US10305126B2 (en) 2015-12-03 2019-05-28 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system
JP2016191386A (en) * 2016-08-03 2016-11-10 株式会社日立産機システム Gas compressor
CN114914472A (en) * 2022-04-26 2022-08-16 徐州华清京昆能源有限公司 Overheating prevention device for solid oxide fuel cell
CN114914472B (en) * 2022-04-26 2024-01-23 徐州华清京昆能源有限公司 Overheat preventing device for solid oxide fuel cell

Also Published As

Publication number Publication date
JP5173111B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
JP5173111B2 (en) Fuel cell system
JP5139282B2 (en) Fuel cell system
JP5760166B2 (en) Fuel cell system
JP5704398B2 (en) Heat recovery device, cogeneration system, and pipe misconnection detection method
JP4707338B2 (en) Fuel cell system
JP2005100873A (en) Fuel cell system
JP5410833B2 (en) Power generation system and auxiliary unit
JP2008164191A (en) Cogeneration system
JP2007132612A (en) Cogeneration system, its control method, and program
JP5410832B2 (en) Power generation system and auxiliary unit
JP4050919B2 (en) Fuel cell system and operation method thereof
JP4929734B2 (en) Fuel cell system
JP3848243B2 (en) Cogeneration system
JP2006029745A (en) Hot water storage type hot water supplying heat source device
JP2014071997A (en) Cogeneration apparatus
JP7345338B2 (en) Combined heat and power system
JP5410831B2 (en) Power generation system and auxiliary unit
JP2007263388A (en) Exhaust heat recovering device
JP2006032140A (en) Fuel cell cogeneration system
JP2013069598A (en) Cogeneration system
JP2010286185A (en) Hot water storage type hot water supply system and cogeneration system
JP2009236457A (en) Storage water heater
JP2018197649A (en) Heat storage system and cogeneration system
JP2024027818A (en) fuel cell device
JP2015158323A (en) Cogeneration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121227

R150 Certificate of patent or registration of utility model

Ref document number: 5173111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees